1
|
Dini C, Yamashita KM, Sacramento CM, Borges MHR, Takeda TTS, Silva JPDS, Nagay BE, Costa RC, da Cruz NC, Rangel EC, Ruiz KGS, Barão VAR. Tailoring magnesium-doped coatings for improving surface and biological properties of titanium-based dental implants. Colloids Surf B Biointerfaces 2025; 246:114382. [PMID: 39591849 DOI: 10.1016/j.colsurfb.2024.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Physicochemical modifications of biomaterials have been proposed to overcome bone integration impairment and microbial infections. The magnesium (Mg) incorporation on dental implant surfaces has shown positive results in bone-to-implant contact and in the reduction of microbial colonization. Here, we explored the potential of using different Mg precursors to synthesize coatings via plasma electrolytic oxidation (PEO) on commercially pure titanium (cpTi), aiming to optimize the surface and biological properties. For this, we investigated Mg acetate and Mg nitrate precursors in different concentrations (0.04 M and 0.12 M), using calcium (Ca) and phosphorus (P) as the base electrolyte for all groups. Coatings with only the CaP base electrolyte were used as the control group. The surfaces were characterized by confocal laser scanning microscopy, scanning electron microscopy, film thickness measurement, profilometry, wettability, X-ray diffraction, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, electrochemical behavior, and ion release. For biological analyses, the adhesion (2 h) of Streptococcus sanguinis was evaluated, as well as MC3T3-E1 osteoblastic cells proliferation at 1 and 3 days, and mineralization of calcium phosphates after 28 days. PEO treatment using different Mg precursors promoted physicochemical modifications of cpTi. The experimental groups MgN 0.04 and MgN 0.12 exhibited higher surface roughness and wettability compared to the other surfaces. Regardless of the Mg precursor, the higher the ion concentration in the electrolyte solution, the higher the Mg atomic concentration on the surfaces. Concerning the electrochemical behavior, the results indicated that the incorporation of Mg in the coatings may enhance the electrochemical performance. Mg treated surfaces did not promote greater bacterial adherence when compared to the control. MgAc 0.04 and MgAc 0.12 coatings displayed improved MC3T3-E1 pre-osteoblastic cells proliferation at day 3 compared to other groups. The hydroxyapatite formation on MgAc 0.12 surfaces was higher than in the other groups. Our data indicate that Mg precursor selection positively influences physicochemical and biological properties of coatings. Specifically, MgAc 0.12 surfaces showed the most promising surface features with greater cell proliferation, without affecting microbial colonization, being an excellent candidate for surface treatment of titanium-based dental implants.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Karen Midori Yamashita
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Catharina Marques Sacramento
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Thais Terumi Sadamitsu Takeda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - João Pedro Dos Santos Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil; School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas, Minas Gerais 37130-001, Brazil
| | - Nilson Cristino da Cruz
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Elidiane Cipriano Rangel
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Karina Gonzalez Silverio Ruiz
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil.
| |
Collapse
|
2
|
Thoraval L, Varin-Simon J, Ohl X, Velard F, Reffuveille F, Tang-Fichaux M. Cutibacterium acnes and its complex host interaction in prosthetic joint infection: Current insights and future directions. Res Microbiol 2024:104265. [PMID: 39701197 DOI: 10.1016/j.resmic.2024.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Cutibacterium acnes is a commensal Gram-positive anaerobic bacterium that can also act as an opportunistic pathogen in various diseases, particularly in prosthetic joint infections (PJI). Throughout this review, we delve into the current understanding of the intricate interactions between C. acnes and host cells and discuss bacterial persistence in the host. C. acnes colonization and subsequent PJI set-up represent complex processes involving bacterial adhesion, immune recognition, and host response mechanisms. We highlight existing knowledge and gaps in specific host-pathogen interactions and stress the importance of acquiring additional information to develop targeted strategies for preventing and treating C. acnes-related PIJ.
Collapse
Affiliation(s)
- Léa Thoraval
- Université de Reims Champagne-Ardenne, BIOS, Reims, France
| | | | - Xavier Ohl
- Université de Reims Champagne-Ardenne, CHU Reims, BIOS, Service D'Orthopédie et Traumatologie, Reims, France
| | | | - Fany Reffuveille
- Université de Reims Champagne-Ardenne, BIOS, UFR Pharmacie, Reims, France.
| | | |
Collapse
|
3
|
Tardelli JDC, Otani LB, Batalha RL, Alves F, Pereira-da-Siva MA, Bagnato VS, Gargarella P, Bolfarini C, Dos Reis AC. Atomic Interaction S. aureus/Machined and Additive Manufacturing Ti-6Al-4V and Ti-35Nb-7Zr-5Ta Disks for Dental Implants. J Biomed Mater Res B Appl Biomater 2024; 112:e35508. [PMID: 39578114 DOI: 10.1002/jbm.b.35508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 08/28/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
The adhesion strength of a bacterial strain on a substrate influences colonization and biofilm development, so the biomolecular analysis of this interaction is a step that allows insights into the development of antifouling surfaces. As peri-implantitis is the main cause of failure of implant-supported oral rehabilitations and the dental literature presents gaps in the atomic bacteria/surface interaction, this study aimed to correlate the qualitative variation of roughness, wettability, chemical composition, and electrical potential of Ti-6Al-4V and Ti-35Nb-7Zr-5Ta (TNZT) disks obtained by machining (M) and additive manufacturing (AM) on the colonization and adhesion strength of S. aureus quantified by atomic force microscopy (AFM). The samples were evaluated for roughness, electrical potential, and S. aureus colonization and adhesion strength by specific methods in the AFM with subsequent analysis in the NanoScope software analysis, wettability by sessile drop method, and chemical composition by energy dispersive x-ray spectroscopy (EDX). Qualitative data were correlated with bacterial adhesion strength. The greater adhesion strength of S. aureus was observed in descending order for TNZT AM, TNZT M, Ti-6Al-4V AM, and Ti-6Al-4V M. This experimental in vitro study allowed us to conclude that for the evaluated groups, the strength adhesion of S. aureus showed a linear relationship with roughness, and nonlinear for wettability, electrical potential, and S. aureus colonization on the surfaces evaluated. As for the two variation factors, type of alloy and manufacturing method, those that promoted the lowest bacterial adhesion strength were Ti-6Al-4V and M, possibly attributed to the synergistic modification of the evaluated surface properties. Thus, this study suggests S. aureus preferences for rough, hydrophilic surfaces with a greater electrical potential difference.
Collapse
Affiliation(s)
- Juliana Dias Corpa Tardelli
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Lucas Barcelos Otani
- Department of Materials Engineering, Federal University of São Carlos (UFSCAR), São Carlos, São Paulo, Brazil
| | - Rodolfo Lisboa Batalha
- Department of Research, Development and Innovation, Instituto de Soldadura e Qualidade, Oeiras, Portugal
| | - Fernanda Alves
- Optics Group From São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Marcelo A Pereira-da-Siva
- Optics Group From São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Vanderlei Salvador Bagnato
- Optics Group From São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Piter Gargarella
- Department of Materials Engineering, Federal University of São Carlos (UFSCAR), São Carlos, São Paulo, Brazil
| | - Claudemiro Bolfarini
- Department of Materials Engineering, Federal University of São Carlos (UFSCAR), São Carlos, São Paulo, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
4
|
Borges MHR, Nagay BE, Souza JGS, Barão VAR. What challenges hinder the adoption of antimicrobial surface in the dental implant market? Expert Rev Med Devices 2024; 21:1081-1085. [PMID: 39648297 DOI: 10.1080/17434440.2024.2440061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Implant failures resulting from peri-implant infections can have substantial consequences, underscoring the urgent need for effective strategies to prevent biofilm formation on implant surfaces. However, despite advancements in antimicrobial surface technologies, significant challenges persist in translating these innovations into clinically viable solutions. AREAS COVERED This article provides an overview of the limitations of current treatment protocols and explores the potential of antimicrobial surface treatments for controlling such infections. Furthermore, we highlight the importance of balancing antimicrobial efficacy with biocompatibility and mechanical stability, key factors for long-term implant performance. Finally, we address the main challenges in translating these technologies into clinical practice, including the unpredictability of long-term antimicrobial effects, regulatory compliance gaps, and methodological weaknesses in current research. EXPERT OPINION The development of antimicrobial surfaces holds promise for enhancing the longevity of dental implants; however, current modifications face persistent challenges, hindering their translation into the dental implant market. Future advancements should prioritize 'smart' or stimulus-responsive surfaces that can release antimicrobials on demand. This strategy aims to efficiently combat infections while minimizing the risks of cytotoxicity and antimicrobial resistance, potentially leading to more effective and clinically translatable solutions.
Collapse
Affiliation(s)
- Maria Helena R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | | | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
5
|
Tardelli JDC, Schiavon MA, Dos Reis AC. Chitosan coatings on titanium-based implants - From development to characterization and behavior: A systematic review. Carbohydr Polym 2024; 344:122496. [PMID: 39218539 DOI: 10.1016/j.carbpol.2024.122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Chitosan is a promising natural polymer for coatings, it combines intrinsic antibacterial and pro-osteoblastic properties, but the literature still has a gap from the development to behavior of these coatings, so this systematic review aimed to answer, "What is the relationship between the physical and chemical properties of polymeric chitosan coatings on titanium implants on antibacterial activity and osteoblast viability?". PRISMA guidelines was followed, the search was applied into 4 databases and grey literature, without the restriction of time and language. The selection process occurred in 2 blinded steps by the authors. The criteria of eligibility were in vitro studies that evaluated the physical, chemical, microbiological, and biological properties of chitosan coatings on titanium surfaces. The risk of bias was analyzed by the specific tool. Of 734 potential articles 10 were included; all had low risk of bias. The coating was assessed according to the technique of fabrication, FT-IR, thickness, adhesion, roughness, wettability, antibacterial activity, and osteoblast viability. The analyzed coatings showed efficacy on antibacterial activity and cytocompatibility dependent on the class of material incorporated. Thus, this review motivates the development of time-dependent studies to optimize manufacturing and allow for an increase in patents and availability on the market.
Collapse
Affiliation(s)
- Juliana Dias Corpa Tardelli
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Marco Antônio Schiavon
- Department of Natural Sciences, Federal University of São João del-Rei (UFSJ), São João del-Rei, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
6
|
Singh R, Popat KC. Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61714-61724. [PMID: 39478289 PMCID: PMC11565481 DOI: 10.1021/acsami.4c13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Bacterial infections and biofilm formation are significant challenges for medical implants. While titanium nanotube engineering improves biocompatibility, it cannot prevent bacterial adhesion and biofilm formation. Optimizing the biomaterial's surface chemistry is vital for its desired functioning in the biological environment. This study demonstrates the covalent conjugating of the self-assembling dipeptide N-fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) onto titanium nanotube surfaces (TiNTs) without altering the topography. Fmoc-FF peptides, in conjugation with TiNTs, can inhibit biofilm formation, eradicate pre-existing biofilms, and kill bacteria. This functionalization imparts antibacterial properties to the surface while retaining beneficial nanotube topography, synergistically enhancing bioactivity. Surface characterization by XPS, FT-IR, EDS, and SEM confirmed the successful functionalization. Bacterial adhesion experiments showed a significantly improved antibacterial activity of the functionalized TiNT surfaces. This study opens future possibilities for associating biomedical applications such as cell-cell interactions, tissue engineering, and controlled drug delivery of multifunctional self-assembling short peptides with implant materials through surface functionalization.
Collapse
Affiliation(s)
- Ramesh Singh
- Department
of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, Virginia 22030, United States
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Ketul C. Popat
- Department
of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, Virginia 22030, United States
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
7
|
de Paula LG, Vieira JL, Dos Santos DRM, Mendes PHC, Abdo VL, Duraes SVPB, Bertolini M, Souza JGS. Peri-implantitis: Knowledge and attitudes of implantology clinicians regarding the disease management: Peri-implantitis knowledge. Int J Dent Hyg 2024; 22:825-832. [PMID: 38461485 DOI: 10.1111/idh.12797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVES Since peri-implantitis is an increasing and prevalent concern in clinical practice and there is no consensus regarding the best therapeutic protocol, this study evaluated the knowledge and behaviours of dentists working in Implantology regarding implant-related infections modulating factors and therapeutic protocols used in the management of peri-implantitis. METHODS Cross-sectional study was conducted with 86 Brazilian Implantology clinicians. Data were collected using a structured and online questionnaire evaluating socioeconomic characteristics, education, work/clinical practice, knowledge and attitudes regarding the risk factors and management of peri-implantitis. The reliability of the questionnaire was evaluated by test-retest technique. The questionnaire was developed based on the last consensus on peri-implant diseases (2018) and the current evidence related to implant-related infections. Descriptive, bivariate and logistic regression analyses were conducted adopting a significance level of 5%. RESULTS In this study, 89.5% of included dentists reported that already treated patients with peri-implantitis. Approximately 80% of dentists use antibiotics and mouth rinses during the treatment, and surgical procedures seem the main choice to treat peri-implantitis (91.8%) by dentists. As a preventive approach, 94.2% of dentists reported that routinely assessed biofilm accumulation in the follow-up visits after implant placement. Logistic regression showed that the self-reported ability to treat peri-implantitis was statistically (p < 0.05) higher among dentists who reported abilities to diagnose the disease and use laser for peri-implantitis treatment. CONCLUSION Dentists working in Implantology have a good level of knowledge and behaviors in the management of peri-implantitis. However, the lack of consensus regarding the best treatment protocols may reflect dentist's behaviours because different treatment protocols have been used by evaluated clinicians.
Collapse
Affiliation(s)
- Lucca Gomes de Paula
- Dental Science School (Faculdade de Ciências Odontológicas-FCO), Montes Claros, Brazil
| | - Jeniffer Lima Vieira
- Dental Science School (Faculdade de Ciências Odontológicas-FCO), Montes Claros, Brazil
| | | | | | - Victoria Lopes Abdo
- Dental Research Division, Department of Periodontology, Guarulhos University (UnG), Guarulhos, Brazil
| | | | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - João Gabriel Silva Souza
- Dental Science School (Faculdade de Ciências Odontológicas-FCO), Montes Claros, Brazil
- Dental Research Division, Department of Periodontology, Guarulhos University (UnG), Guarulhos, Brazil
| |
Collapse
|
8
|
Gao Y, Lai Y, Wang H, Su J, Chen Y, Mao S, Guan X, Cai Y, Chen J. Antimicrobial peptide GL13K-Modified titanium in the epigenetic regulation of osteoclast differentiation via H3K27me3. Front Bioeng Biotechnol 2024; 12:1497265. [PMID: 39512654 PMCID: PMC11540686 DOI: 10.3389/fbioe.2024.1497265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Implant surface designs have advanced to address challenges in oral rehabilitation for healthy and compromised bone. Several studies have analyzed the effects of altering material surfaces on osteogenic differentiation. However, the crucial role of osteoclasts in osseointegration has often been overlooked. Overactive osteoclasts can compromise implant stability. In this study, we employed a silanization method to alter pure titanium to produce a surface loaded with the antimicrobial peptide GL13K that enhanced biocompatibility. Pure titanium (Ti), silanization-modified titanium, and GL13K-modified titanium (GL13K-Ti) were co-cultured with macrophages. Our findings indicated that GL13K-Ti partially inhibited osteoclastogenesis and expression of osteoclast-related genes and proteins by limiting the formation of the actin ring, an important structure for osteoclast bone resorption. Our subsequent experiments confirmed the epigenetic role in regulating this process. GL13K-Ti was found to impact the degree of methylation modifications of H3K27 in the NFATc1 promoter region following RANKL-induced osteoclastic differentiation. In conclusion, our study unveils the potential mechanism of methylation modifications, a type of epigenetic regulatory modality, on osteoclastogenesis and activity on the surface of a material. This presents novel concepts and ideas for further broadening the clinical indications of oral implants and targeting the design of implant surfaces.
Collapse
Affiliation(s)
- Yuerong Gao
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Yingzhen Lai
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Hong Wang
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Jingjing Su
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Stomatological Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Yan Chen
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - ShunJie Mao
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Xin Guan
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Yihuang Cai
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Dini C, Borges MHR, Malheiros SS, Piazza RD, van den Beucken JJJP, de Avila ED, Souza JGS, Barão VAR. Progress in Designing Therapeutic Antimicrobial Hydrogels Targeting Implant-associated Infections: Paving the Way for a Sustainable Platform Applied to Biomedical Devices. Adv Healthc Mater 2024:e2402926. [PMID: 39440583 DOI: 10.1002/adhm.202402926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Implantable biomedical devices have found widespread use in restoring lost functions or structures within the human body, but they face a significant challenge from microbial-related infections, which often lead to implant failure. In this context, antimicrobial hydrogels emerge as a promising strategy for treating implant-associated infections owing to their tunable physicochemical properties. However, the literature lacks a comprehensive analysis of antimicrobial hydrogels, encompassing their development, mechanisms, and effect on implant-associated infections, mainly in light of existing in vitro, in vivo, and clinical evidence. Thus, this review addresses the strategies employed by existing studies to tailor hydrogel properties to meet the specific needs of each application. Furthermore, this comprehensive review critically appraises the development of antimicrobial hydrogels, with a particular focus on solving infections related to metallic orthopedic or dental implants. Then, preclinical and clinical studies centering on providing quantitative microbiological results associated with the application of antimicrobial hydrogels are systematically summarized. Overall, antimicrobial hydrogels benefit from the tunable properties of polymers and hold promise as an effective strategy for the local treatment of implant-associated infections. However, future clinical investigations, grounded on robust evidence from in vitro and preclinical studies, are required to explore and validate new antimicrobial hydrogels for clinical use.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Samuel Santana Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Rodolfo Debone Piazza
- Physical Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-900, Brazil
| | | | - Erica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, 16015-050, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, São Paulo, 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| |
Collapse
|
10
|
Abreu H, Lallukka M, Raineri D, Leigheb M, Ronga M, Cappellano G, Spriano S, Chiocchetti A. Evaluation of the immune response of peripheral blood mononuclear cells cultured on Ti6Al4V-ELI polished or etched surfaces. Front Bioeng Biotechnol 2024; 12:1458091. [PMID: 39439551 PMCID: PMC11493608 DOI: 10.3389/fbioe.2024.1458091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction While titanium and its alloys exhibit excellent biocompatibility and corrosion resistance, their polished surfaces can hinder fast and effective osseointegration and other biological processes, such as angiogenesis, due to their inert and hydrophobic properties. Despite being commonly used for orthopedic implants, research focuses on developing surface treatments to improve osseointegration, promoting cell adhesion and proliferation, as well as increasing protein adsorption capacity. This study explores a chemical treatment intended for titanium-based implants that enhances tissue integration without compromising the mechanical properties of the Ti6Al4V substrate. However, recognizing that inflammation contributes to nearly half of early implant failures, we assessed the impact of this treatment on T-cell viability, cytokine production, and phenotype. Methods Ti6Al4V with extra low interstitial (ELI) content discs were treated with hydrofluoric acid followed by a controlled oxidation step in hydrogen peroxide that creates a complex surface topography with micro- and nano-texture and modifies the chemistry of the surface oxide layer. The acid etched surface contains an abundance of hydroxyl groups, crucial for promoting bone growth and apatite precipitation, while also enabling further functionalization with biomolecules. Results While cell viability remained high in both groups, untreated discs triggered an increase in Th2 cells and a decrease of the Th17 subset. Furthermore, peripheral blood mononuclear cells exposed to untreated discs displayed a rise in various pro-inflammatory and anti-inflammatory cytokines compared to the control and treated groups. Conversely, the treated discs showed a similar profile to the control, both in terms of immune cell subset frequencies and cytokine secretion. Discussion The dysregulation of the cytokine profile upon contact with untreated Ti6Al4V-ELI discs, namely upregulation of IL-2 could be responsible for the decrease in Th17 frequency, and thus might contribute to implant-associated bacterial infection. Interestingly, the chemical treatment restores the immune response to levels comparable to the control condition, suggesting the treatment's potential to mitigate inflammation by enhancing biocompatibility.
Collapse
Affiliation(s)
- Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Mari Lallukka
- Applied Science and Technology Department, Politecnico di Torino, Torino, Italy
| | - Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Massimiliano Leigheb
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, Novara, Italy
| | - Mario Ronga
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Spriano
- Applied Science and Technology Department, Politecnico di Torino, Torino, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
11
|
Garg D, Kumar D, Paliwal S, Pinnaka AK, Sachdev A, Matai I. Self-adhesive poly-l-lysine/tannic acid hybrid hydrogel for synergistic antibacterial activity against biofilms. Int J Biol Macromol 2024; 278:134961. [PMID: 39179081 DOI: 10.1016/j.ijbiomac.2024.134961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Biomedical implants are crucial for enhancing various human physiological functions. However, they are susceptible to microbial contamination after implantation, posing a risk of implant failure. To address this issue, hydrogel-based coatings are used, but achieving both effective antibacterial properties and stable adhesion remains challenging. This study introduces a hybrid hydrogel network made from Tannic Acid (TA) and Poly-l-Lysine (PLL), cross-linked through ionic and hydrogen bonds, which imparts adhesive and anti-infective properties. The physicochemical analysis revealed that the hydrogels exhibited significant porosity, favorable mechanical characteristics, and demonstrated in vitro enzymatic biodegradation. Moreover, the hydrogels demonstrated adhesion to various substrates, including Ti alloy with an adhesive strength of 42.5 kPa, and retained their integrity even after immersion in water for a minimum of 10 days. The modified Ti surfaces significantly reduced protein adsorption (∼70 %), indicating antifouling properties. The hydrogels prevented bacterial adhesion on titanium surfaces through a "contact-kill" mode of action and inhibited biofilm formation by around 94.5 % for Staphylococcus aureus and 90.8 % for Pseudomonas aeruginosa. The modified Ti retained biofilm inhibitory effects for at least six days without significant performance decline. In vitro cytotoxicity assay confirmed the biocompatibility of the hydrogels with NIH3T3 cells. Overall, these results highlight the competence of hybrid hydrogels as effective coatings for Ti implants, offering strong adhesion and biofilm prevention to mitigate implant-related infections.
Collapse
Affiliation(s)
- Deepa Garg
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Deepak Kumar
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Sakshi Paliwal
- CSIR - Institute of Microbial Technology, Chandigarh 160036, India
| | | | - Abhay Sachdev
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ishita Matai
- Department of Biotechnology, Amity University Punjab, Mohali 140306, India.
| |
Collapse
|
12
|
Shineh G, Mobaraki M, Afzali E, Alakija F, Velisdeh ZJ, Mills DK. Antimicrobial Metal and Metal Oxide Nanoparticles in Bone Tissue Repair. BIOMEDICAL MATERIALS & DEVICES 2024; 2:918-941. [DOI: 10.1007/s44174-024-00159-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/06/2024] [Indexed: 01/06/2025]
|
13
|
Šístková J, Fialová T, Svoboda E, Varmužová K, Uher M, Číhalová K, Přibyl J, Dlouhý A, Pávková Goldbergová M. Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa. Sci Rep 2024; 14:17303. [PMID: 39068252 PMCID: PMC11283573 DOI: 10.1038/s41598-024-68266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Materials used for orthopedic implants should not only have physical properties close to those of bones, durability and biocompatibility, but should also exhibit a sufficient degree of antibacterial functionality. Due to its excellent properties, titanium is still a widely used material for production of orthopedic implants, but the unmodified material exhibits poor antibacterial activity. In this work, the physicochemical characteristics, such as chemical composition, crystallinity, wettability, roughness, and release of Ti ions of the titanium surface modified with nanotubular layers were analyzed and its antibacterial activity against two biofilm-forming bacterial strains responsible for prosthetic joint infection (Staphylococcus aureus and Pseudomonas aeruginosa) was investigated. Electrochemical anodization (anodic oxidation) was used to prepare two types of nanotubular arrays with nanotubes differing in dimensions (with diameters of 73 and 118 nm and lengths of 572 and 343 nm, respectively). These two surface types showed similar chemistry, crystallinity, and surface energy. The surface with smaller nanotube diameter (TNT-73) but larger values of roughness parameters was more effective against S. aureus. For P. aeruginosa the sample with a larger nanotube diameter (TNT-118) had better antibacterial effect with proven cell lysis. Antibacterial properties of titanium nanotubular surfaces with potential in implantology, which in our previous work demonstrated a positive effect on the behavior of human gingival fibroblasts, were investigated in terms of surface parameters. The interplay between nanotube diameter and roughness appeared critical for the bacterial fate on nanotubular surfaces. The relationship of nanotube diameter, values of roughness parameters, and other surface properties to bacterial behavior is discussed in detail. The study is believed to shed more light on how nanotubular surface parameters and their interplay affect antibacterial activity.
Collapse
Affiliation(s)
- Jana Šístková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tatiana Fialová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Emil Svoboda
- Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Kounicova 65, Brno, 662 10, Czech Republic
| | - Kateřina Varmužová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Martin Uher
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kristýna Číhalová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Jan Přibyl
- Central European Institute for Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Antonín Dlouhý
- Institute of Physics of Materials, Czech Academy of Sciences, v. v. i., Žižkova 513/22, Brno, 616 62, Czech Republic
| | - Monika Pávková Goldbergová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
14
|
Nikolova MP, Tzvetkov I, Dimitrova TV, Ivanova VL, Handzhiyski Y, Andreeva A, Valkov S, Ormanova M, Apostolova MD. Effect of Co-Sputtered Copper and Titanium Oxide Coatings on Bacterial Resistance and Cytocompatibility of Osteoblast Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1148. [PMID: 38998753 PMCID: PMC11243546 DOI: 10.3390/nano14131148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
One of the primary risk factors for implant failure is thought to be implant-related infections during the early healing phase. Developing coatings with cell stimulatory behaviour and bacterial adhesion control is still difficult for bone implants. This study proposes an approach for one-step deposition of biocompatible and antimicrobial Cu-doped TiO2 coatings via glow-discharge sputtering of a mosaic target. During the deposition, the bias of the Ti6Al4V substrates was changed. Structure examination, phase analysis, and surface morphology were carried out using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The hardness values and hydrophilic and corrosion performance were also evaluated together with cytocompatible and antibacterial examinations against E. coli and S. aureus. The results show great chemical and phase control of the bias identifying rutile, anatase, CuO, or ternary oxide phases. It was found that by increasing the substrate bias from 0 to -50 V the Cu content increased from 15.3 up to 20.7 at% while at a high bias of -100 V, the copper content reduced to 3 at%. Simultaneously, apart from the Cu2+ state, Cu1+ is also found in the biased samples. Compared with the bare alloy, the hardness, the water contact angle and corrosion resistance of the biased coatings increased. According to an assessment of in vitro cytocompatibility, all coatings were found to be nontoxic to MG-63 osteoblast cells over the time studied. Copper release and cell-surface interactions generated an antibacterial effect against E. coli and S. aureus strains. The -50 V biased coating combined the most successful results in inhibiting bacterial growth and eliciting the proper responses from osteoblastic cells because of its phase composition, electrochemical stability, hydrophilicity, improved substrate adhesion, and surface roughness. Using this novel surface modification approach, we achieved multifunctionality through controlled copper content and oxide phase composition in the sputtered films.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “Angel Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria;
| | - Iliyan Tzvetkov
- Department of Material Science and Technology, University of Ruse “Angel Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria;
| | - Tanya V. Dimitrova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (T.V.D.); (V.L.I.); (Y.H.)
| | - Veronika L. Ivanova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (T.V.D.); (V.L.I.); (Y.H.)
| | - Yordan Handzhiyski
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (T.V.D.); (V.L.I.); (Y.H.)
| | - Andreana Andreeva
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 15 Tsar Osvoboditel Blvd, 1504 Sofia, Bulgaria
| | - Stefan Valkov
- Institute of Electronics “Acad. Emil Djakov”, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia, Bulgaria; (S.V.); (M.O.)
- Department of Mathematics, Informatics and Natural Sciences, Technical University of Garbovo, 4 H. Dimitar Str., 5300 Gabrovo, Bulgaria
| | - Maria Ormanova
- Institute of Electronics “Acad. Emil Djakov”, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia, Bulgaria; (S.V.); (M.O.)
| | - Margarita D. Apostolova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (T.V.D.); (V.L.I.); (Y.H.)
| |
Collapse
|
15
|
Quan K, Mao Z, Lu Y, Qin Y, Wang S, Yu C, Bi X, Tang H, Ren X, Chen D, Cheng Y, Wang Y, Zheng Y, Xia D. Composited silk fibroins ensured adhesion stability and magnetic controllability of Fe 3O 4-nanoparticle coating on implant for biofilm treatment. MATERIALS HORIZONS 2024; 11:3157-3165. [PMID: 38629215 DOI: 10.1039/d4mh00097h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Magnetic propulsion of nano-/micro-robots is an effective way to treat implant-associated infections by physically destroying biofilm structures to enhance antibiotic killing. However, it is hard to precisely control the propulsion in vivo. Magnetic-nanoparticle coating that can be magnetically pulled off does not need precise control, but the requirement of adhesion stability on an implant surface restricts its magnetic responsiveness. Moreover, whether the coating has been fully pulled-off or not is hard to ensure in real-time in vivo. Herein, composited silk fibroins (SFMA) are optimized to stabilize Fe3O4 nanoparticles on a titanium surface in a dry environment; while in an aqueous environment, the binding force of SFMA on titanium is significantly reduced due to hydrophilic interaction, making the coating magnetically controllable by an externally-used magnet but still stable in the absence of a magnet. The maximum working distance of the magnet can be calculated using magnetomechanical simulation in which the yielding magnetic traction force is strong enough to pull Fe3O4 nanoparticles off the surface. The pulling-off removes the biofilms that formed on the coating and enhances antibiotic killing both in vitro and in a rat sub-cutaneous implant model by up to 100 fold. This work contributes to the practical knowledge of magnetic propulsion for biofilm treatment.
Collapse
Affiliation(s)
- Kecheng Quan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Zhinan Mao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Yupu Lu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| | - Yu Qin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Shuren Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Chunhao Yu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Xuewei Bi
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Hao Tang
- Department of Dental Materials, Peking University School and Hospital of Stomatology, & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
| | - Yan Cheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Yong Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology, & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| |
Collapse
|
16
|
Li YB, Zhang HQ, Lu YP, Yang XJ, Wang GD, Wang YY, Tang KL, Huang SY, Xiao GY. Construction of Magnesium Phosphate Chemical Conversion Coatings with Different Microstructures on Titanium to Enhance Osteogenesis and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21672-21688. [PMID: 38637290 DOI: 10.1021/acsami.4c03024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Titanium (Ti) and its alloys are widely used as hard tissue substitutes in dentistry and orthopedics, but their low bioactivity leads to undesirable osseointegration defects in the early osteogenic phase. Surface modification is an important approach to overcome these problems. In the present study, novel magnesium phosphate (MgP) coatings with controllable structures were fabricated on the surface of Ti using the phosphate chemical conversion (PCC) method. The effects of the microstructure on the physicochemical and biological properties of the coatings on Ti were researched. The results indicated that accelerators in PCC solution were important factors affecting the microstructure and properties of the MgP coatings. In addition, the coated Ti exhibited excellent hydrophilicity, high bonding strength, and good corrosion resistance. Moreover, the biological results showed that the MgP coatings could improve the spread, proliferation, and osteogenic differentiation of mouse osteoblast cells (MC3T3-E1) and vascular differentiation of human umbilical vein endothelial cells (HUVECs), indicating that the coated Ti samples had a great effect on promoting osteogenesis and angiogenesis. Overall, this study provided a new research idea for the surface modification of conventional Ti to enhance osteogenesis and angiogenesis in different bone types for potential biomedical applications.
Collapse
Affiliation(s)
- Yi-Bo Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Huan-Qing Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yu-Peng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Xiao-Juan Yang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Guan-Duo Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yu-Ying Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Kang-le Tang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Sheng-Yun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Gui-Yong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
17
|
Liu T, Huang K, Yang Y, Wen S, Zhang J, Deng S, Tan S, Huang L. An NIR light-driven AgBiS 2@ZIF-8 hybrid photocatalyst for rapid bacteria-killing. J Mater Chem B 2024; 12:3481-3493. [PMID: 38511335 DOI: 10.1039/d3tb02285d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Bacterial infection is the most common risk factor that causes the failure of implantation surgery. Therefore, the development of biocompatible implants with excellent antibacterial properties is of utmost importance. In this study, NIR light-driven AgBiS2@ZIF-8 hybrid photocatalysts for rapid bacteria-killing were prepared. AgBiS2@ZIF-8 exhibited excellent photocatalytic activity due to the rapid transfer of photoelectrons from AgBiS2 to ZIF-8, resulting in abundant reactive oxygen species (ROS) to kill bacteria. Meanwhile, AgBiS2@ZIF-8 exhibited a noteworthy photothermal effect, which could effectively convert NIR light into heat. Subsequently, the NIR light-driven antibacterial activity of AgBiS2@ZIF-8/Ti against S. aureus and E. coli was studied. The experimental results showed that AgBiS2@ZIF-8 displayed enhanced photodynamic therapy (PDT) and photothermal therapy (PTT) performance. Under irradiation with 808 nm NIR light for 10 min, AgBiS2@ZIF-8/Ti could effectively eliminate 98.55% of S. aureus in vitro, 99.34% of E. coli in vitro and 95% S. aureus in vivo. At the same time, AgBiS2@ZIF-8/Ti had good biocompatibility. Therefore, AgBiS2@ZIF-8/Ti showed potential as an antibacterial material, which provided a strategy to fight polymicrobial infections.
Collapse
Affiliation(s)
- Ting Liu
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Kangkang Huang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Yuxia Yang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Shengwu Wen
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Jingxian Zhang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Suiping Deng
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Shaozao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
- Guangdong Jianpai New Materials Co., Ltd, Foshan 528500, P. R. China
| | - Langhuan Huang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
- Guangdong Jianpai New Materials Co., Ltd, Foshan 528500, P. R. China
| |
Collapse
|
18
|
Dsouza FP, Dinesh S, Sharma S. Understanding the intricacies of microbial biofilm formation and its endurance in chronic infections: a key to advancing biofilm-targeted therapeutic strategies. Arch Microbiol 2024; 206:85. [PMID: 38300317 DOI: 10.1007/s00203-023-03802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/16/2023] [Indexed: 02/02/2024]
Abstract
Bacterial biofilms can adhere to various surfaces in the environment with human beings being no exception. Enclosed in a self-secreted matrix which contains extracellular polymeric substances, biofilms are intricate communities of bacteria that play a significant role across various sectors and raise concerns for public health, medicine and industries. These complex structures allow free-floating planktonic cells to adopt multicellular mode of growth which leads to persistent infections. This is of great concern as biofilms can withstand external attacks which include antibiotics and immune responses. A more comprehensive and innovative approach to therapy is needed in view of the increasing issue of bacterial resistance brought on by the overuse of conventional antimicrobial medications. Thus, to oppose the challenges posed by biofilm-related infections, innovative therapeutic strategies are being explored which include targeting extracellular polymeric substances, quorum sensing, and persister cells. Biofilm-responsive nanoparticles show promising results by improving drug delivery and reducing the side effects. This review comprehensively examines the factors influencing biofilm formation, host immune defence mechanisms, infections caused by biofilms, diagnostic approaches, and biofilm-targeted therapies.
Collapse
Affiliation(s)
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India.
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| |
Collapse
|
19
|
Sandomierski M, Jakubowski M, Ratajczak M, Voelkel A. Titanium modification using bioactive titanate layer with divalent ions and coordinated ciprofloxacin - Assessment of drug distribution using FT-IR imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123365. [PMID: 37696096 DOI: 10.1016/j.saa.2023.123365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The paper presents a new method of titanium alloy (Ti6Al4V) modification using bioactive titanate layers containing various divalent ions (Ca2+, Mg2+, Sr2+, Zn2+) and surface-coordinated ciprofloxacin. Due to the coordination of ciprofloxacin (antibiotic) on the surface of the alloy, it has great application potential. In the paper, the influence of a given cation on the effectiveness of drug sorption was determined. The most effective cation was zinc and the least effective was calcium. The distribution of the antibiotic on the alloy surface was determined using FT-IR imaging. The antibiotic was evenly distributed on alloys modified with magnesium, strontium and zinc titanates. In the case of calcium titanate, the analysis could not be performed because the amount of the drug was too small. The release profiles of ciprofloxacin indicate that it can be released for as long as 3 h for strontium and zinc titanates. The biocompatibility of the obtained materials is indicated by the results of the BSA adsorption, and HA growth test. The obtained results confirm that the proposed modification can be used in the modification of titanium implants. The big advantage of this layer is that ciprofloxacin is coordinated on the surface of the material and thus will not be removed during the surgical procedure. The creation of this type of layer may in the future allow for fewer perioperative infections, and thus fewer complications.
Collapse
Affiliation(s)
- Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland.
| | - Marcel Jakubowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Maria Ratajczak
- Institute of Building Engineering, Poznan University of Technology, ul. Piotrowo 5, 60-965 Poznań, Poland
| | - Adam Voelkel
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
20
|
Bouloussa H, Mirza M, Ansley B, Jilakara B, Yue JJ. Implant Surface Technologies to Prevent Surgical Site Infections in Spine Surgery. Int J Spine Surg 2023; 17:S75-S85. [PMID: 38135445 PMCID: PMC10753351 DOI: 10.14444/8563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
Spine surgeries are occurring more frequently worldwide. Spinal implant infections are one of the most common complications of spine surgery, with a rate of 0.7% to 11.9%. These implant-related infections are a consequence of surface polymicrobial biofilm formation. New technologies to combat implant-related infections are being developed as their burden increases; however, none have reached the market stage in spine surgery. Conferring antimicrobial properties to biomaterials relies on either surface coating (physical, chemical, or combined) or surface modification (physical, chemical, or combined). Such treatment can also result in toxicity and the progression of antimicrobial resistance. This narrative review will discuss "late-stage" antimicrobial technologies (mostly validated in vivo) that use these techniques and may be incorporated onto spine implants to decrease the burden of implant-related health care-acquired infections (HAIs). Successfully reducing this burden will greatly improve the quality of life in spine surgery. Familiarity with upcoming surface technologies will help spine surgeons understand the anti-infective strategies designed to address the rapidly worsening challenge of implant-related health care-acquired infections.
Collapse
Affiliation(s)
- Houssam Bouloussa
- Department of Orthopaedic Surgery, University of Missouri, Kansas City, MO, USA
| | - Mohsin Mirza
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - Brant Ansley
- Department of Orthopaedic Surgery, University of Missouri, Kansas City, MO, USA
| | - Bharadwaj Jilakara
- Department of Orthopaedic Surgery, University of Missouri, Kansas City, MO, USA
| | - James J Yue
- CT Orthopaedic Specialists, Hamden, CT, USA
- Department of Surgery, Quinnipiac University, Hamden, CT, USA
| |
Collapse
|
21
|
Syahruddin MH, Anggraeni R, Ana ID. A microfluidic organ-on-a-chip: into the next decade of bone tissue engineering applied in dentistry. Future Sci OA 2023; 9:FSO902. [PMID: 37753360 PMCID: PMC10518836 DOI: 10.2144/fsoa-2023-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
A comprehensive understanding of the complex physiological and pathological processes associated with alveolar bones, their responses to different therapeutics strategies, and cell interactions with biomaterial becomes necessary in precisely treating patients with severe progressive periodontitis, as a bone-related issue in dentistry. However, existing monolayer cell culture or pre-clinical models have been unable to mimic the complex physiological, pathological and regeneration processes in the bone microenvironment in response to different therapeutic strategies. In this point, 'organ-on-a-chip' (OOAC) technology, specifically 'alveolar-bone-on-a-chip', is expected to resolve the problems by better imitating infection site microenvironment and microphysiology within the oral tissues. The OOAC technology is assessed in this study toward better approaches in disease modeling and better therapeutics strategy for bone tissue engineering applied in dentistry.
Collapse
Affiliation(s)
- Muhammad Hidayat Syahruddin
- Postgraduate Student, Dental Science Doctoral Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Rahmi Anggraeni
- Research Center for Preclinical & Clinical Medicine, National Research & Innovation Agency of the Republic of Indonesia, Cibinong Science Center, Bogor, 16915, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research & Innovation Agency (BRIN) – Universitas Gadjah Mada (UGM), Yogyakarta, 55281, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research & Innovation Agency (BRIN) – Universitas Gadjah Mada (UGM), Yogyakarta, 55281, Indonesia
| |
Collapse
|
22
|
Atila D, Kumaravel V. Advances in antimicrobial hydrogels for dental tissue engineering: regenerative strategies for endodontics and periodontics. Biomater Sci 2023; 11:6711-6747. [PMID: 37656064 DOI: 10.1039/d3bm00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Dental tissue infections have been affecting millions of patients globally leading to pain, severe tissue damage, or even tooth loss. Commercial sterilizers may not be adequate to prevent frequent dental infections. Antimicrobial hydrogels have been introduced as an effective therapeutic strategy for endodontics and periodontics since they have the capability of imitating the native extracellular matrix of soft tissues. Hydrogel networks are considered excellent drug delivery platforms due to their high-water retention capacity. In this regard, drugs or nanoparticles can be incorporated into the hydrogels to endow antimicrobial properties as well as to improve their regenerative potential, once biocompatibility criteria are met avoiding high dosages. Herein, novel antimicrobial hydrogel formulations were discussed for the first time in the scope of endodontics and periodontics. Such hydrogels seem outstanding candidates especially when designed not only as simple volume fillers but also as smart biomaterials with condition-specific adaptability within the dynamic microenvironment of the defect site. Multifunctional hydrogels play a pivotal role against infections, inflammation, oxidative stress, etc. along the way of dental regeneration. Modern techniques (e.g., 3D and 4D-printing) hold promise to develop the next generation of antimicrobial hydrogels together with their limitations such as infeasibility of implantation.
Collapse
Affiliation(s)
- Deniz Atila
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| |
Collapse
|
23
|
Osorio MT, Toledano R, Huang H, Toledano-Osorio M, Osorio R, Huang CYC, García-Godoy F. Effect of doxycycline doped nanoparticles on osteogenic/cementogenic and anti-inflammatory responses of human cells derived from the periodontal ligament. J Dent 2023; 137:104668. [PMID: 37597689 DOI: 10.1016/j.jdent.2023.104668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
OBJECTIVES This work aimed to evaluate if doxycycline-doped polymeric nanoparticles possessed any anti-inflammatory effect and promote osteogenic/cementogenic differentiation of stem cells from human periodontal ligament (PDLSCs). METHODS The polymeric nanoparticles (NPs) were produced by a polymerization/precipitation process and doped with doxycycline (Dox-NPs). PDLSCs were cultured in the presence or absence of the NPs under osteogenic medium or IL-1β treatment. Cells' differentiation was assessed by gene expression analysis of osteogenic/cementogenic markers alkaline phosphatase (ALP) and Runt-related transcription factor 2 (RUNX2). An anti-inflammatory effect was also ascertained by analyzing IL-1β gene expression. Adipogenic and chondrogenic differentiation was used to confirm the multipotency of PDLSCs. RESULTS Gene expression of ALP and RUNX2 in PDLSCs was significantly upregulated by the osteogenic medium (ALP: p<0.001; RUNX2: p = 0.005) while Dox-NPs further enhanced ALP gene expression of PDLSCs treated with the osteogenic medium. Furthermore, Dox-NPs suppressed the up-regulation of IL-1β when cells were subjected to an inflammatory challenge. CONCLUSIONS Dox-NPs enhanced PDLSCs differentiation into osteoblasts/cementoblasts lineages while providing an anti-inflammatory effect. CLINICAL SIGNIFICANCE Due to their biocompatibility as well as anti-inflammatory and osteogenic/cementogenic effects, Dox-NPs are potential candidates for being used in periodontal regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Franklin García-Godoy
- University of Tennessee, Memphis, TN, USA; The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
24
|
Ding Y, Liu G, Liu S, Li X, Xu K, Liu P, Cai K. A Multifunction Hydrogel-Coating Engineered Implant for Rescuing Biofilm Infection and Boosting Osseointegration by Macrophage-Related Immunomodulation. Adv Healthc Mater 2023; 12:e2300722. [PMID: 37140383 DOI: 10.1002/adhm.202300722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Indexed: 05/05/2023]
Abstract
Innovative methodologies combined with scavenging reactive oxygen species (ROS), alleviating oxidative stress damage and promoting macrophage polarization to M2 phenotype may be ideal for remodeling implant-infected bone tissue. Herein, a functionalization strategy for doping Tannic acid-d-tyrosine nanoparticles with photothermal profile into the hydrogel coating composed of konjac gum and gelatin on the surface of titanium (Ti) substrate is accurately constructed. The prepared hydrogel coating exhibits excellent properties of eliminating biofilm and killing planktonic bacteria, which is based on increasing susceptibility to bacteria by the photothermal effect, biofilm-dissipation effect of D-tyrosine, as well as the bactericidal effect of tannic acid. In addition, the modified Ti substrate has effectively alleviated proinflammatory responses by scavenging intracellular excessive ROS and guiding macrophages polarization toward M2. More interesting, conditioned medium from macrophage indicates that paracrine is conducive to osteogenic proliferation and differentiation of mesenchymal stem cells. Results from rat model of femur infection in vivo demonstrate that the modified Ti implant significantly eliminates the residual bacteria, relieves inflammation, mediates macrophage polarization, and accelerates osseointegration. Altogether, this study exhibits a new perspective for the development of advanced functional implant with great application potential in bone tissue regeneration and repair.
Collapse
Affiliation(s)
- Yao Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Shaopeng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
25
|
Jothipandiyan S, Suresh D, Sekaran S, Paramasivam N. Palladium(II) Metal Complex Fabricated Titanium Implant Mitigates Dual-Species Biofilms in Artificial Synovial Fluid. Antibiotics (Basel) 2023; 12:1296. [PMID: 37627716 PMCID: PMC10451766 DOI: 10.3390/antibiotics12081296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Metallodrugs have a potent application in various medical fields. In the current study, we used a novel Palladium(II) thiazolinyl picolinamide complex that was directly fabricated over the titanium implant to examine its potency in inhibiting dual-species biofilms and exopolysaccharides. Additionally, inhibition of mono- and dual-species biofilms by coated titanium plates in an in vitro joint microcosm was performed. The study was carried out for 7 days by cultivating mono- and dual-species biofilms on titanium plates placed in both growth media and artificial synovial fluid (ASF). By qPCR analysis, the interaction of co-cultured biofilms in ASF and the alteration in gene expression of co-cultured biofilms were studied. Remarkable alleviation of biofilm accumulation and EPS secretion was observed on the coated titanium plates. The effective impairment of biofilms and EPS matrix of biofilms on Pd(II)-E-coated titanium plates were visualized by Scanning Electron Microscopy. Moreover, coated titanium plates improved the adhesion of osteoblast cells, which is crucial for a bone biomaterial. The potential bioactivity of coated plates was also confirmed at the molecular level using qPCR analysis. The stability of coated plates in ASF for 7 days was examined with FESEM-EDAX analysis. Collectively, the present study provided an excellent anti-infective effect on Pd(II)-E-coated titanium plates without affecting their biocompatibility with bone cells.
Collapse
Affiliation(s)
- Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India;
| | - Devarajan Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India;
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India
| | - Nithyanand Paramasivam
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India;
| |
Collapse
|
26
|
Stillger L, Viau L, Holtmann D, Müller D. Antibiofilm assay for antimicrobial peptides combating the sulfate-reducing bacteria Desulfovibrio vulgaris. Microbiologyopen 2023; 12:e1376. [PMID: 37642483 PMCID: PMC10441178 DOI: 10.1002/mbo3.1376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
In medical, environmental, and industrial processes, the accumulation of bacteria in biofilms can disrupt many processes. Antimicrobial peptides (AMPs) are receiving increasing attention in the development of new substances to avoid or reduce biofilm formation. There is a lack of parallel testing of the effect against biofilms in this area, as well as in the testing of other antibiofilm agents. In this paper, a high-throughput screening was developed for the analysis of the antibiofilm activity of AMPs, differentiated into inhibition and removal of a biofilm. The sulfate-reducing bacterium Desulfovibrio vulgaris was used as a model organism. D. vulgaris represents an undesirable bacterium, which is considered one of the major triggers of microbiologically influenced corrosion. The application of a 96-well plate and steel rivets as a growth surface realizes real-life conditions and at the same time establishes a flexible, simple, fast, and cost-effective assay. All peptides tested in this study demonstrated antibiofilm activity, although these peptides should be individually selected depending on the addressed aim. For biofilm inhibition, the peptide DASamP1 is the most suitable, with a sustained effect for up to 21 days. The preferred peptides for biofilm removal are S6L3-33, in regard to bacteria reduction, and Bactenecin, regarding total biomass reduction.
Collapse
Affiliation(s)
- Lena Stillger
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGiessenGermany
| | - Lucile Viau
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGiessenGermany
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGiessenGermany
- Institute of Process Engineering in Life SciencesKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Daniela Müller
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGiessenGermany
- Institute of Pharmaceutical Technology and BiopharmacyPhilipps‐University MarburgMarburgGermany
| |
Collapse
|
27
|
de la Mora Ramírez T, Torres San Miguel CR, Máximo DVM, Perrusquia NL, Doñu Ruiz MA, García Bustos ED. Nanoindentation Tests for Characterization of Hydroxyapatite Thin Films. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:171-173. [PMID: 37613434 DOI: 10.1093/micmic/ozad067.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Tomas de la Mora Ramírez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto politécnico Nacional, Ciudad de México, México
- Tecnológico de Estudios Superiores de Jocotitlán, Cuerpo académico innovación y optimización de procesos, Ingeniería Industrial, Jocotitlán Estado de México, México
| | - Christopher René Torres San Miguel
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto politécnico Nacional, Ciudad de México, México
| | - Dulce Viridian Melo Máximo
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Departamento de Mecánica y Materiales Avanzados, Ciudad López Mateos, Estado de México, México
| | - Noé Lopez Perrusquia
- Grupo de Ciencia e Ingeniería de Materiales, Universidad Politécnica del Valle de México, Tultitlán de Mariano Escobedo Estado de México, México
| | - Marco A Doñu Ruiz
- Grupo de Ciencia e Ingeniería de Materiales, Universidad Politécnica del Valle de México, Tultitlán de Mariano Escobedo Estado de México, México
| | - Ernesto David García Bustos
- Cátedras Conacyt, Universidad Politécnica del Valle de México, Tultitlán de Mariano Escobedo, Estado de México, México
| |
Collapse
|
28
|
Grase L, Onufrijevs P, Rezevska D, Racenis K, Skadins I, Karosas J, Gecys P, Iesalnieks M, Pludons A, Kroica J, Raciukaitis G. Effect of Femtosecond Laser-Irradiated Titanium Plates on Enhanced Antibacterial Activity and Preservation of Bacteriophage Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2032. [PMID: 37513043 PMCID: PMC10384951 DOI: 10.3390/nano13142032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Titanium (Ti) is widely recognized for its exceptional properties and compatibility with medical applications. In our study, we successfully formed laser-induced periodic surface structures (LIPSS) on Ti plates with a periodicity of 520-740 nm and a height range of 150-250 nm. To investigate the morphology and chemical composition of these surfaces, we employed various techniques, including field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Additionally, we utilized a drop-shape analyzer to determine the wetting properties of the surfaces. To evaluate the antibacterial activity, we followed the ISO 22196:2011 standard, utilizing reference bacterial cultures of Gram-positive Staphylococcus aureus (ATCC 25923) and Gram-negative Escherichia coli (ATCC 25922). The results revealed enhanced antibacterial properties against Staphylococcus aureus by more than 99% and Escherichia coli by more than 80% in comparison with non-irradiated Ti. Furthermore, we conducted experiments using the Escherichia coli bacteriophage T4 (ATCC 11303-B4) and the bacterial host Escherichia coli (ATCC 11303) to investigate the impact of Ti plates on the stability of the bacteriophage. Overall, our findings highlight the potential of LIPSS on Ti plates for achieving enhanced antibacterial activity against common bacterial strains while maintaining the stability of bacteriophages.
Collapse
Affiliation(s)
- Liga Grase
- Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 7 Paula Valdena Street, LV-1048 Riga, Latvia
| | - Pavels Onufrijevs
- Institute of Technical Physics, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 7 Paula Valdena Street, LV-1048 Riga, Latvia
| | - Dace Rezevska
- Department of Biology and Microbiology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Karlis Racenis
- Department of Biology and Microbiology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Ingus Skadins
- Department of Biology and Microbiology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Jonas Karosas
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - Paulius Gecys
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - Mairis Iesalnieks
- Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 7 Paula Valdena Street, LV-1048 Riga, Latvia
| | - Arturs Pludons
- Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 7 Paula Valdena Street, LV-1048 Riga, Latvia
| | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Gediminas Raciukaitis
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
29
|
Salaie RN, Hassan PA, Meran ZD, Hamad SA. Antibacterial Activity of Dissolved Silver Fractions Released from Silver-Coated Titanium Dental Implant Abutments: A Study on Streptococcus mutans Biofilm Formation. Antibiotics (Basel) 2023; 12:1097. [PMID: 37508193 PMCID: PMC10376167 DOI: 10.3390/antibiotics12071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: The aim of this research was to investigate the antibacterial activity of dissolved silver from silver-coated titanium implants against Streptococcus mutans. (2) Methodology: Silver-coated titanium implant discs were immersed in 1.8 mL of brain heart infusion broth (BHIB) and incubated for 24 h in order to release the silver ions into the broth. The coating quality was confirmed via EDS, and the dissolved silver was measured via inductively coupled plasma mass spectrometry (ICP-MS). The experimental design used unconditioned broth (control) and broth conditioned with silver released from silver-coated titanium implants (n = 6). Regarding the antibacterial activity, isolated Streptococcus mutans was used. A turbidity test and lactate production test were performed to determine the effect of dissolved silver on bacterial growth in a suspension and biofilm formation. (3) Result: The results showed that the coating was successfully applied on the substrate. There was around 0.3 mg/L of silver released into the BHIB, and the turbidity of the control group was significantly higher than the treatment, with measured absorbance values of 1.4 and 0.8, respectively, indicating that the dissolved silver ions from the silver-coated titanium discs exhibited some degree of antibacterial activity by preventing the growth of Streptococcus mutans. However, the results of the antibiofilm activity test did not show any significant difference between the groups. (4) Conclusion: The dissolved silver from silver-coated titanium implants has an antibacterial activity but not a significant antimicrobial activity, indicating that the dissolved silver from silver-coated titanium abutments can significantly reduce the incidence of peri-implant mucositis.
Collapse
Affiliation(s)
- Ranj Nadhim Salaie
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tishk International University, Erbil 44001, Iraq
| | - Pakhshan A Hassan
- Department of Biology, College of Science, Salahaddin University, Erbil 44001, Iraq
| | - Zhala Dara Meran
- Department of Prosthodontics, College of Dentistry, Hawler Medical University, Erbil 44001, Iraq
| | | |
Collapse
|
30
|
Tardelli JDC, Bagnato VS, Reis ACD. Bacterial Adhesion Strength on Titanium Surfaces Quantified by Atomic Force Microscopy: A Systematic Review. Antibiotics (Basel) 2023; 12:994. [PMID: 37370313 DOI: 10.3390/antibiotics12060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/29/2023] Open
Abstract
Few studies have been able to elucidate the correlation of factors determining the strength of interaction between bacterial cells and substrate at the molecular level. The aim was to answer the following question: What biophysical factors should be considered when analyzing the bacterial adhesion strength on titanium surfaces and its alloys for implants quantified by atomic force microscopy? This review followed PRISMA. The search strategy was applied in four databases. The selection process was carried out in two stages. The risk of bias was analyzed. One thousand four hundred sixty-three articles were found. After removing the duplicates, 1126 were screened by title and abstract, of which 57 were selected for full reading and 5 were included; 3 had a low risk of bias and 2 moderated risks of bias. (1) The current literature shows the preference of bacteria to adhere to surfaces of the same hydrophilicity. However, this fact was contradicted by this systematic review, which demonstrated that hydrophobic bacteria developed hydrogen bonds and adhered to hydrophilic surfaces; (2) the application of surface treatments that induce the reduction of areas favorable for bacterial adhesion interfere more in the formation of biofilm than surface roughness; and (3) bacterial colonization should be evaluated in time-dependent studies as they develop adaptation mechanisms, related to time, which are obscure in this review.
Collapse
Affiliation(s)
- Juliana Dias Corpa Tardelli
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-904, Brazil
| | - Vanderlei Salvador Bagnato
- Department of Physics and Materials Science, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13566-970, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-904, Brazil
| |
Collapse
|
31
|
Malheiros SS, Nagay BE, Bertolini MM, de Avila ED, Shibli JA, Souza JGS, Barão VAR. Biomaterial engineering surface to control polymicrobial dental implant-related infections: focusing on disease modulating factors and coatings development. Expert Rev Med Devices 2023:1-17. [PMID: 37228179 DOI: 10.1080/17434440.2023.2218547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Peri-implantitis is the leading cause of dental implant loss and is initiated by a polymicrobial dysbiotic biofilm formation on the implant surface. The destruction of peri-implant tissue by the host immune response and the low effectiveness of surgical or non-surgical treatments highlight the need for new strategies to prevent, modulate and/or eliminate biofilm formation on the implant surface. Currently, several surface modifications have been proposed using biomolecules, ions, antimicrobial agents, and topography alterations. AREAS COVERED Initially, this review provides an overview of the etiopathogenesis and host- and material-dependent modulating factors of peri-implant disease. In addition, a critical discussion about the antimicrobial surface modification mechanisms and techniques employed to modify the titanium implant material is provided. Finally, we also considered the future perspectives on the development of antimicrobial surfaces to narrow the bridge between idea and product and favor the clinical application possibility. EXPERT OPINION Antimicrobial surface modifications have demonstrated effective results; however, there is no consensus about the best modification strategy and in-depth information on the safety and longevity of the antimicrobial effect. Modified surfaces display recurring challenges such as short-term effectiveness, the burst release of drugs, cytotoxicity, and lack of reusability. Stimulus-responsive surfaces seem to be a promising strategy for a controlled and precise antimicrobial effect, and future research should focus on this technology and study it from models that better mimic clinical conditions.
Collapse
Affiliation(s)
- Samuel S Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Martinna M Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15106, USA
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, Sao Paulo 16015-050, Brazil
| | - Jamil A Shibli
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais39401-303, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
32
|
Zhang L, Li Y, Yuan L, Zhang Q, Yan Y, Dong F, Tang J, Wang Y. Advanced and Readily-Available Wireless-Powered Blue-Light-Implant for Non-Invasive Peri-Implant Disinfection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203472. [PMID: 36935373 DOI: 10.1002/advs.202203472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/12/2023] [Indexed: 05/18/2023]
Abstract
Non-invasive light-based antibacterial therapy has a good prospect in non-surgical treatment of peri-implant infections. However, its applications are severely limited by poor penetration of light into human tissues, leading to unsatisfying outcomes. Moreover, as an essential prerequisite for traditional light therapy, lasers can no longer meet the patients' needs for convenient treatment at any time. To break through the spatial and temporal limitations of traditional light therapy, a wireless-powered blue-light zirconia implant for readily available treatment of peri-implant infection is proposed. In space, complete irradiation to complex peri-implant structure is realized by the built-in wireless-powered light source, thus improving the efficacy. In time, wireless-powering allows timely and controllable anti-infection treatment. Blue micro-light emitting diodes are used as therapeutic light sources, which effectively kill peri-implant infection-related bacteria without exogenous photosensitive agents. Porphyromonas gingivalis biofilm on implant surface can be completely killed after 20 min irradiation in vitro. The bactericidal rate of peri-implant methicillin-resistant Staphylococcus aureus infection reaches 99.96 ± 0.03% under 30 min per day blue light exposure in vivo. Within the scope of this study, the treatment of peri-implant infection with blue-light implant has preliminary feasibility, giving a new approach to non-invasive treatment of deep oral infections, including peri-implant infections.
Collapse
Affiliation(s)
- Ludan Zhang
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Yamin Li
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Integrated Circuits, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Lintian Yuan
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Qianyi Zhang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuqing Yan
- Beijing Taia Technology Co. LTD, Beijing, 100089, P. R. China
| | - Fan Dong
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Jun Tang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Integrated Circuits, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yuguang Wang
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| |
Collapse
|
33
|
Abdo VL, Suarez LJ, de Paula LG, Costa RC, Shibli J, Feres M, Barāo VAR, Bertolini M, Souza JGS. Underestimated microbial infection of resorbable membranes on guided regeneration. Colloids Surf B Biointerfaces 2023; 226:113318. [PMID: 37075523 DOI: 10.1016/j.colsurfb.2023.113318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Barrier membranes are critical in creating tissuecompartmentalization for guided tissue (GTR) and bone regeneration (GBR) therapies. More recently, resorbable membranes have been widely used for tissue and bone regeneration due to their improved properties and the dispensable re-entry surgery for membrane removal. However, in cases with membrane exposure, this may lead to microbial contamination that will compromise the integrity of the membrane, surrounding tissue, and bone regeneration, resulting in treatment failure. Although the microbial infection can negatively influence the clinical outcomes of regenerative therapy, such as GBR and GTR, there is a lack of clinical investigations in this field, especially concerning the microbial colonization of different types of membranes. Importantly, a deeper understanding of the mechanisms of biofilm growth and composition and pathogenesis on exposed membranes is still missing, explaining the mechanisms by which bone regeneration is reduced during membrane exposure. This scoping review comprehensively screened and discussed the current in vivo evidence and possible new perspectives on the microbial contamination of resorbable membranes. Results from eligible in vivo studies suggested that different bacterial species colonized exposed membranes according to their composition (collagen, expanded polytetrafluoroethylene (non-resorbable), and polylactic acid), but in all cases, it negatively affected the attachment level and amount of bone gain. However, limited models and techniques have evaluated the newly developed materials, and evidence is scarce. Finally, new approaches to enhance the antimicrobial effect should consider changing the membrane surface or incorporating long-term released antimicrobials in an effort to achieve better clinical success.
Collapse
Affiliation(s)
- Victoria L Abdo
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| | - Lina J Suarez
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil; Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Cra 45 # 26-85, Bogotá 11001, Colombia
| | - Lucca Gomes de Paula
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Av. Waldomiro Marcondes Oliveira, 20 - Ibituruna, Montes Claros, Minas Gerais 39401-303, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Jamil Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil; Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Valentim A R Barāo
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, 3501 Terrace St, Pittsburgh, PA 15213, USA
| | - Joāo Gabriel Silva Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil; Dental Science School (Faculdade de Ciências Odontológicas - FCO), Av. Waldomiro Marcondes Oliveira, 20 - Ibituruna, Montes Claros, Minas Gerais 39401-303, Brazil.
| |
Collapse
|
34
|
Multifunctional antibacterial chitosan-based hydrogel coatings on Ti6Al4V biomaterial for biomedical implant applications. Int J Biol Macromol 2023; 231:123328. [PMID: 36681215 DOI: 10.1016/j.ijbiomac.2023.123328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Among biomedical community, great efforts have been realized to develop antibacterial coatings that avoid implant-associated infections. To date, conventional mono-functional antibacterial strategies have not been effective enough for successful long-term implantations. Consequently, researchers have recently focused their attention on novel bifunctional or multifunctional antibacterial coatings, in which two or more antibacterial mechanisms interact synergistically. Thus, in this work different chitosan-based (CHI) hydrogel coatings were created on Ti6Al4V surface using genipin (Ti-CHIGP) and polyethylene glycol (Ti-CHIPEG) crosslinking agents. Hydrogel coatings demonstrated an exceptional in vivo biocompatibility plus a remarkable ability to promote cell proliferation and differentiation. Lastly, hydrogel coatings demonstrated an outstanding bacteria-repelling (17-28 % of S. aureus and 33-43 % of E. coli repelled) and contact killing (186-222 % of S. aureus and 72-83 % of E. coli damaged) ability. Such bifunctional antibacterial activity could be further improved by the controlled release of drugs resulting in powerful multifunctional antibacterial coatings.
Collapse
|
35
|
Pizarek JA, Fischer NG, Aparicio C. Immunomodulatory IL-23 receptor antagonist peptide nanocoatings for implant soft tissue healing. Dent Mater 2023; 39:204-216. [PMID: 36642687 PMCID: PMC9899321 DOI: 10.1016/j.dental.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Peri-implantitis, caused by an inflammatory response to pathogens, is the leading cause of dental implant failure. Poor soft tissue healing surrounding implants - caused by inadequate surface properties - leads to infection, inflammation, and dysregulated keratinocyte and macrophage function. One activated inflammatory response, active around peri-implantitis compared to healthy sites, is the IL-23/IL-17A cytokine axis. Implant surfaces can be synthesized with peptide nanocoatings to present immunomodulatory motifs to target peri-implant keratinocytes to control macrophage polarization and regulate inflammatory axises toward enhancing soft tissue healing. METHODS We synthesized an IL-23 receptor (IL-23R) noncompetitive antagonist peptide nanocoating using silanization and evaluated keratinocyte secretome changes and macrophage polarization (M1-like "pro-inflammatory" vs. M2-like "pro-regenerative"). RESULTS IL-23R antagonist peptide nanocoatings were successfully synthesized on titanium, to model dental implant surfaces, and compared to nonfunctional nanocoatings and non-coated titanium. IL-23R antagonist nanocoatings significantly decreased keratinocyte IL-23, and downstream IL-17A, expression compared to controls. This peptide noncompetitive antagonistic function was demonstrated under lipopolysaccharide stimulation. Large scale changes in keratinocyte secretome content, toward a pro-regenerative milieu, were observed from keratinocytes cultured on the IL-23R antagonist nanocoatings compared to controls. Conditioned medium collected from keratinocytes cultured on the IL-23R antagonist nanocoatings polarized macrophages toward a M2-like phenotype, based on increased CD163 and CD206 expression and reduced iNOS expression, compared to controls. SIGNIFICANCE Our results support development of IL-23R noncompetitive antagonist nanocoatings to reduce the pro-inflammatory IL-23/17A pathway and augment macrophage polarization toward a pro-regenerative phenotype. Immunomodulatory implant surface engineering may promote soft tissue healing and thereby reduce rates of peri-implantitis.
Collapse
Affiliation(s)
- John A Pizarek
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA; United States Navy Dental Corps, Naval Medical Leader and Professional Development Command, 8955 Wood Road Bethesda, MD 20889, USA
| | - Nicholas G Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA.
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA; UIC Barcelona - Universitat Internacional de Catalunya, Josep Trueta s/n, 08195 Sant Cugat del Valles, Barcelona, Spain; IBEC- Institute for Bioengineering of Catalonia, Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| |
Collapse
|
36
|
Święch D, Piergies N, Palumbo G, Paluszkiewicz C. In Situ and Ex Situ Raman Studies of Cysteine’s Behavior on a Titanium Surface in Buffer Solution. COATINGS 2023; 13:175. [DOI: 10.3390/coatings13010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
In this paper, surface-enhanced Raman spectroscopy (SERS) was used to investigate the adsorption process of cysteine (Cys). Studies were carried out in the presence of phosphate-buffered saline solution (PBS), at pH 7.4, and acidified to pH 5, 3, and 1, on the surface of Ti for implant application. In situ SERS spectra obtained for the Cys/Ti solution system, after 24 h of immersion time, indicated that the buffer solution strongly influences the adsorption behavior of Cys on the Ti surface. This results in a decrease in Cys adsorption on the Ti surface, in the range of pH 7.4 to 3. The strong interaction between a sulfur atom of Cys and a Ti surface was observed only at pH = 1, under strongly acidic conditions. In contrast, ex situ SERS spectra recorded for the same samples but in a dried Cys/Ti system show a completely different behavior of Cys on the Ti surface. Formation of a disulfide (S-S) bond has occurred as a result of the dimerization or aggregation of Cys molecules on the Ti surface. Detailed analysis of the adsorption behavior of Cys on the Ti surface can be very important in the preparation of bioactive materials (i.e., coated by organic layers).
Collapse
Affiliation(s)
- Dominika Święch
- Faculty of Foundry Engineering, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Natalia Piergies
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Gaetano Palumbo
- Faculty of Foundry Engineering, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | | |
Collapse
|
37
|
Ge X, Li T, Yu M, Zhu H, Wang Q, Bi X, Xi T, Wu X, Gao Y. A review: strategies to reduce infection in tantalum and its derivative applied to implants. BIOMED ENG-BIOMED TE 2023:bmt-2022-0211. [PMID: 36587948 DOI: 10.1515/bmt-2022-0211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Implant-associated infection is the main reasons for implant failure. Titanium and titanium alloy are currently the most widely used implant materials. However, they have limited antibacterial performance. Therefore, enhancing the antibacterial ability of implants by surface modification technology has become a trend of research. Tantalum is a potential implant coating material with good biological properties. With the development of surface modification technology, tantalum coating becomes more functional through improvement. In addition to improving osseointegration, its antibacterial performance has also become the focus of attention. In this review, we provide an overview of the latest strategies to improve tantalum antibacterial properties. We demonstrate the potential of the clinical application of tantalum in reducing implant infections by stressing its advantageous properties.
Collapse
Affiliation(s)
- Xiao Ge
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Ti Li
- Department of Stomatology, Weifang People's Hospital, Weifang, China
| | - Miao Yu
- Department of Stomatology, Weifang People's Hospital, Weifang, China
| | - Hongguang Zhu
- Department of Stomatology, Weifang People's Hospital, Weifang, China
| | - Qing Wang
- Department of Stomatology, Weifang People's Hospital, Weifang, China
| | - Xiuting Bi
- Department of Stomatology, Weifang People's Hospital, Weifang, China
| | - Tiantian Xi
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Xiaoyan Wu
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Yubin Gao
- School of Stomatology, Weifang Medical University, Weifang, China
| |
Collapse
|
38
|
Costa RC, Nagay BE, Dini C, Borges MHR, Miranda LFB, Cordeiro JM, Souza JGS, Sukotjo C, Cruz NC, Barão VAR. The race for the optimal antimicrobial surface: perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implants. Adv Colloid Interface Sci 2023; 311:102805. [PMID: 36434916 DOI: 10.1016/j.cis.2022.102805] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Plasma electrolytic oxidation (PEO) is a low-cost, structurally reliable, and environmentally friendly surface modification method for orthopedic and dental implants. This technique is successful for the formation of porous, corrosion-resistant, and bioactive coatings, besides introducing antimicrobial compounds easily. Given the increase in implant-related infections, antimicrobial PEO-treated surfaces have been widely proposed to surmount this public health concern. This review comprehensively discusses antimicrobial implant surfaces currently produced by PEO in terms of their in vitro and in vivo microbiological and biological properties. We present a critical [part I] and evidence-based [part II] review about the plethora of antimicrobial PEO-treated surfaces. The mechanism of microbial accumulation on implanted devices and the principles of PEO technology to ensure antimicrobial functionalization by one- or multi-step processes are outlined. Our systematic literature search showed that particular focus has been placed on the metallic and semi-metallic elements incorporated into PEO surfaces to facilitate antimicrobial properties, which are often dose-dependent, without leading to cytotoxicity in vitro. Meanwhile, there are concerns over the biocompatibility of PEO and its long-term antimicrobial effects in animal models. We clearly highlight the importance of using clinically relevant infection models and in vivo long-term assessments to guarantee the rational design of antimicrobial PEO-treated surfaces to identify the 'finish line' in the race for antimicrobial implant surfaces.
Collapse
Affiliation(s)
- Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Luís F B Miranda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Jairo M Cordeiro
- Department of Dentistry, Centro Universitário das Faculdades Associadas de Ensino (UNIFAE), Sāo Joāo da Boa Vista, Sāo Paulo 13870-377, Brazil
| | - Joāo G S Souza
- Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil; Dentistry Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA
| | - Nilson C Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology, Sāo Paulo State University (UNESP), Sorocaba, Sāo Paulo 18087-180, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil.
| |
Collapse
|
39
|
Gasmi Benahmed A, Gasmi A, Tippairote T, Mujawdiya PK, Avdeev O, Shanaida Y, Bjørklund G. Metabolic Conditions and Peri-Implantitis. Antibiotics (Basel) 2022; 12:65. [PMID: 36671266 PMCID: PMC9854649 DOI: 10.3390/antibiotics12010065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Dental implants to replace lost teeth are a common dentistry practice nowadays. Titanium dental implants display a high success rate and improved safety profile. Nevertheless, there is an increasing peri-implantitis (PI), an inflammatory disease associated with polymicrobial infection that adversely affects the hard and soft tissues around the implant. The present review highlights the contribution of different metabolic conditions to PI. The considerations of both local and systemic metabolic conditions are crucial for planning successful dental implant procedures and during the treatment course of PI. Un- or undertreated PI can lead to permanent jaw bone suffering and dental implant losses. The common mediators of PI are inflammation and oxidative stress, which are also the key mediators of most systemic metabolic disorders. Chronic periodontitis, low-grade tissue inflammation, and increased oxidative stress raise the incidence of PI and the underlying systemic metabolic conditions, such as obesity, diabetes mellitus, or harmful lifestyle factors (cigarette smoking, etc.). Using dental biomaterials with antimicrobial effects could partly solve the problem of pathogenic microbial contamination and local inflammation. With local dentistry considering factors, including oral microbiota and implant quality control, the inclusion of the underlying systemic metabolic conditions into the pre-procedure planning and during the treatment course should improve the chances of successful outcomes.
Collapse
Affiliation(s)
- Asma Gasmi Benahmed
- Académie Internationale de Médecine Dentaire Intégrative, 75000 Paris, France
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, 69100 Villeurbanne, France
| | - Torsak Tippairote
- Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand
- Nutritional and Environmental Medicine Department, BBH Hospital, Bangkok 10540, Thailand
| | | | - Oleksandr Avdeev
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, 46003 Ternopil, Ukraine
| | - Yurii Shanaida
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, 46003 Ternopil, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
40
|
Bertolini M, Costa RC, Barão VAR, Cunha Villar C, Retamal-Valdes B, Feres M, Silva Souza JG. Oral Microorganisms and Biofilms: New Insights to Defeat the Main Etiologic Factor of Oral Diseases. Microorganisms 2022; 10:microorganisms10122413. [PMID: 36557666 PMCID: PMC9781395 DOI: 10.3390/microorganisms10122413] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
The oral cavity presents a highly diverse community of microorganisms due to the unique environmental conditions for microbial adhesion and growth [...].
Collapse
Affiliation(s)
- Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15106, USA
- Correspondence:
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13083-970, SP, Brazil
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13083-970, SP, Brazil
| | - Cristina Cunha Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-010, SP, Brazil
| | | | - Magda Feres
- Dental Research Division, Guarulhos University, Guarulhos 05508-010, SP, Brazil
- Center for Clinical and Translational Research, Forsyth Institute, Boston, MA 02142, USA
| | - João Gabriel Silva Souza
- Dental Research Division, Guarulhos University, Guarulhos 05508-010, SP, Brazil
- Dental Science School (Faculdade de Ciências Odontológicas—FCO), Montes Claros 39401-303, MG, Brazil
- Oncovida Cancer Research Center, Montes Claros 39400-111, MG, Brazil
| |
Collapse
|
41
|
Terranova ML. Key Challenges in Diamond Coating of Titanium Implants: Current Status and Future Prospects. Biomedicines 2022; 10:biomedicines10123149. [PMID: 36551907 PMCID: PMC9775193 DOI: 10.3390/biomedicines10123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Over past years, the fabrication of Ti-based permanent implants for fracture fixation, joint replacement and bone or tooth substitution, has become a routine task. However, it has been found that some degradation phenomena occurring on the Ti surface limits the life or the efficiency of the artificial constructs. The task of avoiding such adverse effects, to prevent microbial colonization and to accelerate osteointegration, is being faced by a variety of approaches in order to adapt Ti surfaces to the needs of osseous tissues. Among the large set of biocompatible materials proposed as an interface between Ti and the hosting tissue, diamond has been proven to offer bioactive and mechanical properties able to match the specific requirements of osteoblasts. Advances in material science and implant engineering are now enabling us to produce micro- or nano-crystalline diamond coatings on a variety of differently shaped Ti constructs. The aim of this paper is to provide an overview of the research currently ongoing in the field of diamond-coated orthopedic Ti implants and to examine the evolution of the concepts that are accelerating the full transition of such technology from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy; or
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy
| |
Collapse
|
42
|
Zhang C, Chu G, Ruan Z, Tang N, Song C, Li Q, Zhou W, Jin J, Haick H, Chen Y, Cui D. Biomimetic Self-Assembling Metal-Organic Architectures with Non-Iridescent Structural Coloration for Synergetic Antibacterial and Osteogenic Activity of Implants. ACS NANO 2022; 16:16584-16597. [PMID: 36001338 DOI: 10.1021/acsnano.2c06030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Materials in nature feature versatile and programmable interactions to render macroscopic architectures with multiscale structural arrangements. By rationally combining metal-carboxylate and metal-organophosphate coordination interactions, Au25(MHA)18 (MHA, 6-mercaptohexanoic acid) nanocluster self-assembled structural color coating films and phytic acid (PA)-metal coordination complexes are sequentially constructed on the surface of titanium implants. The Lewis acid-base coordination principle applies for these metal-organic coordination networks. The isotropic arrangement of nanoclusters with a short-range order is investigated via grazing incidence wide-angle X-ray scattering. The integration of robust M-O (M = Ti, Zr, Hf) and labile Cu-O coordination bonds with high connectivity of Au25(MHA)18 nanoclusters enables these artificial photonic structures to achieve a combination of mechanical stability and bacteriostatic activity. Moreover, the colorless and transparent PA-metal complex layer allows the viewing of the structural color and surface wettability switching to hydrophilic and makes feasible the interfacial biomineralization of hydroxyapatite. Collectively, these modular metal-organic coordination-driven assemblies are predictive and rational material design strategies with tunable hierarchy and diversity. The complete metal-organic architectures will not only help improve the physicochemical properties of the bone-implant interface with synergistic antibacterial and osseointegration activities but also can boost surface engineering of medical metal implants.
Collapse
Affiliation(s)
- Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guangyu Chu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Zesong Ruan
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ning Tang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Cunfeng Song
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qichao Li
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenjie Zhou
- Department of Second Dental Clinic, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China
| | - Jiale Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology, Institute Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yunfeng Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
43
|
Wang S, Wu Z, Wang Y, Hong H, Zhang L, Chen Z, Zhang P, Chen Z, Zhang W, Zheng S, Li Q, Li W, Li X, Qiu H, Chen J. A homogeneous dopamine-silver nanocomposite coating: striking a balance between the antibacterial ability and cytocompatibility of dental implants. Regen Biomater 2022; 10:rbac082. [PMID: 36683759 PMCID: PMC9847628 DOI: 10.1093/rb/rbac082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2023] Open
Abstract
Silver has been widely used for surface modification to prevent implant-associated infections. However, the inherent cytotoxicity of silver greatly limited the scope of its clinical applications. The construction of surfaces with both good antibacterial properties and favorable cytocompatibility still remains a challenge. In this study, a structurally homogeneous dopamine-silver (DA/Ag) nanocomposite was fabricated on the implant surface to balance the antibacterial activity and cytocompatibility of the implant. The results show that the DA/Ag nanocomposites prepared under the acidic conditions (pH = 4) on the titanium surface are homogeneous with higher Ag+ content, while an obvious core (AgNPs)-shell (PDA) structure is formed under neutral (pH = 7) and alkaline conditions (pH = 10), and the subsequent heat treatment enhanced the stability of PDA-AgNPs nanocomposite coatings on porous titanium. The antibacterial test, cytotoxicity test, hypodermic implantation and osteogenesis test revealed that the homogeneous PDA-AgNPs nanocomposite coating achieved the balance between the antibacterial ability and cytocompatibility, and had the best outcomes for soft tissue healing and bone formation around the implants. This study provides a facile strategy for preparing silver-loaded surfaces with both good antibacterial effect and favorable cytocompatibility, which is expected to further improve the therapeutic efficacy of silver composite-coated dental implants.
Collapse
Affiliation(s)
| | | | | | - Huilei Hong
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, Anhui 230032, China
| | - Lijie Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhaoyang Chen
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, Anhui 230032, China
| | - Pengkang Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zirui Chen
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, Anhui 230032, China
| | - Weibo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shunli Zheng
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, Anhui 230032, China
| | - Quanli Li
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, Anhui 230032, China
| | - Wei Li
- Correspondence address. E-mail: (W.L.); (H.Q.); (X.L.); (J.C.)
| | - Xiangyang Li
- Correspondence address. E-mail: (W.L.); (H.Q.); (X.L.); (J.C.)
| | - Hua Qiu
- Correspondence address. E-mail: (W.L.); (H.Q.); (X.L.); (J.C.)
| | - Jialong Chen
- Correspondence address. E-mail: (W.L.); (H.Q.); (X.L.); (J.C.)
| |
Collapse
|
44
|
Wu Z, Chan B, Low J, Chu JJH, Hey HWD, Tay A. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater 2022; 16:249-270. [PMID: 35415290 PMCID: PMC8965851 DOI: 10.1016/j.bioactmat.2022.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Microbial resistance to current antibiotics therapies is a major cause of implant failure and adverse clinical outcomes in orthopaedic surgery. Recent developments in advanced antimicrobial nanotechnologies provide numerous opportunities to effective remove resistant bacteria and prevent resistance from occurring through unique mechanisms. With tunable physicochemical properties, nanomaterials can be designed to be bactericidal, antifouling, immunomodulating, and capable of delivering antibacterial compounds to the infection region with spatiotemporal accuracy. Despite its substantial advancement, an important, but under-explored area, is potential microbial resistance to nanomaterials and how this can impact the clinical use of antimicrobial nanotechnologies. This review aims to provide a better understanding of nanomaterial-associated microbial resistance to accelerate bench-to-bedside translations of emerging nanotechnologies for effective control of implant associated infections.
Collapse
Affiliation(s)
- Zhuoran Wu
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Brian Chan
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Jessalyn Low
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117547, Singapore
- Institute of Molecular and Cell Biology, 35 Agency for Science, Technology and Research, 138673, Singapore
| | - Hwee Weng Dennis Hey
- National University Health System, National University of Singapore, 119228, Singapore
| | - Andy Tay
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Tissue Engineering Programme, National University of Singapore, 117510, Singapore
| |
Collapse
|
45
|
Nagasawa MA, Formiga MDC, Moraschini V, Bertolini M, Souza JGS, Feres M, Figueiredo LC, Shibli JA. Do the progression of experimentally induced gingivitis and peri-implant mucositis present common features? A systematic review of clinical human studies. BIOFOULING 2022; 38:814-823. [PMID: 36250998 DOI: 10.1080/08927014.2022.2133603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
This systematic review evaluated the features of the progression of experimentally induced gingivitis and peri-implant mucositis in humans. Included were studies that evaluated clinical, immunological, or microbiological responses between experimentally induced gingivitis and peri-implant mucositis in periodontally healthy patients. A total of 887 articles were initially identified, but only 12 were included in the final analysis. Implants accumulate less biofilm and suffer the most heterogeneous alterations in the microbiota, in the abstinence of oral hygiene, compared with the tooth. Interestingly, although dental implants presented less biofilm accumulation, the peri-implant mucosa showed a more exacerbated clinical response than the gingival tissue. The risk of bias of the selected studies was moderate to low, with one study presenting serious risk. The progression events of peri-implant mucositis were similar to those of experimental gingivitis but led to a different host response. This review was registered in the PROSPERO database CRD420201 123360.
Collapse
Affiliation(s)
- Magda Aline Nagasawa
- Department of Periodontology, Dental Research Division, University of Guarulhos (UnG), Sao Paulo, Brazil
| | - Márcio de Carvalho Formiga
- Department of Periodontology, Dental Research Division, University of Guarulhos (UnG), Sao Paulo, Brazil
- Department of Periodontology and Oral Implantology, UNISUL, Florianópolis, Brazil
| | - Vittorio Moraschini
- Dental Research Division, Graduate Program at the Veiga de Almeida University, Rio de Janeiro, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - João Gabriel Silva Souza
- Department of Periodontology, Dental Research Division, University of Guarulhos (UnG), Sao Paulo, Brazil
- Dental Science School, Faculdade de Ciências Odontológicas, Montes Claros, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, University of Guarulhos (UnG), Sao Paulo, Brazil
| | - Luciene C Figueiredo
- Department of Periodontology, Dental Research Division, University of Guarulhos (UnG), Sao Paulo, Brazil
| | - Jamil Awad Shibli
- Department of Periodontology, Dental Research Division, University of Guarulhos (UnG), Sao Paulo, Brazil
| |
Collapse
|
46
|
Souza JGS, Costa Oliveira BE, Costa RC, Bechara K, Cardoso-Filho O, Benso B, Shibli JA, Bertolini M, Barāo VAR. Bacterial-derived extracellular polysaccharides reduce antimicrobial susceptibility on biotic and abiotic surfaces. Arch Oral Biol 2022; 142:105521. [PMID: 35988499 DOI: 10.1016/j.archoralbio.2022.105521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Extracellular biofilm matrix plays a role in reducing bacterial susceptibility against antimicrobials. Since the surface where biofilm is growing modulates microbial accumulation and bacterial-derived exopolysaccharides (EPS) synthesis, this study compared the role of EPS to reduce antimicrobial susceptibility on biotic (dental surface) and abiotic (titanium (Ti) material) surfaces and the effect of remaining matrix-enriched biofilms to promote bacterial recolonization. DESIGN 48 h Streptococcus mutans UA159 strain biofilms were grown on enamel and Ti surfaces. The medium was supplemented with 1% sucrose, substrate for EPS synthesis, or with 0.5% glucose + 0.5% fructose as control. Chlorhexidine (CHX) 0.2% was used for antimicrobial treatment. Biofilms were collected and the following analyses were considered: viable bacterial counts, biofilm pH, EPS content, and biofilm structure by scanning electron microscopy and confocal laser scanning microscopy (CLSM). Substrate surfaces were analyzed by 3D laser scanning confocal microscope. RESULTS Enamel surface showed a higher amount of EPS content (p < 0.05), which may be explained by the higher bacterial biomass compared to Ti material. EPS content reduced bacterial susceptibility against antimicrobial treatments for both substrates, compared to EPS control (p < 0.05). However, sucrose-treated cells presented the same magnitude of reduction for Ti or enamel. Interestingly, matrix-enriched biofilms favored bacterial recolonization for both substrates. CONCLUSION The surface where the biofilm is growing modulates the amount of EPS synthesized and matrix content plays a key role in reducing antimicrobial susceptibility and promoting bacterial recolonization.
Collapse
Affiliation(s)
- Joāo Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, Sāo Paulo, Brazil; Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais, Brazil.
| | | | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Karen Bechara
- Dental Research Division, Guarulhos University (UNG), Guarulhos, Sāo Paulo, Brazil
| | - Otávio Cardoso-Filho
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais, Brazil; Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Bruna Benso
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Jamil Awad Shibli
- Dental Research Division, Guarulhos University (UNG), Guarulhos, Sāo Paulo, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valentim A R Barāo
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil.
| |
Collapse
|
47
|
Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals have been investigated as biomaterials for a wide range of medical applications. At nanoscale, some metals, such as gold nanoparticles, exhibit plasmonics, which have motivated researchers’ focus on biosensor development. At the device level, some metals, such as titanium, exhibit good physical properties, which could allow them to act as biomedical implants for physical support. Despite these attractive features, the non-specific delivery of metallic nanoparticles and poor tissue–device compatibility have greatly limited their performance. This review aims to illustrate the interplay between polymers and metals, and to highlight the pivotal role of polymer–metal composite/nanocomposite healthcare materials in different biomedical applications. Here, we revisit the recent plasmonic engineered platforms for biomolecules detection in cell-free samples and highlight updated nanocomposite design for (1) intracellular RNA detection, (2) photothermal therapy, and (3) nanomedicine for neurodegenerative diseases, as selected significant live cell–interactive biomedical applications. At the device scale, the rational design of polymer–metallic medical devices is of importance for dental and cardiovascular implantation to overcome the poor physical load transfer between tissues and devices, as well as implant compatibility under a dynamic fluidic environment, respectively. Finally, we conclude the treatment of these innovative polymer–metal biomedical composite designs and provide a future perspective on the aforementioned research areas.
Collapse
|
48
|
Park J, Chi L, Kwon HY, Lee J, Kim S, Hong S. Decaffeinated green tea extract as a nature-derived antibiotic alternative: An application in antibacterial nano-thin coating on medical implants. Food Chem 2022; 383:132399. [DOI: 10.1016/j.foodchem.2022.132399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
|
49
|
Costa RC, Bertolini M, Costa Oliveira BE, Nagay BE, Dini C, Benso B, Klein MI, Barāo VAR, Souza JGS. Polymicrobial biofilms related to dental implant diseases: unravelling the critical role of extracellular biofilm matrix. Crit Rev Microbiol 2022; 49:370-390. [PMID: 35584310 DOI: 10.1080/1040841x.2022.2062219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biofilms are complex tri-dimensional structures that encase microbial cells in an extracellular matrix comprising self-produced polymeric substances. The matrix rich in extracellular polymeric substance (EPS) contributes to the unique features of biofilm lifestyle and structure, enhancing microbial accretion, biofilm virulence, and antimicrobial resistance. The role of the EPS matrix of biofilms growing on biotic surfaces, especially dental surfaces, is largely unravelled. To date, there is a lack of a broad overview of existing literature concerning the relationship between the EPS matrix and the dental implant environment and its role in implant-related infections. Here, we discuss recent advances in the critical role of the EPS matrix on biofilm growth and virulence on the dental implant surface and its effect on the etiopathogenesis and progression of implant-related infections. Similar to other biofilms associated with human diseases/conditions, EPS-enriched biofilms on implant surfaces promote microbial accumulation, microbiological shift, cross-kingdom interaction, antimicrobial resistance, biofilm virulence, and, consequently, peri-implant tissue damage. But intriguingly, the protagonism of EPS role on implant-related infections and the development of matrix-target therapeutic strategies has been neglected. Finally, we highlight the need for more in-depth analyses of polymicrobial interactions within EPS matrix and EPS-targeting technologies' rationale for disrupting the complex biofilm microenvironment with more outstanding translation to implant applications in the near future.
Collapse
Affiliation(s)
- Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Martinna Bertolini
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | | | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Bruna Benso
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, CA, Chile
| | - Marlise I Klein
- Department of Dental Materials and Prosthodontics, São Paulo State University, São Paulo, Brazil
| | - Valentim A R Barāo
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Joāo Gabriel S Souza
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil.,Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Brazil.,Dental Research Division, Guarulhos University, Sāo Paulo, Brazil
| |
Collapse
|
50
|
Aldhameer A, El-Eskandarany MS, Kishk M, Alajmi F, Banyan M. Mechanical Alloying Integrated with Cold Spray Coating for Fabrication Cu 50(Ti 50-xNi x), x; 10, 20, 30, and 40 at.% Antibiofilm Metallic Glass Coated/SUS304 Sheets. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1681. [PMID: 35630903 PMCID: PMC9142950 DOI: 10.3390/nano12101681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022]
Abstract
Antibacterial agents derived from conventional organic compounds have traditionally been employed as a biofilm protective coating for many years. These agents, on the other hand, often include toxic components that are potentially hazardous to humans. Multiple approaches have been investigated over the last two decades, including the use of various metallic and oxide materials, in order to produce a diverse variety of usable coating layers. When it comes to material coating approaches, the cold spray technique, which is a solid-state method that works well with nanopowders, has shown superior performance. Its capacity to produce unique material coating in ways that are not possible with other thermal methods is the primary reason for its importance in contemporary production. The present work has been addressed in part to explore the possibility of employing mechanically alloyed Cu50(Ti50-xNix)x; x = 10, 20, 30, and 40 at.% metallic glass powders, for producing an antibiofilm/SUS304 surface protective coating, using the cold spray approach. In this study, elemental Cu, Ti, and Ni powders were low-energy ball milled for 100 h to fabricate metallic glassy powders with different Ni contents. The as-prepared metallic glassy powders were utilized to coat SUS304 sheets, using the cold spraying process. With high nanohardness values, the as-fabricated coating material, in particular Cu50Ti20Ni30, demonstrated remarkable performance in comparison to other materials in its class. Furthermore, it displayed excellent wear resistance while maintaining a low coefficient of friction, with values ranging from 0.32 to 0.45 in the tested range. E. coli biofilms were formed on 20 mm2 SUS304 sheet coated coupons, which had been injected with 1.5 108 CFU mL-1 of the bacterium. With the use of nanocrystalline Cu-based powders, it is feasible to achieve considerable biofilm inhibition, which is a practical strategy for accomplishing the suppression of biofilm formation.
Collapse
Affiliation(s)
- Ahmad Aldhameer
- Biotechnology Program, Environment & Life Science Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait;
| | - Mohamed Sherif El-Eskandarany
- Nanotechnology and Advanced Materials Program, Energy and Building Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (M.S.E.-E.); (F.A.); (M.B.)
| | - Mohamed Kishk
- Biotechnology Program, Environment & Life Science Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait;
| | - Fahad Alajmi
- Nanotechnology and Advanced Materials Program, Energy and Building Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (M.S.E.-E.); (F.A.); (M.B.)
| | - Mohmmad Banyan
- Nanotechnology and Advanced Materials Program, Energy and Building Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (M.S.E.-E.); (F.A.); (M.B.)
| |
Collapse
|