1
|
Escobar A, Kim S, Primack AS, Duret G, Juliano CE, Robinson JT. Terminal differentiation precedes functional circuit integration in the peduncle neurons in regenerating Hydra vulgaris. Neural Dev 2024; 19:18. [PMID: 39367491 PMCID: PMC11452936 DOI: 10.1186/s13064-024-00194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/21/2024] [Indexed: 10/06/2024] Open
Abstract
Understanding how neural circuits are regenerated following injury is a fundamental question in neuroscience. Hydra is a powerful model for studying this process because it has a simple neural circuit structure, significant and reproducible regenerative abilities, and established methods for creating transgenics with cell-type-specific expression. While Hydra is a long-standing model for regeneration and development, little is known about how neural activity and behavior is restored following significant injury. In this study, we ask if regenerating neurons terminally differentiate prior to reforming functional neural circuits, or if neural circuits regenerate first and then guide the constituent naive cells toward their terminal fate. To address this question, we developed a dual-expression transgenic Hydra line that expresses a cell-type-specific red fluorescent protein (tdTomato) in ec5 peduncle neurons, and a calcium indicator (GCaMP7s) in all neurons. With this transgenic line, we can simultaneously record neural activity and track the reappearance of the terminally-differentiated ec5 neurons. Using SCAPE (Swept Confocally Aligned Planar Excitation) microscopy, we monitored both calcium activity and expression of tdTomato-positive neurons in 3D with single-cell resolution during regeneration of Hydra's aboral end. The synchronized neural activity associated with a regenerated neural circuit was observed approximately 4 to 8 hours after expression of tdTomato in ec5 neurons. These data suggest that regenerating ec5 neurons undergo terminal differentiation prior to re-establishing their functional role in the nervous system. The combination of dynamic imaging of neural activity and gene expression during regeneration make Hydra a powerful model system for understanding the key molecular and functional processes involved in neural regeneration following injury.
Collapse
Affiliation(s)
- Alondra Escobar
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Soonyoung Kim
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Abby S Primack
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Guillaume Duret
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Jacob T Robinson
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Kim S, Badhiwala KN, Duret G, Robinson JT. Phototaxis is a satiety-dependent behavioral sequence in Hydra vulgaris. J Exp Biol 2024; 227:jeb247503. [PMID: 39155640 PMCID: PMC11449437 DOI: 10.1242/jeb.247503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Understanding how internal states such as satiety are connected to animal behavior is a fundamental question in neuroscience. Hydra vulgaris, a freshwater cnidarian with only 12 neuronal cell types, serves as a tractable model system for studying state-dependent behaviors. We found that starved hydras consistently move towards light, while fed hydras do not. By modeling this behavior as a set of three sequences of head orientation, jump distance and jump rate, we demonstrate that the satiety state only affects the rate of the animal jumping to a new position, while the orientation and jump distance are unaffected. These findings yield insights into how internal states in a simple organism, Hydra, affect specific elements of a behavior, and offer general principles for studying the relationship between state-dependent behaviors and their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Soonyoung Kim
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | | | - Guillaume Duret
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Jacob T Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Yuste R. Breaking the neural code of a cnidarian: Learning principles of neuroscience from the "vulgar" Hydra. Curr Opin Neurobiol 2024; 86:102869. [PMID: 38552547 DOI: 10.1016/j.conb.2024.102869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/04/2024] [Accepted: 03/07/2024] [Indexed: 06/11/2024]
Abstract
The cnidarian Hydra vulgaris is a small polyp with a nervous system of few hundred neurons belonging to a dozen cell types, organized in two nerve nets without cephalization or ganglia. Using this simple neural "chassis", Hydra can maintain a stable repertoire of behaviors, even performing complex fixed-action patterns, such as somersaulting and feeding. The ability to image the activity of Hydra's entire neural and muscle tissue has revealed that Hydra's nerve nets are divided into coactive ensembles of neurons, associated with specific movements. These ensembles can be activated by neuropeptides and interact using cross-inhibition circuits and implement integrate-to-threshold algorithms. In addition, Hydra's nervous system can self-assemble from dissociated cells in a stepwise modular architecture. Studies of Hydra and other cnidarians could enable the systematic deciphering of the neural basis of its behavior and help provide perspective on basic principles of neuroscience.
Collapse
Affiliation(s)
- Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
4
|
Dong K, Liu WC, Su Y, Lyu Y, Huang H, Zheng N, Rogers JA, Nan K. Scalable Electrophysiology of Millimeter-Scale Animals with Electrode Devices. BME FRONTIERS 2023; 4:0034. [PMID: 38435343 PMCID: PMC10907027 DOI: 10.34133/bmef.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/08/2023] [Indexed: 03/05/2024] Open
Abstract
Millimeter-scale animals such as Caenorhabditis elegans, Drosophila larvae, zebrafish, and bees serve as powerful model organisms in the fields of neurobiology and neuroethology. Various methods exist for recording large-scale electrophysiological signals from these animals. Existing approaches often lack, however, real-time, uninterrupted investigations due to their rigid constructs, geometric constraints, and mechanical mismatch in integration with soft organisms. The recent research establishes the foundations for 3-dimensional flexible bioelectronic interfaces that incorporate microfabricated components and nanoelectronic function with adjustable mechanical properties and multidimensional variability, offering unique capabilities for chronic, stable interrogation and stimulation of millimeter-scale animals and miniature tissue constructs. This review summarizes the most advanced technologies for electrophysiological studies, based on methods of 3-dimensional flexible bioelectronics. A concluding section addresses the challenges of these devices in achieving freestanding, robust, and multifunctional biointerfaces.
Collapse
Affiliation(s)
- Kairu Dong
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- College of Biomedical Engineering & Instrument Science,
Zhejiang University, Hangzhou, 310027, China
| | - Wen-Che Liu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
| | - Yuyan Su
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA 02115, USA
| | - Yidan Lyu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
| | - Hao Huang
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- College of Chemical and Biological Engineering,
Zhejiang University, Hangzhou 310058, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies,
Zhejiang University, Hangzhou 310027, China
- College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China
- State Key Lab of Brain-Machine Intelligence,
Zhejiang University, Hangzhou 310058, China
- CCAI by MOE and Zhejiang Provincial Government (ZJU), Hangzhou 310027, China
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics,
Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering,
Northwestern University, Evanston, IL 60208, USA
| | - Kewang Nan
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
5
|
Dupre C, Engert F. Cold Acclimation Provides a Robust Overwintering Strategy in Hydra vulgaris. THE BIOLOGICAL BULLETIN 2023; 245:161-177. [PMID: 39316738 DOI: 10.1086/732033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
AbstractCold acclimation is a biological process that allows animals to survive at low temperatures. The freshwater invertebrate Hydra is subject to broad changes in environmental temperature and does not have the required motility in order to move to warmer environments during the winter. For this reason, Hydra had to develop robust mechanisms to achieve cold acclimation at the onset of winter. How Hydra detects the onset of winter and activates its acclimation mechanism is unknown. Here, we used thermocyclers to induce cold acclimation in Hydra and study its properties. We found that Hydra cultured at room temperature does not survive an abrupt transition from 22 to 4 °C. However, it can be treated to become cold acclimated and survive at 4 °C by exposure to intermediate temperatures such as 12 °C if the treatment duration exceeds more than a week. Once cold acclimated, Hydra is considerably more robust to thermal changes. It survives repeated abrupt transitions from 4 to 22 °C and from 22 to 4 °C. However, acclimation is reversible, and if a cold-acclimated Hydra stays at room temperature for more than a week, it will gradually lose its cold acclimation. We developed a mathematical model representing the dynamics of this process and used it to predict survival according to temperature data recorded in one of their natural habitats. The results of these simulations provide an explanation for how Hydra survives winter under natural conditions. Accordingly, daily fluctuations are too short to cause injury, and seasonal fluctuations, which are long enough to be lethal, allow acclimation to incrementally build up and protect the animal. Cold acclimation in Hydra is therefore an example of a strategy that has adapted during evolution to match the animal's needs for survival.
Collapse
|
6
|
Hanson A. On being a Hydra with, and without, a nervous system: what do neurons add? Anim Cogn 2023; 26:1799-1816. [PMID: 37540280 PMCID: PMC10770230 DOI: 10.1007/s10071-023-01816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
The small freshwater cnidarian Hydra has been the subject of scientific inquiry for over 300 years due to its remarkable regenerative capacities and apparent immortality. More recently, Hydra has been recognized as an excellent model system within neuroscience because of its small size, transparency, and simple nervous system, which allow high-resolution imaging of its entire nerve net while behaving. In less than a decade, studies of Hydra's nervous system have yielded insights into the activity of neural circuits in vivo unobtainable in most other animals. In addition to these unique attributes, there is yet another lesser-known feature of Hydra that makes it even more intriguing: it does not require its neural hardware to live. The extraordinary ability to survive the removal and replacement of its entire nervous system makes Hydra uniquely suited to address the question of what neurons add to an extant organism. Here, I will review what early work on nerve-free Hydra reveals about the potential role of the nervous system in these animals and point towards future directions for this work.
Collapse
Affiliation(s)
- Alison Hanson
- Department of Biological Sciences, Neurotechnology Center, Columbia University, New York, NY, USA.
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Tommasini G, De Simone M, Santillo S, Dufil G, Iencharelli M, Mantione D, Stavrinidou E, Tino A, Tortiglione C. In vivo neuromodulation of animal behavior with organic semiconducting oligomers. SCIENCE ADVANCES 2023; 9:eadi5488. [PMID: 37851802 PMCID: PMC10584338 DOI: 10.1126/sciadv.adi5488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
Modulating neural activity with electrical or chemical stimulus can be used for fundamental and applied research. Typically, neuronal stimulation is performed with intracellular and extracellular electrodes that deliver brief electrical pulses to neurons. However, alternative wireless methodologies based on functional materials may allow clinical translation of technologies to modulate neuronal function. Here, we show that the organic semiconducting oligomer 4-[2-{2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)thiophen-3-yl}ethoxy]butane-1-sulfonate (ETE-S) induces precise behaviors in the small invertebrate Hydra, which were dissected through pharmacological and electrophysiological approaches. ETE-S-induced behavioral response relies on the presence of head neurons and calcium ions and is prevented by drugs targeting ionotropic channels and muscle contraction. Moreover, ETE-S affects Hydra's electrical activity enhancing the contraction burst frequency. The unexpected neuromodulatory function played by this conjugated oligomer on a simple nerve net opens intriguing research possibilities on fundamental chemical and physical phenomena behind organic bioelectronic interfaces for neuromodulation and on alternative methods that could catalyze a wide expansion of this rising technology for clinical applications.
Collapse
Affiliation(s)
- Giuseppina Tommasini
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Mariarosaria De Simone
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Silvia Santillo
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Gwennaël Dufil
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrkoping, Sweden
| | - Marika Iencharelli
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Daniele Mantione
- POLYMAT University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrkoping, Sweden
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
8
|
Beckham JL, van Venrooy AR, Kim S, Li G, Li B, Duret G, Arnold D, Zhao X, Li JT, Santos AL, Chaudhry G, Liu D, Robinson JT, Tour JM. Molecular machines stimulate intercellular calcium waves and cause muscle contraction. NATURE NANOTECHNOLOGY 2023; 18:1051-1059. [PMID: 37430037 DOI: 10.1038/s41565-023-01436-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/03/2023] [Indexed: 07/12/2023]
Abstract
Intercellular calcium waves (ICW) are complex signalling phenomena that control many essential biological activities, including smooth muscle contraction, vesicle secretion, gene expression and changes in neuronal excitability. Accordingly, the remote stimulation of ICW could result in versatile biomodulation and therapeutic strategies. Here we demonstrate that light-activated molecular machines (MM)-molecules that perform mechanical work on the molecular scale-can remotely stimulate ICW. MM consist of a polycyclic rotor and stator that rotate around a central alkene when activated with visible light. Live-cell calcium-tracking and pharmacological experiments reveal that MM-induced ICW are driven by the activation of inositol-triphosphate-mediated signalling pathways by unidirectional, fast-rotating MM. Our data suggest that MM-induced ICW can control muscle contraction in vitro in cardiomyocytes and animal behaviour in vivo in Hydra vulgaris. This work demonstrates a strategy for directly controlling cell signalling and downstream biological function using molecular-scale devices.
Collapse
Affiliation(s)
| | | | - Soonyoung Kim
- Department of Electrical Engineering, Rice University, Houston, TX, USA
| | - Gang Li
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Bowen Li
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Guillaume Duret
- Department of Electrical Engineering, Rice University, Houston, TX, USA
| | - Dallin Arnold
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Xuan Zhao
- Department of Electrical Engineering, Rice University, Houston, TX, USA
| | - John T Li
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Ana L Santos
- Department of Chemistry, Rice University, Houston, TX, USA
- IdISBA-Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain
| | | | - Dongdong Liu
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Jacob T Robinson
- Department of Bioengineering, Department of Electrical Engineering, Rice University, Houston, TX, USA.
| | - James M Tour
- Department of Chemistry, Smalley-Curl Institute, NanoCarbon Center and Rice Advanced Materials Institute, Department of Materials Science and Nanoengineering, Department of Computer Science, Rice University, Houston, TX, USA.
| |
Collapse
|
9
|
Wang H, Swore J, Sharma S, Szymanski JR, Yuste R, Daniel TL, Regnier M, Bosma MM, Fairhall AL. A complete biomechanical model of Hydra contractile behaviors, from neural drive to muscle to movement. Proc Natl Acad Sci U S A 2023; 120:e2210439120. [PMID: 36897982 PMCID: PMC10089167 DOI: 10.1073/pnas.2210439120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/03/2023] [Indexed: 03/12/2023] Open
Abstract
How does neural activity drive muscles to produce behavior? The recent development of genetic lines in Hydra that allow complete calcium imaging of both neuronal and muscle activity, as well as systematic machine learning quantification of behaviors, makes this small cnidarian an ideal model system to understand and model the complete transformation from neural firing to body movements. To achieve this, we have built a neuromechanical model of Hydra's fluid-filled hydrostatic skeleton, showing how drive by neuronal activity activates distinct patterns of muscle activity and body column biomechanics. Our model is based on experimental measurements of neuronal and muscle activity and assumes gap junctional coupling among muscle cells and calcium-dependent force generation by muscles. With these assumptions, we can robustly reproduce a basic set of Hydra's behaviors. We can further explain puzzling experimental observations, including the dual timescale kinetics observed in muscle activation and the engagement of ectodermal and endodermal muscles in different behaviors. This work delineates the spatiotemporal control space of Hydra movement and can serve as a template for future efforts to systematically decipher the transformations in the neural basis of behavior.
Collapse
Affiliation(s)
- Hengji Wang
- Department of Physics, University of Washington, Seattle, WA98195
- Computational Neuroscience Center, University of Washington, Seattle, WA98195
| | - Joshua Swore
- Department of Biology, University of Washington, Seattle, WA98195
| | - Shashank Sharma
- Department of Physiology and Biophysics, University of Washington, Seattle, WA98195
| | - John R. Szymanski
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY10027
- Marine Biological Laboratory, Woods Hole, MA02543
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY10027
- Marine Biological Laboratory, Woods Hole, MA02543
| | - Thomas L. Daniel
- Department of Biology, University of Washington, Seattle, WA98195
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA98195
| | - Martha M. Bosma
- Department of Biology, University of Washington, Seattle, WA98195
| | - Adrienne L. Fairhall
- Department of Physics, University of Washington, Seattle, WA98195
- Computational Neuroscience Center, University of Washington, Seattle, WA98195
- Department of Physiology and Biophysics, University of Washington, Seattle, WA98195
- Marine Biological Laboratory, Woods Hole, MA02543
| |
Collapse
|
10
|
Weissbourd B, Momose T, Nair A, Kennedy A, Hunt B, Anderson DJ. A genetically tractable jellyfish model for systems and evolutionary neuroscience. Cell 2021; 184:5854-5868.e20. [PMID: 34822783 PMCID: PMC8629132 DOI: 10.1016/j.cell.2021.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022]
Abstract
Jellyfish are radially symmetric organisms without a brain that arose more than 500 million years ago. They achieve organismal behaviors through coordinated interactions between autonomously functioning body parts. Jellyfish neurons have been studied electrophysiologically, but not at the systems level. We introduce Clytia hemisphaerica as a transparent, genetically tractable jellyfish model for systems and evolutionary neuroscience. We generate stable F1 transgenic lines for cell-type-specific conditional ablation and whole-organism GCaMP imaging. Using these tools and computational analyses, we find that an apparently diffuse network of RFamide-expressing umbrellar neurons is functionally subdivided into a series of spatially localized subassemblies whose synchronous activation controls directional food transfer from the tentacles to the mouth. These data reveal an unanticipated degree of structured neural organization in this species. Clytia affords a platform for systems-level studies of neural function, behavior, and evolution within a clade of marine organisms with growing ecological and economic importance.
Collapse
Affiliation(s)
- Brandon Weissbourd
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Tsuyoshi Momose
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Aditya Nair
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ann Kennedy
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bridgett Hunt
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - David J Anderson
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|