1
|
Li X, Fang T, Gao T, Gui H, Chen Y, Zhou L, Zhang Y, Yang Y, Xu L, Long Y. Widespread presence of gut bacterium Glutamicibacter ectropisis sp. nov. confers enhanced resistance to the pesticide bifenthrin in tea pests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176784. [PMID: 39414054 DOI: 10.1016/j.scitotenv.2024.176784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
The gut microbiota in Lepidopterans demonstrates variability and susceptibility to environmental influences, thereby presenting opportunities for the acquisition of novel bacterial strains. Ectropis grisescens (Warren), a notorious Lepidopteran pest, causes substantial damage to tea crops. Prolonged application usage of bifenthrin for the management of this pest has led to increased resistance. This study aims to investigate the relationship between the gut microbiota, as shaped by long-term pesticide use and the resistance of E. grisescenes. We employed high-throughput sequencing of the 16S rRNA gene to analyze the gut microbiota compositions in bifenthrin-resistant (BIF-R) and bifenthrin-sensitive (BIF-S) strains. Bifenthrin-degrading strains were isolated from the gut of BIF-R using selective media. The degradation efficiency and products of bifenthrin by the key strain were detected using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The effect of the key strain on host resistance was verified in vivo. Finally, the distribution and abundance of the degrading bacterium, in conjunction with insect's pesticide resistance, were assessed in 22 distinct E. grisescens populations. Bifenthrin resistance was diminished in BIF-R following the removal of gut bacteria, a phenomenon not observed in BIF-S. Subsequent high-throughput amplicon sequencing revealed distinct structural differences in the gut microbiota between the two groups, notably an increased abundance of Glutamicibacter in BIF-R. A newly identified bacterial strain from BIF-R larvae, Glutamicibacter ectropisis (B1), demonstrated bifenthrin degradation efficiency and the main metabolite was 2,4-di-tert-butylphenol. Inoculation of B1 into BIF-S larvae conferred increased resistance to bifenthrin. Furthermore, we confirmed the prevalence of B1 in the gut of E. grisescens across 22 tea-growing areas in China. A positive correlation was observed between the absolute abundance of B1 and bifenthrin resistance in E. grisescens. This study represents the first identification of a novel gut bacterium, G. ectropisis, which mediates host resistance through the direct degradation of bifenthrin. This mechanism has been widely validated across 22 distinct populations.
Collapse
Affiliation(s)
- Xiayu Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ting Fang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Tian Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Hao Gui
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ying Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Linlin Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Yanhua Long
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Wang J, Lu Z, Hu L, Zhong R, Xu C, Yang Y, Zeng R, Song Y, Sun Z. High nitrogen application in maize enhances insecticide tolerance of the polyphagous herbivore Spodoptera litura by induction of detoxification enzymes and intensification of cuticle. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106002. [PMID: 39084798 DOI: 10.1016/j.pestbp.2024.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Nitrogen (N) is one of the most intensively used fertilizers in cropping system and could exert a variety of bottom-up effects on the ecological fitness of herbivores. However, the effects of increased N inputs on insect pesticide tolerance have not been comprehensively understood. Bioassays showed that high N (HN) applied to maize plants significantly increased larval tolerance of Spodoptera litura to multiple insecticides. Activities of detoxification enzymes were significantly higher in the larvae fed on maize plants supplied with HN. RNA-seq analysis showed that numerous GST and cuticle-related genes were induced in the larvae fed on HN maize. RT-qPCR analysis further confirmed four GST genes and larval-specific cuticle gene LCP167. Furthermore, when injected with dsRNA specific to GSTe1, GSTs5, and LCP167, the mortality of larvae treated with methomyl was about 3-fold higher than that of dsGFP-injected larvae. Electron microscope observation showed that cuticle of the larvae fed on HN maize was thicker than the medium level of N. These findings suggest that increased application of N fertilizer enhances insecticide tolerance of lepidopteran pests via induction of detoxification enzymes and intensification of cuticle. Thus, overuse of N fertilizer may increase pest insecticide tolerance and usage of chemical insecticides.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihui Lu
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Lin Hu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Runbin Zhong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuicui Xu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yurui Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiang Sun
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
3
|
Li J, Ni B, Wu Y, Yang Y, Mu D, Wu K, Zhang A, Du Y, Li Q. The cultivable gut bacteria Enterococcus mundtii promotes early-instar larval growth of Conogethes punctiferalis via enhancing digestive enzyme activity. PEST MANAGEMENT SCIENCE 2024. [PMID: 39072862 DOI: 10.1002/ps.8346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Gut bacteria are crucial in influencing insect development and even phenotypic plasticity. The yellow peach moth Conogethes punctiferalis, as a significant borer pest, has been the subject of limited reports regarding the structural and diversification changes in its gut microbiota during feeding, and their potential impacts on the growth and development of the host insects. RESULTS This study, employing 16S rRNA sequencing, demonstrates distinct shifts in the larvae gut microbiome of C. punctiferalis between different feeding stages, highlighting a pronounced diversity in the early-instar with Enterococcus as a predominant genus in laboratory populations. Through in vitro cultivation and sequencing, three bacterial strains - Micrococcus sp., Brevibacterium sp. and Enterococcus mundtii - were isolated and characterized. Bioassays revealed that E. mundtii-infused corn significantly boosts early-instar larval growth, enhancing both body length and weight. Quantitative PCR and spectrophotometry confirmed a higher abundance of E. mundtii in younger larvae, correlating with increased digestive enzyme activity and total protein levels. CONCLUSION This study reveals the heightened gut microbiota diversity in early instars of C. punctiferalis larvae, highlighting that Enterococcus represent a predominant bacteria in laboratory populations. In vitro cultivation and bioassays unequivocally demonstrate the significant role of the cultivable gut bacteria E. mundtii in promoting the growth of early-instar larva. These findings provide a solid theoretical foundation for advancing the comprehension of the intricate interactions between gut microbiota and insect hosts, as well as for the development of eco-friendly pest control technologies based on targeted manipulation of insect gut microbial communities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiayu Li
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Boqing Ni
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yanan Wu
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yueyue Yang
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Dongli Mu
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - KaiNing Wu
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Aihuan Zhang
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yanli Du
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Qian Li
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
4
|
Peterson BF. Microbiome toxicology - bacterial activation and detoxification of insecticidal compounds. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101192. [PMID: 38490450 DOI: 10.1016/j.cois.2024.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Insect gut bacteria have been implicated in a myriad of physiological processes from nutrient supplementation to pathogen protection. In fact, symbiont-mediated insecticide degradation has helped explain sudden control failure in the field to a range of active ingredients. The mechanisms behind the loss of susceptibility are varied based on host, symbiont, and insecticide identity. However, while some symbionts directly break down pesticides, others modulate endogenous host detoxification pathways or involve reciprocal degradation of insecticidal and bactericidal compounds both inspiring new questions and requiring the reexamination of past conclusions. Good steward of the chemical pesticide arsenal requires consideration of these ecological interactions from development to deployment.
Collapse
Affiliation(s)
- Brittany F Peterson
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA.
| |
Collapse
|
5
|
Guo L, Niu L, Zhu X, Wang L, Zhang K, Li D, Elumalai P, Gao X, Ji J, Cui J, Luo J. Moderate nitrogen application facilitates Bt cotton growth and suppresses population expansion of aphids ( Aphis gossypii) by altering plant physiological characteristics. FRONTIERS IN PLANT SCIENCE 2024; 15:1328759. [PMID: 38510447 PMCID: PMC10950987 DOI: 10.3389/fpls.2024.1328759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Introduction Excessive application of nitrogen fertilizer in cotton field causes soil and water pollution as well as significant increase of aphid population. Reasonable fertilization is an important approach to improve agricultural production efficiency and reduce agriculture-derived pollutions. This study was aimed to explore the effects of nitrogen fertilizer on the Bt cotton physiological characteristics and the growth and development of A. gossypii, a sap-sucking cotton pest. Methods Five different levels of Ca(NO3)2 (0.0 g/kg, 0.3 g/kg, 0.9 g/kg, 2.7 g/kg and 8.1 g/kg) were applied into vermiculite as nitrogen fertilizer in order to explore the effects of nitrogen fertilizer on the growth and development of Bt cotton and aphids. Results The results showed that the medium level of nitrogen fertilizer (0.9 g/kg) effectively facilitated the growth of Bt cotton plant and suppressed the population expansion of aphids, whereas high and extremely high nitrogen application (2.7 and 8.1 g/kg) significantly increased the population size of aphids. Both high and low nitrogen application benefited aphid growth in multiple aspects such as prolonging nymph period and adult lifespan, enhancing fecundity, and improving adult survival rate by elevating soluble sugar content in host Bt cotton plants. Cotton leaf Bt toxin content in medium nitrogen group (0.9 g/kg) was significantly higher than that in high (2.7 and 8.1 g/kg) and low (0.3 g/kg) nitrogen groups, but Bt toxin content in aphids was very low in all the nitrogen treatment groups, suggesting that medium level (0.9 g/kg) might be the optimal nitrogen fertilizer treatment level for promoting cotton seedling growth and inhibiting aphids. Discussion Overall, this study provides insight into trophic interaction among nitrogen fertilizer levels, Bt cotton, and cotton aphid, and reveals the multiple effects of nitrogen fertilizer levels on growth and development of cotton and aphids. Our findings will contribute to the optimization of the integrated management of Bt cotton and cotton aphids under nitrogen fertilization.
Collapse
Affiliation(s)
- Lixiang Guo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lin Niu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Punniyakotti Elumalai
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xueke Gao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jichao Ji
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jinjie Cui
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Junyu Luo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
6
|
Shao Y, Mason CJ, Felton GW. Toward an Integrated Understanding of the Lepidoptera Microbiome. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:117-137. [PMID: 37585608 DOI: 10.1146/annurev-ento-020723-102548] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Research over the past 30 years has led to a widespread acceptance that insects establish widespread and diverse associations with microorganisms. More recently, microbiome research has been accelerating in lepidopteran systems, leading to a greater understanding of both endosymbiont and gut microorganisms and how they contribute to integral aspects of the host. Lepidoptera are associated with a robust assemblage of microorganisms, some of which may be stable and routinely detected in larval and adult hosts, while others are ephemeral and transient. Certain microorganisms that populate Lepidoptera can contribute significantly to the hosts' performance and fitness, while others are inconsequential. We emphasize the context-dependent nature of the interactions between players. While our review discusses the contemporary literature, there are major avenues yet to be explored to determine both the fundamental aspects of host-microbe interactions and potential applications for the lepidopteran microbiome; we describe these avenues after our synthesis.
Collapse
Affiliation(s)
- Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China;
| | - Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Hilo, Hawaii, USA;
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
7
|
Zeng T, Fu Q, Luo F, Dai J, Fu R, Qi Y, Deng X, Lu Y, Xu Y. Lactic acid bacteria modulate the CncC pathway to enhance resistance to β-cypermethrin in the oriental fruit fly. THE ISME JOURNAL 2024; 18:wrae058. [PMID: 38618721 PMCID: PMC11069359 DOI: 10.1093/ismejo/wrae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.
Collapse
Affiliation(s)
- Tian Zeng
- Guangdong Laboratory for Lingnan Modern Agriculture, Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Qianyan Fu
- Guangdong Laboratory for Lingnan Modern Agriculture, Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Fangyi Luo
- Guangdong Provincial Sericulture & Mulberry Engineering Research Center, Guangdong Prov Key Lab of AgroAnimal Genomics & Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jian Dai
- Guangdong Laboratory for Lingnan Modern Agriculture, Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Rong Fu
- Guangdong Laboratory for Lingnan Modern Agriculture, Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Yixiang Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojuan Deng
- Guangdong Provincial Sericulture & Mulberry Engineering Research Center, Guangdong Prov Key Lab of AgroAnimal Genomics & Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongyue Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Yijuan Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Roy A, Houot B, Kushwaha S, Anderson P. Impact of transgenerational host switch on gut bacterial assemblage in generalist pest, Spodoptera littoralis (Lepidoptera: Noctuidae). Front Microbiol 2023; 14:1172601. [PMID: 37520373 PMCID: PMC10374326 DOI: 10.3389/fmicb.2023.1172601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
Diet composition is vital in shaping gut microbial assemblage in many insects. Minimal knowledge is available about the influence of transgenerational diet transition on gut microbial community structure and function in polyphagous pests. This study investigated transgenerational diet-induced changes in Spodoptera littoralis larval gut bacteriome using 16S ribosomal sequencing. Our data revealed that 88% of bacterial populations in the S. littoralis larval gut comprise Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. The first diet transition experiment from an artificial diet (F0) to a plant diet (F1), cabbage and cotton, caused an alteration of bacterial communities in the S. littoralis larval gut. The second transgenerational diet switch, where F1 larvae feed on the same plant in the F2 generation, displayed a significant variation suggesting further restructuring of the microbial communities in the Spodoptera larval gut. F1 larvae were also challenged with the plant diet transition at the F2 generation (cabbage to cotton or cotton to cabbage). After feeding on different plant diets, the microbial assemblage of F2 larvae pointed to considerable differences from other F2 larvae that continued on the same diet. Our results showed that S. littoralis larval gut bacteriome responds rapidly and inexplicably to different diet changes. Further experiments must be conducted to determine the developmental and ecological consequences of such changes. Nevertheless, this study improves our perception of the impact of transgenerational diet switches on the resident gut bacteriome in S. littoralis larvae and could facilitate future research to understand the importance of symbiosis in lepidopteran generalists better.
Collapse
Affiliation(s)
- Amit Roy
- Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Suchdol, Czechia
| | - Benjamin Houot
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sandeep Kushwaha
- Department of Bioinformatics, National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
9
|
Zhang X, Zhang F, Lu X. Diversity and Functional Roles of the Gut Microbiota in Lepidopteran Insects. Microorganisms 2022; 10:microorganisms10061234. [PMID: 35744751 PMCID: PMC9231115 DOI: 10.3390/microorganisms10061234] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Lepidopteran insects are one of the most widespread and speciose lineages on Earth, with many common pests and beneficial insect species. The evolutionary success of their diversification depends on the essential functions of gut microorganisms. This diverse gut microbiota of lepidopteran insects provides benefits in nutrition and reproductive regulation and plays an important role in the defence against pathogens, enhancing host immune homeostasis. In addition, gut symbionts have shown promising applications in the development of novel tools for biological control, biodegradation of waste, and blocking the transmission of insect-borne diseases. Even though most microbial symbionts are unculturable, the rapidly expanding catalogue of microbial genomes and the application of modern genetic techniques offer a viable alternative for studying these microbes. Here, we discuss the gut structure and microbial diversity of lepidopteran insects, as well as advances in the understanding of symbiotic relationships and interactions between hosts and symbionts. Furthermore, we provide an overview of the function of the gut microbiota, including in host nutrition and metabolism, immune defence, and potential mechanisms of detoxification. Due to the relevance of lepidopteran pests in agricultural production, it can be expected that the research on the interactions between lepidopteran insects and their gut microbiota will be used for biological pest control and protection of beneficial insects in the future.
Collapse
Affiliation(s)
- Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
- Correspondence: (F.Z.); (X.L.)
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
- Correspondence: (F.Z.); (X.L.)
| |
Collapse
|
10
|
Li Y, Zhao D, Wu H, Ji Y, Liu Z, Guo X, Guo W, Bi Y. Bt GS57 Interaction With Gut Microbiota Accelerates Spodoptera exigua Mortality. Front Microbiol 2022; 13:835227. [PMID: 35401496 PMCID: PMC8989089 DOI: 10.3389/fmicb.2022.835227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
The Beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae, Spodoptera) is an important global polyphagous pest. Pathogen infection could destroy the intestinal microbial homeostasis of insects, leading to the death of the host. However, the effect of the host intestinal microbial community on the insecticidal effect of Bacillus thuringiensis is rarely studied. In this study, the genome characteristics of Bt GS57 and the diversity and functions of the gut bacteria in S. exigua are investigated using crystal morphology, biological activity, and Illumina HiSeq high-throughput sequencing. The total size of the Bt GS57 genome is 6.17 Mbp with an average G + C content of 35.66%. Furthermore, the Bt GS57 genome contains six cry genes: cry1Ca, cry1Da, cry2Ab, cry9Ea, cry1Ia, and cry1Aa, and a vegetative insecticidal protein gene vip3Aa. The Bt GS57 strain can produce biconical crystals, mainly expressing 70 kDa and 130 kDa crystal proteins. The LC50 value of the Bt GS57 strain against the S. exigua larvae was 0.339 mg mL–1. Physiological and biochemical reactions showed that Bt GS57 belongs to B.t. var. thuringiensis. In addition, we found that B. thuringiensis can cause a dynamic change in the gut microbiota of S. exigua, with a significant reduction in bacterial diversity and a substantial increase in bacterial load. In turn, loss of gut microbiota significantly decreased the B. thuringiensis susceptibility of S. exigua larvae. Our findings reveal the vital contribution of the gut microbiota in B. thuringiensis-killing activity, providing new insights into the mechanisms of B. thuringiensis pathogenesis in insects.
Collapse
Affiliation(s)
- Yazi Li
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Han Wu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yujie Ji
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaorui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xiaochang Guo
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Wei Guo
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Wei Guo,
| | - Yang Bi
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| |
Collapse
|