1
|
Xu J, Cheng M, Liu J, Cui M, Yin B, Liang J. Research progress on the impact of intratumoral microbiota on the immune microenvironment of malignant tumors and its role in immunotherapy. Front Immunol 2024; 15:1389446. [PMID: 39034996 PMCID: PMC11257860 DOI: 10.3389/fimmu.2024.1389446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Microbiota has been closely related to human beings, whose role in tumor development has also been widely investigated. However, previous studies have mainly focused on the gut, oral, and/or skin microbiota. In recent years, the study of intratumoral microbiota has become a hot topic in tumor-concerning studies. Intratumoral microbiota plays an important role in the occurrence, development, and response to treatment of malignant tumors. In fact, increasing evidence has suggested that intratumoral microbiota is associated with malignant tumors in various ways, such as promoting the tumor development and affecting the efficacy of chemotherapy and immunotherapy. In this review, the impact of intratumoral microbiota on the immune microenvironment of malignant tumors has been analyzed, as well as its role in tumor immunotherapy, with the hope that it may contribute to the development of diagnostic tools and treatments for related tumors in the future.
Collapse
Affiliation(s)
- Jiamei Xu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Min Cheng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jie Liu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Mengqi Cui
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Beibei Yin
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
2
|
Zhao W, Li M, Song S, Zhi Y, Huan C, Lv G. The role of natural killer T cells in liver transplantation. Front Cell Dev Biol 2024; 11:1274361. [PMID: 38250325 PMCID: PMC10796773 DOI: 10.3389/fcell.2023.1274361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Natural killer T cells (NKTs) are innate-like lymphocytes that are abundant in the liver and participate in liver immunity. NKT cells express both NK cell and T cell markers, modulate innate and adaptive immune responses. Type I and Type II NKT cells are classified according to the TCR usage, while they recognize lipid antigen in a non-classical major histocompatibility (MHC) molecule CD1d-restricted manner. Once activated, NKT cells can quickly produce cytokines and chemokines to negatively or positively regulate the immune responses, depending on the different NKT subsets. In liver transplantation (LTx), the immune reactions in a series of processes determine the recipients' long-term survival, including ischemia-reperfusion injury, alloresponse, and post-transplant infection. This review provides insight into the research on NKT cells subpopulations in LTx immunity during different processes, and discusses the shortcomings of the current research on NKT cells. Additionally, the CD56-expressing T cells are recognized as a NK-like T cell population, they were also discussed during these processes.
Collapse
Affiliation(s)
- Wenchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shifei Song
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Huan
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Zhang H, Chen S, Zhang Y, Tian C, Pan J, Wang Y, Bai S, Wu Q, Su M, Xie D, Fu S, Li S, Zhang J, Chen Y, Zhu S, Qian Y, Bai L. Antigen Priming Induces Functional Reprogramming in iNKT Cells via Metabolic and Epigenetic Regulation: An Insight into iNKT Cell-Based Antitumor Immunotherapy. Cancer Immunol Res 2023; 11:1598-1610. [PMID: 37756568 DOI: 10.1158/2326-6066.cir-23-0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/04/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Dysfunction of intratumoral invariant natural killer T (iNKT) cells hinders their antitumor efficacy, but the underlying mechanisms and the relationship with endogenous antigen priming remain to be explored. Here, we report that antigen priming leads to metabolic reprogramming and epigenetic remodeling, which causes functional reprogramming in iNKT cells, characterized by limited cytokine responses upon restimulation but constitutive high cytotoxicity. Mechanistically, impaired oxidative phosphorylation (OXPHOS) in antigen-primed iNKT cells inhibited T-cell receptor signaling, as well as elevation of glycolysis, upon restimulation via reducing mTORC1 activation, and thus led to impaired cytokine production. However, the metabolic reprogramming in antigen-primed iNKT cells was uncoupled with their enhanced cytotoxicity; instead, epigenetic remodeling explained their high expression of granzymes. Notably, intratumoral iNKT cells shared similar metabolic reprogramming and functional reprogramming with antigen-primed iNKT cells due to endogenous antigen priming in tumors, and thus recovery of OXPHOS in intratumoral iNKT cells by ZLN005 successfully enhanced their antitumor responses. Our study deciphers the influences of antigen priming-induced metabolic reprogramming and epigenetic remodeling on functionality of intratumoral iNKT cells, and proposes a way to enhance efficacy of iNKT cell-based antitumor immunotherapy by targeting cellular metabolism.
Collapse
Affiliation(s)
- Huimin Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sanwei Chen
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuwei Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenxi Tian
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun Pan
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Wang
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shiyu Bai
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qielan Wu
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Miya Su
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Di Xie
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sicheng Fu
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuhang Li
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Zhang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Yusheng Chen
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Shasha Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
| | - Yeben Qian
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Bai
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Gong Y, Huang X, Wang M, Liang X. Intratumor microbiota: a novel tumor component. J Cancer Res Clin Oncol 2023; 149:6675-6691. [PMID: 36639531 DOI: 10.1007/s00432-023-04576-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Bacteria have been found in tumors for over 100 years, but the irreproducibility of experiments on bacteria, the limitations of science and technology, and the contamination of the host environment have severely hampered most research into the role of bacteria in carcinogenesis and cancer treatment. With the development of molecular tools and techniques (e.g., macrogenomics, metabolomics, lipidomics, and macrotranscriptomics), the complex relationships between hosts and different microorganisms are gradually being deciphered. In the past, attention has been focused on the impact of the gut microbiota, the site where the body's microbes gather most, on tumors. However, little is known about the role of microbes from other sites, particularly the intratumor microbiota, in cancer. In recent years, an increasing number of studies have identified the presence of symbiotic microbiota within a large number of tumors, bringing the intratumor microbiota into the limelight. In this review, we aim to provide a better understanding of the role of the intratumor microbiota in cancer, to provide direction for future experimental and translational research, and to offer new approaches to the treatment of cancer and the improvement of patient prognosis.
Collapse
Affiliation(s)
- Yanyu Gong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xinqi Huang
- Excellent Class, Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Minhui Wang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
5
|
Clinical, Laboratory, Histological, Radiological, and Metabolic Features and Prognosis of Malignant Pleural Mesothelioma. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121874. [PMID: 36557076 PMCID: PMC9785569 DOI: 10.3390/medicina58121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Background: Malignant pleural mesothelioma (MPM) is an aggressive and rare malignant pleural tumor. Methods: MPM patients diagnosed in Beijing Chaoyang Hospital and Beijing Tongren Hospital were the focus of this study. We collected and analyzed the histological, radiological, and metabolic features of MPM patients. At the same time, Cox univariable and multivariable analyses were used to explore the laboratory risk factors affecting the prognosis of MPM patients. Results: A total of 129 MPM patients were included in this study. MPM includes three main histological subtypes: epithelioid, sarcomatoid and biphasic. Among them, epithelial subtypes accounted for the highest proportion. Calretinin, Wilms' tumor gene (WT1), cytokeratin 5/6 (CK5/6), and D2-40 were the most useful mesothelial markers to support a MPM diagnosis. The imaging features of MPM patients are pleural thickening and pleural effusion. In PET-CT, the affected pleura showed obvious high uptake of tracer, and the degree was related to the specific subtype. The median follow-up time was 55.0 (30.0, 94.0) months. A total of 92 (71.3%) patients died during follow-up. The median survival time of patients was 21.0 (9.0, 48.0) months. The Cox multivariable analysis showed that age [hazard ratio (HR), 1.824; 95% confidence interval (CI) 1.159-2.872; p = 0.009; uncorrected], ESR (HR, 2.197; 95% CI 1.318-3.664; p = 0.003; with Bonferroni correction), lymphocytes (HR, 0.436; 95% CI 0.258-0.737; p = 0.002; with Bonferroni correction), platelets (HR, 1.802; 95% CI 1.084-2.997; p = 0.023; uncorrected) and total protein (HR, 0.625; 95% CI 0.394-0.990; p = 0.045; uncorrected) were independent risk factors for prognosis, after adjusting for confounding factors. Conclusions: Age, ESR, lymphocytes, platelets and total protein may be related to the prognosis of MPM patients. Summarizing the histological, radiological, and metabolic features of MPM patients in the two centers can increase clinicians' understanding of this rare tumor.
Collapse
|
6
|
Arnone AA, Cook KL. Gut and Breast Microbiota as Endocrine Regulators of Hormone Receptor-positive Breast Cancer Risk and Therapy Response. Endocrinology 2022; 164:6772818. [PMID: 36282876 PMCID: PMC9923803 DOI: 10.1210/endocr/bqac177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/16/2023]
Abstract
Despite advances in treatment strategies, breast cancer (BC) remains one of the most prevalent cancers worldwide. Recent studies implicate the gut microbiome as a potential risk factor for BC development. Alterations in gut microbial diversity resulting in dysbiosis have been linked to breast carcinogenesis by modulating host immune responses and inflammatory pathways, favoring tumorigenesis and progression. Moreover, gut microbiota populations are different between women with BC vs those that are cancer free, further implicating the role of the gut microbiome in cancer development. This alteration in gut microbiota is also associated with changes in estrogen metabolism, which strongly correlates with BC development. Gut microbiota that express the enzyme β-glucuronidase (GUS) may increase estrogen bioavailability by deconjugating estrogen-glucuronide moieties enabling reabsorption into circulation. Increased circulating estrogens may, in turn, drive estrogen receptor-positive BC. GUS-expressing microbiota also affect cancer therapy efficacy and toxicity by modifying glucuronide-conjugated drug metabolites. Therefore, GUS inhibitors have emerged as a potential antitumor treatment. However, the effectiveness of GUS inhibitors is still exploratory. Further studies are needed to determine how oral endocrine-targeting therapies may influence or be influenced by the microbiota and how that may affect carcinogenesis initiation and tumor recurrence.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Katherine L Cook
- Correspondence: Katherine L. Cook, PhD, Wake Forest School of Medicine, 575 N Patterson Ave, Ste 340, Winston-Salem, NC 27157, USA.
| |
Collapse
|
7
|
Gu X, Chu Q, Ma X, Wang J, Chen C, Guan J, Ren Y, Wu S, Zhu H. New insights into iNKT cells and their roles in liver diseases. Front Immunol 2022; 13:1035950. [PMID: 36389715 PMCID: PMC9643775 DOI: 10.3389/fimmu.2022.1035950] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/14/2022] [Indexed: 08/29/2023] Open
Abstract
Natural killer T cells (NKTs) are an important part of the immune system. Since their discovery in the 1990s, researchers have gained deeper insights into the physiology and functions of these cells in many liver diseases. NKT cells are divided into two subsets, type I and type II. Type I NKT cells are also named iNKT cells as they express a semi-invariant T cell-receptor (TCR) α chain. As part of the innate immune system, hepatic iNKT cells interact with hepatocytes, macrophages (Kupffer cells), T cells, and dendritic cells through direct cell-to-cell contact and cytokine secretion, bridging the innate and adaptive immune systems. A better understanding of hepatic iNKT cells is necessary for finding new methods of treating liver disease including autoimmune liver diseases, alcoholic liver diseases (ALDs), non-alcoholic fatty liver diseases (NAFLDs), and liver tumors. Here we summarize how iNKT cells are activated, how they interact with other cells, and how they function in the presence of liver disease.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Yaseen MM, Abuharfeil NM, Darmani H. The impact of MDSCs on the efficacy of preventive and therapeutic HIV vaccines. Cell Immunol 2021; 369:104440. [PMID: 34560382 DOI: 10.1016/j.cellimm.2021.104440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/07/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
In spite of four decades of research on human immunodeficiency virus (HIV), the virus remains a major health problem, affecting tens of millions of people around the world. As such, developing an effective preventive/protective and therapeutic vaccines against HIV are essential to prevent/limit the continuous spread of the virus as well as to control the disease progression and to completely eradicate the virus from HIV infected patients, respectively. There are several factors that have impeded the development of such vaccines, and we need to gain further insight into these factors in order to enhance our knowledge concerning the proper immune activation pathways in the hope of accelerating the development of the highly sought-after vaccine. Recently, new immune cell populations, namely the myeloid-derived suppressor cells (MDSCs), were added to the battle of HIV infection. Indeed, MDSCs seem to play a central role in determining the efficacy of therapeutic and preventive vaccines, especially because vaccines, in general, enhance immune responses, while as a potent immunosuppressor cell population, MDSCs, in turn, subvert and limit the activation of immune responses. Hence, in this work, we sought to address the role of MDSCs in the context of preventive/protective, as well as, therapeutic HIV vaccines.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
9
|
Carrión B, Liu Y, Hadi M, Lundstrom J, Christensen JR, Ammitzbøll C, Dziegiel MH, Sørensen PS, Comabella M, Montalban X, Sellebjerg F, Issazadeh-Navikas S. Transcriptome and Function of Novel Immunosuppressive Autoreactive Invariant Natural Killer T Cells That Are Absent in Progressive Multiple Sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1065. [PMID: 34385365 PMCID: PMC8362604 DOI: 10.1212/nxi.0000000000001065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to determine whether natural killer T (NKT) cells, including invariant (i) NKT cells, have clinical value in preventing the progression of multiple sclerosis (MS) by examining the mechanisms by which a distinct self-peptide induces a novel, protective invariant natural killer T cell (iNKT cell) subset. METHODS We performed a transcriptomic and functional analysis of iNKT cells that were reactive to a human collagen type II self-peptide, hCII707-721, measuring differentially induced genes, cytokines, and suppressive capacity. RESULTS We report the first transcriptomic profile of human conventional vs novel hCII707-721-reactive iNKT cells. We determined that hCII707-721 induces protective iNKT cells that are found in the blood of healthy individuals but not progressive patients with MS (PMS). By transcriptomic analysis, we observed that hCII707-721 promotes their development and proliferation, favoring the splicing of full-length AKT serine/threonine kinase 1 (AKT1) and effector function of this unique lineage by upregulating tumor necrosis factor (TNF)-related genes. Furthermore, hCII707-721-reactive iNKT cells did not upregulate interferon (IFN)-γ, interleukin (IL)-4, IL-10, IL-13, or IL-17 by RNA-seq or at the protein level, unlike the response to the glycolipid alpha-galactosylceramide. hCII707-721-reactive iNKT cells increased TNFα only at the protein level and suppressed autologous-activated T cells through FAS-FAS ligand (FAS-FASL) and TNFα-TNF receptor I signaling but not TNF receptor II. DISCUSSION Based on their immunomodulatory properties, NKT cells have a potential value in the treatment of autoimmune diseases, such as MS. These significant findings suggest that endogenous peptide ligands can be used to expand iNKT cells, without causing a cytokine storm, constituting a potential immunotherapy for autoimmune conditions, including PMS.
Collapse
Affiliation(s)
- Belinda Carrión
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Yawei Liu
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Mahdieh Hadi
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Jon Lundstrom
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Jeppe Romme Christensen
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Cecilie Ammitzbøll
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Morten Hanefeld Dziegiel
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Per Soelberg Sørensen
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Manuel Comabella
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Xavier Montalban
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Finn Sellebjerg
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Shohreh Issazadeh-Navikas
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark.
| |
Collapse
|
10
|
Brettschneider EES, Terabe M. The Role of NKT Cells in Glioblastoma. Cells 2021; 10:cells10071641. [PMID: 34208864 PMCID: PMC8307781 DOI: 10.3390/cells10071641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma is an aggressive and deadly cancer, but to date, immunotherapies have failed to make significant strides in improving prognoses for glioblastoma patients. One of the current challenges to developing immunological interventions for glioblastoma is our incomplete understanding of the numerous immunoregulatory mechanisms at play in the glioblastoma tumor microenvironment. We propose that Natural Killer T (NKT) cells, which are unconventional T lymphocytes that recognize lipid antigens presented by CD1d molecules, may play a key immunoregulatory role in glioblastoma. For example, evidence suggests that the activation of type I NKT cells can facilitate anti-glioblastoma immune responses. On the other hand, type II NKT cells are known to play an immunosuppressive role in other cancers, as well as to cross-regulate type I NKT cell activity, although their specific role in glioblastoma remains largely unclear. This review provides a summary of our current understanding of NKT cells in the immunoregulation of glioblastoma as well as highlights the involvement of NKT cells in other cancers and central nervous system diseases.
Collapse
Affiliation(s)
- Emily E. S. Brettschneider
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | - Masaki Terabe
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
- Correspondence: ; Tel.: +1-240-760-6731
| |
Collapse
|
11
|
High mRNA expression of LY6 gene family is associated with overall survival outcome in pancreatic ductal adenocarcinoma. Oncotarget 2021; 12:145-159. [PMID: 33613843 PMCID: PMC7869573 DOI: 10.18632/oncotarget.27880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
Pancreatic cancer ranks one of the worst in overall survival outcome with a 5 year survival rate being less than 10%. Pancreatic cancer faces unique challenges in its diagnosis and treatment, such as the lack of clinically validated biomarkers and the immensely immunosuppressive tumor microenvironment. Recently, the LY6 gene family has received increasing attention for its multi-faceted roles in cancer development, stem cell maintenance, immunomodulation, and association with more aggressive and hard-to-treat cancers. A detailed study of mRNA expression of LY6 gene family and its association with overall survival (OS) outcome in pancreatic cancers is lacking. We used publicly available clinical datasets to analyze the mRNA expression of a set of LY6 genes and its effect on OS outcome in the context of the tumor microenvironment and immunomodulation. We used web-based tools Kaplan-Meier Plotter, cBioPortal, Oncomine and R-programming to analyze copy number alterations, mRNA expression and its association with OS outcome in pancreatic cancer. These analyses demonstrated that high expression of LY6 genes is associated with OS and disease free survival (DFS) outcome. High expression of LY6 genes and their association with OS outcome is dependent on the composition of tumor microenvironment. Considering that LY6 proteins are anchored to the outer cell membrane or secreted, making them readily accessible, these findings highlight the potential of LY6 family members in the future of pancreatic cancer diagnosis and treatment.
Collapse
|
12
|
Translating Unconventional T Cells and Their Roles in Leukemia Antitumor Immunity. J Immunol Res 2021; 2021:6633824. [PMID: 33506055 PMCID: PMC7808823 DOI: 10.1155/2021/6633824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, cell-mediated immune response in malignant neoplasms has become the focus in immunotherapy against cancer. However, in leukemia, most studies on the cytotoxic potential of T cells have concentrated only on T cells that recognize peptide antigens (Ag) presented by polymorphic molecules of the major histocompatibility complex (MHC). This ignores the great potential of unconventional T cell populations, which include gamma-delta T cells (γδ), natural killer T cells (NKT), and mucosal-associated invariant T cells (MAIT). Collectively, these T cell populations can recognize lipid antigens, specially modified peptides and small molecule metabolites, in addition to having several other advantages, which can provide more effective applications in cancer immunotherapy. In recent years, these cell populations have been associated with a repertoire of anti- or protumor responses and play important roles in the dynamics of solid tumors and hematological malignancies, thus, encouraging the development of new investigations in the area. This review focuses on the current knowledge regarding the role of unconventional T cell populations in the antitumor immune response in leukemia and discusses why further studies on the immunotherapeutic potential of these cells are needed.
Collapse
|
13
|
Is There a Place for Immune Checkpoint Inhibitors in Vulvar Neoplasms? A State of the Art Review. Int J Mol Sci 2020; 22:ijms22010190. [PMID: 33375467 PMCID: PMC7796178 DOI: 10.3390/ijms22010190] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Vulvar cancer (VC) is a rare neoplasm, usually arising in postmenopausal women, although human papilloma virus (HPV)-associated VC usually develop in younger women. Incidences of VCs are rising in many countries. Surgery is the cornerstone of early-stage VC management, whereas therapies for advanced VC are multimodal and not standardized, combining chemotherapy and radiotherapy to avoid exenterative surgery. Randomized controlled trials (RCTs) are scarce due to the rarity of the disease and prognosis has not improved. Hence, new therapies are needed to improve the outcomes of these patients. In recent years, improved knowledge regarding the crosstalk between neoplastic and tumor cells has allowed researchers to develop a novel therapeutic approach exploiting these molecular interactions. Both the innate and adaptive immune systems play a key role in anti-tumor immunesurveillance. Immune checkpoint inhibitors (ICIs) have demonstrated efficacy in multiple tumor types, improving survival rates and disease outcomes. In some gynecologic cancers (e.g., cervical cancer), many studies are showing promising results and a growing interest is emerging about the potential use of ICIs in VC. The aim of this manuscript is to summarize the latest developments in the field of VC immunoncology, to present the role of state-of-the-art ICIs in VC management and to discuss new potential immunotherapeutic approaches.
Collapse
|
14
|
Modulation of Immune Infiltration of Ovarian Cancer Tumor Microenvironment by Specific Subpopulations of Fibroblasts. Cancers (Basel) 2020; 12:cancers12113184. [PMID: 33138184 PMCID: PMC7692816 DOI: 10.3390/cancers12113184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor immune infiltration plays a key role in the progression of solid tumors, including ovarian cancer, and immunotherapies are rapidly emerging as effective treatment modalities. However, the role of cancer-associated fibroblasts (CAFs), a predominant stromal constituent, in determining the tumor-immune microenvironment and modulating efficacy of immunotherapies remains poorly understood. We have conducted an extensive bioinformatic analysis of our and other publicly available ovarian cancer datasets (GSE137237, GSE132289 and GSE71340), to determine the correlation of fibroblast subtypes within the tumor microenvironment (TME) with the characteristics of tumor-immune infiltration. We identified (1) four functional modules of CAFs in ovarian cancer that are associated with the TME and metastasis of ovarian cancer, (2) immune-suppressive function of the collagen 1,3,5-expressing CAFs in primary ovarian cancer and omental metastases, and (3) consistent positive correlations between the functional modules of CAFs with anti-immune response genes and negative correlation with pro-immune response genes. Our study identifies a specific fibroblast subtype, fibroblast functional module (FFM)2, in the ovarian cancer tumor microenvironment that can potentially modulate a tumor-promoting immune microenvironment, which may be detrimental toward the effectiveness of ovarian cancer immunotherapies.
Collapse
|
15
|
Ma Y, Zhang S, Jin Z, Shi M. Lipid-mediated regulation of the cancer-immune crosstalk. Pharmacol Res 2020; 161:105131. [PMID: 32810628 DOI: 10.1016/j.phrs.2020.105131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Besides acting as principle cellular building blocks and energy reservoirs, lipids also carry important signals associated with many fundamental cell biological processes, such as proliferation, differentiation, migration, stress responses and cell demise. Hyperactive lipid metabolism is closely associated with cancer progression and unfavorable outcomes. The underlying mechanisms are being gradually deciphered. In this review, we aim to summarize recent advances on how reprogrammed lipid metabolism and accompanying signaling cascades directly modulate cancer cells, as well as influencing stromal cells and immune cells within the tumor microenvironment. For future studies, special attention should be paid to lipid-mediated crosstalk among cancer cells, their neighboring stromal cells, and immune cells, plus how these multi-level communications determine anti-tumor immunity and bring novel immunotherapeutic opportunities.
Collapse
Affiliation(s)
- Yuting Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China.
| | - Shuqing Zhang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Ziqi Jin
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Minxin Shi
- The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| |
Collapse
|
16
|
Li Z, Wu Y, Wang C, Zhang M. Mouse CD8 +NKT-like cells exert dual cytotoxicity against mouse tumor cells and myeloid-derived suppressor cells. Cancer Immunol Immunother 2019; 68:1303-1315. [PMID: 31278476 PMCID: PMC6682577 DOI: 10.1007/s00262-019-02363-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Our previous work has demonstrated the high efficiency of CD8+ natural killer T (NKT)-like cells in killing antigen-bearing dendritic cells. To evaluate their role in the tumor microenvironment, we performed in vitro and in vivo antitumor experiments to investigate whether CD8+NKT-like cells could kill Yac-1 and B16 cells like NK cells and kill EL4-OVA8 cells in an antigen-specific manner like cytotoxic T lymphocytes (CTLs). Unlike NK1.1−CTLs, CD8+NKT-like cells also exhibit the capability to kill myeloid-derived suppressor cells (MDSCs) in an antigen-specific manner, indicative of their potential role in clearing tumor antigen-bearing MDSCs to improve the antitumor microenvironment. In vitro blocking experiments showed that granzyme B inhibitor efficiently suppressed the cytotoxicity of CD8+NKT-like cells against tumor cells and MDSCs, while Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) inhibition failed to produce similar effects. Transcriptomic and phenotypic analyses of CD8+NKT-like cells, NK cells, and NK1.1−CTLs indicated that CD8+NKT-like cells expressed both T-cell activation markers and NK cell markers, thus bearing features of both the activated T cells and NK cells. Taken together, CD8+NKT-like cells could exert NK- and CTL-like antitumor effects through the elimination of both tumor cells and MDSCs in a granzyme B-dependent manner.
Collapse
Affiliation(s)
- Zhengyuan Li
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yiqing Wu
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Chao Wang
- School of Medicine, Tsinghua University, Room B343, Haidian District, Beijing, 100084, China.
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Room B343, Haidian District, Beijing, 100084, China.
| |
Collapse
|
17
|
Terabe M, Berzofsky JA. Tissue-Specific Roles of NKT Cells in Tumor Immunity. Front Immunol 2018; 9:1838. [PMID: 30158927 PMCID: PMC6104122 DOI: 10.3389/fimmu.2018.01838] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 01/07/2023] Open
Abstract
NKT cells are an unusual population of T cells recognizing lipids presented by CD1d, a non-classical class-I-like molecule, rather than peptides presented by conventional MHC molecules. Type I NKT cells use a semi-invariant T cell receptor and almost all recognize a common prototype lipid, α-galactosylceramide (α-GalCer). Type II NKT cells are any lipid-specific CD1d-restricted T cells that use other receptors and generally don't recognize α-GalCer. They play important regulatory roles in immunity, including tumor immunity. In contrast to type I NKT cells that most have found to promote antitumor immunity, type II NKT cells suppress tumor immunity and the two subsets cross-regulate each other, forming an immunoregulatory axis. They also can promote other regulatory cells including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), and can induce MDSCs to secrete TGF-β, one of the most immunosuppressive cytokines known. In some tumors, both Tregs and type II NKT cells can suppress immunosurveillance, and the balance between these is determined by a type I NKT cell. We have also seen that regulation of tumor immunity can depend on the tissue microenvironment, so the same tumor in the same animal in different tissues may be regulated by different cells, such as type II NKT cells in the lung vs Tregs in the skin. Also, the effector T cells that protect those sites when Tregs are removed do not always act between tissues even in the same animal. Thus, metastases may require different immunotherapy from primary tumors. Newly improved sulfatide-CD1d tetramers are starting to allow better characterization of the elusive type II NKT cells to better understand their function and control it to overcome immunosuppression.
Collapse
Affiliation(s)
- Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Dai H, Zhou Y, Tong C, Guo Y, Shi F, Wang Y, Shen P. Restoration of CD3 +CD56 + cell level improves skin lesions in severe psoriasis: A pilot clinical study of adoptive immunotherapy for patients with psoriasis using autologous cytokine-induced killer cells. Cytotherapy 2018; 20:1155-1163. [PMID: 30100374 DOI: 10.1016/j.jcyt.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 11/29/2022]
Abstract
Psoriasis is a chronic inflammatory skin disorder mediated by the cells and molecules of both the innate and adaptive immune systems. Autologous cytokine-induced killer (CIK) cell infusion is considered an effective and safe cancer treatment and is licensed for this use in China. Accumulated evidence indicating that CD3+CD56+ cells are significantly decreased in psoriatic patients prompted us to investigate if the restoration of CD3+CD56+ cells may be beneficial for psoriatic patients. We designed a clinical trial for psoriasis treatment that involved CIK cell infusion because CIK cells include a large amount of CD3+CD56+ T cells (NCT01894373 at www.clinicaltrials.gov). Six patients with severe psoriasis were initially enrolled, and four of them exhibited markedly lower levels of CD3+CD56+ cells in their peripheral blood (PB) relative to healthy donors. CIK cell infusion-associated toxicity was not observed in any infusion. The percentage of CD3+CD56+ cells in the PB markedly increased and the psoriasis area and severity index (PASI) synchronously decreased in four patients with lower CD3+CD56+ cell contents, and two of them obtained a more than 4-month PASI75 after completing a four-cycle treatment. However, a decrease in the CD3+CD56+ cells was observed concomitantly with disease recurrence after short-term amelioration. In contrast, no obvious improvement was observed in the two patients with nearly normal CD3+CD56+ cells in the PB before treatment. These observations suggest that the normalization of the CD3+CD56+ cell level may improve the skin lesions of severe psoriasis and warrant further clinical trials for severe psoriasis using repeated CIK adoptive immunotherapy.
Collapse
Affiliation(s)
- Hanren Dai
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | - Yong Zhou
- Department of dermatology, Chinese PLA General Hospital, Beijing, China
| | - Chuan Tong
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | - Yelei Guo
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | - Fengxia Shi
- Biotherapeutic Department, Chinese PLA General Hospital, Beijing, China
| | - Yao Wang
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China.
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China.
| |
Collapse
|
19
|
Xu Q, Li J, Zhang N, Zhang L, Qian R. Utilization of invariant natural killer T cells for gastric cancer treatment. Future Oncol 2018; 14:2053-2066. [PMID: 30051730 DOI: 10.2217/fon-2017-0724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM To evaluate the expression of CD1d and the susceptibility to invariant natural killer T (iNKT) cells in gastric cancer. METHODS The expression of CD1d was examined in gastric cancer. The in vitro and in vivo cytotoxic activities of iNKT cells were evaluated against gastric cancer cell lines. RESULTS CD1d was expressed in gastric cancer cell lines and primary tumors. iNKT cells have potent in vivo and in vitro anti-tumor activities against CD1d-positve gastric cancer in the presence of α-galactosylceramide. Cisplatin could upregulate CD1d expression in gastric cancer cells and make them more vulnerable to iNKT cell-mediated cytotoxicity. CONCLUSION These results justified clinical translation of this iNKT cell-based therapeutics, either used alone or combined with chemotherapy, for the treatment of patients with gastric cancer.
Collapse
Affiliation(s)
- Qi Xu
- Department of Abdominal Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Jingjing Li
- Department of Abdominal Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Na Zhang
- Department of Abdominal Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, PR China
| | - Lili Zhang
- Department of Pathology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Runmei Qian
- Department of Pathology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| |
Collapse
|
20
|
Gao L, Fan Y, Yang Y, Xie R, Yang J, Chen Z. Mechanism of Premature Apoptosis in CD1d-Restricted Natural Killier T Cells From Human Peripheral Blood During the Induction of Proliferation In Vitro. Transplant Proc 2018; 50:1514-1518. [PMID: 29880380 DOI: 10.1016/j.transproceed.2018.02.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE A preliminary investigation on the proliferation and cultivation process of natural killer T cells (NKT) was carried out. We provide reference data for future NKT-related research and development. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from healthy people and were induced by α-galactosylceramide (α-GalCer). The phenotypic changes of the cells and the activation and apoptosis of Caspase-3 were recorded for 3-4 weeks. RESULTS The proliferation of the NKT cells continued for approximately 3 weeks, and then apoptosis started to occur. The activity of Caspase-3 was maintained at a high level from the second week. The responses of individual human NKT cells to α-GalCer stimulation differed significantly. CONCLUSION The proliferation of the NKT cells continued for approximately 3 weeks, and then apoptosis Semiconstitutively started to occur. The activity of Caspase-3 was maintained at a high level from the second week. The responses of individual human NKT cells to α-GalCer stimulation differed significantly.
Collapse
Affiliation(s)
- L Gao
- Shanghai Blood Center, Shanghai, China.
| | - Y Fan
- Department of Gynecology, Huashan Hospital North Fudan University, Shanghai, China
| | - Y Yang
- Shanghai Blood Center, Shanghai, China
| | - R Xie
- Shanghai Blood Center, Shanghai, China
| | - J Yang
- Shanghai Blood Center, Shanghai, China.
| | - Z Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China; Quintiles Asia Medical Oncology, Shanghai, China.
| |
Collapse
|
21
|
Malik SS, Saeed A, Baig M, Asif N, Masood N, Yasmin A. Anticarcinogenecity of microbiota and probiotics in breast cancer. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1448994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Saima Shakil Malik
- Department of Environmental Sciences, Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
- Surgery Department, Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | - Ayesha Saeed
- Department of Environmental Sciences, Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Mehreen Baig
- Chemical Pathology and Endocrinology, Fauji Foundation Hospital, Rawalpindi, Pakistan
| | - Naveed Asif
- Surgery Department, Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | - Nosheen Masood
- Department of Environmental Sciences, Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Azra Yasmin
- Department of Environmental Sciences, Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| |
Collapse
|
22
|
Upadhyay S, Sharma N, Gupta KB, Dhiman M. Role of immune system in tumor progression and carcinogenesis. J Cell Biochem 2018; 119:5028-5042. [PMID: 29327370 DOI: 10.1002/jcb.26663] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Tumor micro-environment has potential to customize the behavior of the immune cell according to their need. In immune-eliminating phase, immune cells eliminate transformed cells but after tumor establishment innate and adaptive immune cells synergistically provide shelter as well as fulfill their requirement that helps in progression. In between eliminating and establishment phase, equilibrium and escaping phase regulate the immune cells response. During immune-escaping, (1) the antigenic response generated is either inadequate, or focused entirely on tolerance, and (2) immune response generated is specific and effective, but the tumor skips immune recognition. In this review, we are discussing the critical role of immune cells and their cytokines before and after the establishment of tumor which might play a critical role during immunotherapy.
Collapse
Affiliation(s)
- Shishir Upadhyay
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Nidhi Sharma
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Kunj Bihari Gupta
- Department of Biochemistry and Microbial Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Biochemistry and Microbial Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
23
|
Khan MA, Aljarbou AN, Aldebasi YH, Alorainy MS, Rahmani AH, Younus H, Khan A. Liposomal formulation of glycosphingolipids from Sphingomonas paucimobilis induces antitumour immunity in mice. J Drug Target 2018; 26:709-719. [PMID: 29307241 DOI: 10.1080/1061186x.2018.1424857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Natural Killer T (NKT) cells play an important role in host's anti-tumour immune response. Glycosphingolipids (GSLs) isolated from Sphingomonas paucimobilis have the ability to stimulate NKT cells. In this study, the activity of free GSLs or GSLs-incorporated liposomes (glycosphingosomes) was investigated against dimethyl-α-benzanthracene (DMBA)-induced tumours in mice. The anti-tumour immunity of GSLs- or glycosphingosomes-loaded bone marrow-derived dendritic cells (BMDCs) was investigated in tumour-bearing mice. The Immunotherapeutic potential of co-administration of liposomal doxorubicin (Lip-Dox) and GSLs or glycosphingosomes was assessed by measuring cytokine levels and VEGF in the tumour tissues. Pretreatment with glycosphingosomes significantly delayed the frequency of tumour formation. Immunotherapy with glycosphingosomes-loaded BMDCs increased serum IFN-γ level and survival rate in mice. The effect of immunotherapy was dependent on effector functions of NK cells because the depletion of NK cells abolished the effects of immunotherapy. There was reduced tumour growth with low expression of VEGF in the group of mice treated with glycosphingosomes and Lip-Dox combination. Moreover, the splenocytes secreted higher levels of IFN-γ, IL-12 and lower TGF-β level. The results of this study indicate that glycosphingosomes can induce better antitumour immunity and may be considered a novel formulation in antitumour therapy.
Collapse
Affiliation(s)
- Masood A Khan
- a College of Applied Medical Sciences , Qassim University , Buraydah , Saudi Arabia
| | - Ahmed N Aljarbou
- b College of Pharmacy , Qassim University , Buraydah , Saudi Arabia
| | - Yousef H Aldebasi
- a College of Applied Medical Sciences , Qassim University , Buraydah , Saudi Arabia
| | | | - Arshad H Rahmani
- a College of Applied Medical Sciences , Qassim University , Buraydah , Saudi Arabia
| | - Hina Younus
- d Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , India
| | - Arif Khan
- a College of Applied Medical Sciences , Qassim University , Buraydah , Saudi Arabia
| |
Collapse
|
24
|
Ma J, Li Q, Yu Z, Cao Z, Liu S, Chen L, Li H, Gao S, Yan T, Wang Y, Liu Q. Immunotherapy Strategies Against Multiple Myeloma. Technol Cancer Res Treat 2017. [PMCID: PMC5762093 DOI: 10.1177/1533034617743155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Multiple myeloma is a monoclonal B-cell malignancy characterized by an accumulation of malignant plasma cells in the bone marrow, the presence of a monoclonal protein in the serum and/or urine, decreased normal immunoglobulin levels, and lytic bone disease. Patients with multiple myeloma benefit from combination therapy including novel therapeutic agents followed by autologous stem cell transplantation prolonged maintenance therapy. However, multiple myeloma remains incurable; most patients with multiple myeloma will eventually become resistant to chemotherapy, and progression or relapse of the disease is inevitable. Immunotherapy represents a novel therapeutic approach with few adverse effects and good targeting capability that might be a powerful pool to allow long-term control of minimal residual disease. This article reviews the literature evaluating 4 major immunotherapeutic approaches for multiple myeloma including cellular immunotherapy, humoral immunotherapy, radio immunotherapy, and immunomodulation.
Collapse
Affiliation(s)
- Jing Ma
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Qian Li
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People’s Republic of China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People’s Republic of China
| | - Zeng Cao
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Su Liu
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Lin Chen
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Han Li
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Shuang Gao
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Tinghui Yan
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Yafei Wang
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People’s Republic of China
| |
Collapse
|
25
|
A brief review of clinical trials involving manipulation of invariant NKT cells as a promising approach in future cancer therapies. Cent Eur J Immunol 2017; 42:181-195. [PMID: 28860937 PMCID: PMC5573892 DOI: 10.5114/ceji.2017.69361] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022] Open
Abstract
In the recent years researchers have put a lot of emphasis on the possible immunotherapeutic strategies able to target tumors. Many studies have proven that the key role in recognition and eradication of cancer cells, both for mice and humans, is being conducted by the invariant natural killer T-cells (NKT). This small subpopulation of lymphocytes can kill other cells, either directly or indirectly, through the natural killer cells’ (NK) activation. They can also swiftly release cytokines, causing the involvement of elements of the innate and acquired immune system. With the discovery of α-galactosylceramide (α-GalCer) – the first known agonist for iNKT cells – and its later subsequent analogs, it became possible to effectively stimulate iNKT cells, hence to keep control over the tumor progression. This article refers to the current knowledge concerning iNKT cells and the most important aspects of their antitumor activity. It also highlights the clinical trials that aim at increasing the amount of iNKT cells in general and in the microenvironment of the tumor. For sure, the iNKT-based immunotherapeutic approach holds a great potential and is highly probable to become a part of the cancer immunotherapy in the future.
Collapse
|
26
|
Osteopontin at the Crossroads of Inflammation and Tumor Progression. Mediators Inflamm 2017; 2017:4049098. [PMID: 28769537 PMCID: PMC5523273 DOI: 10.1155/2017/4049098] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/04/2017] [Indexed: 12/13/2022] Open
Abstract
Complex interactions between tumor and host cells regulate systemic tumor dissemination, a process that begins early at the primary tumor site and goes on until tumor cells detach themselves from the tumor mass and start migrating into the blood or lymphatic vessels. Metastatic cells colonize the target organs and are capable of surviving and growing at distant sites. In this context, osteopontin (OPN) appears to be a key determinant of the crosstalk between cancer cells and the host microenvironment, which in turn modulates immune evasion. OPN is overexpressed in several human carcinomas and has been implicated in inflammation, tumor progression, and metastasis. Thus, it represents one of the most attracting targets for cancer therapy. Within the tumor mass, OPN is secreted in various forms either by the tumor itself or by stroma cells, and it can exert either pro- or antitumorigenic effects according to the cell type and tumor microenvironment. Thus, targeting OPN for therapeutic purposes needs to take into account the heterogeneous functions of the multiple OPN forms with regard to cancer formation and progression. In this review, we will describe the role of systemic, tumor-derived, and stroma-derived OPN, highlighting its pivotal role at the crossroads of inflammation and tumor progression.
Collapse
|
27
|
Linedale R, Schmidt C, King BT, Ganko AG, Simpson F, Panizza BJ, Leggatt GR. Elevated frequencies of CD8 T cells expressing PD-1, CTLA-4 and Tim-3 within tumour from perineural squamous cell carcinoma patients. PLoS One 2017; 12:e0175755. [PMID: 28423034 PMCID: PMC5396892 DOI: 10.1371/journal.pone.0175755] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
Perineural spread of tumour cells along cranial nerves is a severe complication of primary cutaneous squamous cell carcinomas of the head and neck region. While surgical excision of the tumour is the treatment of choice, removal of all the tumour is often complicated by the neural location and recurrence is frequent. Non-invasive immune treatments such as checkpoint inhibitor blockade may be useful in this set of tumours although little is understood about the immune response to perineural spread of squamous cell carcinomas. Immunohistochemistry studies suggest that perineural tumour contains a lymphocyte infiltrate but it is difficult to quantitate the different proportions of immune cell subsets and expression of checkpoint molecules such as PD-1, Tim-3 and CTLA-4. Using flow cytometry of excised perineural tumour tissue, we show that a T cell infiltrate is prominent in addition to less frequent B cell, NK cell and NKT cell infiltrates. CD8 T cells are more frequent than other T cells in the tumour tissue. Amongst CD8 T cells, the frequency of Tim-3, CTLA-4 and PD-1 expressing cells was significantly greater in the tumour relative to the blood, a pattern that was repeated for Tim-3, CTLA-4 and PD-1 amongst non-CD8 T cells. Using immunohistochemistry, PD-1 and PD-L1-expression could be detected in close proximity amongst perineural tumour tissue. The data suggest that perineural SCC contains a mixture of immune cells with a predominant T cell infiltrate containing CD8 T cells. Elevated frequencies of tumour-associated Tim-3+, CTLA-4+ and PD-1+ CD8 T cells suggests that a subset of patients may benefit from local antibody blockade of these checkpoint inhibitors.
Collapse
Affiliation(s)
- Richard Linedale
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Campbell Schmidt
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia.,Department of Otolaryngology-Head and Neck Surgery, Princess Alexandra Hospital, Brisbane, Australia.,The University of Queensland Faculty of Medicine, Brisbane, Australia
| | - Brigid T King
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia.,The University of Queensland Faculty of Medicine, Brisbane, Australia
| | - Annabelle G Ganko
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia.,The University of Queensland Faculty of Medicine, Brisbane, Australia
| | - Fiona Simpson
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Benedict J Panizza
- Department of Otolaryngology-Head and Neck Surgery, Princess Alexandra Hospital, Brisbane, Australia.,The University of Queensland Faculty of Medicine, Brisbane, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
28
|
Basile D, Garattini SK, Bonotto M, Ongaro E, Casagrande M, Cattaneo M, Fanotto V, De Carlo E, Loupakis F, Urbano F, Negri FV, Pella N, Russano M, Brunetti O, Scartozzi M, Santini D, Silvestris N, Casadei Gardini A, Puzzoni M, Calvetti L, Cardarelli N, Aprile G. Immunotherapy for colorectal cancer: where are we heading? Expert Opin Biol Ther 2017; 17:709-721. [PMID: 28375039 DOI: 10.1080/14712598.2017.1315405] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In the last few years, significant advances in molecular biology have provided new therapeutic options for colorectal cancer (CRC). The development of new drugs that target the immune response to cancer cells seems very promising and has already been established for other tumor types. In particular, the use of immune checkpoint inhibitors seems to be an encouraging immunotherapeutic strategy. Areas covered: In this review, the authors provide an update of the current evidence related to this topic, though most immunotherapies are still in early-phase clinical trials for CRC. To understand the key role of immunotherapy in CRC, the authors discuss the delicate balance between immune-stimulating and immune-suppressive networks that occur in the tumor microenvironment. Expert opinion: Modulation of the immune system through checkpoint inhibition is an emerging approach in CRC therapy. Nevertheless, selection criteria that could enable the identification of patients who may benefit from these agents are necessary. Furthermore, potential prognostic and predictive immune biomarkers based on immune and molecular classifications have been proposed. As expected, additional studies are required to develop biomarkers, effective therapeutic strategies and novel combinations to overcome immune escape resistance and enhance effector response.
Collapse
Affiliation(s)
- Debora Basile
- a Department of Oncology , University and General Hospital , Udine , Italy
| | | | - Marta Bonotto
- a Department of Oncology , University and General Hospital , Udine , Italy
| | - Elena Ongaro
- a Department of Oncology , University and General Hospital , Udine , Italy
| | | | - Monica Cattaneo
- a Department of Oncology , University and General Hospital , Udine , Italy
| | - Valentina Fanotto
- a Department of Oncology , University and General Hospital , Udine , Italy
| | - Elisa De Carlo
- a Department of Oncology , University and General Hospital , Udine , Italy
| | - Fotios Loupakis
- c Medical Oncology 1, Department of Medical and Experimental Oncology , IOV - IRCCS , Padova , Italy
| | - Federica Urbano
- b Medical Oncology B, Department of Dermatological Sciences, Radiology and Pathology , La Sapienza University , Rome , Italy.,c Medical Oncology 1, Department of Medical and Experimental Oncology , IOV - IRCCS , Padova , Italy
| | | | - Nicoletta Pella
- a Department of Oncology , University and General Hospital , Udine , Italy
| | - Marco Russano
- e Medical Oncology , Campus Biomedico University , Roma , Italy
| | - Oronzo Brunetti
- f Medical Oncology Unit , National Cancer Institute IRCCS "Giovanni Paolo II" , Bari , Italy
| | - Mario Scartozzi
- g Medical Oncology , University Hospital and University of Cagliari , Cagliari , Italy
| | - Daniele Santini
- e Medical Oncology , Campus Biomedico University , Roma , Italy
| | - Nicola Silvestris
- f Medical Oncology Unit , National Cancer Institute IRCCS "Giovanni Paolo II" , Bari , Italy
| | | | - Marco Puzzoni
- g Medical Oncology , University Hospital and University of Cagliari , Cagliari , Italy
| | - Lorenzo Calvetti
- i Department of Oncology , San Bortolo General Hospital , Vicenza , Italy
| | - Nadia Cardarelli
- i Department of Oncology , San Bortolo General Hospital , Vicenza , Italy
| | - Giuseppe Aprile
- a Department of Oncology , University and General Hospital , Udine , Italy.,i Department of Oncology , San Bortolo General Hospital , Vicenza , Italy
| |
Collapse
|
29
|
de Vries NL, Swets M, Vahrmeijer AL, Hokland M, Kuppen PJK. The Immunogenicity of Colorectal Cancer in Relation to Tumor Development and Treatment. Int J Mol Sci 2016; 17:ijms17071030. [PMID: 27367680 PMCID: PMC4964406 DOI: 10.3390/ijms17071030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023] Open
Abstract
Although most cancer types have been viewed as immunologically silent until recently, it has become increasingly clear that the immune system plays key roles in the course of tumor development. Remarkable progress towards understanding cancer immunogenicity and tumor-immune system interactions has revealed important implications for the design of novel immune-based therapies. Natural immune responses, but also therapeutic interventions, can modulate the tumor phenotype due to selective outgrowth of resistant subtypes. This is the result of heterogeneity of tumors, with genetic instability as a driving force, and obviously changes the immunogenicity of tumors. In this review, we discuss the immunogenicity of colorectal cancer (CRC) in relation to tumor development and treatment. As most tumors, CRC activates the immune system in various ways, and is also capable of escaping recognition and elimination by the immune system. Tumor-immune system interactions underlie the balance between immune control and immune escape, and may differ in primary tumors, in the circulation, and in liver metastases of CRC. Since CRC immunogenicity varies between tumors and individuals, novel immune-based therapeutic strategies should not only anticipate the molecular profile, but also the immunological profile of a specific tumor.
Collapse
Affiliation(s)
- Natasja L de Vries
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, Build. 1242, DK-8000 Aarhus, Denmark.
| | - Marloes Swets
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Marianne Hokland
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, Build. 1242, DK-8000 Aarhus, Denmark.
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
30
|
Bandyopadhyay K, Marrero I, Kumar V. NKT cell subsets as key participants in liver physiology and pathology. Cell Mol Immunol 2016; 13:337-46. [PMID: 26972772 PMCID: PMC4856801 DOI: 10.1038/cmi.2015.115] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/19/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like lymphocytes that generally recognize lipid antigens and are enriched in microvascular compartments of the liver. NKT cells can be activated by self- or microbial-lipid antigens and by signaling through toll-like receptors. Following activation, NKT cells rapidly secrete pro-inflammatory or anti-inflammatory cytokines and chemokines, and thereby determine the milieu for subsequent immunity or tolerance. It is becoming clear that two different subsets of NKT cells-type I and type II-have different modes of antigen recognition and have opposing roles in inflammatory liver diseases. Here we focus mainly on the roles of both NKT cell subsets in the maintenance of immune tolerance and inflammatory diseases in liver. Furthermore, how the differential activation of type I and type II NKT cells influences other innate cells and adaptive immune cells to result in important consequences for tissue integrity is discussed. It is crucial that better reagents, including CD1d tetramers, be used in clinical studies to define the roles of NKT cells in liver diseases in patients.
Collapse
Affiliation(s)
- Keya Bandyopadhyay
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Idania Marrero
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Vipin Kumar
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
31
|
Therapy-induced microenvironmental changes in cancer. J Mol Med (Berl) 2016; 94:497-508. [DOI: 10.1007/s00109-016-1401-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023]
|
32
|
Zhang Y, Song N, Fu J, Liu Y, Zhan X, Peng S, Yang Z, Zhu X, Chen Y, Wang Z, Yu Y, Shi Q, Fu Y, Yuan K, Zhou N, Ichim TE, Min W. Synergic therapy of melanoma using GNRs-MUA-PEI/siIDO2-FA through targeted gene silencing and plasmonic photothermia. RSC Adv 2016. [DOI: 10.1039/c6ra13297a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
IDO2 siRNA synergizes GNR-mediated anti-melanoma photothermal therapy.
Collapse
|
33
|
Liu D, Staveley-O’Carroll KF, Li G. Immune-based Therapy Clinical Trials in Hepatocellular Carcinoma. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2015; 6:376. [PMID: 26877890 PMCID: PMC4750497 DOI: 10.4172/2155-9899.1000376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality and continues to increase. Current standard of care for patients with HCC only provides limited therapeutic benefit. Development of innovative strategies is urgently needed. Experience with immunotherapy in HCC is quite early, but rapidly rise in the recent 15 years. Multifaceted immune-based approaches have shown efficacy in achieving disease regression, representing the most promising new treatment approach. Here, we classify the ongoing or completed clinical trials in HCC in terms of the immune strategies to be used and assess their clinical outcomes. The generated information may be helpful in the design of future immune-based therapies for achieving ideal tumor control and maximizing anti-tumor immunity.
Collapse
Affiliation(s)
- Dai Liu
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Guangfu Li
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
34
|
Govindarajan S, Elewaut D, Drennan M. An Optimized Method for Isolating and Expanding Invariant Natural Killer T Cells from Mouse Spleen. J Vis Exp 2015:e53256. [PMID: 26555769 DOI: 10.3791/53256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ability to rapidly secrete cytokines upon stimulation is a functional characteristic of the invariant natural killer T (iNKT) cell lineage. iNKT cells are therefore characterized as an innate T cell population capable of activating and steering adaptive immune responses. The development of improved techniques for the culture and expansion of murine iNKT cells facilitates the study of iNKT cell biology in in vitro and in vivo model systems. Here we describe an optimized procedure for the isolation and expansion of murine splenic iNKT cells. Spleens from C57Bl/6 mice are removed, dissected and strained and the resulting cellular suspension is layered over density gradient media. Following centrifugation, splenic mononuclear cells (MNCs) are collected and CD5-positive (CD5(+)) lymphocytes are enriched for using magnetic beads. iNKT cells within the CD5(+) fraction are subsequently stained with αGalCer-loaded CD1d tetramer and purified by fluorescence activated cell sorting (FACS). FACS sorted iNKT cells are then initially cultured in vitro using a combination of recombinant murine cytokines and plate-bound T cell receptor (TCR) stimuli before being expanded in the presence of murine recombinant IL-7. Using this technique, approximately 10(8) iNKT cells can be generated within 18-20 days of culture, after which they can be used for functional assays in vitro, or for in vivo transfer experiments in mice.
Collapse
Affiliation(s)
- Srinath Govindarajan
- Department of Rheumatology, Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital; VIB Inflammation Research Center, Ghent University
| | - Dirk Elewaut
- Department of Rheumatology, Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital; VIB Inflammation Research Center, Ghent University
| | - Michael Drennan
- Department of Rheumatology, Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital; VIB Inflammation Research Center, Ghent University;
| |
Collapse
|
35
|
Marrero I, Ware R, Kumar V. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer. Front Immunol 2015; 6:316. [PMID: 26136748 PMCID: PMC4470258 DOI: 10.3389/fimmu.2015.00316] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022] Open
Abstract
Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. Though type II NKT cells are less frequent in mice and difficult to study, they are predominant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid sulfatide is the best characterized and has been shown to induce a dominant immune regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids have been identified suggesting both promiscuous and specific TCR recognition in microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed understanding of the biology and function of type II NKT cells as well as their interplay with type I NKT cells or other innate and adaptive T cells will have major implications for potential novel interventions in inflammatory and autoimmune diseases, microbial immunity, and cancer.
Collapse
Affiliation(s)
- Idania Marrero
- Laboratory of Immune Regulation, Department of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Randle Ware
- Laboratory of Immune Regulation, Department of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Vipin Kumar
- Laboratory of Immune Regulation, Department of Medicine, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
36
|
Maricic I, Girardi E, Zajonc DM, Kumar V. Recognition of lysophosphatidylcholine by type II NKT cells and protection from an inflammatory liver disease. THE JOURNAL OF IMMUNOLOGY 2014; 193:4580-9. [PMID: 25261475 DOI: 10.4049/jimmunol.1400699] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lipids presented by the MHC class I-like molecule, CD1d, are recognized by NK T (NKT) cells, which can be broadly categorized into two subsets. The well-characterized type I NKT cells express a semi-invariant TCR and can recognize both α- and β-linked glycolipids, whereas type II NKT cells are less well studied, express a relatively diverse TCR repertoire, and recognize β-linked lipids. Recent structural studies have shown a distinct mode of recognition of a self-glycolipid sulfatide bound to CD1d by a type II NKT TCR. To further characterize Ag recognition by these cells, we have used the structural data and screened other small molecules able to bind to CD1d and activate type II NKT cells. Using plate-bound CD1d and APC-based Ag presentation assay, we found that phospholipids such as lysophosphatidylcholine (LPC) can stimulate the sulfatide-reactive type II NKT hybridoma Hy19.3 in a CD1d-dependent manner. Using plasmon resonance studies, we found that this type II NKT TCR binds with CD1d-bound LPC with micromolar affinities similar to that for sulfatide. Furthermore, LPC-mediated activation of type II NKT cells leads to anergy induction in type I NKT cells and affords protection from Con A-induced hepatitis. These data indicate that, in addition to self-glycolipids, self-lysophospholipids are also recognized by type II NKT cells. Because lysophospholipids are involved during inflammation, our findings have implications for not only understanding activation of type II NKT cells in physiological settings, but also for the development of immune intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Igor Maricic
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| |
Collapse
|
37
|
Teo WY, Elghetany MT, Shen J, Man TK, Li X, Chintagumpala M, Su JMF, Dauser R, Whitehead W, Adesina AM, Lau CC. Therapeutic implications of CD1d expression and tumor-infiltrating macrophages in pediatric medulloblastomas. J Neurooncol 2014; 120:293-301. [PMID: 25115738 DOI: 10.1007/s11060-014-1572-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/27/2014] [Indexed: 11/26/2022]
Abstract
Immunobiology of medulloblastoma (MB), the most common malignant brain tumor in children, is poorly understood. Although tumor cells in some MBs were recently shown to express CD1d and be susceptible to Vα24-invariant natural killer T (NKT)-cell cytotoxicity, the clinical relevance of CD1d expression in MB patients remains unknown. We investigated the expression of CD1d in pediatric MBs and correlated with molecular and clinical characteristics. Specifically, we explored if NKT cell therapy can be targeted at a subset of pediatric MBs with poorer prognosis. Particularly, infantile MBs have a worse outcome because radiotherapy is delayed to avoid neurocognitive sequelae. Immunohistochemistry for CD1d was performed on a screening set of 38 primary pediatric MBs. Gene expression of the membrane form of M2 macrophage marker, CD163, was studied in an expanded cohort of 60 tumors. Outcome data was collected prospectively. Thirteen of 38 MBs (34.2 %) expressed CD1d on immunohistochemistry. CD1d was expressed mainly on MB tumor cells, and on some tumor-associated macrophages. Majority (18/22, 82 %) of non sonic-hedgehog/Wingless-activated MBs (group 3 and 4) were CD1d-negative (p = 0.05). A subset of infantile MBs (4/9, 44.4 %) expressed CD1d. Macrophages infiltrating MB expressed CD163 apart from CD1d. Molecular subtypes demonstrated statistical differences in CD163 expression, SHH-tumors were the most enriched (p = 0.006). Molecular and clinical subtypes of pediatric MB exhibit distinct differences in CD1d expression, which have important therapeutic implications. High CD1d expression in infantile MBs offers potential new immunotherapeutic treatment with NKT cell therapy in infants, where treatment is suboptimal due delayed radiotherapy.
Collapse
Affiliation(s)
- Wan-Yee Teo
- Department of Pediatrics, Division of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, 1102 Bates street, 1030.11, Feigin Center, Houston, TX, 77030, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Maricic I, Halder R, Bischof F, Kumar V. Dendritic cells and anergic type I NKT cells play a crucial role in sulfatide-mediated immune regulation in experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2014; 193:1035-46. [PMID: 24973441 DOI: 10.4049/jimmunol.1302898] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CD1d-restricted NKT cells can be divided into two groups: type I NKT cells use a semi-invariant TCR, whereas type II express a relatively diverse set of TCRs. A major subset of type II NKT cells recognizes myelin-derived sulfatides and is selectively enriched in the CNS tissue during experimental autoimmune encephalomyelitis (EAE). We have shown that activation of sulfatide-reactive type II NKT cells by sulfatide prevents induction of EAE. In this article, we have addressed the mechanism of regulation, as well as whether a single immunodominant form of synthetic sulfatide can treat ongoing chronic and relapsing EAE in SJL/J mice. We have shown that the activation of sulfatide-reactive type II NKT cells leads to a significant reduction in the frequency and effector function of myelin proteolipid proteins 139-151/I-A(s)-tetramer(+) cells in lymphoid and CNS tissues. In addition, type I NKT cells and dendritic cells (DCs) in the periphery, as well as CNS-resident microglia, are inactivated after sulfatide administration, and mice deficient in type I NKT cells are not protected from disease. Moreover, tolerized DCs from sulfatide-treated animals can adoptively transfer protection into naive mice. Treatment of SJL/J mice with a synthetic cis-tetracosenoyl sulfatide, but not α-galactosylceramide, reverses ongoing chronic and relapsing EAE. Our data highlight a novel immune-regulatory pathway involving NKT subset interactions leading to inactivation of type I NKT cells, DCs, and microglial cells in suppression of autoimmunity. Because CD1 molecules are nonpolymorphic, the sulfatide-mediated immune-regulatory pathway can be targeted for development of non-HLA-dependent therapeutic approaches to T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Igor Maricic
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Ramesh Halder
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Felix Bischof
- Department of Neurology, University of Tubingen, Tubingen D-72076, Germany
| | - Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| |
Collapse
|
39
|
Macho-Fernandez E, Cruz LJ, Ghinnagow R, Fontaine J, Bialecki E, Frisch B, Trottein F, Faveeuw C. Targeted delivery of α-galactosylceramide to CD8α+ dendritic cells optimizes type I NKT cell-based antitumor responses. THE JOURNAL OF IMMUNOLOGY 2014; 193:961-9. [PMID: 24913977 DOI: 10.4049/jimmunol.1303029] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunotherapy aiming at enhancing innate and acquired host immunity is a promising approach for cancer treatment. The invariant NKT (iNKT) cell ligand α-galactosylceramide (α-GalCer) holds great promise in cancer therapy, although several concerns limit its use in clinics, including the uncontrolled response it promotes when delivered in a nonvectorized form. Therefore, development of delivery systems to in vivo target immune cells might be a valuable option to optimize iNKT cell-based antitumor responses. Using dendritic cell (DC)-depleted mice, DC transfer experiments, and in vivo active cell targeting, we show that presentation of α-GalCer by DCs not only triggers optimal primary iNKT cell stimulation, but also maintains secondary iNKT cell activation after challenge. Furthermore, targeted delivery of α-GalCer to CD8α(+) DCs, by means of anti-DEC205 decorated nanoparticles, enhances iNKT cell-based transactivation of NK cells, DCs, and γδ T cells. We report that codelivery of α-GalCer and protein Ag to CD8α(+) DCs triggers optimal Ag-specific Ab and cytotoxic CD8(+) T cell responses. Finally, we show that targeting nanoparticles containing α-GalCer and Ag to CD8α(+) DCs promotes potent antitumor responses, both in prophylactic and in therapeutic settings. Our data may have important implications in tumor immunotherapy and vaccine development.
Collapse
Affiliation(s)
- Elodie Macho-Fernandez
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Luis Javier Cruz
- Department of Endocrinology, Leiden University Medical Center, 2333 Leiden, The Netherlands; and
| | - Reem Ghinnagow
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Josette Fontaine
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Emilie Bialecki
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Benoit Frisch
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Université de Strasbourg, F-67401 Illkirch Cedex, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France;
| | - Christelle Faveeuw
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France
| |
Collapse
|
40
|
Sui Y, Hogg A, Wang Y, Frey B, Yu H, Xia Z, Venzon D, McKinnon K, Smedley J, Gathuka M, Klinman D, Keele BF, Langermann S, Liu L, Franchini G, Berzofsky JA. Vaccine-induced myeloid cell population dampens protective immunity to SIV. J Clin Invest 2014; 124:2538-49. [PMID: 24837435 PMCID: PMC4038576 DOI: 10.1172/jci73518] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vaccines are largely evaluated for their ability to promote adaptive immunity, with little focus on the induction of negative immune regulators. Adjuvants facilitate and enhance vaccine-induced immune responses and have been explored for mediating protection against HIV. Using a regimen of peptide priming followed by a modified vaccinia Ankara (MVA) boost in a nonhuman primate model, we found that an SIV vaccine incorporating molecular adjuvants mediated partial protection against rectal SIVmac251 challenges. Animals treated with vaccine and multiple adjuvants exhibited a reduced viral load (VL) compared with those treated with vaccine only. Surprisingly, animals treated with adjuvant alone had reduced VLs that were comparable to or better than those of the vaccine-treated group. VL reduction was greatest in animals with the MHC class I allele Mamu-A*01 that were treated with adjuvant only and was largely dependent on CD8+ T cells. Early VLs correlated with Ki67+CCR5+CD4+ T cell frequency, while set-point VL was associated with expansion of a myeloid cell population that was phenotypically similar to myeloid-derived suppressor cells (MDSCs) and that suppressed T cell responses in vitro. MDSC expansion occurred in animals receiving vaccine and was not observed in the adjuvant-only group. Collectively, these results indicate that vaccine-induced MDSCs inhibit protective cellular immunity and suggest that preventing MDSC induction may be critical for effective AIDS vaccination.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Alison Hogg
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Yichuan Wang
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Blake Frey
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Huifeng Yu
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Zheng Xia
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - David Venzon
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Katherine McKinnon
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Jeremy Smedley
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Mercy Gathuka
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Dennis Klinman
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Brandon F. Keele
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Sol Langermann
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Linda Liu
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Genoveffa Franchini
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Biostatistics and Data Management Section, Laboratory Animal Sciences Program, and Laboratory of Experimental Immunology, National Cancer Institute, NIH, Bethesda, Maryland, USA. AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. Amplimmune Inc., Gaithersburg, Maryland, USA
| |
Collapse
|
41
|
McKee SJ, Mattarollo SR, Leggatt GR. Immunosuppressive roles of natural killer T (NKT) cells in the skin. J Leukoc Biol 2014; 96:49-54. [DOI: 10.1189/jlb.4ru0114-001r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
42
|
Chan AC, Neeson P, Leeansyah E, Tainton K, Quach H, Prince HM, Harrison SJ, Godfrey DI, Ritchie D, Berzins SP. Natural killer T cell defects in multiple myeloma and the impact of lenalidomide therapy. Clin Exp Immunol 2014; 175:49-58. [PMID: 24032527 DOI: 10.1111/cei.12196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2013] [Indexed: 12/29/2022] Open
Abstract
The causes of multiple myeloma (MM) remain obscure and there are few known risk factors; however, natural killer T (NKT) cell abnormalities have been reported in patients with MM, and therapeutic targeting of NKT cells is promoted as a potential treatment. We characterized NKT cell defects in treated and untreated patients with MM and determined the impact of lenalidomide therapy on the NKT cell pool. Lenalidomide is an immunomodulatory drug with co-stimulatory effects on NKT cells in vitro and is an approved treatment for MM, although its mode of action in that context is not well defined. We find that patients with relapsed/progressive MM had a marked deficiency in NKT cell numbers. In contrast, newly diagnosed patients had relatively normal NKT cell frequency and function prior to treatment, although a specific NKT cell deficiency emerged after high-dose melphalan and autologous stem cell transplantation (ASCT) regimen. This also impacted NK cells and conventional T cells, but the recovery of NKT cells was considerably delayed, resulting in a prolonged, treatment-induced NKT cell deficit. Longitudinal analysis of individual patients revealed that lenalidomide therapy had no in-vivo impact on NKT cell numbers or cytokine production, either as induction therapy, or as maintenance therapy following ASCT, indicating that its clinical benefits in this setting are independent of NKT cell modulation.
Collapse
Affiliation(s)
- A C Chan
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Niederkorn JY. Role of NKT cells in anterior chamber-associated immune deviation. Expert Rev Clin Immunol 2014; 5:137-144. [PMID: 20046994 DOI: 10.1586/1744666x.5.2.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cells in the eye have a limited capacity for regeneration and, as such, immune-mediated inflammation can lead to blindness. The eye is designed to quench immune-mediated inflammation - a condition known as immune privilege. An important component of immune privilege is the dynamic immunoregulatory process termed anterior chamber-associated immune deviation (ACAID), which is initiated when antigens enter the eye. ACAID suppresses the initiation of antigen-specific inflammation in the eye and the effector stages of immune reactions. Four organ systems are crucial for the induction of ACAID: the eye, thymus, spleen and sympathetic nervous system. Multiple cell populations contribute to ACAID, with natural killer T cells playing a crucial role in the thymic and splenic phases of ACAID. Interactions between natural killer T cells and multiple cell populations in the spleen culminate in the tight regulation of immune-mediated inflammation in the eye and the preservation of vision.
Collapse
Affiliation(s)
- Jerry Y Niederkorn
- Department of Ophthalmology, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA, Tel.: +1 214 648 3829, ,
| |
Collapse
|
44
|
Xuan C, Shamonki JM, Chung A, DiNome ML, Chung M, Sieling PA, Lee DJ. Microbial dysbiosis is associated with human breast cancer. PLoS One 2014; 9:e83744. [PMID: 24421902 PMCID: PMC3885448 DOI: 10.1371/journal.pone.0083744] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/06/2013] [Indexed: 02/07/2023] Open
Abstract
Breast cancer affects one in eight women in their lifetime. Though diet, age and genetic predisposition are established risk factors, the majority of breast cancers have unknown etiology. The human microbiota refers to the collection of microbes inhabiting the human body. Imbalance in microbial communities, or microbial dysbiosis, has been implicated in various human diseases including obesity, diabetes, and colon cancer. Therefore, we investigated the potential role of microbiota in breast cancer by next-generation sequencing using breast tumor tissue and paired normal adjacent tissue from the same patient. In a qualitative survey of the breast microbiota DNA, we found that the bacterium Methylobacterium radiotolerans is relatively enriched in tumor tissue, while the bacterium Sphingomonas yanoikuyae is relatively enriched in paired normal tissue. The relative abundances of these two bacterial species were inversely correlated in paired normal breast tissue but not in tumor tissue, indicating that dysbiosis is associated with breast cancer. Furthermore, the total bacterial DNA load was reduced in tumor versus paired normal and healthy breast tissue as determined by quantitative PCR. Interestingly, bacterial DNA load correlated inversely with advanced disease, a finding that could have broad implications in diagnosis and staging of breast cancer. Lastly, we observed lower basal levels of antibacterial response gene expression in tumor versus healthy breast tissue. Taken together, these data indicate that microbial DNA is present in the breast and that bacteria or their components may influence the local immune microenvironment. Our findings suggest a previously unrecognized link between dysbiosis and breast cancer which has potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Caiyun Xuan
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Santa Monica, California, United States of America
| | - Jaime M. Shamonki
- Pathology Department, Saint John’s Health Center, Santa Monica, California, United States of America
| | - Alice Chung
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Maggie L. DiNome
- Margie Petersen Breast Center, Saint John’s Health Center, Santa Monica, California, United States of America
| | - Maureen Chung
- Margie Petersen Breast Center, Saint John’s Health Center, Santa Monica, California, United States of America
| | - Peter A. Sieling
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Santa Monica, California, United States of America
| | - Delphine J. Lee
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Santa Monica, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Terabe M, Berzofsky JA. The immunoregulatory role of type I and type II NKT cells in cancer and other diseases. Cancer Immunol Immunother 2014; 63:199-213. [PMID: 24384834 DOI: 10.1007/s00262-013-1509-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/08/2013] [Indexed: 12/26/2022]
Abstract
NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here, we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4(+)CD25(+)Foxp3(+) regulatory T cells.
Collapse
Affiliation(s)
- Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 41-Room D702, 41 Medlars Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
46
|
Combination of intratumoral invariant natural killer T cells and interferon-gamma is associated with prognosis of hepatocellular carcinoma after curative resection. PLoS One 2013; 8:e70345. [PMID: 23940564 PMCID: PMC3734128 DOI: 10.1371/journal.pone.0070345] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/18/2013] [Indexed: 01/09/2023] Open
Abstract
Purpose To investigate the prognostic value of intratumoral invariant natural killer T (iNKT) cells and interferon-gamma (IFN-γ) in hepatocellular carcinoma (HCC) after curative resection. Experimental Design Expression of TRAV10, encoding the Vα24 domain of iNKT cells, and IFN-γ mRNA were assessed by quantitative real-time polymerase chain reaction in tumor from 224 HCC patients undergoing curative resection. The prognostic value of these two and other clinicopathologic factors was evaluated. Results Either intratumoral iNKT cells and IFN-γ alone or their combination was an independent prognostic factor for OS (P = 0.001) and RFS (P = 0.001) by multivariate Cox proportional hazards analysis. Patients with concurrent low levels of iNKT cells and IFN-γ had a hazard ratio (HR) of 2.784 for OS and 2.673 for RFS. The areas under the curve of iNKT cells, IFN-γand their combination were 0.618 vs 0.608 vs 0.654 for death and 0.591 vs 0.604 vs 0.633 for recurrence respectively by receiver operating characteristic curve analysis. The prognosis was the worst for HCC patients with concurrent low levels of iNKT cells and IFN-γ, which might be related with more advanced pTNM stage and more vascular invasion. Conclusions Combination of intratumoral iNKT cells and IFN-γ is a promising independent predictor for recurrence and survival in HCC, which has a better power to predict HCC patients’ outcome compared with intratumoral iNKT cells or IFN-γ alone.
Collapse
|
47
|
Ryser S, Schuppli M, Gauthier B, Hernandez DR, Roye O, Hohl D, German B, Holzwarth JA, Moodycliffe AM. UVB-induced skin inflammation and cutaneous tissue injury is dependent on the MHC class I-like protein, CD1d. J Invest Dermatol 2013; 134:192-202. [PMID: 23867896 PMCID: PMC3898102 DOI: 10.1038/jid.2013.300] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/13/2013] [Accepted: 05/28/2013] [Indexed: 02/07/2023]
Abstract
CD1d is a major histocompatibility complex class 1–like molecule that regulates the function and development of natural killer T (NKT) cells. Previously, we identified a critical role for the CD1d-NKT cell arm of innate immunity in promoting the development of UVB-induced p53 mutations, immune suppression, and skin tumors. Sunburn, an acute inflammatory response to UVB-induced cutaneous tissue injury, represents a clinical marker for non-melanoma skin cancer (NMSC) risk. However, the innate immune mechanisms controlling sunburn development are not considered relevant in NMSC etiology, and remain poorly investigated. Here we found that CD1d knockout (CD1d−/−) mice resist UVB-induced cutaneous tissue injury and inflammation compared with wild-type (WT) mice. This resistance was coupled with a faster epithelial tissue healing response. In contrast, the skins of UVB-irradiated invariant NKT cell-knockout (Jα18−/−) and NKT cell–deficient (TCRα−/−) mice, which express CD1d but are deficient in CD1d-dependent NKT cells, exhibited as much cutaneous tissue injury and inflammation as WT mice. In the absence of NKT cells, CD1d-deficient keratinocytes, dendritic cells, and macrophages exhibited diminished basal and stress-induced levels of pro-inflammatory mediators. Thus, our findings identify an essential role for CD1d in promoting UVB-induced cutaneous tissue injury and inflammation. They also suggest sunburn and NMSC etiologies are immunologically linked.
Collapse
Affiliation(s)
- Stephan Ryser
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | | | - Dianelys R Hernandez
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Olivier Roye
- Galderma Research and Development, Les Templiers, Biot, France
| | - Daniel Hohl
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Bruce German
- Department of Lipid Nutrition, University of California, Davis, Davis, California, USA
| | - James A Holzwarth
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Angus M Moodycliffe
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
48
|
Wei J, Xia S, Sun H, Zhang S, Wang J, Zhao H, Wu X, Chen X, Hao J, Zhou X, Zhu Z, Gao X, Gao JX, Wang P, Wu Z, Zhao L, Yin Z. Critical Role of Dendritic Cell–Derived IL-27 in Antitumor Immunity through Regulating the Recruitment and Activation of NK and NKT Cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:500-8. [DOI: 10.4049/jimmunol.1300328] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Jervis P, Polzella P, Wojno J, Jukes JP, Ghadbane H, Garcia
Diaz YR, Besra GS, Cerundolo V, Cox LR. Design, synthesis, and functional activity of labeled CD1d glycolipid agonists. Bioconjug Chem 2013; 24:586-94. [PMID: 23458425 PMCID: PMC3630740 DOI: 10.1021/bc300556e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/21/2013] [Indexed: 02/01/2023]
Abstract
Invariant natural killer T cells (iNKT cells) are restricted by CD1d molecules and activated upon CD1d-mediated presentation of glycolipids to T cell receptors (TCRs) located on the surface of the cell. Because the cytokine response profile is governed by the structure of the glycolipid, we sought a method for labeling various glycolipids to study their in vivo behavior. The prototypical CD1d agonist, α-galactosyl ceramide (α-GalCer) 1, instigates a powerful immune response and the generation of a wide range of cytokines when it is presented to iNKT cell TCRs by CD1d molecules. Analysis of crystal structures of the TCR-α-GalCer-CD1d ternary complex identified the α-methylene unit in the fatty acid side chain, and more specifically the pro-S hydrogen at this position, as a site for incorporating a label. We postulated that modifying the glycolipid in this way would exert a minimal impact on the TCR-glycolipid-CD1d ternary complex, allowing the labeled molecule to function as a good mimic for the CD1d agonist under investigation. To test this hypothesis, the synthesis of a biotinylated version of the CD1d agonist threitol ceramide (ThrCer) was targeted. Both diastereoisomers, epimeric at the label tethering site, were prepared, and functional experiments confirmed the importance of substituting the pro-S, and not the pro-R, hydrogen with the label for optimal activity. Significantly, functional experiments revealed that biotinylated ThrCer (S)-10 displayed behavior comparable to that of ThrCer 5 itself and also confirmed that the biotin residue is available for streptavidin and antibiotin antibody recognition. A second CD1d agonist, namely α-GalCer C20:2 4, was modified in a similar way, this time with a fluorescent label. The labeled α-GalCer C20:2 analogue (11) again displayed functional behavior comparable to that of its unlabeled substrate, supporting the notion that the α-methylene unit in the fatty acid amide chain should be a suitable site for attaching a label to a range of CD1d agonists. The flexibility of the synthetic strategy, and late-stage incorporation of the label, opens up the possibility of using this labeling approach to study the in vivo behavior of a wide range of CD1d agonists.
Collapse
MESH Headings
- Animals
- Antigens, CD1d/chemistry
- Antigens, CD1d/drug effects
- Antigens, CD1d/immunology
- Cells, Cultured
- Cytokines/analysis
- Cytokines/biosynthesis
- Cytokines/immunology
- Drug Design
- Galactosylceramides/chemistry
- Galactosylceramides/immunology
- Galactosylceramides/pharmacology
- Humans
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Molecular Conformation
- Natural Killer T-Cells/chemistry
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Peter
J. Jervis
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Paolo Polzella
- Medical Research
Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | - Justyna Wojno
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - John-Paul Jukes
- Medical Research
Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | - Hemza Ghadbane
- Medical Research
Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | - Yoel R. Garcia
Diaz
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Vincenzo Cerundolo
- Medical Research
Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | - Liam R. Cox
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| |
Collapse
|
50
|
Lack of PD-L1 expression by iNKT cells improves the course of influenza A infection. PLoS One 2013; 8:e59599. [PMID: 23555047 PMCID: PMC3598698 DOI: 10.1371/journal.pone.0059599] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 02/19/2013] [Indexed: 01/12/2023] Open
Abstract
There is evidence indicating that invariant Natural Killer T (iNKT) cells play an important role in defense against influenza A virus (IAV). However, the effect of inhibitory receptor, programmed death-1 (PD-1), and its ligands, programmed death ligand (PD-L) 1 and 2 on iNKT cells in protection against IAV remains to be elucidated. Here we investigated the effects of these co-stimulatory molecules on iNKT cells in the response to influenza. We discovered that compare to the wild type, PD-L1 deficient mice show reduced sensitivity to IAV infection as evident by reduced weight loss, decreased pulmonary inflammation and cellular infiltration. In contrast, PD-L2 deficient mice showed augmented weight loss, pulmonary inflammation and cellular infiltration compare to the wild type mice after influenza infection. Adoptive transfer of iNKT cells from wild type, PD-L1 or PD-L2 deficient mice into iNKT cell deficient mice recapitulated these findings. Interestingly, in our transfer system PD-L1−/−-derived iNKT cells produced high levels of interferon-gamma whereas PD-L2−/−-derived iNKT cells produced high amounts of interleukin-4 and 13 suggesting a role for these cytokines in sensitivity to influenza. We identified that PD-L1 negatively regulates the frequency of iNKT cell subsets in the lungs of IAV infected mice. Altogether, these results demonstrate that lack of PD-L1 expression by iNKT cells reduces the sensitivity to IAV and that the presence of PD-L2 is important for dampening the deleterious inflammatory responses after IAV infection. Our findings potentially have clinical implications for developing new therapies for influenza.
Collapse
|