1
|
Patel A, Kutuzov MA, Dustin ML, van der Merwe PA, Dushek O. Regulation of temporal cytokine production by co-stimulation receptors in TCR-T cells is lost in CAR-T cells. IMMUNOTHERAPY ADVANCES 2024; 4:ltae004. [PMID: 38978751 PMCID: PMC11228853 DOI: 10.1093/immadv/ltae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
CD8+ T cells contribute to immune responses by producing cytokines when their T-cell receptors (TCRs) recognise peptide antigens on major-histocompability-complex class I. However, excessive cytokine production can be harmful. For example, cytokine release syndrome is a common toxicity observed in treatments that activate T cells, including chimeric antigen receptor (CAR)-T-cell therapy. While the engagement of costimulatory receptors is well known to enhance cytokine production, we have limited knowledge of their ability to regulate the kinetics of cytokine production by CAR-T cells. Here we compare early (0-12 h) and late (12-20 h) production of IFN-gg, IL-2, and TNF-a production by T cells stimulated via TCR or CARs in the presence or absence ligands for CD2, LFA-1, CD28, CD27, and 4-1BB. For T cells expressing TCRs and 1st-generation CARs, activation by antigen alone was sufficient to stimulate early cytokine production, while co-stimulation by CD2 and 4-1BB was required to maintain late cytokine production. In contrast, T cells expressing 2nd-generation CARs, which have intrinsic costimulatory signalling motifs, produce high levels of cytokines in both early and late periods in the absence of costimulatory receptor ligands. Losing the requirement for costimulation for sustained cytokine production may contribute to the effectiveness and/or toxicity of 2nd-generation CAR-T-cell therapy.
Collapse
Affiliation(s)
- Ashna Patel
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Mikhail A Kutuzov
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Michael L Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | | | - Omer Dushek
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
2
|
Scotland BL, Cottingham AL, Lasola JJM, Hoag SW, Pearson RM. Development of protein-polymer conjugate nanoparticles for modulation of dendritic cell phenotype and antigen-specific CD4 T cell responses. ACS APPLIED POLYMER MATERIALS 2023; 5:8794-8807. [PMID: 38911349 PMCID: PMC11192461 DOI: 10.1021/acsapm.3c00548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Polymeric nanoparticles (NPs) comprised of poly(lactic-co-glycolic acid) (PLGA) have found success in modulating antigen (Ag)-specific T cell responses for the treatment multiple immunological diseases. Common methods by which Ags are associated with NPs are through encapsulation and surface conjugation; however, these methods suffer from several limitations, including uncontrolled Ag loading, burst release, and potential immune recognition. To overcome these limitations and study the relationship between NP design parameters and modulation of innate and Ag-specific adaptive immune cell responses, we developed ovalbumin (OVA) protein-PLGA bioconjugate NPs (acNP-OVA). OVA was first modified by conjugation with multiple PLGA polymers to synthesize OVA-PLGA conjugates, followed by precise combination with unmodified PLGA to form acNP-OVA with well-defined Ag loadings, reduced burst release, and reduced antibody recognition. Expression of MHC II, CD80, and CD86 on bone marrow-derived dendritic cells (BMDCs) increased as a function of acNP-OVA Ag loading. NanoString studies using BMDCs showed that PLGA NPs generally induced anti-inflammatory gene expression profiles independent of the Ag delivery method, where S100a9, Sell, and Ppbp were most significantly reduced. Co-culture studies using acNP-OVA-treated BMDCs and OT-II CD4+ T cells revealed that Ag-specific T cell activation, expansion, and differentiation were dependent on Ag loading and formulation parameters. CD25 expression was induced using acNP-OVA with the lowest Ag loading; however, the induction of robust CD4+ T cell proliferative and cytokine responses required acNP-OVA formulations with higher Ag loading, which was supported using a regulatory T cell (Treg) induction assay. The distinct differences in Ag loading required to achieve various T cell responses supported the concept of an Ag loading threshold for Ag-specific immunotherapy. We anticipate this work will help guide NP designs and aid in the future development of NP-based immunotherapies for Ag-specific immunomodulation.
Collapse
Affiliation(s)
- Brianna L. Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | - Andrea L. Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | - Jackline Joy M. Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Stephen W. Hoag
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | - Ryan M. Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Malcolm J, Nyirenda MH, Brown JL, Adrados-Planell A, Campbell L, Butcher JP, Glass DG, Piela K, Goodyear CS, Wright AJ, McInnes IB, Millington OR, Culshaw S. C-terminal citrullinated peptide alters antigen-specific APC:T cell interactions leading to breach of immune tolerance. J Autoimmun 2023; 135:102994. [PMID: 36706535 DOI: 10.1016/j.jaut.2023.102994] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/03/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
In rheumatoid arthritis, the emergence of anti-citrullinated autoimmunity is associated with HLA-antigen-T cell receptor complexes. The precise mechanisms underpinning this breach of tolerance are not well understood. Porphyromonas gingivalis expresses an enzyme capable of non-endogenous C-terminal citrullination with potential to generate citrullinated autoantigens. Here we document how C-terminal citrullination of ovalbumin peptide323-339 alters the interaction between antigen-presenting cells and OTII T cells to induce functional changes in responding T cells. These data reveal that C-terminal citrullination is sufficient to breach T cell peripheral tolerance in vivo and reveal the potential of C-terminal citrullination to lower the threshold for T cell activation. Finally, we demonstrate a role for the IL-2/STAT5/CD25 signalling axis in breach of tolerance. Together, our data identify a tractable mechanism and targetable pathways underpinning breach of tolerance in rheumatoid arthritis and provide new conceptual insight into the origins of anti-citrullinated autoimmunity.
Collapse
Affiliation(s)
- J Malcolm
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - M H Nyirenda
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Research Into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle and Oxford, UK
| | - J L Brown
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - A Adrados-Planell
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Genomics and Health, FISABIO Foundation, Avda Cataluña 21, 46020, Valencia, Spain
| | - L Campbell
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - J P Butcher
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - D G Glass
- Centre for Biophotonics, Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - K Piela
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - C S Goodyear
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Research Into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle and Oxford, UK
| | - A J Wright
- Centre for Biophotonics, Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom; Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - I B McInnes
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - O R Millington
- Centre for Biophotonics, Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - S Culshaw
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
4
|
Arranz-Nicolás J, Martin-Salgado M, Rodríguez-Rodríguez C, Liébana R, Moreno-Ortiz MC, Leitner J, Steinberger P, Ávila-Flores A, Merida I. Diacylglycerol kinase ζ limits IL-2-dependent control of PD-1 expression in tumor-infiltrating T lymphocytes. J Immunother Cancer 2021; 8:jitc-2020-001521. [PMID: 33246984 PMCID: PMC7703416 DOI: 10.1136/jitc-2020-001521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background The inhibitory functions triggered by the programmed cell death-1 (PD-1) receptor following binding to its ligand (PD-L1) protect healthy organs from cytotoxic T cells, and neutralize antitumor T cell attack. Antibody-based therapies to block PD-1/PD-L1 interaction have yielded notable results, but most patients eventually develop resistance. This failure is attributed to CD8+ T cells achieving hyporesponsive states from which recovery is hardly feasible. Dysfunctional T cell phenotypes are favored by a sustained imbalance in the diacylglycerol (DAG)- and Ca2+-regulated transcriptional programs. In mice, DAG kinase ζ (DGKζ) facilitates DAG consumption, limiting T cell activation and cytotoxic T cell responses. DGKζ deficiency facilitates tumor rejection in mice without apparent adverse autoimmune effects. Despite its therapeutic potential, little is known about DGKζ function in human T cells, and no known inhibitors target this isoform. Methods We used a human triple parameter reporter cell line to examine the consequences of DGKζ depletion on the transcriptional restriction imposed by PD-1 ligation. We studied the effect of DGKζ deficiency on PD-1 expression dynamics, as well as the impact of DGKζ absence on the in vivo growth of MC38 adenocarcinoma cells. Results We demonstrate that DGKζ depletion enhances DAG-regulated transcriptional programs, promoting interleukin-2 production and partially counteracting PD-1 inhibitory functions. DGKζ loss results in limited PD-1 expression and enhanced expansion of cytotoxic CD8+ T cell populations. This is observed even in immunosuppressive milieus, and correlates with the reduced ability of MC38 adenocarcinoma cells to form tumors in DGKζ-deficient mice. Conclusions Our results, which define a role for DGKζ in the control of PD-1 expression, confirm DGKζ potential as a therapeutic target as well as a biomarker of CD8+ T cell dysfunctional states.
Collapse
Affiliation(s)
| | | | | | - Rosa Liébana
- Immunology and Oncology, Centro Nacional de Biotecnologia, Madrid, Spain
| | | | - Judith Leitner
- Institute of Immunology. Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Wien, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology. Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Wien, Vienna, Austria
| | | | - Isabel Merida
- Immunology and Oncology, Centro Nacional de Biotecnologia, Madrid, Spain
| |
Collapse
|
5
|
Liu Y, Liu G, Wang J, Zheng ZY, Jia L, Rui W, Huang D, Zhou ZX, Zhou L, Wu X, Lin S, Zhao X, Lin X. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Sci Transl Med 2021; 13:13/586/eabb5191. [PMID: 33762437 DOI: 10.1126/scitranslmed.abb5191] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/03/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapies have demonstrated high response rate and durable disease control for the treatment of B cell malignancies. However, in the case of solid tumors, CAR-T cells have shown limited efficacy, which is partially attributed to intrinsic defects in CAR signaling. Here, we construct a double-chain chimeric receptor, termed as synthetic T cell receptor (TCR) and antigen receptor (STAR), which incorporates antigen-recognition domain of antibody and constant regions of TCR that engage endogenous CD3 signaling machinery. Under antigen-free conditions, STAR does not trigger tonic signaling, which has been reported to cause exhaustion of traditional CAR-T cells. Upon antigen stimulation, STAR mediates strong and sensitive TCR-like signaling, and STAR-T cells exhibit less susceptibility to dysfunction and better proliferation than traditional 28zCAR-T cells. In addition, STAR-T cells show higher antigen sensitivity than CAR-T cells, which holds potential to reduce the risk of antigen loss-induced tumor relapse in clinical use. In multiple solid tumor models, STAR-T cells prominently outperformed BBzCAR-T cells and generated better or equipotent antitumor effects to 28zCAR-T cells without causing notable toxicity. With these favorable features endowed by native TCR-like signaling, STAR-T cells may provide clinical benefit in treating refractory solid tumors.
Collapse
Affiliation(s)
- Yue Liu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Guangna Liu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiasheng Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Zhe-Yu Zheng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lemei Jia
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wei Rui
- China Immunotech (Beijing) Biotechnology Co., Ltd, Beijing 102206, China
| | - Daosheng Huang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhi-Xiao Zhou
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Liqun Zhou
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xin Wu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xueqiang Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Xin Lin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
6
|
Abu-Shah E, Trendel N, Kruger P, Nguyen J, Pettmann J, Kutuzov M, Dushek O. Human CD8 + T Cells Exhibit a Shared Antigen Threshold for Different Effector Responses. THE JOURNAL OF IMMUNOLOGY 2020; 205:1503-1512. [PMID: 32817332 PMCID: PMC7477745 DOI: 10.4049/jimmunol.2000525] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
CD8+ T cells produce TNF-α, IL-2, and IFN-γ with similar Ag thresholds. Costimulation decreases Ag thresholds similarly for different cytokines. A common rate-limiting switch downstream of the TCR can explain these findings.
T cells recognizing cognate pMHC Ags become activated to elicit a myriad of cellular responses, such as target cell killing and the secretion of different cytokines, that collectively contribute to adaptive immunity. These effector responses have been hypothesized to exhibit different Ag dose and affinity thresholds, suggesting that pathogen-specific information may be encoded within the nature of the Ag. In this study, using systematic experiments in a reductionist system, in which primary human CD8+ T cell blasts are stimulated by recombinant peptides presented on MHC Ag alone, we show that different inflammatory cytokines have comparable Ag dose thresholds across a 25,000-fold variation in affinity. Although costimulation by CD28, CD2, and CD27 increased cytokine production in this system, the Ag threshold remained comparable across different cytokines. When using primary human memory CD8+ T cells responding to autologous APCs, equivalent thresholds were also observed for different cytokines and killing. These findings imply a simple phenotypic model of TCR signaling in which multiple T cell responses share a common rate-limiting threshold and a conceptually simple model of CD8+ T cell Ag recognition, in which Ag dose and affinity do not provide any additional response-specific information.
Collapse
Affiliation(s)
- Enas Abu-Shah
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and.,Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Nicola Trendel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Philipp Kruger
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - John Nguyen
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Johannes Pettmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Mikhail Kutuzov
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| |
Collapse
|
7
|
Bhattacharyya ND, Feng CG. Regulation of T Helper Cell Fate by TCR Signal Strength. Front Immunol 2020; 11:624. [PMID: 32508803 PMCID: PMC7248325 DOI: 10.3389/fimmu.2020.00624] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
T cells are critical in orchestrating protective immune responses to cancer and an array of pathogens. The interaction between a peptide MHC (pMHC) complex on antigen presenting cells (APCs) and T cell receptors (TCRs) on T cells initiates T cell activation, division, and clonal expansion in secondary lymphoid organs. T cells must also integrate multiple T cell-intrinsic and extrinsic signals to acquire the effector functions essential for the defense against invading microbes. In the case of T helper cell differentiation, while innate cytokines have been demonstrated to shape effector CD4+ T lymphocyte function, the contribution of TCR signaling strength to T helper cell differentiation is less understood. In this review, we summarize the signaling cascades regulated by the strength of TCR stimulation. Various mechanisms in which TCR signal strength controls T helper cell expansion and differentiation are also discussed.
Collapse
Affiliation(s)
- Nayan D Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Uhl LFK, Gérard A. Modes of Communication between T Cells and Relevance for Immune Responses. Int J Mol Sci 2020; 21:E2674. [PMID: 32290500 PMCID: PMC7215318 DOI: 10.3390/ijms21082674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022] Open
Abstract
T cells are essential mediators of the adaptive immune system, which constantly patrol the body in search for invading pathogens. During an infection, T cells that recognise the pathogen are recruited, expand and differentiate into subtypes tailored to the infection. In addition, they differentiate into subsets required for short and long-term control of the pathogen, i.e., effector or memory. T cells have a remarkable degree of plasticity and heterogeneity in their response, however, their overall response to a given infection is consistent and robust. Much research has focused on how individual T cells are activated and programmed. However, in order to achieve a critical level of population-wide reproducibility and robustness, neighbouring cells and surrounding tissues have to provide or amplify relevant signals to tune the overall response accordingly. The characteristics of the immune response-stochastic on the individual cell level, robust on the global level-necessitate coordinated responses on a system-wide level, which facilitates the control of pathogens, while maintaining self-tolerance. This global coordination can only be achieved by constant cellular communication between responding cells, and faults in this intercellular crosstalk can potentially lead to immunopathology or autoimmunity. In this review, we will discuss how T cells mount a global, collective response, by describing the modes of T cell-T cell (T-T) communication they use and highlighting their physiological relevance in programming and controlling the T cell response.
Collapse
Affiliation(s)
| | - Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
9
|
Stein JV, Ruef N. Regulation of global CD8 + T-cell positioning by the actomyosin cytoskeleton. Immunol Rev 2020; 289:232-249. [PMID: 30977193 DOI: 10.1111/imr.12759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
CD8+ T cells have evolved as one of the most motile mammalian cell types, designed to continuously scan peptide-major histocompatibility complexes class I on the surfaces of other cells. Chemoattractants and adhesion molecules direct CD8+ T-cell homing to and migration within secondary lymphoid organs, where these cells colocalize with antigen-presenting dendritic cells in confined tissue volumes. CD8+ T-cell activation induces a switch to infiltration of non-lymphoid tissue (NLT), which differ in their topology and biophysical properties from lymphoid tissue. Here, we provide a short overview on regulation of organism-wide trafficking patterns during naive T-cell recirculation and their switch to non-lymphoid tissue homing during activation. The migratory lifestyle of CD8+ T cells is regulated by their actomyosin cytoskeleton, which translates chemical signals from surface receptors into mechanical work. We explore how properties of the actomyosin cytoskeleton and its regulators affect CD8+ T cell function in lymphoid and non-lymphoid tissue, combining recent findings in the field of cell migration and actin network regulation with tissue anatomy. Finally, we hypothesize that under certain conditions, intrinsic regulation of actomyosin dynamics may render NLT CD8+ T-cell populations less dependent on input from extrinsic signals during tissue scanning.
Collapse
Affiliation(s)
- Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Nora Ruef
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
10
|
Gallagher MP, Conley JM, Berg LJ. Peptide Antigen Concentration Modulates Digital NFAT1 Activation in Primary Mouse Naive CD8 + T Cells as Measured by Flow Cytometry of Isolated Cell Nuclei. Immunohorizons 2018; 2:208-215. [PMID: 30221251 PMCID: PMC6135534 DOI: 10.4049/immunohorizons.1800032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Circulating naive T cells exist in a quiescent state. After TCR contact with the cognate peptide presented by APCs in secondary lymphoid structures, T cells undergo a period of rapid transcriptional changes that set the stage for fate-determining effector or memory programming. We describe a novel method to analyze TCR signaling pathway activation in nuclei isolated from primary mouse naive T cells after stimulation with natural peptide Ags. We prelabeled cells with cell tracking dye to easily distinguish CD8+ T cell nuclei from APC nuclei by conventional flow cytometry. Using this approach, we observed clear digital activation of NFAT1 transcription factor in OT-I T cells stimulated with OVA peptide presented by bulk splenocytes. OVA concentration had discrete control over the fraction of the cells that translocated NFAT1, indicating that a distinct threshold amount of TCR signaling is required to switch on NFAT1 in naive T cells. This behavior was cell contact dependent and qualitatively more exact than the NFAT1 response in ionomycin-stimulated naive T cells. These data contribute to our understanding of the digital behavior of TCR signaling components documented in other studies and indicate how T cells might discriminate log-fold changes in Ag availability during an actual infection. Overall, these results highlight the potential of this coculture nuclei isolation protocol to address stimulation-dependent translocation of proteins in primary lymphocytes.
Collapse
Affiliation(s)
- Michael P Gallagher
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - James M Conley
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
11
|
Richard AC, Lun ATL, Lau WWY, Göttgens B, Marioni JC, Griffiths GM. T cell cytolytic capacity is independent of initial stimulation strength. Nat Immunol 2018; 19:849-858. [PMID: 30013148 PMCID: PMC6300116 DOI: 10.1038/s41590-018-0160-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/31/2018] [Indexed: 01/15/2023]
Abstract
How cells respond to myriad stimuli with finite signaling machinery is central to immunology. In naive T cells, the inherent effect of ligand strength on activation pathways and endpoints has remained controversial, confounded by environmental fluctuations and intercellular variability within populations. Here we studied how ligand potency affected the activation of CD8+ T cells in vitro, through the use of genome-wide RNA, multi-dimensional protein and functional measurements in single cells. Our data revealed that strong ligands drove more efficient and uniform activation than did weak ligands, but all activated cells were fully cytolytic. Notably, activation followed the same transcriptional pathways regardless of ligand potency. Thus, stimulation strength did not intrinsically dictate the T cell-activation route or phenotype; instead, it controlled how rapidly and simultaneously the cells initiated activation, allowing limited machinery to elicit wide-ranging responses.
Collapse
Affiliation(s)
- Arianne C Richard
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Aaron T L Lun
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Winnie W Y Lau
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Department of Haematology, Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Department of Haematology, Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Kopan C, Tucker T, Alexander M, Mohammadi MR, Pone EJ, Lakey JRT. Approaches in Immunotherapy, Regenerative Medicine, and Bioengineering for Type 1 Diabetes. Front Immunol 2018; 9:1354. [PMID: 29963051 PMCID: PMC6011033 DOI: 10.3389/fimmu.2018.01354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances on using immune and stem cells as two-pronged approaches for type 1 diabetes mellitus (T1DM) treatment show promise for advancement into clinical practice. As T1DM is thought to arise from autoimmune attack destroying pancreatic β-cells, increasing treatments that use biologics and cells to manipulate the immune system are achieving better results in pre-clinical and clinical studies. Increasingly, focus has shifted from small molecule drugs that suppress the immune system nonspecifically to more complex biologics that show enhanced efficacy due to their selectivity for specific types of immune cells. Approaches that seek to inhibit only autoreactive effector T cells or enhance the suppressive regulatory T cell subset are showing remarkable promise. These modern immune interventions are also enabling the transplantation of pancreatic islets or β-like cells derived from stem cells. While complete immune tolerance and body acceptance of grafted islets and cells is still challenging, bioengineering approaches that shield the implanted cells are also advancing. Integrating immunotherapy, stem cell-mediated β-cell or islet production and bioengineering to interface with the patient is expected to lead to a durable cure or pave the way for a clinical solution for T1DM.
Collapse
Affiliation(s)
- Christopher Kopan
- Department of Surgery, University of California Irvine, Irvine, CA, United States
| | - Tori Tucker
- Department of Cell and Molecular Biosciences, University of California Irvine, Irvine, CA, United States
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA, United States
| | - M. Rezaa Mohammadi
- Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, CA, United States
| | - Egest J. Pone
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, United States
| | - Jonathan Robert Todd Lakey
- Department of Surgery, University of California Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
13
|
|
14
|
Bohineust A, Garcia Z, Beuneu H, Lemaître F, Bousso P. Termination of T cell priming relies on a phase of unresponsiveness promoting disengagement from APCs and T cell division. J Exp Med 2018; 215:1481-1492. [PMID: 29588347 PMCID: PMC5940264 DOI: 10.1084/jem.20171708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/31/2018] [Accepted: 03/07/2018] [Indexed: 01/28/2023] Open
Abstract
Bohineust et al. establish that recently activated T cells exhibit a phase of unresponsiveness associated with a defect in calcium entry. This stage was essential to terminate priming, distracting T cells from APCs, and favoring their clonal expansion. T cells are primed in secondary lymphoid organs by establishing stable interactions with antigen-presenting cells (APCs). However, the cellular mechanisms underlying the termination of T cell priming and the initiation of clonal expansion remain largely unknown. Using intravital imaging, we observed that T cells typically divide without being associated to APCs. Supporting these findings, we demonstrate that recently activated T cells have an intrinsic defect in establishing stable contacts with APCs, a feature that was reflected by a blunted capacity to stop upon T cell receptor (TCR) engagement. T cell unresponsiveness was caused, in part, by a general block in extracellular calcium entry. Forcing TCR signals in activated T cells antagonized cell division, suggesting that T cell hyporesponsiveness acts as a safeguard mechanism against signals detrimental to mitosis. We propose that transient unresponsiveness represents an essential phase of T cell priming that promotes T cell disengagement from APCs and favors effective clonal expansion.
Collapse
Affiliation(s)
- Armelle Bohineust
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Medicale, U1223, Paris, France
| | - Zacarias Garcia
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Medicale, U1223, Paris, France
| | - Hélène Beuneu
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Medicale, U1223, Paris, France
| | - Fabrice Lemaître
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Medicale, U1223, Paris, France
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, Paris, France .,Institut National de la Santé et de la Recherche Medicale, U1223, Paris, France
| |
Collapse
|
15
|
Arbulo-Echevarria MM, Narbona-Sánchez I, Fernandez-Ponce CM, Vico-Barranco I, Rueda-Ygueravide MD, Dustin ML, Miazek A, Duran-Ruiz MC, García-Cózar F, Aguado E. A Stretch of Negatively Charged Amino Acids of Linker for Activation of T-Cell Adaptor Has a Dual Role in T-Cell Antigen Receptor Intracellular Signaling. Front Immunol 2018; 9:115. [PMID: 29456532 PMCID: PMC5801411 DOI: 10.3389/fimmu.2018.00115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
The adaptor protein linker for activation of T cells (LAT) has an essential role transducing activatory intracellular signals coming from the TCR/CD3 complex. Previous reports have shown that upon T-cell activation, LAT interacts with the tyrosine kinase Lck, leading to the inhibition of its kinase activity. LAT-Lck interaction seemed to depend on a stretch of negatively charged amino acids in LAT. Here, we have substituted this segment of LAT between amino acids 113 and 126 with a non-charged segment and expressed the mutant LAT (LAT-NIL) in J.CaM2 cells in order to analyze TCR signaling. Substitution of this segment in LAT prevented the activation-induced interaction with Lck. Moreover, cells expressing this mutant form of LAT showed a statistically significant increase of proximal intracellular signals such as phosphorylation of LAT in tyrosine residues 171 and 191, and also enhanced ZAP70 phosphorylation approaching borderline statistical significance (p = 0.051). Nevertheless, downstream signals such as Ca2+ influx or MAPK pathways were partially inhibited. Overall, our data reveal that LAT-Lck interaction constitutes a key element regulating proximal intracellular signals coming from the TCR/CD3 complex.
Collapse
Affiliation(s)
- Mikel M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Isaac Narbona-Sánchez
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Cecilia M Fernandez-Ponce
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Inmaculada Vico-Barranco
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | | | - Michael L Dustin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, The University of Oxford, Headington, United Kingdom
| | - Arkadiusz Miazek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Mª Carmen Duran-Ruiz
- Department of Biomedicine, Biotechnology and Public Health (Biochemistry), University of Cádiz, Cádiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Francisco García-Cózar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| |
Collapse
|
16
|
Álvarez-Salamero C, Castillo-González R, Navarro MN. Lighting Up T Lymphocyte Signaling with Quantitative Phosphoproteomics. Front Immunol 2017; 8:938. [PMID: 28848546 PMCID: PMC5552657 DOI: 10.3389/fimmu.2017.00938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation is the most abundant post-translational modification, regulating several aspects of protein and cell function. Quantitative phosphoproteomics approaches have expanded the scope of phosphorylation analysis enabling the quantification of changes in thousands of phosphorylation sites simultaneously in two or more conditions. These approaches offer a global view of the impact of cellular perturbations such as extracellular stimuli or gene ablation in intracellular signaling networks. Such great potential also brings on a new challenge: to identify, among the thousands of phosphorylations found in global phosphoproteomics studies, the small subset of site-specific phosphorylations expected to be functionally relevant. This review focus on updating and integrating findings on T lymphocyte signaling generated using global phosphoproteomics approaches, drawing attention on the biological relevance of the obtained data.
Collapse
Affiliation(s)
- Candelas Álvarez-Salamero
- Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | | | - María N Navarro
- Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
17
|
Martínez O, Bravo Cruz A, Santos S, Ramírez M, Miranda E, Shisler J, Otero M. Vaccination with a codon-optimized A27L-containing plasmid decreases virus replication and dissemination after vaccinia virus challenge. Vaccine 2017. [PMID: 28629922 DOI: 10.1016/j.vaccine.2017.05.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Smallpox is a disease caused by Variola virus (VARV). Although eradicated by WHO in 1980, the threat of using VARV on a bioterror attack has increased. The current smallpox vaccine ACAM2000, which consists of live vaccinia virus (VACV), causes complications in individuals with a compromised immune system or with previously reported skin diseases. Thus, a safer and efficacious vaccine needs to be developed. Previously, we reported that our virus-free DNA vaccine formulation, a pVAX1 plasmid encoding codon-optimized VACV A27L gene (pA27LOPT) with and without Imiquimod adjuvant, stimulates A27L-specific production of IFN-γ and increases humoral immunity 7days post-vaccination. Here, we investigated the immune response of our novel vaccine by measuring the frequency of splenocytes producing IFN-γ by ELISPOT, the TH1 and TH2 cytokine profiles, and humoral immune responses two weeks post-vaccination, when animals were challenged with VACV. In all assays, the A27-based DNA vaccine conferred protective immune responses. Specifically, two weeks after vaccination, mice were challenged intranasally with vaccinia virus, and viral titers in mouse lungs and ovaries were significantly lower in groups immunized with pA27LOPT and pA27LOPT+Imiquimod. These results demonstrate that our vaccine formulation decreases viral replication and dissemination in a virus-free DNA vaccine platform, and provides an alternative towards a safer an efficacious vaccine.
Collapse
Affiliation(s)
- Osmarie Martínez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, School of Medicine, San Juan, PR 00936, United States
| | - Ariana Bravo Cruz
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - Saritza Santos
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, School of Medicine, San Juan, PR 00936, United States
| | - Maite Ramírez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, School of Medicine, San Juan, PR 00936, United States
| | - Eric Miranda
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, School of Medicine, San Juan, PR 00936, United States
| | - Joanna Shisler
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - Miguel Otero
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, School of Medicine, San Juan, PR 00936, United States.
| |
Collapse
|
18
|
|
19
|
Iwata A, Durai V, Tussiwand R, Briseño CG, Wu X, Grajales-Reyes GE, Egawa T, Murphy TL, Murphy KM. Quality of TCR signaling determined by differential affinities of enhancers for the composite BATF-IRF4 transcription factor complex. Nat Immunol 2017; 18:563-572. [PMID: 28346410 PMCID: PMC5401770 DOI: 10.1038/ni.3714] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022]
Abstract
Variable strengths of T cell receptor (TCR) signaling can produce divergent outcomes, but the mechanism remains obscure. The abundance of the transcription factor IRF4 increases with TCR signal strength, but how this would induce distinct types of responses is unclear. We compared TH2 gene expression with BATF/IRF4 enhancer occupancy at varying strengths of TCR stimulation. BATF/IRF4-dependent genes clustered into distinct TCR-sensitivities. Enhancers exhibited a spectrum of occupancy by BATF/IRF4 ternary complex that correlated with TCR-sensitivity of gene expression. DNA sequences immediately flanking the previously defined AICE motif controlled the affinity for BATF/IRF4 for direct binding to DNA. ChIP-exo analysis allowed identification of a novel high-affinity AICE2 motif at a human SNP of CTLA4 associated with resistance to autoimmunity. Thus, the affinity of different enhancers for the BATF-IRF4 complex may underlie divergent signaling outcomes in response to various strengths of TCR signaling.
Collapse
Affiliation(s)
- Arifumi Iwata
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Vivek Durai
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Roxane Tussiwand
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Xiaodi Wu
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Gary E Grajales-Reyes
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA.,Howard Hughes Medical Institute, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Erez A, Altan-Bonnet G. Lymphocytic division clocked up by Myc. Immunol Cell Biol 2016; 95:119-120. [PMID: 27995905 DOI: 10.1038/icb.2016.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amir Erez
- National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
21
|
Abstract
Emergent responses of the immune system result from the integration of molecular and cellular networks over time and across multiple organs. High-content and high-throughput analysis technologies, concomitantly with data-driven and mechanistic modeling, hold promise for the systematic interrogation of these complex pathways. However, connecting genetic variation and molecular mechanisms to individual phenotypes and health outcomes has proven elusive. Gaps remain in data, and disagreements persist about the value of mechanistic modeling for immunology. Here, we present the perspectives that emerged from the National Institute of Allergy and Infectious Disease (NIAID) workshop 'Complex Systems Science, Modeling and Immunity' and subsequent discussions regarding the potential synergy of high-throughput data acquisition, data-driven modeling, and mechanistic modeling to define new mechanisms of immunological disease and to accelerate the translation of these insights into therapies.
Collapse
|