1
|
Xu R, Zhang L, Pan H, Zhang Y. Retinoid X receptor heterodimers in hepatic function: structural insights and therapeutic potential. Front Pharmacol 2024; 15:1464655. [PMID: 39478961 PMCID: PMC11521896 DOI: 10.3389/fphar.2024.1464655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Nuclear receptors (NRs) are key regulators of multiple physiological functions and pathological changes in the liver in response to a variety of extracellular signaling changes. Retinoid X receptor (RXR) is a special member of the NRs, which not only responds to cellular signaling independently, but also regulates multiple signaling pathways by forming heterodimers with various other NR. Therefore, RXR is widely involved in hepatic glucose metabolism, lipid metabolism, cholesterol metabolism and bile acid homeostasis as well as hepatic fibrosis. Specific activation of particular dimers regulating physiological and pathological processes may serve as important pharmacological targets. So here we describe the basic information and structural features of the RXR protein and its heterodimers, focusing on the role of RXR heterodimers in a number of physiological processes and pathological imbalances in the liver, to provide a theoretical basis for RXR as a promising drug target.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyue Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Lotfi R. Retinoic Acid (RA): A Critical Immunoregulatory Molecule in Asthma and Allergies. Immun Inflamm Dis 2024; 12:e70051. [PMID: 39466149 PMCID: PMC11514501 DOI: 10.1002/iid3.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/14/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
INTRODUCTION Asthma and allergies are chronic inflammatory disorders that are triggered owing to aberrant responses of the immune system against typically innocent environmental substances. Retinoic acid (RA) represents a biologically active metabolite of vitamin A (VA) and high-affinity ligand for RA receptor (RAR) that is implicated in a wide variety of biological processes, including cell proliferation, differentiation, apoptosis, organogenesis, reproduction, and immune responses. In the immune system, RA contributes to the induction of regulatory T (Treg) cells, adhesion molecules required for homing of B and T cells in the gut, and tolerance. Noteworthy, RA has a pivotal role in maintaining the balance of Th17-Treg cells and is also indispensable for appropriate responses of T helper (Th) cells. AIMS This mini-review article intends to expose the immune functions of RA, with an emphasis on the enzymatic pathways converting VA into RA and its receptor-dependent actions in asthma and allergies. CONCLUSIONS Recent findings have depicted that RA levels are reduced in asthma and allergies and that treatment with RA alleviates allergy symptoms and airway inflammation. RA also modulates allergic airway disorders by inhibiting Th2/Th17 response and increasing Treg cells. Therefore, RA could be considered a novel and promising therapeutic agent to be studied and used for treating these diseases.
Collapse
Affiliation(s)
- Ramin Lotfi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion MedicineTehranIran
- Kurdistan Regional Blood Transfusion CenterSanandajIran
- Clinical Research Development Center, Tohid HospitalKurdistan University of Medical SciencesSanandajIran
- Lung Diseases and Allergy Research Center, Research Institute for Health DevelopmentKurdistan University of Medical SciencesSanandajIran
| |
Collapse
|
3
|
Zhang Y, Yu H, Ye L. From β-Carotene to Retinoids: A Review of Microbial Production of Vitamin A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20752-20762. [PMID: 39285668 DOI: 10.1021/acs.jafc.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Vitamin A (retinoids) is crucial for human health, with significant demand across the food, pharmaceutical, and animal feed industries. Currently, the market primarily relies on chemical synthesis and natural extraction methods, which face challenges such as low synthesis efficiency and complex extraction processes. Advances in synthetic biology have enabled vitamin A biosynthesis using microbial cell factories, offering a promising and sustainable solution to meet the increasing market demands. This review introduces the key enzymes involved in the biosynthesis of vitamin A from β-carotene, evaluates achievements in vitamin A production using various microbial hosts, and summarizes strategies for optimizing vitamin A biosynthesis. Additionally, we outline the remaining challenges and propose future directions for the biotechnological production of vitamin A.
Collapse
Affiliation(s)
- Yijun Zhang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Wang S, Link F, Munker S, Wang W, Feng R, Liebe R, Li Y, Yao Y, Liu H, Shao C, Ebert MP, Ding H, Dooley S, Weng HL, Wang SS. Retinoic acid generates a beneficial microenvironment for liver progenitor cell activation in acute liver failure. Hepatol Commun 2024; 8:e0483. [PMID: 39023343 PMCID: PMC11262820 DOI: 10.1097/hc9.0000000000000483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/05/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND When massive necrosis occurs in acute liver failure (ALF), rapid expansion of HSCs called liver progenitor cells (LPCs) in a process called ductular reaction is required for survival. The underlying mechanisms governing this process are not entirely known to date. In ALF, high levels of retinoic acid (RA), a molecule known for its pleiotropic roles in embryonic development, are secreted by activated HSCs. We hypothesized that RA plays a key role in ductular reaction during ALF. METHODS RNAseq was performed to identify molecular signaling pathways affected by all-trans retinoid acid (atRA) treatment in HepaRG LPCs. Functional assays were performed in HepaRG cells treated with atRA or cocultured with LX-2 cells and in the liver tissue of patients suffering from ALF. RESULTS Under ALF conditions, activated HSCs secreted RA, inducing RARα nuclear translocation in LPCs. RNAseq data and investigations in HepaRG cells revealed that atRA treatment activated the WNT-β-Catenin pathway, enhanced stemness genes (SOX9, AFP, and others), increased energy storage, and elevated the expression of ATP-binding cassette transporters in a RARα nuclear translocation-dependent manner. Further, atRA treatment-induced pathways were confirmed in a coculture system of HepaRG with LX-2 cells. Patients suffering from ALF who displayed RARα nuclear translocation in the LPCs had significantly better MELD scores than those without. CONCLUSIONS During ALF, RA secreted by activated HSCs promotes LPC activation, a prerequisite for subsequent LPC-mediated liver regeneration.
Collapse
Affiliation(s)
- Sai Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Link
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Munker
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
- Liver Center Munich, University Hospital, LMU, Munich, Germany
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Rilu Feng
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Yujia Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ye Yao
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hui Liu
- Department of Pathology, Beijing You’an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Chen Shao
- Department of Pathology, Beijing You’an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Matthias P.A. Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center, Mannheim, Germany
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Steven Dooley
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hong-Lei Weng
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shan-Shan Wang
- Beijing Institute of Hepatology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Palmer AC, Bedsaul-Fryer JR, Stephensen CB. Interactions of Nutrition and Infection: The Role of Micronutrient Deficiencies in the Immune Response to Pathogens and Implications for Child Health. Annu Rev Nutr 2024; 44:99-124. [PMID: 38724105 DOI: 10.1146/annurev-nutr-062122-014910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Approximately five million children die each year from preventable causes, including respiratory infections, diarrhea, and malaria. Roughly half of those deaths are attributable to undernutrition, including micronutrient deficiencies (MNDs). The influence of infection on micronutrient status is well established: The inflammatory response to pathogens triggers anorexia, while pathogens and the immune response can both alter nutrient absorption and cause nutrient losses. We review the roles of vitamin A, vitamin D, iron, zinc, and selenium in the immune system, which act in the regulation of molecular- or cellular-level host defenses, directly affecting pathogens or protecting against oxidative stress or inflammation. We further summarize high-quality evidence regarding the synergistic or antagonistic interactions between MNDs, pathogens, and morbidity or mortality relevant to child health in low- and middle-income countries. We conclude with a discussion of gaps in the literature and future directions for multidisciplinary research on the interactions of MNDs, infection, and inflammation.
Collapse
Affiliation(s)
- Amanda C Palmer
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Jacquelyn R Bedsaul-Fryer
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Charles B Stephensen
- Department of Nutrition, University of California, Davis, California, USA
- Western Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Davis, California, USA
| |
Collapse
|
6
|
Chen Y, Tong X, Lu R, Zhang Z, Ma T. All-trans retinoic acid in hematologic disorders: not just acute promyelocytic leukemia. Front Pharmacol 2024; 15:1404092. [PMID: 39027338 PMCID: PMC11254857 DOI: 10.3389/fphar.2024.1404092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
All-trans retinoic acid (ATRA) plays a role in tissue development, neural function, reproduction, vision, cell growth and differentiation, tumor immunity, and apoptosis. ATRA can act by inducing autophagic signaling, angiogenesis, cell differentiation, apoptosis, and immune function. In the blood system ATRA was first used with great success in acute promyelocytic leukemia (APL), where ATRA differentiated leukemia cells into mature granulocytes. ATRA can play a role not only in APL, but may also play a role in other hematologic diseases such as immune thrombocytopenia (ITP), myelodysplastic syndromes (MDS), non-APL acute myeloid leukemia (AML), aplastic anemia (AA), multiple myeloma (MM), etc., especially by regulating mesenchymal stem cells and regulatory T cells for the treatment of ITP. ATRA can also increase the expression of CD38 expressed by tumor cells, thus improving the efficacy of daratumumab and CD38-CART. In this review, we focus on the mechanism of action of ATRA, its role in various hematologic diseases, drug combinations, and ongoing clinical trials.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Tong
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Rongyuan Lu
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Zhengfu Zhang
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| |
Collapse
|
7
|
Daley AD, Bénézech C. Fat-associated lymphoid clusters: Supporting visceral adipose tissue B cell function in immunity and metabolism. Immunol Rev 2024; 324:78-94. [PMID: 38717136 DOI: 10.1111/imr.13339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 07/23/2024]
Abstract
It is now widely understood that visceral adipose tissue (VAT) is a highly active and dynamic organ, with many functions beyond lipid accumulation and storage. In this review, we discuss the immunological role of this tissue, underpinned by the presence of fat-associated lymphoid clusters (FALCs). FALC's distinctive structure and stromal cell composition support a very different immune cell mix to that found in classical secondary lymphoid organs, which underlies their unique functions of filtration, surveillance, innate-like immune responses, and adaptive immunity within the serous cavities. FALCs are important B cell hubs providing B1 cell-mediated frontline protection against infection and supporting B2 cell-adaptative immune responses. Beyond these beneficial immune responses orchestrated by FALCs, immune cells within VAT play important homeostatic role. Dysregulation of immune cells during obesity and aging leads to chronic pathological "metabolic inflammation", which contributes to the development of cardiometabolic diseases. Here, we examine the emerging and complex functions of B cells in VAT homeostasis and the metabolic complications of obesity, highlighting the potential role that FALCs play and emphasize the areas where further research is needed.
Collapse
Affiliation(s)
- Alexander D Daley
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Cécile Bénézech
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Gonçalves E, Smaoui S, Brito M, Oliveira JM, Arez AP, Tavares L. Sickle Cell Disease: Current Drug Treatments and Functional Foods with Therapeutic Potential. Curr Issues Mol Biol 2024; 46:5845-5865. [PMID: 38921020 PMCID: PMC11202234 DOI: 10.3390/cimb46060349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Sickle cell anemia (SCA), the most common form of sickle cell disease (SCD), is a genetic blood disorder. Red blood cells break down prematurely, causing anemia and often blocking blood vessels, leading to chronic pain, organ damage, and increased infection risk. SCD arises from a single-nucleotide mutation in the β-globin gene, substituting glutamic acid with valine in the β-globin chain. This review examines treatments evaluated through randomized controlled trials for managing SCD, analyzes the potential of functional foods (dietary components with health benefits) as a complementary strategy, and explores the use of bioactive compounds as functional food ingredients. While randomized trials show promise for certain drugs, functional foods enriched with bioactive compounds also hold therapeutic potential. Further research is needed to confirm clinical efficacy, optimal dosages, and specific effects of these compounds on SCD, potentially offering a cost-effective and accessible approach to managing the disease.
Collapse
Affiliation(s)
- Elisângela Gonçalves
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, (IHMT), NOVA University of Lisbon (UNL) 1349-008 Lisbon, Portugal; (E.G.); (A.P.A.)
| | - Slim Smaoui
- Laboratory of Microbial and Enzymes Biotechnology and Biomolecules (LBMEB), Centre of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Miguel Brito
- Health Research Centre of Angola (CISA), Caxito, Angola;
- H&TRC—Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-092 Lisbon, Portugal
| | - J. M. Oliveira
- School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, Estrada do Cercal, 449, 3810-193 Oliveira de Azeméis, Portugal;
- EMaRT Group—Emerging Materials, Research, Technology, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO Aveiro—Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Paula Arez
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, (IHMT), NOVA University of Lisbon (UNL) 1349-008 Lisbon, Portugal; (E.G.); (A.P.A.)
| | - Loleny Tavares
- School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, Estrada do Cercal, 449, 3810-193 Oliveira de Azeméis, Portugal;
- EMaRT Group—Emerging Materials, Research, Technology, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO Aveiro—Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Zhao M, Zhang Y, Li Y, Liu K, Bao K, Li G. Impact of Pediococcus acidilactici GLP06 supplementation on gut microbes and metabolites in adult beagles: a comparative analysis. Front Microbiol 2024; 15:1369402. [PMID: 38633690 PMCID: PMC11021720 DOI: 10.3389/fmicb.2024.1369402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
There is growing interest in the potential health benefits of probiotics for both humans and animals. The study aimed to investigate the effects of feeding the canine-derived probiotic Pediococcus acidilactici GLP06 to adult beagles by analysing the microbiome and metabolome. Twenty-four healthy adult beagles were randomly assigned to four groups. The CK group received a standard diet, while the three probiotic groups, the LG group (2 × 108 CFU/day/dog), MG group (2 × 109 CFU/day/dog), and HG group (2 × 1010 CFU/day/dog), received the standard diet supplemented with varying amounts of probiotics. The results show that, compared to the CK group, total antioxidant capacity was significantly increased in the MG and HG groups (p < 0.05), and superoxide dismutase and catalase were significantly increased in the HG group (p < 0.05). Compared to the CK group, malondialdehyde and blood urea nitrogen content were significantly decreased in the MG and HG groups (p < 0.05). Additionally, secretory immunoglobulin A activity was significantly increased in the HG group compared to the CK and LG groups (p < 0.05), and immunoglobulin G activity was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). In addition, compared with the CK group, the abundance of Faecalitalea and Collinsella increased in the LG group, and the relative abundance of Tyzzerella and Parasutterella increased in the MG group. The α diversity and the relative abundances of beneficial bacteria (Faecalibacterium, Lachnospiraceae_NK4A1316, and Ruminococcaceae_UCG-005) were higher in the HG group than in the CK group. Furthermore, acetic acid content was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). Butyric acid, isobutyric acid, and the total SCFA content were significantly increased in the HG group compared to the CK group (p < 0.05). Moreover, metabolome analysis revealed 111 upregulated and 171 downregulated metabolites in the HG group. In conclusion, this study presents evidence that supplementing with P. acidilactici GLP06 can have a positive impact on antioxidant activity, immunoproteins, SCFAs, and gut microbiota in adult beagles. These findings highlight the potential of probiotics as a dietary intervention to enhance gut health and overall wellbeing in companion animals.
Collapse
Affiliation(s)
- Mengdi Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yueyao Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Keyuan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Kun Bao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Guangyu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
Jäger J, Vahav I, Thon M, Waaijman T, Spanhaak B, de Kok M, Bhogal RK, Gibbs S, Koning JJ. Reconstructed Human Skin with Hypodermis Shows Essential Role of Adipose Tissue in Skin Metabolism. Tissue Eng Regen Med 2024; 21:499-511. [PMID: 38367122 PMCID: PMC10987437 DOI: 10.1007/s13770-023-00621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Dysregulation of skin metabolism is associated with a plethora of diseases such as psoriasis and dermatitis. Until now, reconstructed human skin (RhS) models lack the metabolic potential of native human skin, thereby limiting their relevance to study human healthy and diseased skin. We aimed to determine whether incorporation of an adipocyte-containing hypodermis into RhS improves its metabolic potential and to identify major metabolic pathways up-regulated in adipose-RhS. METHODS Primary human keratinocytes, fibroblasts and differentiated adipose-derived stromal cells were co-cultured in a collagen/fibrin scaffold to create an adipose-RhS. The model was extensively characterized structurally in two- and three-dimensions, by cytokine secretion and RNA-sequencing for metabolic enzyme expression. RESULTS Adipose-RhS showed increased secretion of adipokines. Both RhS and adipose-RhS expressed 29 of 35 metabolic genes expressed in ex vivo native human skin. Addition of the adipose layer resulted in up-regulation of 286 genes in the dermal-adipose fraction of which 7 were involved in phase I (CYP19A1, CYP4F22, CYP3A5, ALDH3B2, EPHX3) and phase II (SULT2B1, GPX3) metabolism. Vitamin A, D and carotenoid metabolic pathways were enriched. Additionally, pro-inflammatory (IL-1β, IL-18, IL-23, IL-33, IFN-α2, TNF-α) and anti-inflammatory cytokine (IL-10, IL-12p70) secretion was reduced in adipose-RhS. CONCLUSIONS Adipose-RhS mimics healthy native human skin more closely than traditional RhS since it has a less inflamed phenotype and a higher metabolic activity, indicating the contribution of adipocytes to tissue homeostasis. Therefore it is better suited to study onset of skin diseases and the effect of xenobiotics.
Collapse
Affiliation(s)
- Jonas Jäger
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Irit Vahav
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function & Regeneration, Amsterdam, The Netherlands
| | - Maria Thon
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Taco Waaijman
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Bas Spanhaak
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michael de Kok
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | | | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Diao H, Xiao S, Zhou T, Martin TE, Watford WT, Ye X. Attenuated retinoic acid signaling is among the early responses in mouse uterus approaching embryo attachment. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2024; 8:61-65. [PMID: 38404366 PMCID: PMC10885870 DOI: 10.1097/rd9.0000000000000090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 02/27/2024] Open
Abstract
The uterus is transiently receptive for embryo implantation. It remains to be understood why the uterus does not reject a semi-allogeneic embryo (to the biological mother) or an allogeneic embryo (to a surrogate) for implantation. To gain insights, we examined uterine early response genes approaching embryo attachment on day 3 post coitum (D3) at 22 hours when blue dye reaction, an indication of embryo attachment, had not manifested in mice. C57BL/6 pseudo-pregnant (control) and pregnant mouse uteri were collected on D3 at 22 hours for microarray analysis. The self-assembling-manifold (SAM) algorithm identified 21,858 unique probesets. Principal component analysis indicated a clear separation between the pseudo-pregnant and pregnant groups. There were 106 upregulated and five downregulated protein-coding genes in the pregnant uterus with fold change (fc) >1.5 and q value <5%. Gene ontology (GO) analysis of the 106 upregulated genes revealed 38 significant GO biological process (GOBP) terms (P <0.05), and 32 (84%) of them were associated with immune responses, with a dominant natural killer (NK) cell activation signature. Among the top eight upregulated protein-coding genes, Cyp26a1 inactivates retinoic acid (RA) while Lrat promotes vitamin A storage, both of which are expected to attenuate RA bioavailability; Atp6v0d2 and Gjb2 play roles in ion transport and transmembrane transport; Gzmb, Gzmc, and Il2rb are involved in immune responses; and Tdo2 is important for kynurenine pathway. Most of these genes or their related pathways have functions in immune regulations. RA signaling has been implicated in immune tolerance and immune homeostasis, and uterine NK cells have been implicated in immunotolerance at the maternal-fetal interface in the placenta. The mechanisms of immune responses approaching embryo attachment remain to be elucidated. The coordinated effects of the early response genes may hold the keys to the question of why the uterus does not reject an implanting embryo.
Collapse
Affiliation(s)
- Honglu Diao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Shuo Xiao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Taylor E. Martin
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Wendy T. Watford
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
12
|
Hu S, Hang X, Wei Y, Wang H, Zhang L, Zhao L. Crosstalk among podocytes, glomerular endothelial cells and mesangial cells in diabetic kidney disease: an updated review. Cell Commun Signal 2024; 22:136. [PMID: 38374141 PMCID: PMC10875896 DOI: 10.1186/s12964-024-01502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/28/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic kidney disease (DKD) is a long-term and serious complication of diabetes that affects millions of people worldwide. It is characterized by proteinuria, glomerular damage, and renal fibrosis, leading to end-stage renal disease, and the pathogenesis is complex and involves multiple cellular and molecular mechanisms. Among three kinds of intraglomerular cells including podocytes, glomerular endothelial cells (GECs) and mesangial cells (MCs), the alterations in one cell type can produce changes in the others. The cell-to-cell crosstalk plays a crucial role in maintaining the glomerular filtration barrier (GFB) and homeostasis. In this review, we summarized the recent advances in understanding the pathological changes and interactions of these three types of cells in DKD and then focused on the signaling pathways and factors that mediate the crosstalk, such as angiopoietins, vascular endothelial growth factors, transforming growth factor-β, Krüppel-like factors, retinoic acid receptor response protein 1 and exosomes, etc. Furthermore, we also simply introduce the application of the latest technologies in studying cell interactions within glomerular cells and new promising mediators for cell crosstalk in DKD. In conclusion, this review provides a comprehensive and updated overview of the glomerular crosstalk in DKD and highlights its importance for the development of novel intervention approaches.
Collapse
Affiliation(s)
- Shiwan Hu
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xing Hang
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu Wei
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Han Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
13
|
Caricasulo MA, Zanetti A, Terao M, Garattini E, Paroni G. Cellular and micro-environmental responses influencing the antitumor activity of all-trans retinoic acid in breast cancer. Cell Commun Signal 2024; 22:127. [PMID: 38360674 PMCID: PMC10870483 DOI: 10.1186/s12964-024-01492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
All-trans retinoic acid (ATRA) is the most relevant and functionally active metabolite of Vitamin-A. From a therapeutic standpoint, ATRA is the first example of pharmacological agent exerting its anti-tumor activity via a cell differentiating action. In the clinics, ATRA is used in the treatment of Acute Promyelocytic Leukemia, a rare form of myeloid leukemia with unprecedented therapeutic results. The extraordinary effectiveness of ATRA in the treatment of Acute Promyelocytic Leukemia patients has raised interest in evaluating the potential of this natural retinoid in the treatment of other types of neoplasias, with particular reference to solid tumors.The present article provides an overview of the available pre-clinical and clinical studies focussing on ATRA as a therapeutic agent in the context of breast cancer from a holistic point of view. In detail, we focus on the direct effects of ATRA in breast cancer cells as well as the underlying molecular mechanisms of action. In addition, we summarize the available information on the action exerted by ATRA on the breast cancer micro-environment, an emerging determinant of the progression and invasive behaviour of solid tumors. In particular we discuss the recent evidences of ATRA activity on the immune system. Finally, we analyse and discuss the results obtained with the few ATRA-based clinical trials conducted in the context of breast cancer.
Collapse
Affiliation(s)
- Maria Azzurra Caricasulo
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Adriana Zanetti
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Mineko Terao
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Enrico Garattini
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Gabriela Paroni
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy.
| |
Collapse
|
14
|
Fawzy El-Sayed KM, Cosgarea R, Sculean A, Doerfer C. Can vitamins improve periodontal wound healing/regeneration? Periodontol 2000 2024; 94:539-602. [PMID: 37592831 DOI: 10.1111/prd.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Periodontitis is a complex inflammatory disorder of the tooth supporting structures, associated with microbial dysbiosis, and linked to a number if systemic conditions. Untreated it can result in an irreversible damage to the periodontal structures and eventually teeth loss. Regeneration of the lost periodontium requires an orchestration of a number of biological events on cellular and molecular level. In this context, a set of vitamins have been advocated, relying their beneficial physiological effects, to endorse the biological regenerative events of the periodontium on cellular and molecular levels. The aim of the present article is to elaborate on the question whether or not vitamins improve wound healing/regeneration, summarizing the current evidence from in vitro, animal and clinical studies, thereby shedding light on the knowledge gap in this field and highlighting future research needs. Although the present review demonstrates the current heterogeneity in the available evidence and knowledge gaps, findings suggest that vitamins, especially A, B, E, and CoQ10, as well as vitamin combinations, could exert positive attributes on the periodontal outcomes in adjunct to surgical or nonsurgical periodontal therapy.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Raluca Cosgarea
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
- Department of Periodontology and Peri-implant Diseases, Philips University Marburg, Marburg, Germany
- Clinic for Prosthetic Dentistry, University Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Christof Doerfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
15
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
16
|
Ikuta K, Asahi T, Cui G, Abe S, Takami D. Control of the Development, Distribution, and Function of Innate-Like Lymphocytes and Innate Lymphoid Cells by the Tissue Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:111-127. [PMID: 38467976 DOI: 10.1007/978-981-99-9781-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recently, considerable attention has been directed toward innate-like T cells (ITCs) and innate lymphoid cells (ILCs) owing to their indispensable contributions to immune responses, tissue homeostasis, and inflammation. Innate-like T cells include NKT cells, MAIT cells, and γδ T cells, whereas ILCs include NK cells, type 1 ILCs (ILC1s), type 2 ILCs (ILC2s), and type 3 ILCs (ILC3s). Many of these ITCs and ILCs are distributed to specific tissues and remain tissue-resident, while others, such as NK cells and some γδ T cells, circulate through the bloodstream. Nevertheless, recent research has shed light on novel subsets of innate immune cells that exhibit characteristics intermediate between tissue-resident and circulating states under normal and pathological conditions. The local microenvironment frequently influences the development, distribution, and function of these innate immune cells. This review aims to consolidate the current knowledge on the functional heterogeneity of ITCs and ILCs, shaped by local environmental cues, with particular emphasis on IL-15, which governs the activities of the innate immune cells involved in type 1 immune responses.
Collapse
Affiliation(s)
- Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daichi Takami
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
López-Fandiño R, Molina E, Lozano-Ojalvo D. Intestinal factors promoting the development of RORγt + cells and oral tolerance. Front Immunol 2023; 14:1294292. [PMID: 37936708 PMCID: PMC10626553 DOI: 10.3389/fimmu.2023.1294292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
The gastrointestinal tract has to harmonize the two seemingly opposite functions of fulfilling nutritional needs and avoiding the entry of pathogens, toxins and agents that can cause physical damage. This balance requires a constant adjustment of absorptive and defending functions by sensing environmental changes or noxious substances and initiating adaptive or protective mechanisms against them through a complex network of receptors integrated with the central nervous system that communicate with cells of the innate and adaptive immune system. Effective homeostatic processes at barrier sites take the responsibility for oral tolerance, which protects from adverse reactions to food that cause allergic diseases. During a very specific time interval in early life, the establishment of a stable microbiota in the large intestine is sufficient to prevent pathological events in adulthood towards a much larger bacterial community and provide tolerance towards diverse food antigens encountered later in life. The beneficial effects of the microbiome are mainly exerted by innate and adaptive cells that express the transcription factor RORγt, in whose generation, mediated by different bacterial metabolites, retinoic acid signalling plays a predominant role. In addition, recent investigations indicate that food antigens also contribute, analogously to microbial-derived signals, to educating innate immune cells and instructing the development and function of RORγt+ cells in the small intestine, complementing and expanding the tolerogenic effect of the microbiome in the colon. This review addresses the mechanisms through which microbiota-produced metabolites and dietary antigens maintain intestinal homeostasis, highlighting the complementarity and redundancy between their functions.
Collapse
Affiliation(s)
- Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
| | | | | |
Collapse
|
18
|
Ye X, Yang Y, Yao J, Wang M, Liu Y, Xie G, Zeng Z, Zhang XK, Zhou H. Nuclear receptor RXRα binds the precursor of miR-103 to inhibit its maturation. BMC Biol 2023; 21:197. [PMID: 37735649 PMCID: PMC10512521 DOI: 10.1186/s12915-023-01701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND The maturation of microRNAs (miRNAs) successively undergoes Drosha, Dicer, and Argonaute -mediated processing, however, the intricate regulations of the individual miRNA maturation are largely unknown. Retinoid x receptor alpha (RXRα) belongs to nuclear receptors that regulate gene transcription by binding to DNA elements, however, whether RXRα binds to miRNAs to exert physiological functions is not known. RESULTS In this work, we found that RXRα directly binds to the precursor of miR-103 (pre-miR-103a-2) via its DNA-binding domain with a preferred binding sequence of AGGUCA. The binding of RXRα inhibits the processing of miR-103 maturation from pre-miR-103a-2. Mechanistically, RXRα prevents the nuclear export of pre-miR-103a-2 for further processing by inhibiting the association of exportin-5 with pre-miR-103a-2. Pathophysiologically, the negative effect of RXRα on miR-103 maturation correlates to the positive effects of RXRα on the expression of Dicer, a target of miR-103, and on the inhibition of breast cancer. CONCLUSIONS Our findings unravel an unexpected role of transcription factor RXRα in specific miRNA maturation at post-transcriptional level through pre-miRNA binding, and present a mechanistic insight regarding RXRα role in breast cancer progression.
Collapse
Affiliation(s)
- Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
- High Throughput Drug Screening Platform, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yun Yang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiayue Yao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mo Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yixin Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Guobin Xie
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
- High Throughput Drug Screening Platform, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
- High Throughput Drug Screening Platform, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China.
- High Throughput Drug Screening Platform, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
19
|
Wei CH, Huang L, Kreh B, Liu X, Tyutyunyk-Massey L, Kawakami M, Chen Z, Shi M, Kozlov S, Chan KC, Andresson T, Carrington M, Vuligonda V, Sanders ME, Horowitz A, Hwu P, Peng W, Dmitrovsky E, Liu X. A novel retinoic acid receptor-γ agonist antagonizes immune checkpoint resistance in lung cancers by altering the tumor immune microenvironment. Sci Rep 2023; 13:14907. [PMID: 37689790 PMCID: PMC10492813 DOI: 10.1038/s41598-023-41690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
All-trans-retinoic acid (ATRA), the retinoic acid receptors (RARs) agonist, regulates cell growth, differentiation, immunity, and survival. We report that ATRA-treatment repressed cancer growth in syngeneic immunocompetent, but not immunodeficient mice. The tumor microenvironment was implicated: CD8+ T cell depletion antagonized ATRA's anti-tumorigenic effects in syngeneic mice. ATRA-treatment with checkpoint blockade did not cooperatively inhibit murine lung cancer growth. To augment ATRA's anti-tumorigenicity without promoting its pro-tumorigenic potential, an RARγ agonist (IRX4647) was used since it regulates T cell biology. Treating with IRX4647 in combination with an immune checkpoint (anti-PD-L1) inhibitor resulted in a statistically significant suppression of syngeneic 344SQ lung cancers in mice-a model known for its resistance to checkpoints and characterized by low basal T cell and PD-L1 expression. This combined treatment notably elevated CD4+ T-cell presence within the tumor microenvironment and increased IL-5 and IL-13 tumor levels, while simultaneously decreasing CD38 in the tumor stroma. IL-5 and/or IL-13 treatments increased CD4+ more than CD8+ T-cells in mice. IRX4647-treatment did not appreciably affect in vitro lung cancer growth, despite RARγ expression. Pharmacokinetic analysis found IRX4647 plasma half-life was 6 h in mice. Yet, RARα antagonist (IRX6696)-treatment with anti-PD-L1 did not repress syngeneic lung cancer growth. Together, these findings provide a rationale for a clinical trial investigating an RARγ agonist to augment check point blockade response in cancers.
Collapse
Affiliation(s)
- Cheng-Hsin Wei
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21701, USA
| | - Lu Huang
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Blair Kreh
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21701, USA
| | - Xiuxia Liu
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21701, USA
| | - Liliya Tyutyunyk-Massey
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21701, USA
| | - Masanori Kawakami
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21701, USA
| | - Zibo Chen
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21701, USA
| | - Mi Shi
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21701, USA
| | - Serguei Kozlov
- Center for Advanced Preclinical Research, Frederick, MD, USA
| | - King C Chan
- Protein Characterization Laboratory, Frederick, MD, USA
| | | | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Amir Horowitz
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Moffitt Cancer Center, Tampa, FL, USA
| | - Weiyi Peng
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ethan Dmitrovsky
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21701, USA
| | - Xi Liu
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21701, USA.
| |
Collapse
|
20
|
Magen-Rimon R, Day AS, Shaoul R. Nutritional aspects of inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2023; 17:731-740. [PMID: 37384423 DOI: 10.1080/17474124.2023.2231340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/27/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION The number of people diagnosed with inflammatory bowel disease (IBD) continues to increase in most parts of the world. Although the exact etiology of this chronic intestinal disease is not fully understood, nutritional factors appear to play key roles. Furthermore, individuals with IBD are at increased risk of adverse nutritional impacts, including micronutrient deficiencies. AREAS COVERED This review aims to summarize recent reports focusing on nutritional factors relevant to the development of IBD and to also review data on nutritional deficiencies seen in individuals with IBD. EXPERT OPINION The typical western diet, characterized by high-fat/high-sugar foods, along with food additives, appears to contribute to the etiopathogenesis of IBD. In contrast, some reports indicate that some foods are likely protective. However, there are inconsistencies in the currently available data, reflecting study design and other confounding factors. Furthermore, some of the conclusions are inferred from animal or in vitro studies. The presence of IBD can compromise the nutrition of individuals with one of these disorders: ongoing monitoring is critical. Nutrition and diet in the setting of IBD remain key areas for further and ongoing study.
Collapse
Affiliation(s)
- Ramit Magen-Rimon
- Pediatric Gastroenterology & Nutrition Institute, Ruth Children's Hospital of Haifa, Rambam Health Care Campus, Faculty of Medicine, Haifa, Israel
| | - Andrew S Day
- Department of Paediatrics, University of Otago Christchurch, Christchurch, New Zealand
| | - Ron Shaoul
- Pediatric Gastroenterology & Nutrition Institute, Ruth Children's Hospital of Haifa, Rambam Health Care Campus, Faculty of Medicine, Haifa, Israel
| |
Collapse
|
21
|
Hatami P, Balighi K, Asl HN, Goodarzi A, Aryanian Z. Isotretinoin and timing of procedural interventions: Clinical implications and practical points. J Cosmet Dermatol 2023. [PMID: 37326142 DOI: 10.1111/jocd.15874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/01/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND For decades, the notion that elective surgeries and cutaneous procedures should be postponed for 6-12 months in patients on, or recently administered with isotretinoin, has been widely accepted. However, some recent studies showed the need for a change in this regard. METHOD Here, we reviewed the existing data in this regard through searching on PubMed, Google Scholar, and Scopus. All of the relevant papers published in English, until October, 2022, which we could access to their full-texts, were included. RESULTS We found some recommendations made by plastic surgeons, dermatologists, ENT surgeons, ophthalmologists, orthopedic surgeons, and dentists regarding the correct timing of procedural interventions in patients on, or recently administered with isotretinoin and tried to summarize them to provide a practical guide for clinicians. CONCLUSION Physicians may discuss with patients regarding the known risk of abnormal wound healing in the setting of systemic isotretinoin treatment and suggest that, when possible, surgical procedures be postponed until the activity of the retinoids has time to subside. It is even more important regarding patients with darker skin phototypes to follow an even more strict guideline.
Collapse
Affiliation(s)
- Parvaneh Hatami
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Balighi
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Dermatology, School of Medicine Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Nicknam Asl
- Department of Dentistry, Rafsanjan University of Medical Sciences (RUMS), Rafsanjan, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Rasool Akram Medical Complex, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Aryanian
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Dermatology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
22
|
Touil H, Mounts K, De Jager PL. Differential impact of environmental factors on systemic and localized autoimmunity. Front Immunol 2023; 14:1147447. [PMID: 37283765 PMCID: PMC10239830 DOI: 10.3389/fimmu.2023.1147447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
The influence of environmental factors on the development of autoimmune disease is being broadly investigated to better understand the multifactorial nature of autoimmune pathogenesis and to identify potential areas of intervention. Areas of particular interest include the influence of lifestyle, nutrition, and vitamin deficiencies on autoimmunity and chronic inflammation. In this review, we discuss how particular lifestyles and dietary patterns may contribute to or modulate autoimmunity. We explored this concept through a spectrum of several autoimmune diseases including Multiple Sclerosis (MS), Systemic Lupus Erythematosus (SLE) and Alopecia Areata (AA) affecting the central nervous system, whole body, and the hair follicles, respectively. A clear commonality between the autoimmune conditions of interest here is low Vitamin D, a well-researched hormone in the context of autoimmunity with pleiotropic immunomodulatory and anti-inflammatory effects. While low levels are often correlated with disease activity and progression in MS and AA, the relationship is less clear in SLE. Despite strong associations with autoimmunity, we lack conclusive evidence which elucidates its role in contributing to pathogenesis or simply as a result of chronic inflammation. In a similar vein, other vitamins impacting the development and course of these diseases are explored in this review, and overall diet and lifestyle. Recent work exploring the effects of dietary interventions on MS showed that a balanced diet was linked to improvement in clinical parameters, comorbid conditions, and overall quality of life for patients. In patients with MS, SLE and AA, certain diets and supplements are linked to lower incidence and improved symptoms. Conversely, obesity during adolescence was linked with higher incidence of MS while in SLE it was associated with organ damage. Autoimmunity is thought to emerge from the complex interplay between environmental factors and genetic background. Although the scope of this review focuses on environmental factors, it is imperative to elaborate the interaction between genetic susceptibility and environment due to the multifactorial origin of these disease. Here, we offer a comprehensive review about the influence of recent environmental and lifestyle factors on these autoimmune diseases and potential translation into therapeutic interventions.
Collapse
Affiliation(s)
- Hanane Touil
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Kristin Mounts
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Philip Lawrence De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
23
|
Yoshihara T, Okabe Y. Aldh1a2 + fibroblastic reticular cells regulate lymphocyte recruitment in omental milky spots. J Exp Med 2023; 220:213908. [PMID: 36880532 PMCID: PMC9997506 DOI: 10.1084/jem.20221813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/29/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Lymphoid clusters in visceral adipose tissue omentum, known as milky spots, play a central role in the immunological defense in the abdomen. Milky spots exhibit hybrid nature between secondary lymph organs and ectopic lymphoid tissues, yet their development and maturation mechanisms are poorly understood. Here, we identified a subset of fibroblastic reticular cells (FRCs) that are uniquely present in omental milky spots. These FRCs were characterized by the expression of retinoic acid-converting enzyme, Aldh1a2, and endothelial cell marker, Tie2, in addition to canonical FRC-associated genes. Diphtheria toxin-mediated ablation of Aldh1a2+ FRCs resulted in the alteration in milky spot structure with a significant reduction in size and cellularity. Mechanistically, Aldh1a2+ FRCs regulated the display of chemokine CXCL12 on high endothelial venules (HEVs), which recruit blood-borne lymphocytes from circulation. We further found that Aldh1a2+ FRCs are required for the maintenance of peritoneal lymphocyte composition. These results illustrate the homeostatic roles of FRCs in the formation of non-classical lymphoid tissues.
Collapse
Affiliation(s)
- Tomomi Yoshihara
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University , Osaka, Japan
| | - Yasutaka Okabe
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University , Osaka, Japan.,Center for Infectious Disease Education and Research, Osaka University , Osaka, Japan.,Japan Science and Technology Agency , PRESTO, Kawaguchi, Japan
| |
Collapse
|
24
|
Xia P, Hou T, Jin H, Meng Y, Li J, Zhan F, Geng F, Li B. A critical review on inflammatory bowel diseases risk factors, dietary nutrients regulation and protective pathways based on gut microbiota during recent 5 years. Crit Rev Food Sci Nutr 2023; 64:8805-8821. [PMID: 37096497 DOI: 10.1080/10408398.2023.2204147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The treatment of inflammatory bowel diseases (IBDs) has become a worldwide problem. Intestinal flora plays an important role in the development and progression of IBDs. Various risk factors (psychology, living habits, dietary patterns, environment) influence the structure and composition of the gut microbiota and contribute to the susceptibility to IBDs. This review aims to provide a comprehensive overview on risk factors regulating intestinal microenvironment which was contributed to IBDs. Five protective pathways related to intestinal flora were also discussed. We hope to provide systemic and comprehensive insights of IBDs treatment and to offer theoretical guidance for personalized patients with precision nutrition.
Collapse
Affiliation(s)
- Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Hong Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Yaqi Meng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| |
Collapse
|
25
|
Zhang B, Chen F, Xu T, Tian Y, Zhang Y, Cao M, Guo X, Yin D. The crosstalk effects of polybrominated diphenyl ethers on the retinoic acid and thyroid hormone signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163590. [PMID: 37088389 DOI: 10.1016/j.scitotenv.2023.163590] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The toxicological and pathological influences of polybrominated diphenyl ethers (PBDEs) on the animal central nervous system have attracted worldwide attention. However, their mechanism of action has not been completely elucidated. Given that retinoic acid (RA) and thyroid hormone (TH) signaling pathway are closely related to neurodevelopment, the crosstalk between the two signaling pathways at the levels of metabolite conversion, gene expression and ligand-receptor interaction after exposure to two representative PBDE congeners (BDE-47 and BDE-209) using zebrafish larvae, dual reporter gene assay, and docking simulation was studied. Our results clarified that BDE-47 could disrupt the transport and metabolism of retinoids, induce changes in expression of key genes, bind with the seven nuclear receptors, and activate RA signaling pathway. BDE-47 exhibited more effects on the indicators of the two signaling pathways than BDE-209. Furthermore, BDE-47 may disrupt TH signaling pathway by disrupting RA signaling pathway, indicating that RA signal is priorly influenced than TH signal. This work offered a new perspective to elucidate TH signal disruption mechanism induced by PBDEs from RA signaling pathway, which is of great significance to elucidate the health effects of PBDEs.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fu Chen
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yijun Tian
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Yajie Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
26
|
Asahi T, Abe S, Tajika Y, Rodewald HR, Sexl V, Takeshima H, Ikuta K. Retinoic acid receptor activity is required for the maintenance of type 1 innate lymphoid cells. Int Immunol 2023; 35:147-155. [PMID: 36480702 DOI: 10.1093/intimm/dxac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Group 1 innate lymphoid cells (G1-ILCs) are innate immune effectors critical for the response to intracellular pathogens and tumors. G1-ILCs comprise circulating natural killer (NK) cells and tissue-resident type 1 ILCs (ILC1s). ILC1s mainly reside in barrier tissues and provide the initial sources of interferon-γ (IFN-γ) to prime the protecting responses against infections, which are followed by the response of recruited NK cells. Despite such distribution differences, whether local environmental factors influence the behavior of NK cells and ILC1s is unclear. Here, we show that the signaling of retinoic acid (RA), active metabolites of vitamin A, is essential for the maintenance of ILC1s in the periphery. Mice expressing RARα403, a truncated form of retinoic acid receptor α (RARα) that exerts dominant negative activity, in a lymphoid cell- or G1-ILC-specific manner showed remarkable reductions of peripheral ILC1s while NK cells were unaffected. Lymphoid cell-specific inhibition of RAR activity resulted in the reduction of PD-1+ ILC progenitors (ILCPs), but not of common lymphoid progenitors (CLPs), suggesting the impaired commitment and differentiation of ILC1s. Transcriptome analysis revealed that RARα403-expressing ILC1s exhibited impaired proliferative states and declined expression of effector molecules. Thus, our findings demonstrate that cell-intrinsic RA signaling is required for the homeostasis and the functionality of ILC1s, which may present RA as critical environmental cue targeting local type 1 immunity against infection and cancer.
Collapse
Affiliation(s)
- Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yuya Tajika
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
27
|
Bang YJ. Vitamin A: a key coordinator of host-microbe interactions in the intestine. BMB Rep 2023; 56:133-139. [PMID: 36751944 PMCID: PMC10068342 DOI: 10.5483/bmbrep.2023-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 09/29/2023] Open
Abstract
The human intestine is home to a dense community of microbiota that plays a key role in human health and disease. Nutrients are essential regulators of both host and microbial physiology and function as key coordinators of host-microbe interactions. Therefore, understanding the specific roles and underlying mechanisms of each nutrient in regulating the host-microbe interactions will be essential in developing new strategies for improving human health through microbiota and nutrient intervention. This review will give a basic overview of the role of vitamin A, an essential micronutrient, on human health, and highlight recent findings on the mechanisms by which it regulates the host-microbe interactions. [BMB Reports 2023; 56(3): 133-139].
Collapse
Affiliation(s)
- Ye-Ji Bang
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
28
|
Zhao N, Liu C, Li N, Zhou S, Guo Y, Yang S, Liu H. Role of Interleukin-22 in ulcerative colitis. Biomed Pharmacother 2023; 159:114273. [PMID: 36696801 DOI: 10.1016/j.biopha.2023.114273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Ulcerative Colitis (UC) is a chronic disease, in the progression of which an immune overreaction may play an important role. IL-22 is a member of the IL-10 superfamily of cytokines and is pleiotropic in immune regulation and inflammatory responses. IL-22 can produce protective effects, promote wound healing and tissue regeneration, while it can also induce inflammatory reactions when it is chronically overexpressed. Extensive literatures reported that IL-22 played an essential role in the pathogenic development of UC. IL-22 participates in the whole disease process of UC involving signaling pathways, gene expression regulation, and intestinal flora imbalance, making IL-22 a possible candidate for the treatment of UC. In this paper, the latest knowledge to further elucidate the role of IL-22 in UC was summarized and analyzed.
Collapse
Affiliation(s)
- Nan Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Ning Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Shuang Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Yuting Guo
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Shihua Yang
- Department of Oncology, The Fifth People's Hospital of Jinan, Jinan 250022, PR China.
| | - Huimin Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
29
|
Hirbo JB, Pasutto F, Gamazon ER, Evans P, Pawar P, Berner D, Sealock J, Tao R, Straub PS, Konkashbaev AI, Breyer MA, Schlötzer-Schrehardt U, Reis A, Brantley MA, Khor CC, Joos KM, Cox NJ. Analysis of genetically determined gene expression suggests role of inflammatory processes in exfoliation syndrome. BMC Genomics 2023; 24:75. [PMID: 36797672 PMCID: PMC9936777 DOI: 10.1186/s12864-023-09179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Exfoliation syndrome (XFS) is an age-related systemic disorder characterized by excessive production and progressive accumulation of abnormal extracellular material, with pathognomonic ocular manifestations. It is the most common cause of secondary glaucoma, resulting in widespread global blindness. The largest global meta-analysis of XFS in 123,457 multi-ethnic individuals from 24 countries identified seven loci with the strongest association signal in chr15q22-25 region near LOXL1. Expression analysis have so far correlated coding and a few non-coding variants in the region with LOXL1 expression levels, but functional effects of these variants is unclear. We hypothesize that analysis of the contribution of the genetically determined component of gene expression to XFS risk can provide a powerful method to elucidate potential roles of additional genes and clarify biology that underlie XFS. RESULTS Transcriptomic Wide Association Studies (TWAS) using PrediXcan models trained in 48 GTEx tissues leveraging on results from the multi-ethnic and European ancestry GWAS were performed. To eliminate the possibility of false-positive results due to Linkage Disequilibrium (LD) contamination, we i) performed PrediXcan analysis in reduced models removing variants in LD with LOXL1 missense variants associated with XFS, and variants in LOXL1 models in both multiethnic and European ancestry individuals, ii) conducted conditional analysis of the significant signals in European ancestry individuals, and iii) filtered signals based on correlated gene expression, LD and shared eQTLs, iv) conducted expression validation analysis in human iris tissues. We observed twenty-eight genes in chr15q22-25 region that showed statistically significant associations, which were whittled down to ten genes after statistical validations. In experimental analysis, mRNA transcript levels for ARID3B, CD276, LOXL1, NEO1, SCAMP2, and UBL7 were significantly decreased in iris tissues from XFS patients compared to control samples. TWAS genes for XFS were significantly enriched for genes associated with inflammatory conditions. We also observed a higher incidence of XFS comorbidity with inflammatory and connective tissue diseases. CONCLUSION Our results implicate a role for connective tissues and inflammation pathways in the etiology of XFS. Targeting the inflammatory pathway may be a potential therapeutic option to reduce progression in XFS.
Collapse
Affiliation(s)
- Jibril B Hirbo
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA.
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, 91054, Erlangen, Germany
| | - Eric R Gamazon
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
- Clare Hall and MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SL, UK
| | - Patrick Evans
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Priyanka Pawar
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Daniel Berner
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Julia Sealock
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Ran Tao
- Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Peter S Straub
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Anuar I Konkashbaev
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Max A Breyer
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, 91054, Erlangen, Germany
| | - Milam A Brantley
- Clare Hall and MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SL, UK
| | - Chiea C Khor
- Genome Institute of Singapore, 60 Biopolis St, Singapore, 138672, Singapore
| | - Karen M Joos
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Nancy J Cox
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| |
Collapse
|
30
|
Association between retinol intake and periodontal health in US adults. BMC Oral Health 2023; 23:61. [PMID: 36726080 PMCID: PMC9893551 DOI: 10.1186/s12903-023-02761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Inflammation and oxidative stress are two hallmarks of periodontitis. Retinol is an antioxidant and suppresses expression of pro-inflammatory factors. However, the evidence for an association between retinol intake and periodontitis is limited. Thus, the aim of this study is to assess the association between retinol intake and periodontal health. METHODS Data used in this cross-sectional study from the National Health and Nutrition Examination Survey (NHANES) 2009-2014 (n = 9081). Dietary intake of retinol was measured based on two 24-h dietary recall interviews. The category of periodontitis was defined by the CDC/AAP according to clinical periodontal parameters. Univariate and multivariate logistic regression analyses were applied to investigate the relationship between retinol intake and the risk of periodontitis. RESULTS Compared with the lowest tertile, individuals in the highest tertile of retinol intake were less likely to be periodontitis (ORtertile3vs1 = 0.79, 95% CI: 0.65-0.96). The association was still significant in populations who were less than 60 years old (ORtertile3vs1 = 0.80, 95% CI: 0.65-0.97), non-Hispanic black (ORtertile3vs1 = 0.62, 95% CI: 0.42-0.94), PI ≤ 1.3 (ORtertile3vs1 = 0.72, 95% CI: 0.55-0.93), 1.3 < PI ≤ 3.5 (ORtertile3vs1 = 0.70, 95% CI: 0.55-0.89), non-smoker (ORtertile3vs1 = 0.63, 95% CI: 0.48-0.81), obesity (ORtertile3vs1 = 0.68, 95% CI: 0.49-0.94) and who had not diabetes mellitus (ORtertile3vs1 = 0.79, 95% CI: 0.65-0.95) or had hypertension (ORtertile3vs1 = 0.63, 95% CI: 0.47-0.84). CONCLUSION Retinol intake is inversely associated with poor periodontal health in US adults.
Collapse
|
31
|
Borel P, Dangles O, Kopec RE. Fat-soluble vitamin and phytochemical metabolites: Production, gastrointestinal absorption, and health effects. Prog Lipid Res 2023; 90:101220. [PMID: 36657621 DOI: 10.1016/j.plipres.2023.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Consumption of diets rich in fruits and vegetables, which provide some fat-soluble vitamins and many phytochemicals, is associated with a lower risk of developing certain degenerative diseases. It is well accepted that not only the parent compounds, but also their derivatives formed upon enzymatic or nonenzymatic transformations, can produce protective biological effects. These derivatives can be formed during food storage, processing, or cooking. They can also be formed in the lumen of the upper digestive tract during digestion, or via metabolism by microbiota in the colon. This review compiles the known metabolites of fat-soluble vitamins and fat-soluble phytochemicals (FSV and FSP) that have been identified in food and in the human digestive tract, or could potentially be present based on the known reactivity of the parent compounds in normal or pathological conditions, or following surgical interventions of the digestive tract or consumption of xenobiotics known to impair lipid absorption. It also covers the very limited data available on the bioavailability (absorption, intestinal mucosa metabolism) and summarizes their effects on health. Notably, despite great interest in identifying bioactive derivatives of FSV and FSP, studying their absorption, and probing their putative health effects, much research remains to be conducted to understand and capitalize on the potential of these molecules to preserve health.
Collapse
Affiliation(s)
- Patrick Borel
- C2VN, INRAE, INSERM, Aix-Marseille Univ, Marseille, France.
| | | | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, Foods for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
32
|
Qi C, Tu H, Zhao Y, Zhou J, Chen J, Hu H, Yu R, Sun J. Breast Milk-Derived Limosilactobacillus reuteri Prevents Atopic Dermatitis in Mice via Activating Retinol Absorption and Metabolism in Peyer's Patches. Mol Nutr Food Res 2023; 67:e2200444. [PMID: 36480309 DOI: 10.1002/mnfr.202200444] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/24/2022] [Indexed: 12/13/2022]
Abstract
SCOPE Supplementing Limosilactobacillus reuteri Fn041, a breast milk-derived probiotic from agricultural and pastoral areas, to maternal mice during late pregnancy and lactation prevents atopic dermatitis (AD) in offspring. This study aims to elucidate the molecular mechanism of Fn041-mediated immune regulation. METHODS AND RESULTS Fn041 is administered prenatal and postnatal to maternal mice, and to offspring after weaning. The ears are administered with calcipotriol to induce AD. Fn041 treatment significantly alleviates ear inflammation, and reduces mast cell infiltration. Fn041 treatment upregulates and downregulates intestinal ZO-1 and Claudin-2 mRNA expression, respectively. Transcriptome analysis of Peyer's patches reveals that pathways related to DNA damage repair are activated in AD mice, which is inhibited by Fn041 treatment. Fn041 activates pathways related to retinol absorption and metabolism. Untargeted metabolomic analysis reveals that Fn041 treatment increases plasma retinol and kynurenine. Fn041 treatment does not significantly alter the overall cecal microbiota profile, only increases the relative abundances of Ligilactobacillus apodemi, Ligilactobacillus murinus, Akkermansia muciniphila, and Bacteroides thetaiotaomicron. CONCLUSIONS Fn041 induces anti-AD immune responses directly by promoting the absorption and metabolism of retinol in Peyer's patches, and plays an indirect role by strengthening the mucosal barrier and increasing the abundance of specific anti-AD bacteria in the cecum.
Collapse
Affiliation(s)
- Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Huayu Tu
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Yuning Zhao
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Jingbo Zhou
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Jie Chen
- Department of Pediatric Cardiology Nephrology and Rheumatism, The Affiliated Hospital of Qingdao University Medical College, Qingdao, 266003, China
| | - Haiting Hu
- Department of Neonatology, The Affiliated Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213004, China
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214022, China
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
33
|
Kalousová M, Zelenková M, Kuběna AA, Dusilová-Sulková S, Tesař V, Zima T. Retinoic acid associates with mortality of patients on long-term hemodialysis. Ren Fail 2022; 44:1866-1872. [DOI: 10.1080/0886022x.2022.2126786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Marta Kalousová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Miroslava Zelenková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Aleš A. Kuběna
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Sylvie Dusilová-Sulková
- Department of Nephrology, University Hospital Hradec Králové and Charles University, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| | - Vladimír Tesař
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
34
|
Friesen L, Kostlan R, Liu Q, Yu H, Zhu J, Lukacs N, Kim CH. Cutting Edge: The Expression of Transcription Inhibitor GFI1 Is Induced by Retinoic Acid to Rein in Th9 Polarization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1237-1242. [PMID: 36165199 PMCID: PMC9522314 DOI: 10.4049/jimmunol.2200328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/07/2022] [Indexed: 11/07/2022]
Abstract
IL-9, produced mainly by specialized T cells, mast cells, and group 2 innate lymphoid cells, regulates immune responses, including anti-helminth and allergic responses. Polarization of naive CD4 T cells into IL-9-producing T cells (Th9s) is induced by IL-4 and TGF-β1 or IL-1β. In this article, we report that the transcription factor growth factor-independent 1 transcriptional repressor (GFI1) plays a negative role in mouse Th9 polarization. Moreover, the expression of GFI1 is controlled by liganded RARα, allowing GFI1 to mediate the negative effect of retinoic acid on IL-9 expression. The Gfi1 gene has multiple RARα binding sites in the promoter region for recruiting nuclear coactivator steroid receptor coactivator-3 and p300 for histone epigenetic modifications in a retinoic acid-dependent manner. Retinoic acid-induced GFI1 binds the Il9 gene and suppresses its expression. Thus, GFI1 is a novel negative regulator of Il9 gene expression. The negative GFI1 pathway for IL-9 regulation provides a potential control point for Th9 activity.
Collapse
Affiliation(s)
- Leon Friesen
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI
| | - Raymond Kostlan
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI
| | - Qingyang Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI
| | - Hao Yu
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IL
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Nicholas Lukacs
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI;
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI
| |
Collapse
|
35
|
Youness RA, Dawoud A, ElTahtawy O, Farag MA. Fat-soluble vitamins: updated review of their role and orchestration in human nutrition throughout life cycle with sex differences. Nutr Metab (Lond) 2022; 19:60. [PMID: 36064551 PMCID: PMC9446875 DOI: 10.1186/s12986-022-00696-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Age and Gender are vital determinants for the micronutrient demands of normal indviduals. Among these micronutrients are vitamins that are required in small amounts for optimum metabolism, homeostasis, and a healthy lifestyle, acting as coenzymes in several biochemical reactions. The majority of previous studies have examined such issues that relates to a specific vitamin or life stage, with the majority merely reporting the effect of either excess or deficiency. Vitamins are classified into water-soluble and fat-soluble components. The fat-soluble vitamins include vitamins (A, D, E, and K). Fat-soluble vitamins were found to have an indisputable role in an array of physiological processes such as immune regulation, vision, bone and mental health. Nonetheless, the fat-soluble vitamins are now considered a prophylactic measurement for a multitude of diseases such as autism, rickets disease, gestational diabetes, and asthma. Herein, in this review, a deep insight into the orchestration of the four different fat-soluble vitamins requirements is presented for the first time across the human life cycle beginning from fertility, pregnancy, adulthood, and senility with an extensive assessment ofthe interactions among them and their underlying mechanistic actions. The influence of sex for each vitamin is also presented at each life stage to highlight the different daily requirements and effects.
Collapse
Affiliation(s)
- Rana A Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt.
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Omar ElTahtawy
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| |
Collapse
|
36
|
Bi G, Liang J, Bian Y, Shan G, Besskaya V, Wang Q, Zhan C. The immunomodulatory role of all-trans retinoic acid in tumor microenvironment. Clin Exp Med 2022:10.1007/s10238-022-00860-x. [PMID: 35829844 DOI: 10.1007/s10238-022-00860-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 12/19/2022]
Abstract
Retinoids are essential nutrients for human beings. Among them, all-trans retinoic acid (ATRA), considered one of the most active metabolites, plays important roles in multiple biological processes. ATRA regulates the transcription of target genes by interacting with nuclear receptors bonded to retinoic acid response elements (RAREs). Besides its differentiation-inducing effect in the treatment of acute promyelocytic leukemia and some solid tumor types, its immunoregulatory role in tumor microenvironment (TME) has attracted considerable attention. ATRA not only substantially abrogates the immunosuppressive effect of tumor-infiltrating myeloid-derived suppressor cells but also activates the anti-tumor effect of CD8 + T cells. Notably, the combination of ATRA with other therapeutic approaches, including immune checkpoint inhibitors (ICIs), tumor vaccines, and chemotherapy, has been extensively investigated in a variety of tumor models and clinical trials. In this review, we summarize the current understanding of the role of ATRA in cancer immunology and immunotherapy, dissect the underlying mechanisms of ATRA-mediated activation or differentiation of different types of immune cells, and explore the potential clinical significance of ATRA-based cancer therapy.
Collapse
Affiliation(s)
- Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Valeria Besskaya
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
37
|
Li Y, Sheng L, Jena PK, Gilbert MC, Wan YJY, Mao H. Retinoic Acid Signaling Is Compromised in DSS-Induced Dysbiosis. Nutrients 2022; 14:2788. [PMID: 35889745 PMCID: PMC9315703 DOI: 10.3390/nu14142788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity and malnutrition both cause dysbiosis and dampen retinoic acid (RA) signaling pathways, which play pivotal roles in biological processes. The current study evaluates a hypothesis that colitis-associated dysbiosis also has systemic negative impacts on RA signaling. Thus, we studied the effects of inflammation, under a vitamin A-sufficient condition, on RA signaling using mouse colitis models induced by dextran sulfate sodium. That data showed that intestinal inflammation resulted in reduced RA signaling in the liver, brain, gut, and adipose tissues measured by analyzing the expression of genes encoding for the synthesis, oxidation, transport, and receptor of RA. The expression of RA-regulated gut homing molecules including α4β7 integrin, and CCR9, along with MADCAM1 were all reduced in colitis mice revealing compromised immunity due to reduced RA signaling. The data also showed that the development of colitis was accompanied by dysbiosis featured with reduced Lactobacillaceae and Verrucomicrobiaceae but an expansion of Erysipelotrichaceae and others. Colitis resulted in reduced butyrate-producing bacteria and increased methane-generating bacteria. Additionally, dysbiosis was associated with induced Il-1β, Ifn-γ, and Tnf-α mRNA but reduced Il-22, Il-17f, and Rorγt transcripts in the colon. Together, intestinal inflammation inhibits RA signaling in multiple organs. RA is essential in regulating various biological processes, it is critical to detect RA signaling reduction in tissues even when vitamin A deficiency is absent. Moreover, probiotics can potentially prevent dysbiosis and reverse compromised RA signaling, having systemic health benefits.
Collapse
Affiliation(s)
- Yongchun Li
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China;
- Department of Infectious Diseases, The Six Affiliated Hospital, South China University of Technology, Foshan 528200, China
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA; (L.S.); (P.K.J.); (M.C.G.)
| | - Lili Sheng
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA; (L.S.); (P.K.J.); (M.C.G.)
| | - Prasant Kumar Jena
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA; (L.S.); (P.K.J.); (M.C.G.)
| | - Miranda Claire Gilbert
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA; (L.S.); (P.K.J.); (M.C.G.)
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA; (L.S.); (P.K.J.); (M.C.G.)
| | - Hua Mao
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China;
| |
Collapse
|
38
|
Niu X, Wang H, Zhao L, Lian P, Bai Y, Li J, Qiao J. All-trans retinoic acid increases the pathogenicity of the H9N2 influenza virus in mice. Virol J 2022; 19:113. [PMID: 35764970 PMCID: PMC9238145 DOI: 10.1186/s12985-022-01809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The H9N2 virus can infect not only birds but also humans. The pathogenicity of H9N2 virus infection is determined by an excessive immune response in the lung. All-trans retinoic acid (ATRA), the active metabolite of vitamin A, plays an important regulatory role and has been widely used in the clinical practice. This study was aimed to investigate whether ATRA could regulate the immune response to H9N2 virus infection in the lungs of mice, thereby reducing the pathogenicity of the H9N2 virus in mice. METHODS Mice were infected intranasally with H9N2 virus, and injected intraperitoneally with 0.2 mL of ATRA at low (1 mg/kg), medium (5 or 10 mg/kg), or high therapeutic dose (20 mg/kg), and toxic dose (40, 60, or 80 mg/kg), once per day for 10 days. Clinical signs, survival rates, and lung gross pathology were compared between the ATRA-treated H9N2-infected group, the ATRA group, and the H9N2-infected group, to investigate the effect of different doses of ATRA on the pathogenicity of H9N2 virus. Additionally, the viral load and cytokine concentration of lungs were measured at 3, 5, 7, and 9 days after infection, to investigate the potential mechanism of ATRA in affecting the pathogenicity of the H9N2 virus. Expression levels of cellular retinoic acid-binding protein 1 (CRABP1), cellular retinoic acid-binding protein 2 (CRABP2), and Retinoic acid-inducible gene-I (RIG-I) were detected using Western blotting. RESULTS The ATRA-treated H9N2-infected mice showed more severe clinical signs compared with the H9N2-infected group. The medium and high therapeutic doses of ATRA reduced the survival rates, aggravated lung tissue damage, decreased the expression of interferon beta (IFN-β), and increased the concentrations of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and C-C motif chemokine ligand 2 (CCL2) in the lungs of the H9N2-infected mice. At the same time, the expression patterns of CRABP1, CRABP2, and RIG-I were changed in mice infected by H9N2 and treated with different concentrations of ATRA. CONCLUSIONS Our findings suggest that the therapeutic dose of ATRA can increase the pathogenicity of the H9N2 virus. Therefore, the consequences of those infected by influenza virus would be more severe after ATRA treatment.
Collapse
Affiliation(s)
- Xiaofei Niu
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.,Department of Veterinary Medicine, College of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Economic and Technological Development Zone, Handan, 056038, People's Republic of China
| | - Hongyan Wang
- Department of Veterinary Medicine, College of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Economic and Technological Development Zone, Handan, 056038, People's Republic of China
| | - Lihong Zhao
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Pengjing Lian
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yu Bai
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jingyun Li
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jian Qiao
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
39
|
Barreto de Albuquerque J, Altenburger LM, Abe J, von Werdt D, Wissmann S, Martínez Magdaleno J, Francisco D, van Geest G, Ficht X, Iannacone M, Bruggmann R, Mueller C, Stein JV. Microbial uptake in oral mucosa-draining lymph nodes leads to rapid release of cytotoxic CD8 + T cells lacking a gut-homing phenotype. Sci Immunol 2022; 7:eabf1861. [PMID: 35714202 DOI: 10.1126/sciimmunol.abf1861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The gastrointestinal (GI) tract constitutes an essential barrier against ingested microbes, including potential pathogens. Although immune reactions are well studied in the lower GI tract, it remains unclear how adaptive immune responses are initiated during microbial challenge of the oral mucosa (OM), the primary site of microbial encounter in the upper GI tract. Here, we identify mandibular lymph nodes (mandLNs) as sentinel lymphoid organs that intercept ingested Listeria monocytogenes (Lm). Oral Lm uptake led to local activation and release of antigen-specific CD8+ T cells that constituted most of the early circulating effector T cell (TEFF) pool. MandLN-primed TEFF disseminated to lymphoid organs, lung, and OM and contributed substantially to rapid elimination of target cells. In contrast to CD8+ TEFF generated in mesenteric LN (MLN) during intragastric infection, mandLN-primed TEFF lacked a gut-seeking phenotype, which correlated with low expression of enzymes required for gut-homing imprinting by mandLN stromal and dendritic cells. Accordingly, mandLN-primed TEFF decreased Lm burden in spleen but not MLN after intestinal infection. Our findings extend the concept of regional specialization of immune responses along the length of the GI tract, with CD8+ TEFF generated in the upper GI tract displaying homing profiles that differ from those imprinted by lymphoid tissue of the lower GI tract.
Collapse
Affiliation(s)
| | - Lukas M Altenburger
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Diego von Werdt
- Division of Experimental Pathology, Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jose Martínez Magdaleno
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - David Francisco
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Xenia Ficht
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Remy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Christoph Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
40
|
Yang Z, Yu M, Li X, Tu Y, Wang C, Lei W, Song M, Wang Y, Huang Y, Ding F, Hao K, Han X, Ni X, Qu L, Shen Z, Hu S. Retinoic acid inhibits the angiogenesis of human embryonic stem cell-derived endothelial cells by activating FBP1-mediated gluconeogenesis. Stem Cell Res Ther 2022; 13:239. [PMID: 35672803 PMCID: PMC9171939 DOI: 10.1186/s13287-022-02908-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endothelial cells are located in the inner lumen of blood and lymphatic vessels and exhibit the capacity to form new vessel branches from existing vessels through a process called angiogenesis. This process is energy intensive and tightly regulated. Glycolysis is the main energy source for angiogenesis. Retinoic acid (RA) is an active metabolite of vitamin A and exerts biological effects through its receptor retinoic acid receptor (RAR). In the clinic, RA is used to treat acne vulgaris and acute promyelocytic leukemia. Emerging evidence suggests that RA is involved in the formation of the vasculature; however, its effect on endothelial cell angiogenesis and metabolism is unclear. METHODS Our study was designed to clarify the abovementioned effect with human embryonic stem cell-derived endothelial cells (hESC-ECs) employed as a cell model. RESULTS We found that RA inhibits angiogenesis, as manifested by decreased proliferation, migration and sprouting activity. RNA sequencing revealed general suppression of glycometabolism in hESC-ECs in response to RA, consistent with the decreased glycolytic activity and glucose uptake. After screening glycometabolism-related genes, we found that fructose-1,6-bisphosphatase 1 (FBP1), a key rate-limiting enzyme in gluconeogenesis, was significantly upregulated after RA treatment. After silencing or pharmacological inhibition of FBP1 in hESC-ECs, the capacity for angiogenesis was enhanced, and the inhibitory effect of RA was reversed. ChIP-PCR demonstrated that FBP1 is a target gene of RAR. When hESC-ECs were treated with the RAR inhibitor BMS493, FBP1 expression was decreased and the effect of RA on angiogenesis was partially blocked. CONCLUSIONS The inhibitory role of RA in glycometabolism and angiogenesis is RAR/FBP1 dependent, and FBP1 may be a novel therapeutic target for pathological angiogenesis.
Collapse
Affiliation(s)
- Zhuangzhuang Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Xuechun Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yuanyuan Tu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Min Song
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yong Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Ying Huang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Fengyue Ding
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Kaili Hao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Xinglong Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Xuan Ni
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
41
|
Prakash S, Kumar Rai A. Retinoic acid increases the cellular cholesterol predominantly in a mTOR-independent manner. Immunol Res 2022; 70:530-536. [PMID: 35585420 DOI: 10.1007/s12026-022-09292-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/04/2022] [Indexed: 11/05/2022]
Abstract
Retinoic acid (RA) plays a role in the mounting immune response and controls several functions of the human body, including cholesterol homeostasis. The synthesis, uptake, and efflux of cellular cholesterol are significantly linked to the mammalian target of rapamycin complex-1 (mTORC1). Activation of mTORC1 promotes the synthesis and uptake of the cholesterol and suppresses its efflux, thus causing accumulation of cellular cholesterol. It is intriguing to know the effect of a high dose of RA on cholesterol accumulation in macrophages (mφ) and whether it is via mTOR activation. It is important to note that the long-term treatment of RA in humans is safe. Therefore, we chose a high dose of RA to observe its effect, which may be implicated in diseases like visceral leishmaniasis, where cholesterol deficiency is established. In the present study, we found the increased expression of RAPTOR, a regulatory component of the mTORC1 complex, in mφ upon treatment with RA. We observed the increased expression of SREBP2, LDLR, and PCSK9 in RA-treated mφ under sufficient cholesterol conditions, which further increased cellular cholesterol levels. Notably, their expressions were decreased when the mTOR pathway was inhibited by rapamycin. However, treatment with rapamycin did not result in the loss of cellular cholesterol in RA-treated mφ. Comparison with rapamycin-treated mφ suggests that RA induces cellular cholesterol levels in a mTORC1-independent manner.
Collapse
Affiliation(s)
- Satya Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, U.P., India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, U.P., India.
| |
Collapse
|
42
|
β-carotene improves fecal dysbiosis and intestinal dysfunctions in a mouse model of vitamin A deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159122. [PMID: 35158041 PMCID: PMC9940628 DOI: 10.1016/j.bbalip.2022.159122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 02/03/2023]
Abstract
Vitamin A deficiency (VAD) results in intestinal inflammation, increased redox stress and reactive oxygen species (ROS) levels, imbalanced inflammatory and immunomodulatory cytokines, compromised barrier function, and perturbations of the gut microbiome. To combat VAD dietary interventions with β-carotene, the most abundant precursor of vitamin A, are recommended. However, the impact of β-carotene on intestinal health during VAD has not been fully clarified, especially regarding the VAD-associated intestinal dysbiosis. Here we addressed this question by using Lrat-/-Rbp-/- (vitamin A deficient) mice deprived of dietary preformed vitamin A and supplemented with β-carotene as the sole source of the vitamin, alongside with WT (vitamin A sufficient) mice. We found that dietary β-carotene impacted intestinal vitamin A status, barrier integrity and inflammation in both WT and Lrat-/-Rbp-/- (vitamin A deficient) mice on the vitamin A-free diet. However, it did so to a greater extent under overt VAD. Dietary β-carotene also modified the taxonomic profile of the fecal microbiome, but only under VAD. Given the similarity of the VAD-associated intestinal phenotypes with those of several other disorders of the gut, collectively known as Inflammatory Bowel Disease (IBD) Syndrome, these findings are broadly relevant to the effort of developing diet-based intervention strategies to ameliorate intestinal pathological conditions.
Collapse
|
43
|
Sidell N, Kane MA. Actions of Retinoic Acid in the Pathophysiology of HIV Infection. Nutrients 2022; 14:nu14081611. [PMID: 35458172 PMCID: PMC9029687 DOI: 10.3390/nu14081611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/05/2023] Open
Abstract
The vitamin A metabolite all-trans retinoic acid (RA) plays a key role in tissue homeostasis and mucosal immunity. RA is produced by gut-associated dendritic cells, which are among the first cells encountered by HIV. Acute HIV infection results in rapid reduction of RA levels and dysregulation of immune cell populations whose identities and function are largely controlled by RA. Here, we discuss the potential link between the roles played by RA in shaping intestinal immune responses and the manifestations and pathogenesis of HIV-associated enteropathy and similar conditions observed in SIV-infected non-human primate models. We also present data demonstrating the ability of RA to enhance the activation of replication-competent viral reservoirs from subjects on suppressive anti-retroviral therapy. The data suggest that retinoid supplementation may be a useful adjuvant for countering the pathologic condition of the gastro-intestinal tract associated with HIV infection and as part of a strategy for reactivating viral reservoirs as a means of depleting latent viral infection.
Collapse
Affiliation(s)
- Neil Sidell
- Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (N.S.); (M.A.K.)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
- Correspondence: (N.S.); (M.A.K.)
| |
Collapse
|
44
|
Bahlool AZ, Grant C, Cryan SA, Keane J, O'Sullivan MP. All trans retinoic acid as a host-directed immunotherapy for tuberculosis. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:54-72. [PMID: 35496824 PMCID: PMC9040133 DOI: 10.1016/j.crimmu.2022.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) is the top bacterial infectious disease killer and one of the top ten causes of death worldwide. The emergence of strains of multiple drug-resistant tuberculosis (MDR-TB) has pushed our available stock of anti-TB agents to the limit of effectiveness. This has increased the urgent need to develop novel treatment strategies using currently available resources. An adjunctive, host-directed therapy (HDT) designed to act on the host, instead of the bacteria, by boosting the host immune response through activation of intracellular pathways could be the answer. The integration of multidisciplinary approaches of repurposing currently FDA-approved drugs, with a targeted drug-delivery platform is a very promising option to reduce the long timeline associated with the approval of new drugs - time that cannot be afforded given the current levels of morbidity and mortality associated with TB infection. The deficiency of vitamin A has been reported to be highly associated with the increased susceptibility of TB. All trans retinoic acid (ATRA), the active metabolite of vitamin A, has proven to be very efficacious against TB both in vitro and in vivo. In this review, we discuss and summarise the importance of vitamin A metabolites in the fight against TB and what is known regarding the molecular mechanisms of ATRA as a host-directed therapy for TB including its effect on macrophages cytokine profile and cellular pathways. Furthermore, we focus on the issues behind why previous clinical trials with vitamin A supplementation have failed, and how these issues might be overcome.
Collapse
Affiliation(s)
- Ahmad Z. Bahlool
- School of Pharmacy and Biomolecular Sciences (PBS), Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, Ireland
- Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, Ireland
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Conor Grant
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences (PBS), Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, Ireland
- Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
- SFI Centre for Research in Medical Devices (CURAM), RCSI, Dublin and National University of Ireland, Galway, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Mary P. O'Sullivan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| |
Collapse
|
45
|
Prakash S, Saini S, Kumari S, Singh B, Kureel AK, Rai AK. Retinoic acid restores the levels of cellular cholesterol in Leishmania donovani infected macrophages by increasing npc1 and npc2 expressions. Biochimie 2022; 198:23-32. [PMID: 35272007 DOI: 10.1016/j.biochi.2022.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/20/2022]
Abstract
Visceral leishmaniasis (VL) is a fatal form among all forms of leishmaniasis and is caused by visceralization of the Leishmania donovani (Ld) parasite to the critical organs. Mild to severe malnutrition is common in VL patients and the deficiency of retinoic acid (RA), an important micronutrient, results in a compromised state of immune response in macrophages (mφ) leading to the increased parasite load. In the continuation of our earlier work, we observed loss of cellular cholesterol in infected mφ in the absence of RA i.e., upon inhibition of RALDH pathway. Moreover, the Leishmania utilizes host cholesterol for the establishment of infection and causes a decrease in the expressions of Niemann-Pick C2 (npc2) and Niemann-Pick C1 (npc1) genes involved in the uptake of extracellular cholesterol. This results in reduced levels of cellular cholesterol in infected mφ. Intrigued by this, as the first sign of our hypothesis, we investigated the presence of RA Response Element (RARE) sequences in the upstream of npc1 and npc2 genes. To functionally confirm this, we measured their expressions and the levels of cellular cholesterol in Ld infected mφ in the absence (i.e., using an inhibitor of RALDH pathway) and presence of RA. We found restoration of the levels of cellular cholesterol in infected mφ under the supplementation of RA resulting in the decreased parasite load. Hence, the supplementation of RA with the standard therapy and/or preventive use of RA could be potentially an advancement in the treatment and cure of VL patients.
Collapse
Affiliation(s)
- Satya Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Sheetal Saini
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Smita Kumari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Bharat Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Amit Kumar Kureel
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India.
| |
Collapse
|
46
|
Yu Z, Xie X, Su X, Lv H, Song S, Liu C, You Y, Tian M, Zhu L, Wang L, Qi J, Zhu Q. ATRA-mediated-crosstalk between stellate cells and Kupffer cells inhibits autophagy and promotes NLRP3 activation in acute liver injury. Cell Signal 2022; 93:110304. [DOI: 10.1016/j.cellsig.2022.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
|
47
|
Govers C, Calder PC, Savelkoul HFJ, Albers R, van Neerven RJJ. Ingestion, Immunity, and Infection: Nutrition and Viral Respiratory Tract Infections. Front Immunol 2022; 13:841532. [PMID: 35296080 PMCID: PMC8918570 DOI: 10.3389/fimmu.2022.841532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Respiratory infections place a heavy burden on the health care system, particularly in the winter months. Individuals with a vulnerable immune system, such as very young children and the elderly, and those with an immune deficiency, are at increased risk of contracting a respiratory infection. Most respiratory infections are relatively mild and affect the upper respiratory tract only, but other infections can be more serious. These can lead to pneumonia and be life-threatening in vulnerable groups. Rather than focus entirely on treating the symptoms of infectious disease, optimizing immune responsiveness to the pathogens causing these infections may help steer towards a more favorable outcome. Nutrition may have a role in such prevention through different immune supporting mechanisms. Nutrition contributes to the normal functioning of the immune system, with various nutrients acting as energy sources and building blocks during the immune response. Many micronutrients (vitamins and minerals) act as regulators of molecular responses of immune cells to infection. It is well described that chronic undernutrition as well as specific micronutrient deficiencies impair many aspects of the immune response and make individuals more susceptible to infectious diseases, especially in the respiratory and gastrointestinal tracts. In addition, other dietary components such as proteins, pre-, pro- and synbiotics, and also animal- and plant-derived bioactive components can further support the immune system. Both the innate and adaptive defense systems contribute to active antiviral respiratory tract immunity. The initial response to viral airway infections is through recognition by the innate immune system of viral components leading to activation of adaptive immune cells in the form of cytotoxic T cells, the production of neutralizing antibodies and the induction of memory T and B cell responses. The aim of this review is to describe the effects of a range different dietary components on anti-infective innate as well as adaptive immune responses and to propose mechanisms by which they may interact with the immune system in the respiratory tract.
Collapse
Affiliation(s)
- Coen Govers
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
| | | | - R. J. Joost van Neerven
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
- Research & Development, FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
48
|
Na-AIP-1 secreted by human hookworms suppresses collagen-induced arthritis. Inflammopharmacology 2022; 30:527-535. [PMID: 35031905 DOI: 10.1007/s10787-021-00909-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/02/2021] [Indexed: 11/05/2022]
Abstract
Proteins from helminths have been posed as new immunomodulatory agents with exciting potential in the treatment of immune-mediated diseases including rheumatoid arthritis (RA). In this study we assess the effects of a helminthic excretory/secretory (ES) protein Na-AIP-1 as monotherapy and in combination with methotrexate (MTX) in the well-described collagen-induced arthritis (CIA) model of RA. CIA was induced in DBA/1 J mice which were treated after the onset of arthritis with Na-AIP-1 monotherapy, MTX or Na-AIP-1 + MTX. The clinical scores for weight, arthritis and paw width were recorded along with joint histology as outcome measures. For the clinical parameters of weight, paw score and paw width, none of the Na-AIP-1 monotherapy, MTX therapy or Na-AIP-1 + MTX combination therapy groups displayed any significant difference when compared to the arthritis control. However, a significant reduction in histological score was identified after both monotherapy (Na-AIP-1: 0.83 ± 0.24 vs Arthritis control: 5.58 ± 1.49, p = 0.0277) and combination therapy (Na-AIP-1 + MTX: 0.55 ± 0.28 vs Arthritis control: 5.58 ± 1.49, p = 0.0233) when compared to arthritis control. Furthermore, Na-AIP-1 as both monotherapy (Na-AIP-1: 0.83 ± 0.24 vs MTX: 5.73 ± 1.82 p = 0.0261) and combination therapy (Na-AIP-1 + MTX: 0.55 ± 0.28 vs MTX: 5.73 ± 1.82, p = 0.0221) also significantly reduced histological score when compared to MTX monotherapy. Na-AIP-1 significantly reduced joint pathology in CIA. The hookworm protein Na-AIP-1 seems to be effective in the treatment of RA as monotherapy and when dosed together with MTX, constituting a potential new candidate for drug development. Research should focus on elucidating the mechanism of Na-AIP-1 action as a means to identify novel targets for therapeutics and to further our current understanding of immunobiology in RA.
Collapse
|
49
|
Chen HY, Hsu M, Lio CWJ. Micro but mighty-Micronutrients in the epigenetic regulation of adaptive immune responses. Immunol Rev 2022; 305:152-164. [PMID: 34820863 PMCID: PMC8766944 DOI: 10.1111/imr.13045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
Micronutrients are essential small molecules required by organisms in minute quantity for survival. For instance, vitamins and minerals, the two major categories of micronutrients, are central for biological processes such as metabolism, cell replication, differentiation, and immune response. Studies estimated that around two billion humans worldwide suffer from micronutrient deficiencies, also known as "hidden hunger," linked to weakened immune responses. While micronutrients affect the immune system at multiple levels, recent studies showed that micronutrients potentially impact the differentiation and function of immune cells as cofactors for epigenetic enzymes, including the 2-oxoglutarate-dependent dioxygenase (2OGDD) family involved in histone and DNA demethylation. Here, we will first provide an overview of the role of DNA methylation in T cells and B cells, followed by the micronutrients ascorbate (vitamin C) and iron, two critical cofactors for 2OGDD. We will discuss the emerging evidence of these micronutrients could regulate adaptive immune response by influencing epigenetic remodeling.
Collapse
Affiliation(s)
| | | | - Chan-Wang Jerry Lio
- Corresponding author: Chan-Wang Jerry Lio (), Address: 460 W 12 Ave, Columbus, Ohio, USA 43064, Tel: (614)-247-5337
| |
Collapse
|
50
|
Proteomic Analysis of Tears and Conjunctival Cells Collected with Schirmer Strips Using timsTOF Pro: Preanalytical Considerations. Metabolites 2021; 12:metabo12010002. [PMID: 35050124 PMCID: PMC8778087 DOI: 10.3390/metabo12010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the human proteome profile of samples collected from whole (W) Schirmer strips (ScS) and their two parts—the bulb (B) and the rest of the strip (R)—with a comprehensive proteomic approach using a trapped ion mobility mass spectrometer, the timsTOF Pro. Eight ScS were collected from two healthy subjects at four different visits to be separated into three batches, i.e., 4W, 4B, and 4R. In total, 1582 proteins were identified in the W, B, and R batches. Among all identified proteins, binding proteins (43.4%) and those with catalytic activity (42.2%) constituted more than 80% of the molecular functions. The most represented biological processes were cellular processes (31.2%), metabolic processes (20.8%), and biological regulation (13.1%). Enzymes were the most represented protein class (41%), consisting mainly of hydrolases (47.5%), oxidoreductases (22.1%), and transferases (16.7%). The bulb (B), which is in contact with the conjunctiva, might collect both tear and cell proteins and therefore promote the identification of more proteins. Processing B and R separately before mass spectrometry (MS) analysis, combined with the high data acquisition speed and the addition of ion-mobility-based separation in the timsTOF Pro, can bring a new dimension to biomarker investigations of a limited sample such as tear fluid.
Collapse
|