1
|
Di Ianni M, Liberatore C, Santoro N, Ranalli P, Guardalupi F, Corradi G, Villanova I, Di Francesco B, Lattanzio S, Passeri C, Lanuti P, Accorsi P. Cellular Strategies for Separating GvHD from GvL in Haploidentical Transplantation. Cells 2024; 13:134. [PMID: 38247827 PMCID: PMC10814899 DOI: 10.3390/cells13020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
GvHD still remains, despite the continuous improvement of transplantation platforms, a fearful complication of transplantation from allogeneic donors. Being able to separate GvHD from GvL represents the greatest challenge in the allogeneic transplant setting. This may be possible through continuous improvement of cell therapy techniques. In this review, current cell therapies are taken into consideration, which are based on the use of TCR alpha/beta depletion, CD45RA depletion, T regulatory cell enrichment, NK-cell-based immunotherapies, and suicide gene therapies in order to prevent GvHD and maximally amplify the GvL effect in the setting of haploidentical transplantation.
Collapse
Affiliation(s)
- Mauro Di Ianni
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carmine Liberatore
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
| | - Nicole Santoro
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
| | - Paola Ranalli
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco Guardalupi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Corradi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ida Villanova
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| | - Barbara Di Francesco
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| | - Stefano Lattanzio
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cecilia Passeri
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Accorsi
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| |
Collapse
|
2
|
Li Q, Wang X, Song Q, Yang S, Wu X, Yang D, Marié IJ, Qin H, Zheng M, Nasri U, Kong X, Wang B, Lizhar E, Cassady K, Tompkins J, Levy D, Martin PJ, Zhang X, Zeng D. Donor T cell STAT3 deficiency enables tissue PD-L1-dependent prevention of graft-versus-host disease while preserving graft-versus-leukemia activity. J Clin Invest 2023; 133:e165723. [PMID: 37526084 PMCID: PMC10378157 DOI: 10.1172/jci165723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/02/2023] [Indexed: 08/02/2023] Open
Abstract
STAT3 deficiency (STAT3-/-) in donor T cells prevents graft-versus-host disease (GVHD), but the impact on graft-versus-leukemia (GVL) activity and mechanisms of GVHD prevention remains unclear. Here, using murine models of GVHD, we show that STAT3-/- donor T cells induced only mild reversible acute GVHD while preserving GVL effects against nonsusceptible acute lymphoblastic leukemia (ALL) cells in a donor T cell dose-dependent manner. GVHD prevention depended on programmed death ligand 1/programmed cell death protein 1 (PD-L1/PD-1) signaling. In GVHD target tissues, STAT3 deficiency amplified PD-L1/PD-1 inhibition of glutathione (GSH)/Myc pathways that regulate metabolic reprogramming in activated T cells, with decreased glycolytic and mitochondrial ATP production and increased mitochondrial ROS production and dysfunction, leading to tissue-specific deletion of host-reactive T cells and prevention of GVHD. Mitochondrial STAT3 deficiency alone did not reduce GSH expression or prevent GVHD. In lymphoid tissues, the lack of host-tissue PD-L1 interaction with PD-1 reduced the inhibition of the GSH/Myc pathway despite reduced GSH production caused by STAT3 deficiency and allowed donor T cell functions that mediate GVL activity. Therefore, STAT3 deficiency in donor T cells augments PD-1 signaling-mediated inhibition of GSH/Myc pathways and augments dysfunction of T cells in GVHD target tissues while sparing T cells in lymphoid tissues, leading to prevention of GVHD while preserving GVL effects.
Collapse
Affiliation(s)
- Qinjian Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Qingxiao Song
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Dongyun Yang
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Isabelle J Marié
- Department of Pathology, NYU Grossman School of Medicine, New York, USA
| | - Hanjun Qin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Moqian Zheng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Ubaydah Nasri
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiaohui Kong
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Bixin Wang
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
| | - Elizabeth Lizhar
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Kaniel Cassady
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Josh Tompkins
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
| | - David Levy
- Department of Pathology, NYU Grossman School of Medicine, New York, USA
| | - Paul J Martin
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
3
|
Zheng Z, Li S, Liu M, Chen C, Zhang L, Zhou D. Fine-Tuning through Generations: Advances in Structure and Production of CAR-T Therapy. Cancers (Basel) 2023; 15:3476. [PMID: 37444586 DOI: 10.3390/cancers15133476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a promising form of immunotherapy that has seen significant advancements in the past few decades. It involves genetically modifying T cells to target cancer cells expressing specific antigens, providing a novel approach to treating various types of cancer. However, the initial success of first-generation CAR-T cells was limited due to inadequate proliferation and undesirable outcomes. Nonetheless, significant progress has been made in CAR-T cell engineering, leading to the development of the latest fifth-generation CAR-T cells that can target multiple antigens and overcome individual limitations. Despite these advancements, some shortcomings prevent the widespread use of CAR-T therapy, including life-threatening toxicities, T-cell exhaustion, and inadequate infiltration for solid tumors. Researchers have made considerable efforts to address these issues by developing new strategies for improving CAR-T cell function and reducing toxicities. This review provides an overview of the path of CAR-T cell development and highlights some of the prominent advances in its structure and manufacturing process, which include the strategies to improve antigen recognition, enhance T-cell activation and persistence, and overcome immune escape. Finally, the review briefly covers other immune cells for cancer therapy and ends with the discussion on the broad prospects of CAR-T in the treatment of various diseases, not just hematological tumors, and the challenges that need to be addressed for the widespread clinical application of CAR-T cell therapies.
Collapse
Affiliation(s)
- Zhibo Zheng
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Siyuan Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mohan Liu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chuyan Chen
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100730, China
| | - Lu Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
4
|
Lederer K, Maillard I. New mechanisms of GVHD suppression by Tregs. Blood 2023; 141:1655-1657. [PMID: 37022736 PMCID: PMC10113171 DOI: 10.1182/blood.2022019396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Affiliation(s)
| | - Ivan Maillard
- University of Pennsylvania Perelman School of Medicine
| |
Collapse
|
5
|
Hess NJ, Kink JA, Hematti P. Exosomes, MDSCs and Tregs: A new frontier for GVHD prevention and treatment. Front Immunol 2023; 14:1143381. [PMID: 37063900 PMCID: PMC10090348 DOI: 10.3389/fimmu.2023.1143381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The development of graft versus host disease (GVHD) represents a long-standing complication of allogeneic hematopoietic cell transplantation (allo-HCT). Different approaches have been used to control the development of GVHD with most relying on variations of chemotherapy drugs to eliminate allo-reactive T cells. While these approaches have proven effective, it is generally accepted that safer, and less toxic GVHD prophylaxis drugs are required to reduce the health burden placed on allo-HCT recipients. In this review, we will summarize the emerging concepts revolving around three biologic-based therapies for GVHD using T regulatory cells (Tregs), myeloid-derived-suppressor-cells (MDSCs) and mesenchymal stromal cell (MSC) exosomes. This review will highlight how each specific modality is unique in its mechanism of action, but also share a common theme in their ability to preferentially activate and expand Treg populations in vivo. As these three GVHD prevention/treatment modalities continue their path toward clinical application, it is imperative the field understand both the biological advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - John A. Kink
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Peiman Hematti
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
6
|
Teng Y, Xia L, Huang Z, Yao L, Wu Q. Long noncoding RNA LINC01882 ameliorates aGVHD via skewing CD4 + T cell differentiation toward Treg cells. Am J Physiol Cell Physiol 2023; 324:C395-C406. [PMID: 36409171 DOI: 10.1152/ajpcell.00323.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a severe T cell-mediated immune response after allogeneic hematopoietic stem cell transplantation (allo-HSCT), the molecular mechanisms remain to be elucidated and novel treatments are necessary to be developed. In the present study, we found that the expression of long noncoding RNA (lncRNA) LINC01882 decreased significantly in the peripheral blood CD4+ T lymphocytes of patients with aGVHD than non-aGVHD patients. In addition, lncRNA LINC01882 overexpression promoted Treg differentiation but exhibited no effects on Th17 percentages, while its knockdown resulted in opposite effects. Mechanistically, lncRNA LINC01882 could competitively bind with let-7b-5p to prevent the degradation of its target gene smad2, which acts as a promoter in Treg differentiation. Furthermore, the mice cotransplanted with LINC01882-overexpressed CD4+ T cells with PBMCs had a lower histological GVHD score and higher survival rate compared with control mice. In conclusion, our study discloses a novel LINC01882/let-7b-5p/smad2 pathway in the modulation of aGVHD and indicates that lncRNA LINC01882 could be a promising biomarker and therapeutic target for patients with aGVHD.
Collapse
Affiliation(s)
- Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenli Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Bulygin AS, Khantakova JN, Shkaruba NS, Shiku H, Sennikov SS. The role of metabolism on regulatory T cell development and its impact in tumor and transplantation immunity. Front Immunol 2022; 13:1016670. [PMID: 36569866 PMCID: PMC9767971 DOI: 10.3389/fimmu.2022.1016670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory CD4+ T (Treg) cells play a key role in the induction of immune tolerance and in the prevention of autoimmune diseases. Treg cells are defined by the expression of transcription factor FOXP3, which ensures proliferation and induction of the suppressor activity of this cell population. In a tumor microenvironment, after transplantation or during autoimmune diseases, Treg cells can respond to various signals from their environment and this property ensures their suppressor function. Recent studies showed that a metabolic signaling pathway of Treg cells are essential in the control of Treg cell proliferation processes. This review presents the latest research highlights on how the influence of extracellular factors (e.g. nutrients, vitamins and metabolites) as well as intracellular metabolic signaling pathways regulate tissue specificity of Treg cells and heterogeneity of this cell population. Understanding the metabolic regulation of Treg cells should provide new insights into immune homeostasis and disorders along with important therapeutic implications for autoimmune diseases, cancer and other immune-system-mediated disorders.
Collapse
|
8
|
Tian L, Ogretmen B, Chung BY, Yu XZ. Sphingolipid metabolism in T cell responses after allogeneic hematopoietic cell transplantation. Front Immunol 2022; 13:904823. [PMID: 36052066 PMCID: PMC9425084 DOI: 10.3389/fimmu.2022.904823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapy against hematopoietic malignancies. The infused donor lymphocytes attack malignant cells and normal tissues, termed a graft-verse-leukemia (GVL) effect and graft-verse-host (GVH) response or disease (GVHD), respectively. Although engineering techniques toward donor graft selection have made HCT more specific and effective, primary tumor relapse and GVHD are still major concerns post allo-HCT. High-dose systemic steroids remain to be the first line of GVHD treatment, which may lead to steroid-refractory GVHD with a dismal outcome. Therefore, identifying novel therapeutic strategies that prevent GVHD while preserving GVL activity is highly warranted. Sphingolipid metabolism and metabolites play pivotal roles in regulating T-cell homeostasis and biological functions. In this review, we summarized the recent research progress in this evolving field of sphingolipids with a focus on alloreactive T-cell responses in the context of allo-HCT. We discussed how sphingolipid metabolism regulates T-cell mediated GVH and GVL responses in allo-HCT and presented the rationale and means to target sphingolipid metabolism for the control of GVHD and leukemia relapse.
Collapse
Affiliation(s)
- Linlu Tian
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Brian Y. Chung
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Xue-Zhong Yu,
| |
Collapse
|
9
|
Thangavelu G, Andrejeva G, Bolivar-Wagers S, Jin S, Zaiken MC, Loschi M, Aguilar EG, Furlan SN, Brown CC, Lee YC, Hyman CM, Feser CJ, Panoskaltsis-Mortari A, Hippen KL, MacDonald KP, Murphy WJ, Maillard I, Hill GR, Munn DH, Zeiser R, Kean LS, Rathmell JC, Chi H, Noelle RJ, Blazar BR. Retinoic acid signaling acts as a rheostat to balance Treg function. Cell Mol Immunol 2022; 19:820-833. [PMID: 35581350 PMCID: PMC9243059 DOI: 10.1038/s41423-022-00869-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 04/14/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T cells (Tregs) promote immune homeostasis by maintaining self-tolerance and regulating inflammatory responses. Under certain inflammatory conditions, Tregs can lose their lineage stability and function. Previous studies have reported that ex vivo exposure to retinoic acid (RA) enhances Treg function and stability. However, it is unknown how RA receptor signaling in Tregs influences these processes in vivo. Herein, we employed mouse models in which RA signaling is silenced by the expression of the dominant negative receptor (DN) RARα in all T cells. Despite the fact that DNRARα conventional T cells are hypofunctional, Tregs had increased CD25 expression, STAT5 pathway activation, mTORC1 signaling and supersuppressor function. Furthermore, DNRARα Tregs had increased inhibitory molecule expression, amino acid transporter expression, and metabolic fitness and decreased antiapoptotic proteins. Supersuppressor function was observed when wild-type mice were treated with a pharmacologic pan-RAR antagonist. Unexpectedly, Treg-specific expression of DNRARα resulted in distinct phenotypes, such that a single allele of DNRARα in Tregs heightened their suppressive function, and biallelic expression led to loss of suppression and autoimmunity. The loss of Treg function was not cell intrinsic, as Tregs that developed in a noninflammatory milieu in chimeric mice reconstituted with DNRARα and wild-type bone marrow maintained the enhanced suppressive capacity. Fate mapping suggested that maintaining Treg stability in an inflammatory milieu requires RA signaling. Our findings indicate that RA signaling acts as a rheostat to balance Treg function in inflammatory and noninflammatory conditions in a dose-dependent manner.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Gabriela Andrejeva
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara Bolivar-Wagers
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Sujeong Jin
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Michael C Zaiken
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Michael Loschi
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Ethan G Aguilar
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Scott N Furlan
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chrysothemis C Brown
- Howard Hughes Medical Institute, Immunology Program, and Ludwig Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Chi Lee
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, USA
| | - Cameron McDonald Hyman
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Colby J Feser
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | | - Keli L Hippen
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Kelli P MacDonald
- Department of Immunology, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute and School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - David H Munn
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Robert Zeiser
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Centre, Freiburg, Germany
| | - Leslie S Kean
- Boston Children's Hospital and the Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jeffrey C Rathmell
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, USA
| | - Bruce R Blazar
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Abnormal body composition related to the early clinical adverse outcome after HSCT. Bone Marrow Transplant 2022; 57:1191-1193. [PMID: 35461359 DOI: 10.1038/s41409-022-01687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
|
11
|
Liu Y, Wang G, Chai D, Dang Y, Zheng J, Li H. iNKT: A new avenue for CAR-based cancer immunotherapy. Transl Oncol 2022; 17:101342. [PMID: 35063813 PMCID: PMC8784340 DOI: 10.1016/j.tranon.2022.101342] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/16/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell is a T lymphocyte-based immunotherapy, which achieves great successes in treating blood malignancies and provides new hope to cue advanced cancer patients. Invariant natural killer T (iNKT) cells are a kind of special T lymphocytes characterized by expressing invariant TCR of Vα24Vβ11 to recognize CD1d-presented glycolipid antigens, which bridge innate and adaptive immune responses. iNKT cells themselves show strong anti-tumor effect in tumor models via CD1d-mediated killing of CD1d-positive tumor cells and immunosuppressive TAMs and MDSCs, and are closely related to the prognosis of cancer patients. iNKT cells are not restricted to polymorphic human leukocyte antigen (HLA) and can prevent Graft versus Host Disease (GvHD), which makes it to be an ideal CAR vector for allogeneic therapy. Although CAR-iNKT was developed and verified by several different teams and attracts more and more attentions, many obstacles are still needed to be resolved before obtaining CAR-iNKT therapeutics. In this review, we summarized the current status of clinical application of iNKT cells and the latest achievements of CAR-iNKT cells, which provides new insight in CAR-iNKT development and usages.
Collapse
Affiliation(s)
- Yilin Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yuanyuan Dang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| |
Collapse
|
12
|
Wang S, Wang D, Chang Y, Geng L, Qiang P, Sun G, Tang B, Zhao X, Zhou Z, Liu H. Elevated RAP1A expression correlates with the severity of acute GVHD after umbilical cord blood transplantation. Transpl Immunol 2022; 71:101546. [DOI: 10.1016/j.trim.2022.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022]
|
13
|
Mhandire K, Saggu K, Buxbaum NP. Immunometabolic Therapeutic Targets of Graft-versus-Host Disease (GvHD). Metabolites 2021; 11:736. [PMID: 34822394 PMCID: PMC8619522 DOI: 10.3390/metabo11110736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative option in the treatment of aggressive malignant and non-malignant blood disorders. However, the benefits of allo-HSCT can be compromised by graft-versus-host disease (GvHD), a prevalent and morbid complication of allo-HSCT. GvHD occurs when donor immune cells mount an alloreactive response against host antigens due to histocompatibility differences between the donor and host, which may result in extensive tissue injury. The reprogramming of cellular metabolism is a feature of GvHD that is associated with the differentiation of donor CD4+ cells into the pathogenic Th1 and Th17 subsets along with the dysfunction of the immune-suppressive protective T regulatory cells (Tregs). The activation of glycolysis and glutaminolysis with concomitant changes in fatty acid oxidation metabolism fuel the anabolic activities of the proliferative alloreactive microenvironment characteristic of GvHD. Thus, metabolic therapies such as glycolytic enzyme inhibitors and fatty acid metabolism modulators are a promising therapeutic strategy for GvHD. We comprehensively review the role of cellular metabolism in GvHD pathogenesis, identify candidate therapeutic targets, and describe potential strategies for augmenting immunometabolism to ameliorate GvHD.
Collapse
|
14
|
Mohamed FA, Thangavelu G, Rhee SY, Sage PT, O’Connor RS, Rathmell JC, Blazar BR. Recent Metabolic Advances for Preventing and Treating Acute and Chronic Graft Versus Host Disease. Front Immunol 2021; 12:757836. [PMID: 34712243 PMCID: PMC8546182 DOI: 10.3389/fimmu.2021.757836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023] Open
Abstract
The therapeutic efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by the development of graft-versus-host disease (GVHD). In GVHD, rigorous pre-conditioning regimen resets the immune landscape and inflammatory milieu causing immune dysregulation, characterized by an expansion of alloreactive cells and a reduction in immune regulatory cells. In acute GVHD (aGVHD), the release of damage- and pathogen- associated molecular patterns from damaged tissue caused by the conditioning regimen sets the stage for T cell priming, activation and expansion further exacerbating tissue injury and organ damage, particularly in the gastrointestinal tract. Studies have shown that donor T cells utilize multiple energetic and biosynthetic pathways to mediate GVHD that can be distinct from the pathways used by regulatory T cells for their suppressive function. In chronic GVHD (cGVHD), donor T cells may differentiate into IL-21 producing T follicular helper cells or tissue resident T helper cells that cooperate with germinal center B cells or memory B cells, respectively, to produce allo- and auto-reactive antibodies with subsequent tissue fibrosis. Alternatively, donor T cells can become IFN- γ/IL-17 cytokine expressing T cells that mediate sclerodermatous skin injury. Patients refractory to the first line standard regimens for GVHD treatment have a poor prognosis indicating an urgent need for new therapies to restore the balance between effector and regulatory immune cells while preserving the beneficial graft-versus-tumor effect. Emerging data points toward a role for metabolism in regulating these allo- and auto-immune responses. Here, we will discuss the preclinical and clinical data available on the distinct metabolic demands of acute and chronic GVHD and recent efforts in identifying therapeutic targets using metabolomics. Another dimension of this review will examine the changing microbiome after allo-HSCT and the role of microbial metabolites such as short chain fatty acids and long chain fatty acids on regulating immune responses. Lastly, we will examine the metabolic implications of coinhibitory pathway blockade and cellular therapies in allo-HSCT. In conclusion, greater understanding of metabolic pathways involved in immune cell dysregulation during allo-HSCT may pave the way to provide novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Fathima A. Mohamed
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Govindarajan Thangavelu
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Stephanie Y. Rhee
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Peter T. Sage
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Roddy S. O’Connor
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| |
Collapse
|
15
|
Maas-Bauer K, Lohmeyer JK, Hirai T, Ramos TL, Fazal FM, Litzenburger UM, Yost KE, Ribado JV, Kambham N, Wenokur AS, Lin PY, Alvarez M, Mavers M, Baker J, Bhatt AS, Chang HY, Simonetta F, Negrin RS. Invariant natural killer T-cell subsets have diverse graft-versus-host-disease-preventing and antitumor effects. Blood 2021; 138:858-870. [PMID: 34036317 PMCID: PMC8432044 DOI: 10.1182/blood.2021010887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a T-cell subset with potent immunomodulatory properties. Experimental evidence in mice and observational studies in humans indicate that iNKT cells have antitumor potential as well as the ability to suppress acute and chronic graft-versus-host-disease (GVHD). Murine iNKT cells differentiate during thymic development into iNKT1, iNKT2, and iNKT17 sublineages, which differ transcriptomically and epigenomically and have subset-specific developmental requirements. Whether distinct iNKT sublineages also differ in their antitumor effect and their ability to suppress GVHD is currently unknown. In this work, we generated highly purified murine iNKT sublineages, characterized their transcriptomic and epigenomic landscape, and assessed specific functions. We show that iNKT2 and iNKT17, but not iNKT1, cells efficiently suppress T-cell activation in vitro and mitigate murine acute GVHD in vivo. Conversely, we show that iNKT1 cells display the highest antitumor activity against murine B-cell lymphoma cells both in vitro and in vivo. Thus, we report for the first time that iNKT sublineages have distinct and different functions, with iNKT1 cells having the highest antitumor activity and iNKT2 and iNKT17 cells having immune-regulatory properties. These results have important implications for the translation of iNKT cell therapies to the clinic for cancer immunotherapy as well as for the prevention and treatment of GVHD.
Collapse
Affiliation(s)
- Kristina Maas-Bauer
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
- Department of Hematology, Oncology, and Stem Cell Transplantation, University of Freiburg Medical Center, Freiburg, Germany
| | - Juliane K Lohmeyer
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| | - Toshihito Hirai
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| | - Teresa Lopes Ramos
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| | | | | | | | | | | | - Arielle S Wenokur
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| | - Po-Yu Lin
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| | - Maite Alvarez
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| | - Melissa Mavers
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
- Division of Stem Cell Transplantation and Regenerative Medicine, Bass Center for Childhood Cancer and Blood Diseases, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| | - Ami S Bhatt
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
- Department of Genetics, and
- Division of Hematology and
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes
- Howard Hughes Medical Institute, Stanford University, Stanford, CA
| | - Federico Simonetta
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; and
- Translational Research Center for Oncohematology, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| |
Collapse
|
16
|
Hefazi M, Bolivar-Wagers S, Blazar BR. Regulatory T Cell Therapy of Graft-versus-Host Disease: Advances and Challenges. Int J Mol Sci 2021; 22:9676. [PMID: 34575843 PMCID: PMC8469916 DOI: 10.3390/ijms22189676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
Graft-versus-host disease (GVHD) is the leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Immunomodulation using regulatory T cells (Tregs) offers an exciting option to prevent and/or treat GVHD as these cells naturally function to maintain immune homeostasis, can induce tolerance following HSCT, and have a tissue reparative function. Studies to date have established a clinical safety profile for polyclonal Tregs. Functional enhancement through genetic engineering offers the possibility of improved potency, specificity, and persistence. In this review, we provide the most up to date preclinical and clinical data on Treg cell therapy with a particular focus on GVHD. We discuss the different Treg subtypes and highlight the pharmacological and genetic approaches under investigation to enhance the application of Tregs in allo-HSCT. Lastly, we discuss the remaining challenges for optimal clinical translation and provide insights as to future directions of the field.
Collapse
Affiliation(s)
- Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sara Bolivar-Wagers
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| |
Collapse
|
17
|
Li X, Li Y, Yu Q, Qian P, Huang H, Lin Y. Metabolic reprogramming of myeloid-derived suppressor cells: An innovative approach confronting challenges. J Leukoc Biol 2021; 110:257-270. [PMID: 34075637 PMCID: PMC8361984 DOI: 10.1002/jlb.1mr0421-597rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Immune cells such as T cells, macrophages, dendritic cells, and other immunoregulatory cells undergo metabolic reprogramming in cancer and inflammation-derived microenvironment to meet specific physiologic and functional demands. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are characterized by immunosuppressive activity, which plays a key role in host immune homeostasis. In this review, we have discussed the core metabolic pathways, including glycolysis, lipid and fatty acid biosynthesis, and amino acid metabolism in the MDSCs under various pathologic situations. Metabolic reprogramming is a determinant of the phenotype and functions of MDSCs, and is therefore a novel therapeutic possibility in various diseases.
Collapse
Affiliation(s)
- Xiaoqing Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| | - Yixue Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| | - Qinru Yu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| | - Pengxu Qian
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| | - Yu Lin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| |
Collapse
|
18
|
Tkachev V, Kaminski J, Potter EL, Furlan SN, Yu A, Hunt DJ, McGuckin C, Zheng H, Colonna L, Gerdemann U, Carlson J, Hoffman M, Olvera J, English C, Baldessari A, Panoskaltsis-Mortari A, Watkins B, Qayed M, Suessmuth Y, Betz K, Bratrude B, Langston A, Horan JT, Ordovas-Montanes J, Shalek AK, Blazar BR, Roederer M, Kean LS. Spatiotemporal single-cell profiling reveals that invasive and tissue-resident memory donor CD8 + T cells drive gastrointestinal acute graft-versus-host disease. Sci Transl Med 2021; 13:13/576/eabc0227. [PMID: 33441422 DOI: 10.1126/scitranslmed.abc0227] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
Organ infiltration by donor T cells is critical to the development of acute graft-versus-host disease (aGVHD) in recipients after allogeneic hematopoietic stem cell transplant (allo-HCT). However, deconvoluting the transcriptional programs of newly recruited donor T cells from those of tissue-resident T cells in aGVHD target organs remains a challenge. Here, we combined the serial intravascular staining technique with single-cell RNA sequencing to dissect the tightly connected processes by which donor T cells initially infiltrate tissues and then establish a pathogenic tissue residency program in a rhesus macaque allo-HCT model that develops aGVHD. Our results enabled creation of a spatiotemporal map of the transcriptional programs controlling donor CD8+ T cell infiltration into the primary aGVHD target organ, the gastrointestinal (GI) tract. We identified the large and small intestines as the only two sites demonstrating allo-specific, rather than lymphodepletion-driven, T cell infiltration. GI-infiltrating donor CD8+ T cells demonstrated a highly activated, cytotoxic phenotype while simultaneously developing a canonical tissue-resident memory T cell (TRM) transcriptional signature driven by interleukin-15 (IL-15)/IL-21 signaling. We found expression of a cluster of genes directly associated with tissue invasiveness, including those encoding adhesion molecules (ITGB2), specific chemokines (CCL3 and CCL4L1) and chemokine receptors (CD74), as well as multiple cytoskeletal proteins. This tissue invasion transcriptional signature was validated by its ability to discriminate the CD8+ T cell transcriptome of patients with GI aGVHD from those of GVHD-free patients. These results provide insights into the mechanisms controlling tissue occupancy of target organs by pathogenic donor CD8+ TRM cells during aGVHD in primate transplant recipients.
Collapse
Affiliation(s)
- Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - James Kaminski
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - E Lake Potter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20858, USA
| | - Scott N Furlan
- Fred Hutchinson Cancer Research Center, Department of Pediatrics, University of Washington, Seattle, WA 98109, USA
| | - Alison Yu
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel J Hunt
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Connor McGuckin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hengqi Zheng
- University of Washington, Seattle, WA 98195, USA
| | - Lucrezia Colonna
- Fred Hutchinson Cancer Research Center, Department of Pediatrics, University of Washington, Seattle, WA 98109, USA
| | - Ulrike Gerdemann
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Michelle Hoffman
- Fred Hutchinson Cancer Research Center, Department of Pediatrics, University of Washington, Seattle, WA 98109, USA
| | - Joe Olvera
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Chris English
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | | | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55454, USA
| | | | - Muna Qayed
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Kayla Betz
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Brandi Bratrude
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - John T Horan
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jose Ordovas-Montanes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Division of Gastroenterology, Boston Children's Hospital and Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55454, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20858, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Immunometabolism in haematopoietic stem cell transplantation and adoptive cellular therapies. Curr Opin Hematol 2021; 27:353-359. [PMID: 33003083 DOI: 10.1097/moh.0000000000000615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Controlling T cell activity through metabolic manipulation has become a prominent feature in immunology and practitioners of both adoptive cellular therapy (ACT) and haematopoietic stem cell transplantation (HSCT) have utilized metabolic interventions to control T cell function. This review will survey recent metabolic research efforts in HSCT and ACT to paint a broad picture of immunometabolism and highlight advances in each area. RECENT FINDINGS In HSCT, recent publications have focused on modifying reactive oxygen species, sirtuin signalling or the NAD salvage pathway within alloreactive T cells and regulatory T cells. In ACT, metabolic interventions that bolster memory T cell development, increase mitochondrial density and function, or block regulatory signals in the tumour microenvironment (TME) have recently been published. SUMMARY Metabolic interventions control immune responses. In ACT, efforts seek to improve the in-vivo metabolic fitness of T cells, while in HSCT energies have focused on blocking alloreactive T cell expansion or promoting regulatory T cells. Methods to identify new, metabolically targetable pathways, as well as the ability of metabolic biomarkers to predict disease onset and therapeutic response, will continue to advance the field towards clinically applicable interventions.
Collapse
|
20
|
Liu Y, Hoang TK, Taylor CM, Park ES, Freeborn J, Luo M, Roos S, Rhoads JM. Limosilactobacillus reuteri and Lacticaseibacillus rhamnosus GG differentially affect gut microbes and metabolites in mice with Treg deficiency. Am J Physiol Gastrointest Liver Physiol 2021; 320:G969-G981. [PMID: 33787352 PMCID: PMC8285589 DOI: 10.1152/ajpgi.00072.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/31/2023]
Abstract
Treg deficiency causes a lethal, CD4+ T cell-driven autoimmune disease called IPEX syndrome (immunodysregulation, polyendocrinopathy, and enteropathy, with X-linked inheritance) in humans and in the scurfy (SF) mouse, a mouse model of the disease. Feeding Limosilactobacillus reuteri DSM 17938 (LR 17938, LR) to SF mice reprograms the gut microbiota, reduces disease progression, and prolongs lifespan. However, the efficacy and mechanism of LR, compared with other probiotics, in producing these effects is unknown. We compared LR with Lacticaseibacillus rhamnosus GG (LGG), an extensively investigated probiotic. LR was more effective than LGG in prolonging survival. Both probiotics restored the fecal microbial alpha diversity, but they produced distinct fecal bacterial clusters and differentially modulated microbial relative abundance (RA). LR increased the RA of phylum_Firmicutes, genus_Oscillospira whereas LR reduced phylum_Bacteroidetes, genus_Bacteroides and genus_Parabacteroides, reversing changes attributed to the SF phenotype. LGG primarily reduced the RA of genus_Bacteroides. Both LR and LGG reduced the potentially pathogenic taxon class_γ-proteobacteria. Plasma metabolomics revealed substantial differences among 696 metabolites. We observed similar changes of many clusters of metabolites in SF mice associated with treatment with either LR or LGG. However, a unique effect of LR was to increase the abundance of plasma adenosine metabolites such as inosine, which we previously showed had immune modulatory effects. In conclusion: 1) different probiotics produce distinct signatures in the fecal microbial community in mice with Treg deficiency; and 2) when comparing different probiotics, there are strain-specific microbial products with different anti-inflammatory properties, reinforcing the concept that "one size does not fit all" in the treatment of autoimmune disease.NEW & NOTEWORTHY In the treatment of Treg-deficiency-induced autoimmunity, Limosilactobacillus reuteri DSM 17938 (LR) showed greater efficacy than Lacticaseibacillus rhamnosus GG (LGG). The study demonstrated that two different probiotics produce distinct signatures in the fecal microbial community in mice with Treg deficiency, but with many similarities in global plasma metabolites in general. However, there are strain-specific microbial products with different anti-inflammatory properties, reinforcing the concept that "one size does not fit all" in the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Yuying Liu
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Thomas K Hoang
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, Louisiana
| | - Evelyn S Park
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jasmin Freeborn
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, Louisiana
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia AB, Stockholm, Sweden
| | - J Marc Rhoads
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
21
|
Hagiwara S, Watanabe T, Kudo M, Minaga K, Komeda Y, Kamata K, Kimura M, Hayashi H, Nakagawa K, Ueshima K, Minami Y, Aoki T, Takita M, Morita M, Cishina H, Ida H, Park AM, Nishida N. Clinicopathological analysis of hepatic immune-related adverse events in comparison with autoimmune hepatitis and graft-versus host disease. Sci Rep 2021; 11:9242. [PMID: 33927311 PMCID: PMC8085223 DOI: 10.1038/s41598-021-88824-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) are widely used to treat advanced metastatic cancers. Neutralisation of PD-1 or CTLA-4 by ICIs results in immune-related adverse events (irAEs). The clinicopathological features of twelve patients with hepatic irAEs were evaluated and compared to those of ten patients with autoimmune hepatitis (AIH) or graft-versus-host disease (GVHD). No significant difference was seen in serum levels of transaminases, whereas serum levels of IgG and anti-nuclear antibody were higher in patients with AIH than in those with GVHD or hepatic irAEs. Inflammation was limited to the liver lobes in patients with GVHD or hepatic irAEs, whereas patients with AIH exhibited both portal and lobular inflammation. Immunohistochemical analyses revealed a predominant infiltration of CD8+ T cells and defective accumulation of regulatory T cells (Tregs) expressing forkhead box p3 (FOXP3) in the lobular areas of patients with hepatic irAEs and GVHD. In contrast, periportal lesions of patients with AIH were characterised by an infiltration of CD4+ T cells, CD8+ T cells, CD20+ B cells, and FOXP3+ Tregs. Overall, the activation of CD8+ T cells in the absence of activation of Tregs potentially underlies the immunopathogenesis of hepatic irAEs.
Collapse
Affiliation(s)
- Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Yoriaki Komeda
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Masatomo Kimura
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuomi Ueshima
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Masahiro Takita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Masahiro Morita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hirokazu Cishina
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hiroshi Ida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| |
Collapse
|
22
|
Chen J, Yang J, Li H, Yang Z, Zhang X, Li X, Wang J, Zhang Y, Chen S, Song M. Single-cell transcriptomics reveal the intratumoral landscape of infiltrated T-cell subpopulations in oral squamous cell carcinoma. Mol Oncol 2021; 15:866-886. [PMID: 33513276 PMCID: PMC8024729 DOI: 10.1002/1878-0261.12910] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 12/21/2022] Open
Abstract
Systematic analysis of tumor-infiltrating lymphocytes is essential for the development of new cancer treatments and the prediction of clinical responses to immunotherapy. Immunomodulatory drugs are used for the treatment of oral squamous cell carcinoma (OSCC), depending on immune infiltration profiles of the tumor microenvironment. In this study, we isolated 11,866 single T cells from tumors and paired adjacent normal tissues of three patients with OSCC. Using single-cell RNA sequencing, we identified 14 distinct T-cell subpopulations within the tumors and 5 T-cell subpopulations in the adjacent normal tissues and delineated their developmental trajectories. Exhausted CD8+ T cells and regulatory CD4+ T cells (CD4+ Tregs) were enriched in OSCC tumors, potentially linked to tumor immunosuppression. Programmed death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) were identified as marker genes in exhausted CD8+ T cells, whereas forkhead box P3 (FOXP3) and CTLA4 were identified as markers of CD4+ Tregs. Furthermore, our data revealed that thymocyte selection-associated high-mobility group box (TOX) may be a key regulator of T-cell dysfunction in the OSCC microenvironment. Overexpression of TOX upregulated expression of genes related to T-cell dysfunction. In vitro experiments demonstrated that cytotoxic activity and proliferation efficiency of CD8+ T cells overexpressing PD-1 or TOX were reduced. Notable, the transcription factor PRDM1 was found to transactivate TOX expression via a binding motif in the TOX promoter. Our findings provide valuable insight into the functional states and heterogeneity of T-cell populations in OSCC that could advance the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jingtao Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiefeng Yang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huan Li
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongyuan Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xing Zhang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiyuan Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jia Wang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Zhang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuwei Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ming Song
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
23
|
Thymopoiesis, Alterations in Dendritic Cells and Tregs, and Reduced T Cell Activation in Successful Extracorporeal Photopheresis Treatment of GVHD. J Clin Immunol 2021; 41:1016-1030. [PMID: 33651234 PMCID: PMC8249294 DOI: 10.1007/s10875-021-00991-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a significant complication of allogeneic hematopoietic stem cell transplant (HSCT) and negatively affects T cell reconstitution. Extracorporeal photopheresis (ECP) reduces aGVHD, but the mechanisms remain incompletely understood. Our objective was to examine the impact of ECP on thymopoiesis in pediatric aGVHD and the mechanisms at a cellular and transcriptional level. Sixteen pediatric HSCT patients were recruited: 6 with ECP-treated aGVHD, 5 without aGVHD, and 5 with aGVHD treated with corticosteroids only. Thymopoiesis was evaluated by measuring naive T cells, TRECs, IL-7, and T cell receptor repertoire diversity. Regulatory T cell (Treg) enumeration and function and dendritic cell (DC) enumeration and phenotype were analyzed using flow cytometry. T cell transcriptome analysis was performed on ECP patients after treatment and responders pre- and post-treatment. Four ECP responders demonstrated thymic-dependent T cell recovery, and superior median naïve T cell numbers at 8 and 12 months post-HSCT compared to the aGVHD corticosteroid group. Increased Tregs and Treg suppressive function, reduced cDC/pDC and DC co-stimulatory marker expression in ECP responders suggest upregulated peripheral tolerance; these findings were not observed in partial responders. Responder post-ECP CD3+ T cell transcriptional profile demonstrated 3333 downregulated and 364 upregulated genes, with significant downregulation of ERRα and GαS pathways, and reduced expression of pro-inflammatory and adhesion proteins. Thymic function improves with successful ECP treatment. ECP reduces T cell activation and impacts peripheral tolerance via DCs and Tregs. Differences in thymic recovery, DC, and Treg cellular patterns and the T cell transcriptome were observed between ECP responders and partial responders and require further validation and investigation in additional patients.
Collapse
|
24
|
Immunopathology and biology-based treatment of steroid-refractory graft-versus-host disease. Blood 2021; 136:429-440. [PMID: 32526035 DOI: 10.1182/blood.2019000953] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Acute graft-versus-host disease (GVHD) is 1 of the major life-threating complications after allogeneic cell transplantation. Although steroids remain first-line treatment, roughly one-half of patients will develop steroid-refractory GVHD (SR-GVHD), which portends an extremely poor prognosis. Many agents that have shown encouraging response rates in early phase 1/2 trials for prevention and treatment have been unsuccessful in demonstrating a survival advantage when applied in the setting of SR-GVHD. The discovery of novel treatments has been further complicated by the absence of clinically informative animal models that address what may reflect a distinct pathophysiology. Nonetheless, the combined knowledge of established bone marrow transplantation models and recent human trials in SR-GVHD patients are beginning to illuminate novel mechanisms for inhibiting T-cell signaling and promoting tissue tolerance that provide an increased understanding of the underlying biology of SR-GVHD. Here, we discuss recent findings of newly appreciated cellular and molecular mechanisms and provide novel translational opportunities for advancing the effectiveness of treatment in SR-GVHD.
Collapse
|
25
|
Saksida T, Jevtić B, Djedović N, Miljković Đ, Stojanović I. Redox Regulation of Tolerogenic Dendritic Cells and Regulatory T Cells in the Pathogenesis and Therapy of Autoimmunity. Antioxid Redox Signal 2021; 34:364-382. [PMID: 32458699 DOI: 10.1089/ars.2019.7999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Autoimmune diseases are progressively affecting westernized societies, as the proportion of individuals suffering from autoimmunity is steadily increasing over the past decades. Understanding the role of reactive oxygen species (ROS) in modulation of the immune response in the pathogenesis of autoimmune disorders is of utmost importance. The focus of this review is the regulation of ROS production within tolerogenic dendritic cells (tolDCs) and regulatory T (Treg) cells that have the essential role in the prevention of autoimmune diseases and significant potency in their therapy. Recent Advances: It is now clear that ROS are extremely important for the proper function of both DC and T cells. Antigen processing/presentation and the ability of DC to activate T cells depend upon the ROS availability. Treg differentiation, suppressive function, and stability are profoundly influenced by ROS presence. Critical Issues: Although a plethora of results on the relation between ROS and immune cells exist, it remains unclear whether ROS modulation is a productive way for skewing T cells and DCs toward a tolerogenic phenotype. Also, the possibility of ROS modulation for enhancement of regulatory properties of DC and Treg during their preparation for use in cellular therapy has to be clarified. Future Directions: Studies of DC and T cell redox regulation should allow for the improvement of the therapy of autoimmune diseases. This could be achieved through the direct therapeutic application of ROS modulators in autoimmunity, or indirectly through ROS-dependent enhancement of tolDC and Treg preparation for cell-based immunotherapy. Antioxid. Redox Signal. 34, 364-382.
Collapse
Affiliation(s)
- Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Neda Djedović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
26
|
Yang L, Hu M, Lu Y, Han S, Wang J. Inflammasomes and the Maintenance of Hematopoietic Homeostasis: New Perspectives and Opportunities. Molecules 2021; 26:molecules26020309. [PMID: 33435298 PMCID: PMC7827629 DOI: 10.3390/molecules26020309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) regularly produce various blood cells throughout life via their self-renewal, proliferation, and differentiation abilities. Most HSCs remain quiescent in the bone marrow (BM) and respond in a timely manner to either physiological or pathological cues, but the underlying mechanisms remain to be further elucidated. In the past few years, accumulating evidence has highlighted an intermediate role of inflammasome activation in hematopoietic maintenance, post-hematopoietic transplantation complications, and senescence. As a cytosolic protein complex, the inflammasome participates in immune responses by generating a caspase cascade and inducing cytokine secretion. This process is generally triggered by signals from purinergic receptors that integrate extracellular stimuli such as the metabolic factor ATP via P2 receptors. Furthermore, targeted modulation/inhibition of specific inflammasomes may help to maintain/restore adequate hematopoietic homeostasis. In this review, we will first summarize the possible relationships between inflammasome activation and homeostasis based on certain interesting phenomena. The cellular and molecular mechanism by which purinergic receptors integrate extracellular cues to activate inflammasomes inside HSCs will then be described. We will also discuss the therapeutic potential of targeting inflammasomes and their components in some diseases through pharmacological or genetic strategies.
Collapse
|
27
|
Ahmed Z, Vierling JM. Graft-Versus-Host Disease. LIVER IMMUNOLOGY 2020:551-582. [DOI: 10.1007/978-3-030-51709-0_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|