1
|
Koloski CW, Adam H, Hurry G, Foley-Eby A, Zinck CB, Wei H, Hansra S, Wachter J, Voordouw MJ. Adaptive immunity in Mus musculus influences the acquisition and abundance of Borrelia burgdorferi in Ixodes scapularis ticks. Appl Environ Microbiol 2024; 90:e0129924. [PMID: 39503497 DOI: 10.1128/aem.01299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi cycles between immature black-legged ticks (Ixodes scapularis) and vertebrate reservoir hosts, such as rodents. Larval ticks acquire spirochetes from infected hosts, and the resultant nymphs transmit the spirochetes to naïve hosts. This study investigated the impact of immunocompetence and host tissue spirochete load on host-to-tick transmission (HTT) of B. burgdorferi and the spirochete load inside immature I. scapularis ticks. Wild-type (WT) C57BL/6J mice and mice with severe combined immunodeficiency (SCID) were experimentally infected with B. burgdorferi. To measure HTT, WT and SCID mice were repeatedly infested with I. scapularis larvae, and ticks were sacrificed at three different developmental stages: engorged larvae, 1-month-old, and 12-month-old nymphs. The spirochete loads in immature ticks and mouse tissues were estimated using qPCR. In WT mice, HTT decreased from 90% to 65% over the course of the infection, whereas in the SCID mice, HTT was always 100%. Larvae that fed on SCID mice acquired a much larger dose of spirochetes compared to larvae that fed on WT mice. This difference in spirochete load persisted over tick development where nymphs that fed as larvae on SCID mice had significantly higher spirochete loads compared to their WT counterparts. HTT and the tick spirochete loads were strongly correlated with the mouse tissue spirochete loads. Our study shows that the host immune system (e.g., the presence of antibodies) influences HTT of B. burgdorferi and the spirochete load in immature I. scapularis ticks.IMPORTANCEThe tick-borne spirochete Borrelia burgdorferi causes Lyme disease in humans. This pathogen is maintained in nature by cycles involving black-legged ticks and wildlife hosts. The present study investigated the host factors that influence the transmission of B. burgdorferi from infected hosts to feeding ticks. We infected immunocompetent mice and immunocompromised mice (that cannot develop antibodies) with B. burgdorferi and repeatedly infested these mice with ticks. We determined the percentage of infected ticks and their spirochete loads. This percentage was 100% for immunocompromised mice but decreased from 90% to 65% over time (8 weeks) for immunocompetent mice. The tick spirochete load was much higher in ticks fed on immunocompromised mice compared to ticks fed on immunocompetent mice. In summary, the host immune system influences the transmission of B. burgdorferi from infected hosts to ticks and the spirochete loads in those ticks, which, in turn, determines the risk of Lyme disease for people.
Collapse
Affiliation(s)
- Cody W Koloski
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hesham Adam
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Georgia Hurry
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alexandra Foley-Eby
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher B Zinck
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Haomiao Wei
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Satyender Hansra
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jenny Wachter
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Maarten J Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Gonzalez J, Harvey C, Ribeiro-Silva CDS, Leal-Galvan B, Persinger KA, Olafson PU, Johnson TL, Oliva Chavez A. Evaluation of tick salivary and midgut extracellular vesicles as anti-tick vaccines in White-tailed deer (Odocoileus virginianus). Ticks Tick Borne Dis 2024; 16:102420. [PMID: 39667072 DOI: 10.1016/j.ttbdis.2024.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Current tick control measures are focused on the use of synthetic acaricides and personal protective measures. However, the emergence of acaricide resistance and the maintenance of tick populations in wildlife has precluded the efficient management of ticks. Thus, host-targeted, non-chemical control measures are needed to reliably reduce ticks parasitizing sylvatic reservoirs. This project aimed to evaluate extracellular vesicles (EVs) from Amblyomma americanum as vaccine candidates for white-tailed deer (Odocoileus virginianus; WTD). Salivary gland (SG) and midgut (MG) EVs were isolated by ultracentrifugation. Three deer were vaccinated with SG and MG EVs and received two boosters at days 28 and 50. Two control deer were injected with adjuvant and PBS only. On day 58, WTD were infested with 100 A. americanum nymphs, 50 females, and 50 males that were allowed to feed to repletion. On-host and off-host mortality, tick engorgement weight, nymph molting, time to oviposition, and egg hatchability were evaluated. Serum samples were recovered every seven days until the last day of tick drop off, and then at one year (Y1) and 1-year and 1-month (Y1M1). Vaccination resulted in seroconversion and significant increases in total IgG levels that remained significantly higher than controls and pre-vaccination levels at Y1 and Y1M1. No negative effects were observed in nymphs, but on-host mortality of female A. americanum was significantly higher in vaccinated animals. No effects were observed on reproductive parameters. These results indicate that proteins within female tick SG and MG vesicles are not good candidates for vaccine design against nymphs; however, the on-host adult mortality suggests that tick EVs harbor protective antigens against A. americanum females.
Collapse
Affiliation(s)
- Julia Gonzalez
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Cristina Harvey
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Cárita de Souza Ribeiro-Silva
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Brenda Leal-Galvan
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | | - Pia U Olafson
- USDA-ARS, Knipling-Bushland United States Livestock Insects Research Laboratory, Kerrville, TX 78028, USA
| | | | - Adela Oliva Chavez
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
3
|
Badami GD, Tamburini B, Mohammadnezhad L, Vaz-Rodrigues R, La Barbera L, de la Fuente J, Sireci G. Netosis and trained immunity in tick-borne diseases: a possible pathogenetic role. Cell Immunol 2024; 405-406:104881. [PMID: 39368167 DOI: 10.1016/j.cellimm.2024.104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Various types of pathogens transmitted by ticks elicit distinct immune responses just like the emerging α-Gal syndrome that is associated with allergic reactions to tick bites. The mechanisms of Neutrophil Extracellular Traps release (called NETosis) and trained immunity in response to tick-borne microbes have not been extensively investigated. In our paper, we explored the intricate interplay of NETosis and trained immunity within the realm of infectious diseases triggered by tick bites and their possible pathogenetic role in autoimmunity. We conducted an extensive literature search to identify studies for this review, considering articles and reviews published in English within the last years. Additionally, we scrutinized the references of all included papers and relevant review articles to ensure comprehensive coverage. We shed light on a plausible correlation between these innate immune responses and their potential implication in certain pathological conditions, with a specific focus on some autoimmune diseases. These findings offer new perspectives for a more profound comprehension of the immunopathogenesis of certain autoimmune-like signs where clinicians should include Tick-Borne Diseases (TBDs) in their differential diagnoses, in those geographical areas of tick infestation.
Collapse
Affiliation(s)
- Giusto Davide Badami
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| | - Bartolo Tamburini
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy
| | - Leila Mohammadnezhad
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy
| | - Rita Vaz-Rodrigues
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Lidia La Barbera
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater OK 74078, USA
| | - Guido Sireci
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
4
|
Cui Y, Cibichakravarthy B, Tang X, Alameh MG, Dwivedi G, Weissman D, Fikrig E. Salp14 epitope-based mRNA vaccination induces early recognition of a tick bite. Vaccine 2024; 42:126304. [PMID: 39236403 PMCID: PMC11416896 DOI: 10.1016/j.vaccine.2024.126304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Repeated exposure of animals to Ixodes scapularis ticks can result in acquired tick resistance (ATR). The first manifestation of ATR is erythema at the tick bite site, however, the specific peptide targets and mechanisms associated with this early aspect of ATR are not understood. In this study, we immunized guinea pigs with a lipid nanoparticle containing the mRNA encoding 25 amino acids in the carboxyl terminus of Salp14 (Salp14-C mRNA-LNP), an I. scapularis salivary protein. The animals produced high titers of IgG directed at the carboxyl terminus of Salp14. Guinea pigs immunized with Salp14-C mRNA-LNP and then exposed to I. scapularis, developed erythema at the tick bite site. Transcriptomics of the skin of guinea pigs at the I. scapularis bite sites elucidated selected pathways, including histamine activation, that are associated with the development of erythema. The study demonstrates that an mRNA vaccine encoding a small peptide can induce the initial phase of ATR in guinea pigs.
Collapse
Affiliation(s)
- Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mohamad G Alameh
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garima Dwivedi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Černý J, Arora G. Proteases and protease inhibitors in saliva of hard ticks: Biological role and pharmacological potential. ADVANCES IN PARASITOLOGY 2024; 126:229-251. [PMID: 39448192 DOI: 10.1016/bs.apar.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Hard ticks (family Ixodidae) are significant vectors of pathogens affecting humans and animals. This review explores the composition of tick saliva, focusing on proteases and protease inhibitors, their biological roles, and their potential in vaccines and therapies. Tick saliva contains various proteases, mostly metalloproteases, serpins, cystatins, and Kunitz-type inhibitors, which modulate host hemostatic, immune, and wound healing responses to facilitate blood feeding and pathogen transmission. Proteases inhibit blood clotting, degrade extracellular matrix components, and modulate immune responses. Serpins, cystatins, and Kunitz-type inhibitors further inhibit key proteases involved in coagulation and inflammation, making them promising candidates for anticoagulant, anti-inflammatory, and immunomodulatory therapies. Several tick proteases and protease inhibitors have shown potential as vaccine targets, reducing tick feeding success and pathogen transmission. Future research should focus on comprehensive proteomic and genomic analyses, detailed structural and functional studies, and vaccine trials. Advanced omics approaches and bioinformatics tools will be crucial in uncovering the complex interactions between ticks, hosts, and pathogens, improving tick control strategies and public health outcomes.
Collapse
Affiliation(s)
- Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague-Suchdol, Czechia.
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States; Laboratory of Host-Pathogen Dynamics, National Heart Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States; Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
6
|
Bourgeois JS, Hu LT. Hitchhiker's Guide to Borrelia burgdorferi. J Bacteriol 2024; 206:e0011624. [PMID: 39140751 PMCID: PMC11411949 DOI: 10.1128/jb.00116-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Don't Panic. In the nearly 50 years since the discovery of Lyme disease, Borrelia burgdorferi has emerged as an unlikely workhorse of microbiology. Interest in studying host-pathogen interactions fueled significant progress in making the fastidious microbe approachable in laboratory settings, including the development of culture methods, animal models, and genetic tools. By developing these systems, insight has been gained into how the microbe is able to survive its enzootic cycle and cause human disease. Here, we discuss the discovery of B. burgdorferi and its development as a model organism before diving into the critical lessons we have learned about B. burgdorferi biology at pivotal stages of its lifecycle: gene expression changes during the tick blood meal, colonization of a new vertebrate host, and developing a long-lasting infection in that vertebrate until a new tick feeds. Our goal is to highlight the advancements that have facilitated B. burgdorferi research and identify gaps in our current understanding of the microbe.
Collapse
Affiliation(s)
- Jeffrey S Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Marnin L, Valencia LM, Bogale HN, Laukaitis-Yousey HJ, Rolandelli A, Ferraz CR, O’Neal AJ, Schmitter-Sánchez AD, Cuevas EB, Nguyen TT, Leal-Galvan B, Rickert DM, Mendes MT, Samaddar S, Butler LR, Singh N, Cabrera Paz FE, Oliver JD, Jameson JM, Munderloh UG, Oliva Chávez AS, Mulenga A, Park S, Serre D, Pedra JH. Tick extracellular vesicles undermine epidermal wound healing during hematophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566612. [PMID: 37986907 PMCID: PMC10659423 DOI: 10.1101/2023.11.10.566612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to hematophagy and arthropod-borne diseases. Hematophagous ectoparasites, including ticks, subvert the wound healing response to maintain prolonged attachment and facilitate blood-feeding. Here, we unveil a strategy by which extracellular vesicles (EVs) ensure blood-feeding and arthropod survival in three medically relevant tick species. We demonstrate through single cell RNA sequencing and murine genetics that wildtype animals infested with EV-deficient Ixodes scapularis display a unique population of keratinocytes with an overrepresentation of pathways connected to wound healing. Tick feeding affected keratinocyte proliferation in a density-dependent manner, which relied on EVs and dendritic epidermal T cells (DETCs). This occurrence was linked to phosphoinositide 3-kinase activity, keratinocyte growth factor (KGF) and transforming growth factor β (TGF-β) levels. Collectively, we uncovered a strategy employed by a blood-feeding arthropod that impairs the integrity of the epithelial barrier, contributing to ectoparasite fitness.
Collapse
Affiliation(s)
- Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luisa M. Valencia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haikel N. Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanna J. Laukaitis-Yousey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Camila Rodrigues Ferraz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anya J. O’Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Axel D. Schmitter-Sánchez
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - Emily Bencosme Cuevas
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Thu-Thuy Nguyen
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Brenda Leal-Galvan
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David M. Rickert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M. Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L. Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francy E. Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Julie M Jameson
- Department of Biology, California State University San Marcos, San Marcos, CA, USA
| | | | | | - Albert Mulenga
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Sangbum Park
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - David Serre
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H.F. Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Johnson EE, Hart TM, Fikrig E. Vaccination to Prevent Lyme Disease: A Movement Towards Anti-Tick Approaches. J Infect Dis 2024; 230:S82-S86. [PMID: 39140718 PMCID: PMC11322886 DOI: 10.1093/infdis/jiae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/12/2024] [Indexed: 08/15/2024] Open
Abstract
Lyme disease is caused by the spirochete, Borrelia burgdorferi, which is transmitted by Ixodes spp ticks. The rise in Lyme disease cases since its discovery in the 1970s has reinforced the need for a vaccine. A vaccine based on B burgdorferi outer surface protein A (OspA) was approved by the Food and Drug Administration (FDA) several decades ago, but was pulled from the market a few years later, reportedly due to poor sales, despite multiple organizations concluding that it was safe and effective. Newer OspA-based vaccines are being developed and are likely to be available in the coming years. More recently, there has been a push to develop vaccines that target the tick vector instead of the pathogen to inhibit tick feeding and thus prevent transmission of tick-borne pathogens to humans and wildlife reservoirs. This review outlines the history of Lyme disease vaccines and this movement to anti-tick vaccine approaches.
Collapse
Affiliation(s)
- Emily E Johnson
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Thomas M Hart
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Perumalsamy N, Sharma R, Subramanian M, Nagarajan SA. Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India. Pathogens 2024; 13:556. [PMID: 39057783 PMCID: PMC11279560 DOI: 10.3390/pathogens13070556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/28/2024] Open
Abstract
Hard ticks (Ixodidae) play a critical role in transmitting various tick-borne diseases (TBDs), posing significant global threats to human and animal health. Climatic factors influence the abundance, diversity, and vectorial capacity of tick vectors. It is imperative to have a comprehensive understanding of hard ticks, pathogens, eco-epidemiology, and the impact of climatic changes on the transmission dynamics of TBDs. The distribution and life cycle patterns of hard ticks are influenced by diverse ecological factors that, in turn, can be impacted by changes in climate, leading to the expansion of the tick vector's range and geographical distribution. Vector competence, a pivotal aspect of vectorial capacity, involves the tick's ability to acquire, maintain, and transmit pathogens. Hard ticks, by efficiently feeding on diverse hosts and manipulating their immunity through their saliva, emerge as competent vectors for various pathogens, such as viruses, parasites and bacteria. This ability significantly influences the success of pathogen transmission. Further exploration of genetic diversity, population structure, and hybrid tick vectors is crucial, as they play a substantial role in influencing vector competence and complicating the dynamics of TBDs. This comprehensive review deals with important TBDs in India and delves into a profound understanding of hard ticks as vectors, their biology, and the factors influencing their vector competence. Given that TBDs continue to pose a substantial threat to global health, the review emphasizes the urgency of investigating tick control strategies and advancing vaccine development. Special attention is given to the pivotal role of population genetics in comprehending the genetic diversity of tick populations and providing essential insights into their adaptability to environmental changes.
Collapse
Affiliation(s)
| | | | | | - Shriram Ananganallur Nagarajan
- Division of Vector Biology and Control, Indian Council of Medical Research—Vector Control Research Centre (ICMR-VCRC), Puducherry 605006, India; (N.P.); (R.S.); (M.S.)
| |
Collapse
|
10
|
Nowak TA, Burke RL, Diuk-Wasser MA, Lin YP. Lizards and the enzootic cycle of Borrelia burgdorferi sensu lato. Mol Microbiol 2024; 121:1262-1272. [PMID: 38830767 DOI: 10.1111/mmi.15271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Emerging and re-emerging pathogens often stem from zoonotic origins, cycling between humans and animals, and are frequently vectored and maintained by hematophagous arthropod vectors. The efficiency by which these disease agents are successfully transmitted between vertebrate hosts is influenced by many factors, including the host on which a vector feeds. The Lyme disease bacterium Borrelia burgdorferi sensu lato has adapted to survive in complex host environments, vectored by Ixodes ticks, and maintained in multiple vertebrate hosts. The versatility of Lyme borreliae in disparate host milieus is a compelling platform to investigate mechanisms dictating pathogen transmission through complex networks of vertebrates and ticks. Squamata, one of the most diverse clade of extant reptiles, is comprised primarily of lizards, many of which are readily fed upon by Ixodes ticks. Yet, lizards are one of the least studied taxa at risk of contributing to the transmission and life cycle maintenance of Lyme borreliae. In this review, we summarize the current evidence, spanning from field surveillance to laboratory infection studies, supporting their contributions to Lyme borreliae circulation. We also summarize the current understanding of divergent lizard immune responses that may explain the underlying molecular mechanisms to confer Lyme spirochete survival in vertebrate hosts. This review offers a critical perspective on potential enzootic cycles existing between lizard-tick-Borrelia interactions and highlights the importance of an eco-immunology lens for zoonotic pathogen transmission studies.
Collapse
Affiliation(s)
- Tristan A Nowak
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, State University of New York at Albany, Albany, New York, USA
| | - Russell L Burke
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, State University of New York at Albany, Albany, New York, USA
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| |
Collapse
|
11
|
Bourgeois JS, McCarthy JE, Turk SP, Bernard Q, Clendenen LH, Wormser GP, Marcos LA, Dardick K, Telford SR, Marques AR, Hu LT. Peromyscus leucopus , Mus musculus , and humans have distinct transcriptomic responses to larval Ixodes scapularis bites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592193. [PMID: 38746284 PMCID: PMC11092580 DOI: 10.1101/2024.05.02.592193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ixodes scapularis ticks are an important vector for at least six tick-borne human pathogens, including the predominant North American Lyme disease spirochete Borrelia burgdorferi . The ability for these ticks to survive in nature is credited, in part, to their ability to feed on a variety of hosts without excessive activation of the proinflammatory branch of the vertebrate immune system. While the ability for nymphal ticks to feed on a variety of hosts has been well-documented, the host-parasite interactions between larval I. scapularis and different vertebrate hosts is relatively unexplored. Here we report on the changes in the vertebrate transcriptome present at the larval tick bite site using the natural I. scapularis host Peromyscus leucopus deermouse, a non-natural rodent host Mus musculus (BALB/c), and humans. We note substantially less evidence of activation of canonical proinflammatory pathways in P. leucopus compared to BALB/c mice and pronounced evidence of inflammation in humans. Pathway enrichment analyses revealed a particularly strong signature of interferon gamma, tumor necrosis factor, and interleukin 1 signaling at the BALB/c and human tick bite site. We also note that bite sites on BALB/c mice and humans, but not deermice, show activation of wound-healing pathways. These data provide molecular evidence of the coevolution between larval I. scapularis and P. leucopus as well as expand our overall understanding of I. scapularis feeding. Significance Ixodes scapularis tick bites expose humans to numerous diseases in North America. While larval tick feeding enables pathogens to enter the tick population and eventually spread to humans, how larval ticks interact with mammals has been understudied compared to other tick stages. Here we examined the transcriptomic response of a natural I. scapularis rodent host ( Peromyscus leucopus ), a non-native I. scapularis rodent host ( Mus musculus ), and an incidental host (humans). We find that there are differences in how all three species respond to larval I. scapularis , with the natural host producing the smallest transcriptomic signature of a canonical proinflammatory immune response and the incidental human host producing the most robust signature of inflammation in response to the larval tick. These data expand our understanding of the pressures on ticks in the wild and inform our ability to model these interactions in laboratory settings.
Collapse
|
12
|
Saadalla A, Jacela J, Poll R, Slev P. Immunoassay Testing of Alpha-Gal Specific Immunoglobulin-E: Data from a National Reference Laboratory. J Appl Lab Med 2024; 9:262-272. [PMID: 38424720 DOI: 10.1093/jalm/jfad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/24/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Immunoassay measurements of serum alpha-gal (AG) specific IgE (sIgE) enable antibody detection and quantification with high sensitivity and specificity and are essential for AG syndrome diagnosis and patient management. We here present and analyze results from over 15 000 patient serum samples tested using the ImmunoCAP (Thermo/Phadia) assay. METHODS AG-sIgE levels and positivity rates were correlated to patient age, gender, geographic location, repeat testing results, sIgE levels to co-tested red meat whole allergen extracts, and Rocky Mountain spotted fever (RMSF) serology performed on a subset of patient samples. RESULTS Of the tested samples, 36.7% contained detectable (>0.1 KUA/L) AG-sIgE. Antibody levels were higher in patients of older age, in samples submitted from lower midwestern and southern states, and during the June-December period of the year. Specific IgE to co-tested red meat whole allergens showed moderate to strong correlation to AG-sIgE and were of lower levels. Samples with positive RMSF IgG titers (≥1:64) were of overall higher AG-IgE levels. CONCLUSION Findings are consistent with the role of lone star ticks in AG syndrome pathogenesis. Levels of measured sIgE to AG are higher than co-tested sIgE to red meat whole allergen, consistent with the improved diagnostic performance of component-resolved testing.
Collapse
Affiliation(s)
- Abdulrahman Saadalla
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
- Immunology section, ARUP Laboratories, Salt Lake City, UT, United States
| | - Jessica Jacela
- Immunology section, ARUP Laboratories, Salt Lake City, UT, United States
| | - Rick Poll
- Immunology section, ARUP Laboratories, Salt Lake City, UT, United States
| | - Patricia Slev
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
- Immunology section, ARUP Laboratories, Salt Lake City, UT, United States
| |
Collapse
|
13
|
Sharma SR, Choudhary SK, Vorobiov J, Commins SP, Karim S. Tick bite-induced alpha-gal syndrome and immunologic responses in an alpha-gal deficient murine model. Front Immunol 2024; 14:1336883. [PMID: 38390396 PMCID: PMC10882631 DOI: 10.3389/fimmu.2023.1336883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/26/2023] [Indexed: 02/24/2024] Open
Abstract
Introduction Alpha-Gal Syndrome (AGS) is a delayed allergic reaction due to specific IgE antibodies targeting galactose-α-1,3-galactose (α-gal), a carbohydrate found in red meat. This condition has gained significant attention globally due to its increasing prevalence, with more than 450,000 cases estimated just in the United States alone. Previous research has established a connection between AGS and tick bites, which sensitize individuals to α-gal antigens and elevate the levels of specific IgE. However, the precise mechanism by which tick bites influence the host's immune system and contribute to the development of AGS remains poorly understood. This study investigates various factors related to ticks and the host associated with the development of AGS following a tick bite, using mice with a targeted disruption of alpha-1,3-galactosyltransferase (AGKO) as a model organism. Methods Lone-star tick (Amblyomma americanum) and gulf-coast tick (Amblyomma maculatum) nymphs were used to sensitize AGKO mice, followed by pork meat challenge. Tick bite site biopsies from sensitized and non-sensitized mice were subjected to mRNA gene expression analysis to assess the host immune response. Antibody responses in sensitized mice were also determined. Results Our results showed a significant increase in the total IgE, IgG1, and α-gal IgG1 antibodies titers in the lone-star tick-sensitized AGKO mice compared to the gulf-coast tick-sensitized mice. Pork challenge in Am. americanum -sensitized mice led to a decline in body temperature after the meat challenge. Gene expression analysis revealed that Am. americanum bites direct mouse immunity toward Th2 and facilitate host sensitization to the α-gal antigen. Conclusion This study supports the hypothesis that specific tick species may increase the risk of developing α-gal-specific IgE and hypersensitivity reactions or AGS, thereby providing opportunities for future research on the mechanistic role of tick and host-related factors in AGS development.
Collapse
Affiliation(s)
- Surendra Raj Sharma
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shailesh K. Choudhary
- Department of Medicine and Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | - Julia Vorobiov
- Department of Medicine and Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | - Scott P. Commins
- Department of Medicine and Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | - Shahid Karim
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
14
|
Cui Y, Matias J, Tang X, Cibichakravarthy B, DePonte K, Wu MJ, Fikrig E. Metabolomic changes associated with acquired resistance to Ixodes scapularis. Ticks Tick Borne Dis 2024; 15:102279. [PMID: 37972499 DOI: 10.1016/j.ttbdis.2023.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Guinea pigs repeatedly exposed to Ixodes scapularis develop acquired resistance to the ticks (ATR). The molecular mechanisms of ATR have not been fully elucidated, and partially involves immune responses to proteins in tick saliva. In this study, we examined the metabolome of sera of guinea pigs during the development of ATR. Induction of components of the tyrosine metabolic pathway, including hydroxyphenyllactic acid (HPLA), were associated with ATR. We therefore administered HPLA to mice, an animal that does not develop ATR, and exposed the animals to I. scapularis. We also administered nitisinone, a known inhibitor of tyrosine degradation, to another group of mice. The mortality of I. scapularis that fed on mice given HPLA or nitisinone was 26 % and 72 % respectively, compared with 2 % mortality among ticks that fed on control animals. These data indicate that tick bites alter the guinea pig metabolome, and that the tyrosine metabolism pathway can potentially be targeted for I. scapularis control.
Collapse
Affiliation(s)
- Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Room 169, 300 Cedar Street, New Haven, CT 06520-8031, USA.
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Room 169, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Room 169, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | - Balasubramanian Cibichakravarthy
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Room 169, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | - Kathleen DePonte
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Room 169, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | - Ming-Jie Wu
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Room 169, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Room 169, 300 Cedar Street, New Haven, CT 06520-8031, USA.
| |
Collapse
|
15
|
Scott AJ, Smith AA, Heeren RMA, Pal U, Ernst RK. Characterization of spatial lipidomic signatures in tick-bitten guinea pig skin as a model for host-vector-pathogen interaction profiling. mSystems 2023; 8:e0092723. [PMID: 37874165 PMCID: PMC10734475 DOI: 10.1128/msystems.00927-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Here, we demonstrate the adaptability of spatial "omics" methods to identify interphylum processes regulated at the vector-host interface of ticks during a mammalian blood meal. This approach enables a better understanding of complex bipartite or tripartite molecular interactions between hosts, arthropod vectors and transmitted pathogens, and contributes toward the development of spatially aware therapeutic target discovery and description.
Collapse
Affiliation(s)
- Alison J. Scott
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Maryland, USA
- Maastricht MultiModal Molecular Imaging (M4i) Institute, Maastricht University, Maastricht, Limburg, the Netherlands
| | - Alexis A. Smith
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4i) Institute, Maastricht University, Maastricht, Limburg, the Netherlands
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Sharma SR, Choudhary SK, Vorobiov J, Commins SP, Karim S. Tick bite-induced Alpha-Gal Syndrome and Immunologic Responses in an Alpha-Gal Deficient Murine Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566281. [PMID: 38014105 PMCID: PMC10680608 DOI: 10.1101/2023.11.09.566281] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Introduction Alpha-Gal Syndrome (AGS) is a delayed allergic reaction due to specific IgE antibodies targeting galactose-α-1,3-galactose (α-gal), a carbohydrate found in red meat. This condition has gained significant attention globally due to its increasing prevalence, with more than 450,000 cases estimated in the United States alone. Previous research has established a connection between AGS and tick bites, which sensitize individuals to α-gal antigens and elevate the levels of α-gal specific IgE. However, the precise mechanism by which tick bites influence the hosťs immune system and contribute to the development of AGS remains poorly understood. This study investigates various factors related to ticks and the host associated with the development of AGS following a tick bite, using mice with a targeted disruption of alpha-1,3-galactosyltransferase (AGKO) as a model organism. Methods Lone-star tick (Amblyomma americanum) and gulf-coast tick (Amblyomma maculatum) nymphs were used to sensitize AGKO mice, followed by pork meat challenge. Tick bite site biopsies from sensitized and non-sensitized mice were subjected to mRNA gene expression analysis to assess the host immune response. Antibody responses in sensitized mice were also determined. Results Our results showed a significant increase in the titer of total IgE, IgG1, and α-gal IgG1 antibodies in the lone-star tick-sensitized AGKO mice compared to the gulf-coast tick-sensitized mice. Pork challenge in Am. americanum -sensitized mice led to a decline in body temperature after the meat challenge. Gene expression analysis revealed that Am. americanum bites direct mouse immunity toward Th2 and facilitate host sensitization to the α-gal antigen, while Am. maculatum did not. Conclusion This study supports the hypothesis that specific tick species may increase the risk of developing α-gal-specific IgE and hypersensitivity reactions or AGS, thereby providing opportunities for future research on the mechanistic role of tick and host-related factors in AGS development.
Collapse
Affiliation(s)
- Surendra Raj Sharma
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Shailesh K Choudhary
- Department of Medicine & Pediatrics, University of North Carolina, Chapel Hill, NC 27599-7280, USA
| | - Julia Vorobiov
- Department of Medicine & Pediatrics, University of North Carolina, Chapel Hill, NC 27599-7280, USA
| | - Scott P Commins
- Department of Medicine & Pediatrics, University of North Carolina, Chapel Hill, NC 27599-7280, USA
| | - Shahid Karim
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
17
|
Cano-Argüelles AL, Pérez-Sánchez R, Oleaga A. A microRNA profile of the saliva in the argasid ticks Ornithodoros erraticus and Ornithodoros moubata and prediction of specific target genes. Ticks Tick Borne Dis 2023; 14:102249. [PMID: 37689036 DOI: 10.1016/j.ttbdis.2023.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Ornithodoros erraticus and Ornithodoros moubata ticks are the main vectors of the agents of human relapsing fever (TBRF) and African swine fever (ASF) in the Mediterranean Basin and Africa, respectively. Tick saliva is crucial for complete tick feeding and pathogen transmission, as it contains numerous molecules such as proteins, lipids, and non-coding RNAs (ncRNA) including microRNAs (miRNA). MiRNAs are small ncRNAs capable of regulating the expression of their target messenger RNA (mRNA) leading to degradation or inhibition of its translation into protein. Research on miRNAs from ixodid ticks has revealed that miRNAs are involved in the regulation of different physiological processes of ticks, as well as in the modulation of host gene expression, immune response to tick bite and pathogen transmission. Regarding argasid ticks, there is not information about their miRNAs or their potential involvement in tick physiology and/or in the regulation of the tick-host-pathogen interactions. The aim of this work was to profile the miRNAs expressed in the saliva of O. erraticus and O. moubata, and the in silico prediction and functional analysis of their target genes in the swine host. As a whole, up to 72 conserved miRNAs families were identified in both species: 35 of them were shared and 23 and 14 families were unique to O. erraticus and O. moubata, respectively. The most abundant miRNAs families were mir-1, mir-10 and let-7 in O. erraticus and let-7, mir-252, mir-10 in O. moubata. Four miRNAs sequences of each species were validated by RT-qPCR confirming their presence in the saliva. Target gene prediction in the host (Sus scrofa) and functional analysis showed that the selected miRNAs are mainly involved in processes related to signal transduction, regulation of mRNA transcription and gene expression, synapse regulation, immune response, angiogenesis and vascular development. These results suggest that miRNAs could play an important role at the tick-host interface, providing new insights into this complex relationship that may contribute to a more precise selection of tick molecules for the development of therapeutic and immune strategies to control tick infestations and tick-borne pathogens.
Collapse
Affiliation(s)
- Ana Laura Cano-Argüelles
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, Salamanca 37008, Spain.
| | - Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, Salamanca 37008, Spain
| | - Ana Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, Salamanca 37008, Spain.
| |
Collapse
|
18
|
Butler LR, Gonzalez J, Pedra JHF, Oliva Chavez AS. Tick extracellular vesicles in host skin immunity and pathogen transmission. Trends Parasitol 2023; 39:873-885. [PMID: 37591719 PMCID: PMC10528898 DOI: 10.1016/j.pt.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Ticks can transmit a variety of human pathogens, including intracellular and extracellular bacteria, viruses, and protozoan parasites. Historically, their saliva has been of immense interest due to its anticoagulant, anti-inflammatory, and anesthetic properties. Only recently, it was discovered that tick saliva contains extracellular vesicles (EVs). Briefly, it has been observed that proteins associated with EVs are important for multiple tick-borne intracellular microbial lifestyles. The impact of tick EVs on viral and intracellular bacterial pathogen transmission from the tick to the mammalian host has been shown experimentally. Additionally, tick EVs interact with the mammalian skin immune system at the bite site. The interplay between tick EVs, the transmission of pathogens, and the host skin immune system affords opportunities for future research.
Collapse
Affiliation(s)
- L Rainer Butler
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD, USA
| | - Julia Gonzalez
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD, USA
| | | |
Collapse
|
19
|
Gutierrez-Hoffmann M, Fan J, O’Meally RN, Cole RN, Florea L, Antonescu C, Talbot CC, Tiniakou E, Darrah E, Soloski MJ. The Interaction of Borrelia burgdorferi with Human Dendritic Cells: Functional Implications. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:612-625. [PMID: 37405694 PMCID: PMC10527078 DOI: 10.4049/jimmunol.2300235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
Dendritic cells bridge the innate and adaptive immune responses by serving as sensors of infection and as the primary APCs responsible for the initiation of the T cell response against invading pathogens. The naive T cell activation requires the following three key signals to be delivered from dendritic cells: engagement of the TCR by peptide Ags bound to MHC molecules (signal 1), engagement of costimulatory molecules on both cell types (signal 2), and expression of polarizing cytokines (signal 3). Initial interactions between Borrelia burgdorferi, the causative agent of Lyme disease, and dendritic cells remain largely unexplored. To address this gap in knowledge, we cultured live B. burgdorferi with monocyte-derived dendritic cells (mo-DCs) from healthy donors to examine the bacterial immunopeptidome associated with HLA-DR. In parallel, we examined changes in the expression of key costimulatory and regulatory molecules as well as profiled the cytokines released by dendritic cells when exposed to live spirochetes. RNA-sequencing studies on B. burgdorferi-pulsed dendritic cells show a unique gene expression signature associated with B. burgdorferi stimulation that differs from stimulation with lipoteichoic acid, a TLR2 agonist. These studies revealed that exposure of mo-DCs to live B. burgdorferi drives the expression of both pro- and anti-inflammatory cytokines as well as immunoregulatory molecules (e.g., PD-L1, IDO1, Tim3). Collectively, these studies indicate that the interaction of live B. burgdorferi with mo-DCs promotes a unique mature DC phenotype that likely impacts the nature of the adaptive T cell response generated in human Lyme disease.
Collapse
Affiliation(s)
- Maria Gutierrez-Hoffmann
- Lyme Disease Research Center, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
- Division of Rheumatology, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
| | - Jinshui Fan
- Division of Rheumatology, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
| | - Robert N. O’Meally
- Mass Spectrometry and Proteomics Facility,
Department of Biological Chemistry, Johns Hopkins University School of Medicine,
Baltimore, MD 21205, USA
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility,
Department of Biological Chemistry, Johns Hopkins University School of Medicine,
Baltimore, MD 21205, USA
| | - Liliana Florea
- Department of Genetic Medicine, Johns Hopkins
University, School of Medicine, Baltimore, MD 21205, USA
| | - Corina Antonescu
- Department of Genetic Medicine, Johns Hopkins
University, School of Medicine, Baltimore, MD 21205, USA
| | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, Johns
Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Eleni Tiniakou
- Division of Rheumatology, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
| | - Erika Darrah
- Lyme Disease Research Center, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
- Division of Rheumatology, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
| | - Mark J. Soloski
- Lyme Disease Research Center, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
- Division of Rheumatology, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
20
|
Cui Y, Matias J, Tang X, Cibichakravarthy B, DePonte K, Wu MJ, Fikrig E. Metabolomic changes associated with acquired resistance to Ixodes scapularis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551287. [PMID: 37577710 PMCID: PMC10418055 DOI: 10.1101/2023.07.31.551287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Guinea pigs repeatedly exposed to Ixodes scapularis develop acquired resistance to the ticks (ATR). The molecular mechanisms of ATR have not been fully elucidated, and partially involve immune responses to proteins in tick saliva. In this study, we examined the metabolome of sera of guinea pigs during the development of ATR. Induction of components of the tyrosine metabolic pathway, including hydroxyphenyllactic acid (HPLA), were associated with ATR. We therefore administered HPLA to mice, an animal that does not develop ATR, and exposed the animals to I. scapularis . We also administered nitisinone, a known inhibitor of tyrosine degradation, to another group of mice. The mortality of I. scapularis that fed on mice given HPLA or nitisinone was 26% and 72% respectively, compared with 2% mortality among ticks that fed on control animals. These data indicate that metabolic changes that occur after tick bites contribute to ATR.
Collapse
|
21
|
Matias J, Cui Y, Tang X, Sajid A, Arora G, Wu MJ, DePonte K, Muramatsu H, Tam YK, Narasimhan S, Pardi N, Weissman D, Fikrig E. Specific mRNA lipid nanoparticles and acquired resistance to ticks. Vaccine 2023; 41:4996-5002. [PMID: 37407406 PMCID: PMC10530371 DOI: 10.1016/j.vaccine.2023.06.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Acquired resistance to ticks can develop when animals are repeatedly exposed to ticks. Recently, acquired resistance to Ixodes scapularis was induced in guinea pigs immunized with an mRNA-lipid nanoparticle vaccine (19ISP) encoding 19 I. scapularis proteins. Here, we evaluated specific mRNAs present in 19ISP to identify critical components associated with resistance to ticks. A lipid nanoparticle containing 12 mRNAs which included all the targets within 19ISP that elicited strong humoral responses in guinea pigs, was sufficient to induce robust resistance to ticks. Lipid nanoparticles containing fewer mRNAs or a single mRNA were not able to generate strong resistance to ticks. All lipid nanoparticles containing salp14 mRNA, however, were associated with increased redness at the tick bite site - which is the first manifestation of acquired resistance to ticks. This study demonstrates that more than one I. scapularis target within 19ISP is required for resistance to ticks, and that additional targets may also play a role in this process.
Collapse
Affiliation(s)
- Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ming-Jie Wu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kathleen DePonte
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
22
|
Apostolovic D, Grundström J, Kiewiet MBG, Perusko M, Hamsten C, Starkhammar M, Paulie S, van Hage M. Th2-skewed T cells correlate with B cell response to α-Gal and tick antigens in α-Gal syndrome. J Clin Invest 2023; 133:158357. [PMID: 36701195 PMCID: PMC10014093 DOI: 10.1172/jci158357] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023] Open
Abstract
Tick bites have been shown to transmit a novel form of severe food allergy, the galactose-α-1,3-galactose (α-Gal) syndrome (AGS). Cellular responses to α-Gal in patients with AGS have, to date, not been thoroughly scrutinized. Therefore, we investigated T and B cell proliferation, activation, and cytokine profiles in response to tick protein extract (TE) and α-Gal-free TE in patients with AGS and in healthy controls. T and B cells from both patients and controls proliferated in response to TE, but significantly more in patients with AGS. B cell proliferation, but not T cell proliferation, in patients with AGS was reduced by removing α-Gal from the TE. In addition, TE induced a clear Th2 cytokine profile in patients with AGS. Expression of CD23 by B cells correlated only to T cell proliferation. However, both B cell proliferation and CD23 expression were reduced when CD40L and IL-4 were blocked. A large portion of the IgG1 and IgE antibodies binding TE in patients with AGS were directed against the α-Gal epitope. We have, for what we believe to be the first time, investigated T and B cell responses to α-Gal carrying tick proteins in patients with AGS, which will be essential for the understanding of the immune response against an allergenic carbohydrate transmitted by ticks.
Collapse
Affiliation(s)
- Danijela Apostolovic
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Solna, Sweden
| | - Jeanette Grundström
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Solna, Sweden
| | - Mensiena B Gea Kiewiet
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Solna, Sweden
| | - Marija Perusko
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Solna, Sweden.,Innovative Centre of the Faculty of Chemistry, Belgrade, Serbia
| | - Carl Hamsten
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Solna, Sweden
| | | | | | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Solna, Sweden
| |
Collapse
|
23
|
Dagenais A, Villalba-Guerrero C, Olivier M. Trained immunity: A “new” weapon in the fight against infectious diseases. Front Immunol 2023; 14:1147476. [PMID: 36993966 PMCID: PMC10040606 DOI: 10.3389/fimmu.2023.1147476] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Innate immune cells can potentiate the response to reinfection through an innate form of immunological memory known as trained immunity. The potential of this fast-acting, nonspecific memory compared to traditional adaptive immunological memory in prophylaxis and therapy has been a topic of great interest in many fields, including infectious diseases. Amidst the rise of antimicrobial resistance and climate change—two major threats to global health—, harnessing the advantages of trained immunity compared to traditional forms of prophylaxis and therapy could be game-changing. Here, we present recent works bridging trained immunity and infectious disease that raise important discoveries, questions, concerns, and novel avenues for the modulation of trained immunity in practice. By exploring the progress in bacterial, viral, fungal, and parasitic diseases, we equally highlight future directions with a focus on particularly problematic and/or understudied pathogens.
Collapse
Affiliation(s)
- Amy Dagenais
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Carlos Villalba-Guerrero
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- *Correspondence: Martin Olivier,
| |
Collapse
|
24
|
De S, Kingan SB, Kitsou C, Portik DM, Foor SD, Frederick JC, Rana VS, Paulat NS, Ray DA, Wang Y, Glenn TC, Pal U. A high-quality Ixodes scapularis genome advances tick science. Nat Genet 2023; 55:301-311. [PMID: 36658436 DOI: 10.1038/s41588-022-01275-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/30/2022] [Indexed: 01/21/2023]
Abstract
Ixodes spp. and related ticks transmit prevalent infections, although knowledge of their biology and development of anti-tick measures have been hindered by the lack of a high-quality genome. In the present study, we present the assembly of a 2.23-Gb Ixodes scapularis genome by sequencing two haplotypes within one individual, complemented by chromosome-level scaffolding and full-length RNA isoform sequencing, yielding a fully reannotated genome featuring thousands of new protein-coding genes and various RNA species. Analyses of the repetitive DNA identified transposable elements, whereas the examination of tick-associated bacterial sequences yielded an improved Rickettsia buchneri genome. We demonstrate how the Ixodes genome advances tick science by contributing to new annotations, gene models and epigenetic functions, expansion of gene families, development of in-depth proteome catalogs and deciphering of genetic variations in wild ticks. Overall, we report critical genetic resources and biological insights impacting our understanding of tick biology and future interventions against tick-transmitted infections.
Collapse
Affiliation(s)
- Sandip De
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | | | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | | | - Shelby D Foor
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Julia C Frederick
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Vipin S Rana
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Nicole S Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA. .,Virginia-Maryland College of Veterinary Medicine, College Park, MD, USA.
| |
Collapse
|
25
|
Rana VS, Kitsou C, Dutta S, Ronzetti MH, Zhang M, Bernard Q, Smith AA, Tomás-Cortázar J, Yang X, Wu MJ, Kepple O, Li W, Dwyer JE, Matias J, Baljinnyam B, Oliver JD, Rajeevan N, Pedra JHF, Narasimhan S, Wang Y, Munderloh U, Fikrig E, Simeonov A, Anguita J, Pal U. Dome1-JAK-STAT signaling between parasite and host integrates vector immunity and development. Science 2023; 379:eabl3837. [PMID: 36634189 PMCID: PMC10122270 DOI: 10.1126/science.abl3837] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/08/2022] [Indexed: 01/14/2023]
Abstract
Ancestral signaling pathways serve critical roles in metazoan development, physiology, and immunity. We report an evolutionary interspecies communication pathway involving a central Ixodes scapularis tick receptor termed Dome1, which acquired a mammalian cytokine receptor motif exhibiting high affinity for interferon-gamma (IFN-γ). Host-derived IFN-γ facilitates Dome1-mediated activation of the Ixodes JAK-STAT pathway. This accelerates tick blood meal acquisition and development while upregulating antimicrobial components. The Dome1-JAK-STAT pathway, which exists in most Ixodid tick genomes, regulates the regeneration and proliferation of gut cells-including stem cells-and dictates metamorphosis through the Hedgehog and Notch-Delta networks, ultimately affecting Ixodes vectorial competence. We highlight the evolutionary dependence of I. scapularis on mammalian hosts through cross-species signaling mechanisms that dually influence arthropod immunity and development.
Collapse
Affiliation(s)
- Vipin S. Rana
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Shraboni Dutta
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Michael H. Ronzetti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Min Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Quentin Bernard
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Alexis A. Smith
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Julen Tomás-Cortázar
- CIC bioGUNE-BRTA (Basque Research & Technology Alliance), 48160 Derio, Bizkaia, Spain
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Ming-Jie Wu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Oleksandra Kepple
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Weizhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Jennifer E. Dwyer
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | | | - Nallakkandi Rajeevan
- Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Ulrike Munderloh
- Department of Entomology, University of Minnesota, Minneapolis, MN, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Juan Anguita
- CIC bioGUNE-BRTA (Basque Research & Technology Alliance), 48160 Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Bizkaia, Spain
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
- Virginia-Maryland College of Veterinary Medicine, College Park, MD, USA
| |
Collapse
|
26
|
Chen WH, Strych U, Bottazzi ME, Lin YP. Past, present, and future of Lyme disease vaccines: antigen engineering approaches and mechanistic insights. Expert Rev Vaccines 2022; 21:1405-1417. [PMID: 35836340 PMCID: PMC9529901 DOI: 10.1080/14760584.2022.2102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Transmitted by ticks, Lyme disease is the most common vector-borne disease in the Northern hemisphere. Despite the geographical expansion of human Lyme disease cases, no effective preventive strategies are currently available. Developing an efficacious and safe vaccine is therefore urgently needed. Efforts have previously been taken to identify vaccine targets in the causative pathogen (Borrelia burgdorferi sensu lato) and arthropod vector (Ixodes spp.). However, progress was impeded due to a lack of consumer confidence caused by the myth of undesired off-target responses, low immune responses, a limited breadth of immune reactivity, as well as by the complexities of the vaccine process development. AREA COVERED In this review, we summarize the antigen engineering approaches that have been applied to overcome those challenges and the underlying mechanisms that can be exploited to improve both safety and efficacy of future Lyme disease vaccines. EXPERT OPINION Over the past two decades, several new genetically redesigned Lyme disease vaccine candidates have shown success in both preclinical and clinical settings and built a solid foundation for further development. These studies have greatly informed the protective mechanisms of reducing Lyme disease burdens and ending the endemic of this disease.
Collapse
Affiliation(s)
- Wen-Hsiang Chen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, United States
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA
| |
Collapse
|
27
|
Mantilla Valdivieso EF, Ross EM, Raza A, Naseem MN, Kamran M, Hayes BJ, Jonsson NN, James P, Tabor AE. Transcriptional changes in the peripheral blood leukocytes from Brangus cattle before and after tick challenge with Rhipicephalus australis. BMC Genomics 2022; 23:454. [PMID: 35725367 PMCID: PMC9208207 DOI: 10.1186/s12864-022-08686-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Background Disease emergence and production loss caused by cattle tick infestations have focused attention on genetic selection strategies to breed beef cattle with increased tick resistance. However, the mechanisms behind host responses to tick infestation have not been fully characterised. Hence, this study examined gene expression profiles of peripheral blood leukocytes from tick-naive Brangus steers (Bos taurus x Bos indicus) at 0, 3, and 12 weeks following artificial tick challenge experiments with Rhipicephalus australis larvae. The aim of the study was to investigate the effect of tick infestation on host leukocyte response to explore genes associated with the expression of high and low host resistance to ticks. Results Animals with high (HR, n = 5) and low (LR, n = 5) host resistance were identified after repeated tick challenge. A total of 3644 unique differentially expressed genes (FDR < 0.05) were identified in the comparison of tick-exposed (both HR and LR) and tick-naive steers for the 3-week and 12-week infestation period. Enrichment analyses showed genes were involved in leukocyte chemotaxis, coagulation, and inflammatory response. The IL-17 signalling, and cytokine-cytokine interactions pathways appeared to be relevant in protection and immunopathology to tick challenge. Comparison of HR and LR phenotypes at timepoints of weeks 0, 3, and 12 showed there were 69, 8, and 4 differentially expressed genes, respectively. Most of these genes were related to immune, tissue remodelling, and angiogenesis functions, suggesting this is relevant in the development of resistance or susceptibility to tick challenge. Conclusions This study showed the effect of tick infestation on Brangus cattle with variable phenotypes of host resistance to R. australis ticks. Steers responded to infestation by expressing leukocyte genes related to chemotaxis, cytokine secretion, and inflammatory response. The altered expression of genes from the bovine MHC complex in highly resistant animals at pre- and post- infestation stages also supports the relevance of this genomic region for disease resilience. Overall, this study offers a resource of leukocyte gene expression data on matched tick-naive and tick-infested steers relevant for the improvement of tick resistance in composite cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08686-3.
Collapse
Affiliation(s)
- Emily F Mantilla Valdivieso
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia.
| | - Elizabeth M Ross
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Ali Raza
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Muhammad Noman Naseem
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Muhammad Kamran
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Ben J Hayes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Nicholas N Jonsson
- University of Glasgow, Institute of Biodiversity Animal Health and Comparative Medicine, Glasgow, G61 1QH, UK.
| | - Peter James
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Ala E Tabor
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia. .,The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
28
|
Maqbool M, Sajid MS, Saqib M, Anjum FR, Tayyab MH, Rizwan HM, Rashid MI, Rashid I, Iqbal A, Siddique RM, Shamim A, Hassan MA, Atif FA, Razzaq A, Zeeshan M, Hussain K, Nisar RHA, Tanveer A, Younas S, Kamran K, Rahman SU. Potential Mechanisms of Transmission of Tick-Borne Viruses at the Virus-Tick Interface. Front Microbiol 2022; 13:846884. [PMID: 35602013 PMCID: PMC9121816 DOI: 10.3389/fmicb.2022.846884] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Ticks (Acari; Ixodidae) are the second most important vector for transmission of pathogens to humans, livestock, and wildlife. Ticks as vectors for viruses have been reported many times over the last 100 years. Tick-borne viruses (TBVs) belong to two orders (Bunyavirales and Mononegavirales) containing nine families (Bunyaviridae, Rhabdoviridae, Asfarviridae, Orthomyxovirida, Reoviridae, Flaviviridae, Phenuviridae, Nyamiviridae, and Nairoviridae). Among these TBVs, some are very pathogenic, causing huge mortality, and hence, deserve to be covered under the umbrella of one health. About 38 viral species are being transmitted by <10% of the tick species of the families Ixodidae and Argasidae. All TBVs are RNA viruses except for the African swine fever virus from the family Asfarviridae. Tick-borne viral diseases have also been classified as an emerging threat to public health and animals, especially in resource-poor communities of the developing world. Tick-host interaction plays an important role in the successful transmission of pathogens. The ticks' salivary glands are the main cellular machinery involved in the uptake, settlement, and multiplication of viruses, which are required for successful transmission into the final host. Furthermore, tick saliva also participates as an augmenting tool during the physiological process of transmission. Tick saliva is an important key element in the successful transmission of pathogens and contains different antimicrobial proteins, e.g., defensin, serine, proteases, and cement protein, which are key players in tick-virus interaction. While tick-virus interaction is a crucial factor in the propagation of tick-borne viral diseases, other factors (physiological, immunological, and gut flora) are also involved. Some immunological factors, e.g., toll-like receptors, scavenger receptors, Janus-kinase (JAK-STAT) pathway, and immunodeficiency (IMD) pathway are involved in tick-virus interaction by helping in virus assembly and acting to increase transmission. Ticks also harbor some endogenous viruses as internal microbial faunas, which also play a significant role in tick-virus interaction. Studies focusing on tick saliva and its role in pathogen transmission, tick feeding, and control of ticks using functional genomics all point toward solutions to this emerging threat. Information regarding tick-virus interaction is somewhat lacking; however, this information is necessary for a complete understanding of transmission TBVs and their persistence in nature. This review encompasses insight into the ecology and vectorial capacity of tick vectors, as well as our current understanding of the predisposing, enabling, precipitating, and reinforcing factors that influence TBV epidemics. The review explores the cellular, biochemical, and immunological tools which ensure and augment successful evading of the ticks' defense systems and transmission of the viruses to the final hosts at the virus-vector interface. The role of functional genomics, proteomics, and metabolomics in profiling tick-virus interaction is also discussed. This review is an initial attempt to comprehensively elaborate on the epidemiological determinants of TBVs with a focus on intra-vector physiological processes involved in the successful execution of the docking, uptake, settlement, replication, and transmission processes of arboviruses. This adds valuable data to the existing bank of knowledge for global stakeholders, policymakers, and the scientific community working to devise appropriate strategies to control ticks and TBVs.
Collapse
Affiliation(s)
- Mahvish Maqbool
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sohail Sajid
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
- Department of Epidemiology and Public Health, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saqib
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Faisal Rasheed Anjum
- Department of Epidemiology and Public Health, University of Agriculture, Faisalabad, Pakistan
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Haleem Tayyab
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Muhammad Rizwan
- Section of Parasitology, Department of Pathobiology, KBCMA College of Veterinary and Animal Sciences Narowal, Lahore, Pakistan
| | - Muhammad Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imaad Rashid
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Asif Iqbal
- Section of Parasitology, Department of Pathobiology, Riphah College of Veterinary Sciences, Riphah International University, Lahore, Pakistan
| | - Rao Muhammad Siddique
- Section of Parasitology, Department of Pathobiology, Riphah College of Veterinary Sciences, Riphah International University, Lahore, Pakistan
| | - Asim Shamim
- Department of Pathobiology, University of the Poonch Rawalakot, Rawalakot, Pakistan
| | - Muhammad Adeel Hassan
- Department of Parasitology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Farhan Ahmad Atif
- Medicine Section, Department of Clinical Sciences, Collège of Veterinary and Animal Sciences, Jhang, Pakistan
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abdul Razzaq
- Agricultural Linkages Program, Pakistan Agriculture Research Council, Islamabad, Pakistan
| | - Muhammad Zeeshan
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Hussain
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | | | - Akasha Tanveer
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Sahar Younas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Kamran
- Department of Zoology, University of Balochistan, Quetta, Pakistan
| | - Sajjad ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|