1
|
Stiehl T. Stem cell graft dose and composition could impact on the expansion of donor-derived clones after allogeneic hematopoietic stem cell transplantation - a virtual clinical trial. Front Immunol 2024; 15:1321336. [PMID: 39737169 PMCID: PMC11682905 DOI: 10.3389/fimmu.2024.1321336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 09/10/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Hematopoietic stem cell transplantation is a potentially curative intervention for a broad range of diseases. However, there is evidence that malignant or pre-malignant clones contained in the transplant can expand in the recipient and trigger donor-derived malignancies. This observation has gained much attention in the context of clonal hematopoiesis, a medical condition where significant amounts of healthy blood cells are derived from a small number of hematopoietic stem cell clones. In many cases the dominating clones carry mutations conferring a growth advantage and thus could undergo malignant transformation in the recipient. Since clonal hematopoiesis exists in a significant proportion of potential stem cell donors, a more detailed understanding of its role for stem cell transplantation is required. Methods We propose mechanistic computational models and perform virtual clinical trials to investigate clonal dynamics during and after allogenic hematopoietic stem cell transplantation. Different mechanisms of clonal expansion are considered, including mutation-related changes of stem cell proliferation and self-renewal, aberrant response of mutated cells to systemic signals, and self-sustaining chronic inflammation triggered by the mutated cells. Results Model simulations suggest that an aberrant response of mutated cells to systemic signals is sufficient to explain the frequently observed quick expansion of the mutated clone shortly after transplantation which is followed by a stabilization of the mutated cell number at a constant value. In contrary, a mutation-related increase of self-renewal or self-sustaining chronic inflammation lead to ongoing clonal expansion. Our virtual clinical trials suggest that a low number of transplanted stem cells per kg of body weight increases the transplantation-related expansion of donor-derived clones, whereas the transplanted progenitor dose or growth factor support after transplantation have no impact on clonal dynamics. Furthermore, in our simulations the change of the donors' variant allele frequencies in the year before stem cell donation is associated with the expansion of donor-derived clones in the recipient. Discussion This in silico study provides insights in the mechanisms leading to clonal expansion and identifies questions that could be addressed in future clinical trials.
Collapse
Affiliation(s)
- Thomas Stiehl
- Aachen Medical School, Institute for Computational Biomedicine & Disease Modeling,
RWTH Aachen University, Aachen, Germany
- Department for Science and Environment, Roskilde University,
Roskilde, Denmark
| |
Collapse
|
2
|
Liu S, Adams SE, Zheng H, Ehnot J, Jung SK, Jeffrey G, Menna T, Purton L, Lee H, Kurre P. Dynamic tracking of native precursors in adult mice. eLife 2024; 13:RP97504. [PMID: 39636670 PMCID: PMC11620740 DOI: 10.7554/elife.97504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Hematopoietic dysfunction has been associated with a reduction in the number of active precursors. However, precursor quantification at homeostasis and under diseased conditions is constrained by the scarcity of available methods. To address this issue, we optimized a method for quantifying a wide range of hematopoietic precursors. Assuming the random induction of a stable label in precursors following a binomial distribution, estimates depend on the inverse correlation between precursor numbers and the variance of precursor labeling among independent samples. Experimentally validated to cover the full dynamic range of hematopoietic precursors in mice (1-105), we utilized this approach to demonstrate that thousands of precursors, which emerge after modest expansion during fetal-to-adult transition, contribute to native and perturbed hematopoiesis. We further estimated the number of precursors in a mouse model of Fanconi Anemia, showcasing how repopulation deficits can be classified as autologous (cell proliferation) and non-autologous (lack of precursor). Our results support an accessible and reliable approach for precursor quantification, emphasizing the contemporary perspective that native hematopoiesis is highly polyclonal.
Collapse
Affiliation(s)
- Suying Liu
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Sarah E Adams
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Haotian Zheng
- Department of Biostatistics, Epidemiology and Informatics, University of PennsylvaniaPhiladelphiaUnited States
| | - Juliana Ehnot
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Seul K Jung
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Greer Jeffrey
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Theresa Menna
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Louise Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical ResearchFitzroyAustralia
- Department of Medicine, The University of MelbourneParkvilleAustralia
| | - Hongzhe Lee
- Department of Biostatistics, Epidemiology and Informatics, University of PennsylvaniaPhiladelphiaUnited States
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
3
|
Kreger J, Mooney JA, Shibata D, MacLean AL. Developmental hematopoietic stem cell variation explains clonal hematopoiesis later in life. Nat Commun 2024; 15:10268. [PMID: 39592593 PMCID: PMC11599844 DOI: 10.1038/s41467-024-54711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Clonal hematopoiesis becomes increasingly common with age, but its cause is enigmatic because driver mutations are often absent. Serial observations infer weak selection indicating variants are acquired much earlier in life with unexplained initial growth spurts. Here we use fluctuating CpG methylation as a lineage marker to track stem cell clonal dynamics of hematopoiesis. We show, via the shared prenatal circulation of monozygotic twins, that weak selection conferred by stem cell variation created before birth can reliably yield clonal hematopoiesis later in life. Theory indicates weak selection will lead to dominance given enough time and large enough population sizes. Human hematopoiesis satisfies both these conditions. Stochastic loss of weakly selected variants is naturally prevented by the expansion of stem cell lineages during development. The dominance of stem cell clones created before birth is supported by blood fluctuating CpG methylation patterns that exhibit low correlation between unrelated individuals but are highly correlated between many elderly monozygotic twins. Therefore, clonal hematopoiesis driven by weak selection in later life appears to reflect variation created before birth.
Collapse
Affiliation(s)
- Jesse Kreger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Jazlyn A Mooney
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Darryl Shibata
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Adam L MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Nayak TK, Parasania D, Tilley DG. Adrenergic orchestration of immune cell dynamics in response to cardiac stress. J Mol Cell Cardiol 2024; 196:115-124. [PMID: 39303854 DOI: 10.1016/j.yjmcc.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Immune cells contribute approximately 5-10 % of the heart's total cell population, including several myeloid cell and lymphocyte cell subsets, which, despite their relatively small percentages, play important roles in cardiac homeostasis and remodeling responses to various forms of injury and long-term stress. Pathological cardiac stress activates the sympathetic nervous system (SNS), resulting in the release of the catecholamines epinephrine and norepinephrine either systemically or from sympathetic nerve terminals within various lymphoid organs. Acting at α- or β-adrenergic receptors (αAR, βAR), catecholamines regulate immune cell hematopoiesis, egress and migration in response to stress. Classically, αAR stimulation tends to promote inflammatory responses while βAR stimulation has typically been shown to be immunosuppressive, though the effects can be nuanced depending on the immune cells subtype, the site of regulation and pathophysiological context. Herein, we will discuss several facets of SNS-mediated regulation of immune cells and their response to cardiac stress, including: catecholamine response to cardiovascular stress and action at their receptors, adrenergic regulation of hematopoiesis, immune cell retention and release from the bone marrow, adrenergic regulation of splenic immune cells and their retention, as well as adrenergic regulation of immune cell recruitment to the injured heart, including neutrophils, monocytes and macrophages. A particular focus will be given to βAR-mediated effects on myeloid cells in response to acute or chronic cardiac stress.
Collapse
Affiliation(s)
- Tapas K Nayak
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dev Parasania
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
5
|
Portillo AM, García-Velasco JA, Varela E. An in-silico approach to the dynamics of proliferation potential in stem cells and the study of different therapies in cases of ovarian dysfunction. Math Biosci 2024; 377:109305. [PMID: 39366452 DOI: 10.1016/j.mbs.2024.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
A discrete mathematical model based on ordinary differential equations and the associated continuous model formed by a partial differential equation, which simulate the generational and temporal evolution of a stem cell population, are proposed. The model parameters are the maximum proliferation potential and the rates of mitosis, death events and telomerase activity. The mean proliferation potential at each point in time is suggested as an indicator of population aging. The model is applied on hematopoietic stem cells (HSCs), with different telomerase activity rates, in a range of variation of maximum proliferation potential in healthy individuals, to study the temporal evolution of aging. HSCs express telomerase, however not at levels that are sufficient for maintaining constant telomere length with aging [1,2]. Women with primary ovarian insufficiency (POI) are known to have low telomerase activity in granulosa cells and peripheral blood mononuclear cells [3]. Extrapolating this to hematopoietic stem cells, the mathematical model shows the differences in proliferation potential of the cell populations when telomerase expression is activated using sexual steroids, though the endogenous promoter or with gene therapy using exogenous, stronger promoters within the adeno-associated virus. In the first case, proliferation potential of cells from POI condition increases, but when adeno-associated viruses are used, the proliferation potential reaches the levels of healthy cell populations.
Collapse
Affiliation(s)
- A M Portillo
- Instituto de Investigación en Matemáticas de la Universidad de Valladolid, Valladolid, Spain; Departamento de Matemática Aplicada, Escuela de Ingenierías Industriales, Universidad de Valladolid, Pso. Prado de la Magdalena 3-5, Valladolid, 47011, Spain.
| | - J A García-Velasco
- IVIRMA Global Research Alliance, The Health Research Institute La Fe (IIS La Fe), Edificio Biopolo. Av. Fernando Abril Martorell, 106 - Torre A, Planta 1, Valencia, 46026, Spain; IVIRMA Global Research Alliance, IVIRMA Madrid, Av. del Talgo, 68, Madrid, 28023, Spain; Rey Juan Carlos University, Department of Medical Specialties and Public Health, Edificio Departamental II. Av. de Atenas, s/n, Alcorcón, Madrid, 28922, Spain.
| | - E Varela
- IVIRMA Global Research Alliance, The Health Research Institute La Fe (IIS La Fe), Edificio Biopolo. Av. Fernando Abril Martorell, 106 - Torre A, Planta 1, Valencia, 46026, Spain; Rey Juan Carlos University, Department of Medical Specialties and Public Health, Edificio Departamental II. Av. de Atenas, s/n, Alcorcón, Madrid, 28922, Spain.
| |
Collapse
|
6
|
Krayem I, Grusanovic S, Duric I, Pavliuchenko N, Danek P, Borna S, Sekeresova Kralova J, Skopcova T, Pokorna J, Alberich-Jorda M, Brdicka T. WBP1L regulates hematopoietic stem cell function and T cell development. Front Immunol 2024; 15:1421512. [PMID: 39555063 PMCID: PMC11563793 DOI: 10.3389/fimmu.2024.1421512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
WW domain binding protein 1-like (WBP1L), also known as outcome predictor of acute leukemia 1 (OPAL1), is a transmembrane adaptor protein, expression of which was shown to correlate with ETV6-RUNX1 translocation and favorable prognosis in childhood leukemia. It has a broad expression pattern in hematopoietic and non-hematopoietic cells. Our previous work described WBP1L as a regulator of CXCR4 signaling and hematopoiesis. Here, we show that hematopoiesis in the mice with Wbp1l germline deletion is dysregulated, already at the level of hematopoietic stem cells and early progenitors. We further demonstrate that thymi of WBP1L-deficient mice are significantly enlarged and contain increased numbers of thymocytes of all subsets. This can potentially be explained by increased generation of multipotent progenitors 4 (MPP4) in the bone marrow, from which the thymus-seeding progenitors are derived. We also observed increases in multiple cell types in the blood. In addition, we show that WBP1L regulates hematopoietic stem cell functionality and leukocyte progenitor proliferation and gene expression during hematopoietic stem and progenitor cell transplantation, which contribute to more efficient engraftment of WBP1L-deficient cells. WBP1L thus emerges as a regulator of hematopoietic stem and progenitor cell function, which controls leukocyte numbers at the steady state and after bone marrow transplantation.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Srdjan Grusanovic
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Iris Duric
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Nataliia Pavliuchenko
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Danek
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- Molecular Analysis of Growth Regulation in Animals, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Simon Borna
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Sekeresova Kralova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Tereza Skopcova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Pokorna
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Meritxell Alberich-Jorda
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czechia
| | - Tomas Brdicka
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Liu S, Adams SE, Zheng H, Ehnot J, Jung SK, Jeffrey G, Menna T, Purton LE, Lee H, Kurre P. Dynamic Tracking of Native Precursors in Adult Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587737. [PMID: 38617223 PMCID: PMC11014561 DOI: 10.1101/2024.04.02.587737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Hematopoietic dysfunction has been associated with a reduction in the number of active precursors. However, precursor quantification at homeostasis and under diseased conditions is constrained by the scarcity of available methods. To address this issue, we optimized a method for quantifying a wide range of hematopoietic precursors. Assuming the random induction of a stable label in precursors following a binomial distribution, estimates depend on the inverse correlation between precursor numbers and the variance of precursor labeling among independent samples. Experimentally validated to cover the full dynamic range of hematopoietic precursors in mice (1 to 105), we utilized this approach to demonstrate that thousands of precursors, which emerge after modest expansion during fetal-to-adult transition, contribute to native and perturbed hematopoiesis. We further estimated the number of precursors in a mouse model of Fanconi Anemia, showcasing how repopulation deficits can be classified as autologous (cell proliferation) and non-autologous (lack of precursor). Our results support an accessible and reliable approach for precursor quantification, emphasizing the contemporary perspective that native hematopoiesis is highly polyclonal.
Collapse
Affiliation(s)
- Suying Liu
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah E. Adams
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Haotian Zheng
- Department of Biostatistics, Epidemiology and informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juliana Ehnot
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seul K. Jung
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greer Jeffrey
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Theresa Menna
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Louise E. Purton
- Stem Cell Regulation Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Hongzhe Lee
- Department of Biostatistics, Epidemiology and informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Shaban D, Najm N, Droin L, Nijnik A. Hematopoietic Stem Cell Fates and the Cellular Hierarchy of Mammalian Hematopoiesis: from Transplantation Models to New Insights from in Situ Analyses. Stem Cell Rev Rep 2024:10.1007/s12015-024-10782-8. [PMID: 39222178 DOI: 10.1007/s12015-024-10782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Hematopoiesis is the process that generates the cells of the blood and immune system from hematopoietic stem and progenitor cells (HSPCs) and represents the system with the most rapid cell turnover in a mammalian organism. HSPC differentiation trajectories, their underlying molecular mechanisms, and their dysfunctions in hematologic disorders are the focal research questions of experimental hematology. While HSPC transplantations in murine models are the traditional tool in this research field, recent advances in genome editing and next generation sequencing resulted in the development of many fundamentally new approaches for the analyses of mammalian hematopoiesis in situ and at single cell resolution. The current review will cover many recent developments in this field in murine models, from the bulk lineage tracing studies of HSPC differentiation to the barcoding of individual HSPCs with Cre-recombinase, Sleeping Beauty transposase, or CRISPR/Cas9 tools, to map hematopoietic cell fates, together with their transcriptional and epigenetic states. We also address studies of the clonal dynamics of human hematopoiesis, from the tracing of HSPC clonal behaviours based on viral integration sites in gene therapy patients to the recent analyses of unperturbed human hematopoiesis based on naturally accrued mutations in either nuclear or mitochondrial genomes. Such studies are revolutionizing our understanding of HSPC biology and hematopoiesis both under homeostatic conditions and in the response to various forms of physiological stress, reveal the mechanisms responsible for the decline of hematopoietic function with age, and in the future may advance the understanding and management of the diverse disorders of hematopoiesis.
Collapse
Affiliation(s)
- Dania Shaban
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Nay Najm
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Lucie Droin
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Jia D, Salazar-Cavazos E, West T, Liang SH, Costa R, Clavijo-Salomon M, Huang A, Trinchieri G, Lionakis M, Mukherjee R, Altan-Bonnet G. Chaotic dynamics for homeostatic hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608266. [PMID: 39372763 PMCID: PMC11451746 DOI: 10.1101/2024.08.16.608266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Hematopoiesis is a highly dynamical and stochastic process, challenging our understanding of homeostasis. Clinical studies of leukemia or neutropenic patients revealed that multiple blood cell types fluctuate spontaneously with large yet regular oscillations of their frequencies. Yet the stability of hematopoiesis in healthy individuals remains understudied. Here we report on both cross-sectional and longitudinal studies of dozens of healthy mice, through high-dimensional mass and spectral cytometry, to understand hematopoiesis at homeostasis. We found that all cell types in the bone marrow, blood, and spleen exhibit large variations of frequency (e.g., with coefficients of variation larger than 1). While the frequencies of individual cell type fluctuate, there existed extensive and robust correlations/anti-correlations between cell types, exemplified by the pronounced anti-correlation between blood neutrophils and B cells. Through longitudinal study of the blood content of healthy mice, we found that leukocyte fluctuations are ergodic yet subject to chaotic behaviors characterized by a broad spectrum of characteristic timescales. We then built a minimal mathematical model to capture these dynamical features of hematopoiesis (fluctuations, correlations, and chaos) and explain how the accumulation of B cells (e.g. during lymphoma development) would transition the blood cell dynamics from chaos to oscillations (as observed clinically). Finally, we demonstrated the ubiquity and consistency of the correlated fluctuations in hematopoiesis by comparing mouse cohorts of different genetic backgrounds and ages. To conclude, we discuss how study of hematopoiesis must factor in the newfound chaotic dynamics at homeostasis, towards better modeling the responses to perturbations.
Collapse
|
10
|
Duchamp de Chastaigne S, Sawai CM. Counting blood precursors. eLife 2024; 13:e100373. [PMID: 39017663 PMCID: PMC11254379 DOI: 10.7554/elife.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
A new mathematical model can estimate the number of precursor cells that contribute to regenerating blood cells in mice.
Collapse
Affiliation(s)
| | - Catherine M Sawai
- INSERM Unit 1312 Bordeaux Institute of Oncology, University of BordeauxBordeauxFrance
| |
Collapse
|
11
|
Boklund TI, Snyder J, Gudmand-Hoeyer J, Larsen MK, Knudsen TA, Eickhardt-Dalbøge CS, Skov V, Kjær L, Hasselbalch HC, Andersen M, Ottesen JT, Stiehl T. Mathematical modelling of stem and progenitor cell dynamics during ruxolitinib treatment of patients with myeloproliferative neoplasms. Front Immunol 2024; 15:1384509. [PMID: 38846951 PMCID: PMC11154009 DOI: 10.3389/fimmu.2024.1384509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction The Philadelphia chromosome-negative myeloproliferative neoplasms are a group of slowly progressing haematological malignancies primarily characterised by an overproduction of myeloid blood cells. Patients are treated with various drugs, including the JAK1/2 inhibitor ruxolitinib. Mathematical modelling can help propose and test hypotheses of how the treatment works. Materials and methods We present an extension of the Cancitis model, which describes the development of myeloproliferative neoplasms and their interactions with inflammation, that explicitly models progenitor cells and can account for treatment with ruxolitinib through effects on the malignant stem cell response to cytokine signalling and the death rate of malignant progenitor cells. The model has been fitted to individual patients' data for the JAK2 V617F variant allele frequency from the COMFORT-II and RESPONSE studies for patients who had substantial reductions (20 percentage points or 90% of the baseline value) in their JAK2 V617F variant allele frequency (n = 24 in total). Results The model fits very well to the patient data with an average root mean square error of 0.0249 (2.49%) when allowing ruxolitinib treatment to affect both malignant stem and progenitor cells. This average root mean square error is much lower than if allowing ruxolitinib treatment to affect only malignant stem or only malignant progenitor cells (average root mean square errors of 0.138 (13.8%) and 0.0874 (8.74%), respectively). Discussion Systematic simulation studies and fitting of the model to the patient data suggest that an initial reduction of the malignant cell burden followed by a monotonic increase can be recapitulated by the model assuming that ruxolitinib affects only the death rate of malignant progenitor cells. For patients exhibiting a long-term reduction of the malignant cells, the model predicts that ruxolitinib also affects stem cell parameters, such as the malignant stem cells' response to cytokine signalling.
Collapse
Affiliation(s)
- Tobias Idor Boklund
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jordan Snyder
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Johanne Gudmand-Hoeyer
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Trine Alma Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Morten Andersen
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Johnny T. Ottesen
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Thomas Stiehl
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Institute for Computational Biomedicine and Disease Modeling, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Nikitich A, Helmlinger G, Peskov K, Bocharov G. Mathematical modeling of endogenous and exogenously administered T cell recirculation in mouse and its application to pharmacokinetic studies of cell therapies. Front Immunol 2024; 15:1357706. [PMID: 38846946 PMCID: PMC11155669 DOI: 10.3389/fimmu.2024.1357706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/19/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction In vivo T cell migration has been of interest to scientists for the past 60 years. T cell kinetics are important in the understanding of the immune response to infectious agents. More recently, adoptive T cell therapies have proven to be a most promising approach to treating a wide range of diseases, including autoimmune and cancer diseases, whereby the characterization of cellular kinetics represents an important step towards the prediction of therapeutic efficacy. Methods Here, we developed a physiologically-based pharmacokinetic (PBPK) model that describes endogenous T cell homeostasis and the kinetics of exogenously administered T cells in mouse. Parameter calibration was performed using a nonlinear fixed-effects modeling approach based on published data on T cell kinetics and steady-state levels in different tissues of mice. The Partial Rank Correlation Coefficient (PRCC) method was used to perform a global sensitivity assessment. To estimate the impact of kinetic parameters on exogenously administered T cell dynamics, a local sensitivity analysis was conducted. Results We simulated the model to analyze cellular kinetics following various T cell doses and frequencies of CCR7+ T cells in the population of infused lymphocytes. The model predicted the effects of T cell numbers and of population composition of infused T cells on the resultant concentration of T cells in various organs. For example, a higher percentage of CCR7+ T cells among exogenously administered T lymphocytes led to an augmented accumulation of T cells in the spleen. The model predicted a linear dependence of T cell dynamics on the dose of adoptively transferred T cells. Discussion The mathematical model of T cell migration presented here can be integrated into a multi-scale model of the immune system and be used in a preclinical setting for predicting the distribution of genetically modified T lymphocytes in various organs, following adoptive T cell therapies.
Collapse
Affiliation(s)
- Antonina Nikitich
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
| | | | - Kirill Peskov
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Modeling and Simulation Decisions FZ - LLC, Dubai, United Arab Emirates
- University of Science and Technology (STU) “Sirius”, Sochi, Russia
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Institute for Computer Science and Mathematical Modelling, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center of Fundamental and Applied Mathematics at INM RAS, Moscow, Russia
| |
Collapse
|
13
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Zhou A, Wang D. Structural characterization of Russula griseocarnosa polysaccharide and its improvement on hematopoietic function. Int J Biol Macromol 2024; 263:130355. [PMID: 38395281 DOI: 10.1016/j.ijbiomac.2024.130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The hematopoietic function of a polysaccharide derived from Russula griseocarnosa was demonstrated in K562 cells, and subsequently purified through chromatography to obtain RGP1. RGP1 is a galactan composed of 1,6-α-D-Galp as the main chain, with partial substitutions. A -CH3 substitution was detected at O-3 of 1,6-α-D-Galp. The possible branches at O-2 of 1,6-α-D-Galp was α-L-Fucp. In mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction, RGP1 alleviated bone marrow damage and multinucleated giant cell infiltration of the spleen, increased the number of long-term hematopoietic stem cells, and regulated the levels of myeloid cells in the peripheral blood. Furthermore, RGP1 promoted the differentiation of activated T cells and CD4+ T cells without affecting natural killer cells and B cells. Proteomic analysis, detection of cytokines, and western blotting revealed that RGP1 could alleviate hematopoietic dysfunction by promoting the activation of CD4+ T cells and the Janus kinase/ signal transducer and activator of transcription 3 pathway. The present study provides experimental evidence to support the application of RGP1 in CTX-induced hematopoietic dysfunction.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Andong Zhou
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
14
|
de Jong MME, Chen L, Raaijmakers MHGP, Cupedo T. Bone marrow inflammation in haematological malignancies. Nat Rev Immunol 2024:10.1038/s41577-024-01003-x. [PMID: 38491073 DOI: 10.1038/s41577-024-01003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
Tissue inflammation is a hallmark of tumour microenvironments. In the bone marrow, tumour-associated inflammation impacts normal niches for haematopoietic progenitor cells and mature immune cells and supports the outgrowth and survival of malignant cells residing in these niche compartments. This Review provides an overview of our current understanding of inflammatory changes in the bone marrow microenvironment of myeloid and lymphoid malignancies, using acute myeloid leukaemia and multiple myeloma as examples and highlights unique and shared features of inflammation in niches for progenitor cells and plasma cells. Importantly, inflammation exerts profoundly different effects on normal bone marrow niches in these malignancies, and we provide context for possible drivers of these divergent effects. We explore the role of tumour cells in inflammatory changes, as well as the role of cellular constituents of normal bone marrow niches, including myeloid cells and stromal cells. Integrating knowledge of disease-specific dynamics of malignancy-associated bone marrow inflammation will provide a necessary framework for future targeting of these processes to improve patient outcome.
Collapse
Affiliation(s)
- Madelon M E de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Kulesh V, Peskov K, Helmlinger G, Bocharov G. An integrative mechanistic model of thymocyte dynamics. Front Immunol 2024; 15:1321309. [PMID: 38469297 PMCID: PMC10925769 DOI: 10.3389/fimmu.2024.1321309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
Background The thymus plays a central role in shaping human immune function. A mechanistic, quantitative description of immune cell dynamics and thymic output under homeostatic conditions and various patho-physiological scenarios are of particular interest in drug development applications, e.g., in the identification of potential therapeutic targets and selection of lead drug candidates against infectious diseases. Methods We here developed an integrative mathematical model of thymocyte dynamics in human. It incorporates mechanistic features of thymocyte homeostasis as well as spatial constraints of the thymus and considerations of age-dependent involution. All model parameter estimates were obtained based on published physiological data of thymocyte dynamics and thymus properties in mouse and human. We performed model sensitivity analyses to reveal potential therapeutic targets through an identification of processes critically affecting thymic function; we further explored differences in thymic function across healthy subjects, multiple sclerosis patients, and patients on fingolimod treatment. Results We found thymic function to be most impacted by the egress, proliferation, differentiation and death rates of those thymocytes which are most differentiated. Model predictions also showed that the clinically observed decrease in relapse risk with age, in multiple sclerosis patients who would have discontinued fingolimod therapy, can be explained mechanistically by decreased thymic output with age. Moreover, we quantified the effects of fingolimod treatment duration on thymic output. Conclusions In summary, the proposed model accurately describes, in mechanistic terms, thymic output as a function of age. It may be further used to perform predictive simulations of clinically relevant scenarios which combine specific patho-physiological conditions and pharmacological interventions of interest.
Collapse
Affiliation(s)
- Victoria Kulesh
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
| | - Kirill Peskov
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
- Modeling & Simulation Decisions FZ - LLC, Dubai, United Arab Emirates
- Sirius University of Science and Technology, Sirius, Russia
| | | | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
- Institute for Computer Science and Mathematical Modelling, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center of Fundamental and Applied Mathematics at INM Russian Academy of Sciences (RAS), Moscow, Russia
| |
Collapse
|
16
|
Kanuri B, Biswas P, Dahdah A, Murphy AJ, Nagareddy PR. Impact of age and sex on myelopoiesis and inflammation during myocardial infarction. J Mol Cell Cardiol 2024; 187:80-89. [PMID: 38163742 PMCID: PMC10922716 DOI: 10.1016/j.yjmcc.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Of all the different risk factors known to cause cardiovascular disease (CVD), age and sex are considered to play a crucial role. Aging follows a continuum from birth to death, and therefore it inevitably acts as a risk for CVD. Along with age, sex differences have also been shown to demonstrate variations in immune system responses to pathological insults. It has been widely perceived that females are protected against myocardial infarction (MI) and the protection is quite apparent in young vs. old women. Acute MI leads to changes in the population of myeloid and lymphoid cells at the injury site with myeloid bias being observed in the initial inflammation and the lymphoid in the late-resolution phases of the pathology. Multiple evidence demonstrates that aging enhances damage to various cellular processes through inflamm-aging, an inflammatory process identified to increase pro-inflammatory markers in circulation and tissues. Following MI, marked changes were observed in different sub-sets of major myeloid cell types viz., neutrophils, monocytes, and macrophages. There is a paucity of information regarding the tissue and site-specific functions of these sub-sets. In this review, we highlight the importance of age and sex as crucial risk factors by discussing their role during MI-induced myelopoiesis while emphasizing the current status of myeloid cell sub-sets. We further put forth the need for designing and executing age and sex interaction studies aimed to determine the appropriate age and sex to develop personalized therapeutic strategies post-MI.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Priosmita Biswas
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Albert Dahdah
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, Australia
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA.
| |
Collapse
|
17
|
Wang D, Rausch C, Buerger SA, Tschuri S, Rothenberg-Thurley M, Schulz M, Hasenauer J, Ziemann F, Metzeler KH, Marr C. Modeling early treatment response in AML from cell-free tumor DNA. iScience 2023; 26:108271. [PMID: 38047080 PMCID: PMC10690559 DOI: 10.1016/j.isci.2023.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
Monitoring disease response after intensive chemotherapy for acute myeloid leukemia (AML) currently requires invasive bone marrow biopsies, imposing a significant burden on patients. In contrast, cell-free tumor DNA (ctDNA) in peripheral blood, carrying tumor-specific mutations, offers a less-invasive assessment of residual disease. However, the relationship between ctDNA levels and bone marrow blast kinetics remains unclear. We explored this in 10 AML patients with NPM1 and IDH2 mutations undergoing initial chemotherapy. Comparison of mathematical mixed-effect models showed that (1) inclusion of blast cell death in the bone marrow, (2) transition of ctDNA to peripheral blood, and (3) ctDNA decay in peripheral blood describes kinetics of blast cells and ctDNA best. The fitted model allows prediction of residual bone marrow blast content from ctDNA, and its scaling factor, representing clonal heterogeneity, correlates with relapse risk. Our study provides precise insights into blast and ctDNA kinetics, offering novel avenues for AML disease monitoring.
Collapse
Affiliation(s)
- Dantong Wang
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany
- Center for Mathematics, Technische Universität München, Garching 85748, Germany
| | - Christian Rausch
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital (LMU), Munich, Germany
- German Cancer Consortium (DKTK), partner sites Munich/Dresden, Germany
| | - Simon A. Buerger
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital (LMU), Munich, Germany
| | - Sebastian Tschuri
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital (LMU), Munich, Germany
| | - Maja Rothenberg-Thurley
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital (LMU), Munich, Germany
| | - Melanie Schulz
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany
- Center for Mathematics, Technische Universität München, Garching 85748, Germany
| | - Jan Hasenauer
- Center for Mathematics, Technische Universität München, Garching 85748, Germany
- Computational Health Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany
- Faculty of Mathematics and Natural Sciences, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Frank Ziemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital (LMU), Munich, Germany
- German Cancer Consortium (DKTK), partner sites Munich/Dresden, Germany
| | - Klaus H. Metzeler
- Department of Hematology and Cell Therapy, University Hospital Leipzig (UHL) 04103, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany
- Center for Mathematics, Technische Universität München, Garching 85748, Germany
| |
Collapse
|
18
|
Gerber-Ferder Y, Cosgrove J, Duperray-Susini A, Missolo-Koussou Y, Dubois M, Stepaniuk K, Pereira-Abrantes M, Sedlik C, Lameiras S, Baulande S, Bendriss-Vermare N, Guermonprez P, Passaro D, Perié L, Piaggio E, Helft J. Breast cancer remotely imposes a myeloid bias on haematopoietic stem cells by reprogramming the bone marrow niche. Nat Cell Biol 2023; 25:1736-1745. [PMID: 38036749 DOI: 10.1038/s41556-023-01291-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Myeloid cell infiltration of solid tumours generally associates with poor patient prognosis and disease severity1-13. Therefore, understanding the regulation of myeloid cell differentiation during cancer is crucial to counteract their pro-tumourigenic role. Bone marrow (BM) haematopoiesis is a tightly regulated process for the production of all immune cells in accordance to tissue needs14. Myeloid cells differentiate during haematopoiesis from multipotent haematopoietic stem and progenitor cells (HSPCs)15-17. HSPCs can sense inflammatory signals from the periphery during infections18-21 or inflammatory disorders22-27. In these settings, HSPC expansion is associated with increased myeloid differentiation28,29. During carcinogenesis, the elevation of haematopoietic growth factors supports the expansion and differentiation of committed myeloid progenitors5,30. However, it is unclear whether cancer-related inflammation also triggers demand-adapted haematopoiesis at the level of multipotent HSPCs. In the BM, HSPCs reside within the haematopoietic niche which delivers HSC maintenance and differentiation cues31-35. Mesenchymal stem cells (MSCs) are a major cellular component of the BM niche and contribute to HSC homeostasis36-41. Modifications of MSCs in systemic disorders have been associated with HSC differentiation towards myeloid cells22,42. It is unknown if MSCs are regulated in the context of solid tumours and if their myeloid supportive activity is impacted by cancer-induced systemic changes. Here, using unbiased transcriptomic analysis and in situ imaging of HSCs and the BM niche during breast cancer, we show that both HSCs and MSCs are transcriptionally and spatially modified. We demonstrate that breast tumour can distantly remodel the cellular cross-talks in the BM niche leading to increased myelopoiesis.
Collapse
Affiliation(s)
- Yohan Gerber-Ferder
- Institut Curie, Immunity and Cancer, PSL University, INSERM U932, Paris, France
- Université Paris Cité, INSERM U932, Paris, France
| | - Jason Cosgrove
- PSL University, Institut Curie Research Center, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Aleria Duperray-Susini
- Institut Cochin, Leukemia and Niche Dynamics Laboratory, Université Paris Cité, INSERM, CNRS, Paris, France
| | | | - Marine Dubois
- Institut Curie, Immunity and Cancer, PSL University, INSERM U932, Paris, France
| | - Kateryna Stepaniuk
- Institut Cochin, Phagocytes and Cancer Immunology Laboratory, Université Paris Cité, INSERM U1016, CNRS UMR8104, Paris, France
| | - Manuela Pereira-Abrantes
- Cancer Research Center of Lyon, Centre Léon Bérard, Université Claude Bernard Lyon 1, UMR INSERM 1052 CNRS 5286, Lyon, France
| | - Christine Sedlik
- Institut Curie, Immunity and Cancer, PSL University, INSERM U932, Paris, France
| | - Sonia Lameiras
- Institut Curie, ICGex Next-Generation Sequencing Platform, PSL University, Paris, France
- Institut Curie, Single Cell Initiative, PSL University, Paris, France
| | - Sylvain Baulande
- Institut Curie, ICGex Next-Generation Sequencing Platform, PSL University, Paris, France
- Institut Curie, Single Cell Initiative, PSL University, Paris, France
| | - Nathalie Bendriss-Vermare
- Cancer Research Center of Lyon, Centre Léon Bérard, Université Claude Bernard Lyon 1, UMR INSERM 1052 CNRS 5286, Lyon, France
| | - Pierre Guermonprez
- Institut Pasteur, Dendritic Cells and Adaptive Immunity Unit, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Paris, France
| | - Diana Passaro
- Institut Cochin, Leukemia and Niche Dynamics Laboratory, Université Paris Cité, INSERM, CNRS, Paris, France
| | - Leïla Perié
- PSL University, Institut Curie Research Center, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Eliane Piaggio
- Institut Curie, Immunity and Cancer, PSL University, INSERM U932, Paris, France
| | - Julie Helft
- Institut Cochin, Phagocytes and Cancer Immunology Laboratory, Université Paris Cité, INSERM U1016, CNRS UMR8104, Paris, France.
| |
Collapse
|
19
|
Schippel N, Sharma S. Dynamics of human hematopoietic stem and progenitor cell differentiation to the erythroid lineage. Exp Hematol 2023; 123:1-17. [PMID: 37172755 PMCID: PMC10330572 DOI: 10.1016/j.exphem.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Erythropoiesis, the development of erythrocytes from hematopoietic stem cells, occurs through four phases: erythroid progenitor (EP) development, early erythropoiesis, terminal erythroid differentiation (TED), and maturation. According to the classical model that is based on immunophenotypic profiles of cell populations, each of these phases comprises multiple differentiation states that arise in a hierarchical manner. After segregation of lymphoid potential, erythroid priming begins during progenitor development and progresses through progenitor cell types that have multilineage potential. Complete separation of the erythroid lineage is achieved during early erythropoiesis with the formation of unipotent EPs: burst-forming unit-erythroid and colony-forming unit-erythroid. These erythroid-committed progenitors undergo TED and maturation, which involves expulsion of the nucleus and remodeling to form functional biconcave, hemoglobin-filled erythrocytes. In the last decade or so, many studies employing advanced techniques such as single-cell RNA-sequencing (scRNA-seq) as well as the conventional methods, including colony-forming cell assays and immunophenotyping, have revealed heterogeneity within the stem, progenitor, and erythroblast stages, and uncovered alternate paths for segregation of erythroid lineage potential. In this review, we provide an in-depth account of immunophenotypic profiles of all cell types within erythropoiesis, highlight studies that demonstrate heterogeneous erythroid stages, and describe deviations to the classical model of erythropoiesis. Overall, although scRNA-seq approaches have provided new insights, flow cytometry remains relevant and is the primary method for validation of novel immunophenotypes.
Collapse
Affiliation(s)
- Natascha Schippel
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ.
| |
Collapse
|
20
|
Affiliation(s)
- Jesse Cochran
- Hematovascular Biology Center, Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
21
|
Urbanus J, Cosgrove J, Beltman JB, Elhanati Y, Moral RA, Conrad C, van Heijst JW, Tubeuf E, Velds A, Kok L, Merle C, Magnusson JP, Guyonnet L, Frisén J, Fre S, Walczak AM, Mora T, Jacobs H, Schumacher TN, Perié L. DRAG in situ barcoding reveals an increased number of HSPCs contributing to myelopoiesis with age. Nat Commun 2023; 14:2184. [PMID: 37069150 PMCID: PMC10110593 DOI: 10.1038/s41467-023-37167-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/03/2023] [Indexed: 04/19/2023] Open
Abstract
Ageing is associated with changes in the cellular composition of the immune system. During ageing, hematopoietic stem and progenitor cells (HSPCs) that produce immune cells are thought to decline in their regenerative capacity. However, HSPC function has been mostly assessed using transplantation assays, and it remains unclear how HSPCs age in the native bone marrow niche. To address this issue, we present an in situ single cell lineage tracing technology to quantify the clonal composition and cell production of single cells in their native niche. Our results demonstrate that a pool of HSPCs with unequal output maintains myelopoiesis through overlapping waves of cell production throughout adult life. During ageing, the increased frequency of myeloid cells is explained by greater numbers of HSPCs contributing to myelopoiesis rather than the increased myeloid output of individual HSPCs. Strikingly, the myeloid output of HSPCs remains constant over time despite accumulating significant transcriptomic changes throughout adulthood. Together, these results show that, unlike emergency myelopoiesis post-transplantation, aged HSPCs in their native microenvironment do not functionally decline in their regenerative capacity.
Collapse
Affiliation(s)
- Jos Urbanus
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jason Cosgrove
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Joost B Beltman
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Rafael A Moral
- Department of Mathematics and Statistics, Maynooth University, Maynooth, Ireland
| | - Cecile Conrad
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Jeroen W van Heijst
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emilie Tubeuf
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Arno Velds
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lianne Kok
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Candice Merle
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Jens P Magnusson
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Léa Guyonnet
- Cytometry Platform, Institut Curie, 75005, Paris, France
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| | - Silvia Fre
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de Physique de l'École Normale Supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, Paris, France
| | - Thierry Mora
- Laboratoire de Physique de l'École Normale Supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, Paris, France
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France.
| |
Collapse
|
22
|
Wang H, Langlais D, Nijnik A. Histone H2A deubiquitinases in the transcriptional programs of development and hematopoiesis: a consolidated analysis. Int J Biochem Cell Biol 2023; 157:106384. [PMID: 36738766 DOI: 10.1016/j.biocel.2023.106384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Monoubiquitinated lysine 119 of histone H2A (H2AK119ub) is a highly abundant epigenetic mark, associated with gene repression and deposited on chromatin by the polycomb repressor complex 1 (PRC1), which is an essential regulator of diverse transcriptional programs in mammalian development and tissue homeostasis. While multiple deubiquitinases (DUBs) with catalytic activity for H2AK119ub (H2A-DUBs) have been identified, we lack systematic analyses of their roles and cross-talk in transcriptional regulation. Here, we address H2A-DUB functions in epigenetic regulation of mammalian development and tissue maintenance by conducting a meta-analysis of 248 genomics datasets from 32 independent studies, focusing on the mouse model and covering embryonic stem cells (ESCs), hematopoietic, and immune cell lineages. This covers all the publicly available datasets that map genomic H2A-DUB binding and H2AK119ub distributions (ChIP-Seq), and all datasets assessing dysregulation in gene expression in the relevant H2A-DUB knockout models (RNA-Seq). Many accessory datasets for PRC1-2 and DUB-interacting proteins are also analyzed and interpreted, as well as further data assessing chromatin accessibility (ATAC-Seq) and transcriptional activity (RNA-seq). We report co-localization in the binding of H2A-DUBs BAP1, USP16, and to a lesser extent others that is conserved across different cell-types, and also the enrichment of antagonistic PRC1-2 protein complexes at the same genomic locations. Such conserved sites enriched for the H2A-DUBs and PRC1-2 are proximal to transcriptionally active genes that engage in housekeeping cellular functions. Nevertheless, they exhibit H2AK119ub levels significantly above the genomic average that can undergo further increase with H2A-DUB knockout. This indicates a cooperation between H2A-DUBs and PRC1-2 in the modulation of housekeeping transcriptional programs, conserved across many cell types, likely operating through their antagonistic effects on H2AK119ub and the regulation of local H2AK119ub turnover. Our study further highlights existing knowledge gaps and discusses important directions for future work.
Collapse
Affiliation(s)
- HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill Genome Centre, Montreal, QC, Canada.
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada.
| |
Collapse
|
23
|
Plackoska V, Shaban D, Nijnik A. Hematologic dysfunction in cancer: Mechanisms, effects on antitumor immunity, and roles in disease progression. Front Immunol 2022; 13:1041010. [PMID: 36561751 PMCID: PMC9763314 DOI: 10.3389/fimmu.2022.1041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
With the major advances in cancer immunology and immunotherapy, it is critical to consider that most immune cells are short-lived and need to be continuously replenished from hematopoietic stem and progenitor cells. Hematologic abnormalities are prevalent in cancer patients, and many ground-breaking studies over the past decade provide insights into their underlying cellular and molecular mechanisms. Such studies demonstrate that the dysfunction of hematopoiesis is more than a side-effect of cancer pathology, but an important systemic feature of cancer disease. Here we review these many advances, covering the cancer-associated phenotypes of hematopoietic stem and progenitor cells, the dysfunction of myelopoiesis and erythropoiesis, the importance of extramedullary hematopoiesis in cancer disease, and the developmental origins of tumor associated macrophages. We address the roles of many secreted mediators, signaling pathways, and transcriptional and epigenetic mechanisms that mediate such hematopoietic dysfunction. Furthermore, we discuss the important contribution of the hematopoietic dysfunction to cancer immunosuppression, the possible avenues for therapeutic intervention, and highlight the unanswered questions and directions for future work. Overall, hematopoietic dysfunction is established as an active component of the cancer disease mechanisms and an important target for therapeutic intervention.
Collapse
Affiliation(s)
- Viktoria Plackoska
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Dania Shaban
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada,*Correspondence: Anastasia Nijnik,
| |
Collapse
|
24
|
Feliciangeli F, Dreiwi H, López-García M, Castro Ponce M, Molina-París C, Lythe G. Why are cell populations maintained via multiple compartments? J R Soc Interface 2022; 19:20220629. [PMID: 36349449 PMCID: PMC9653237 DOI: 10.1098/rsif.2022.0629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/12/2022] [Indexed: 10/02/2023] Open
Abstract
We consider the maintenance of 'product' cell populations from 'progenitor' cells via a sequence of one or more cell types, or compartments, where each cell's fate is chosen stochastically. If there is only one compartment then large amplification, that is, a large ratio of product cells to progenitors comes with disadvantages. The product cell population is dominated by large families (cells descended from the same progenitor) and many generations separate, on average, product cells from progenitors. These disadvantages are avoided using suitably constructed sequences of compartments: the amplification factor of a sequence is the product of the amplification factors of each compartment, while the average number of generations is a sum over contributions from each compartment. Passing through multiple compartments is, in fact, an efficient way to maintain a product cell population from a small flux of progenitors, avoiding excessive clonality and minimizing the number of rounds of division en route. We use division, exit and death rates, estimated from measurements of single-positive thymocytes, to choose illustrative parameter values in the single-compartment case. We also consider a five-compartment model of thymocyte differentiation, from double-negative precursors to single-positive product cells.
Collapse
Affiliation(s)
- Flavia Feliciangeli
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
- Systems Pharmacology and Medicine, Bayer AG, Leverkusen 51368, Germany
| | - Hanan Dreiwi
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | | | - Mario Castro Ponce
- Instituto de Investigación Tecnológica (ITT), Universidad Pontificia Comillas, Madrid, Spain
| | - Carmen Molina-París
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
- T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Grant Lythe
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
25
|
Frost JN, Wideman SK, Preston AE, Teh MR, Ai Z, Wang L, Cross A, White N, Yazicioglu Y, Bonadonna M, Clarke AJ, Armitage AE, Galy B, Udalova IA, Drakesmith H. Plasma iron controls neutrophil production and function. SCIENCE ADVANCES 2022; 8:eabq5384. [PMID: 36197985 PMCID: PMC9534512 DOI: 10.1126/sciadv.abq5384] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/18/2022] [Indexed: 05/31/2023]
Abstract
Low plasma iron (hypoferremia) induced by hepcidin is a conserved inflammatory response that protects against infections but inhibits erythropoiesis. How hypoferremia influences leukocytogenesis is unclear. Using proteomic data, we predicted that neutrophil production would be profoundly more iron-demanding than generation of other white blood cell types. Accordingly in mice, hepcidin-mediated hypoferremia substantially reduced numbers of granulocytes but not monocytes, lymphocytes, or dendritic cells. Neutrophil rebound after anti-Gr-1-induced neutropenia was blunted during hypoferremia but was rescued by supplemental iron. Similarly, hypoferremia markedly inhibited pharmacologically stimulated granulopoiesis mediated by granulocyte colony-stimulating factor and inflammation-induced accumulation of neutrophils in the spleen and peritoneal cavity. Furthermore, hypoferremia specifically altered neutrophil effector functions, suppressing antibacterial mechanisms but enhancing mitochondrial reactive oxygen species-dependent NETosis associated with chronic inflammation. Notably, antagonizing endogenous hepcidin during acute inflammation enhanced production of neutrophils. We propose plasma iron modulates the profile of innate immunity by controlling monocyte-to-neutrophil ratio and neutrophil activity in a therapeutically targetable system.
Collapse
Affiliation(s)
- Joe N. Frost
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sarah K. Wideman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alexandra E. Preston
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Megan R. Teh
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Zhichao Ai
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Lihui Wang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Amy Cross
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DS, UK
| | - Natasha White
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Yavuz Yazicioglu
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Michael Bonadonna
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120, 69120 Heidelberg, Germany
- Biosciences Faculty, University of Heidelberg, 69120 Heidelberg, Germany
| | - Alexander J. Clarke
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Andrew E. Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Bruno Galy
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120, 69120 Heidelberg, Germany
| | - Irina A. Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
26
|
Zhou JD, Zhao YJ, Leng JY, Gu Y, Xu ZJ, Ma JC, Wen XM, Lin J, Zhang TJ, Qian J. DNA methylation-mediated differential expression of DLX4 isoforms has opposing roles in leukemogenesis. Cell Mol Biol Lett 2022; 27:59. [PMID: 35883028 PMCID: PMC9327205 DOI: 10.1186/s11658-022-00358-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 11/14/2022] Open
Abstract
Background Previously, we reported the expression of DLX4 isoforms (BP1 and DLX7) in myeloid leukemia, but the functional role of DLX4 isoforms remains poorly understood. In the work described herein, we further determined the underlying role of DLX4 isoforms in chronic myeloid leukemia (CML) leukemogenesis. Methods The expression and methylation of DLX4 isoforms were detected by real-time quantitative PCR (RT-qPCR) and real-time quantitative methylation-specific PCR (RT-qMSP) in patients with CML. The functional role of DLX4 isoforms was determined in vitro and in vivo. The molecular mechanism of DLX4 isoforms in leukemogenesis was identified based on chromatin immunoprecipitation with high-throughput sequencing (ChIP-Seq)/assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-Seq) and RNA sequencing (RNA-Seq). Results BP1 expression was increased in patients with CML with unmethylated promoter, but DLX7 expression was decreased with hypermethylated promoter. Functionally, overexpression of BP1 increased the proliferation rate of K562 cells with S/G2 promotion, whereas DLX7 overexpression reduced the proliferation rate of K562 cells with G1 arrest. Moreover, K562 cells with BP1 overexpression increased the tumorigenicity in NCG mice, whereas K562 cells with DLX7 overexpression decreased the tumorigenicity. Mechanistically, a total of 91 genes including 79 messenger RNAs (mRNAs) and 12 long noncoding RNAs (lncRNAs) were discovered by ChIP-Seq and RNA-Seq as direct downstream targets of BP1. Among the downstream genes, knockdown of RREB1 and SGMS1-AS1 partially revived the proliferation caused by BP1 overexpression in K562 cells. Similarly, using ATAC-Seq and RNA-Seq, a total of 282 genes including 151 mRNA and 131 lncRNAs were identified as direct downstream targets of DLX7. Knockdown of downstream genes PTPRB and NEAT1 partially revived the proliferation caused by DLX7 overexpression in K562 cells. Finally, we also identified and validated a SGMS1-AS1/miR-181d-5p/SRPK2 competing endogenous RNA (ceRNA) network caused by BP1 overexpression in K562 cells. Conclusions The current findings reveal that DNA methylation-mediated differential expression of DLX4 isoforms BP1 and DLX7 plays opposite functions in leukemogenesis. BP1 plays an oncogenic role in leukemia development, whereas DLX7 acts as a tumor suppressor gene. These results suggest DLX4 as a therapeutic target for antileukemia therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00358-0.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Yang-Jing Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Jia-Yan Leng
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Ting-Juan Zhang
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Department of Oncology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| |
Collapse
|
27
|
Rasheed A. Niche Regulation of Hematopoiesis: The Environment Is "Micro," but the Influence Is Large. Arterioscler Thromb Vasc Biol 2022; 42:691-699. [PMID: 35418246 DOI: 10.1161/atvbaha.121.316235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immune cell production is governed by a process known as hematopoiesis, where hematopoietic stem cells (HSCs) differentiate through progenitor cells and ultimately to the mature blood and immune cells found in circulation. While HSCs are capable of cell-autonomous regulation, they also rely on extrinsic factors to balance their state of quiescence and activation. These cues can, in part, be derived from the niche in which HSCs are found. Under steady-state conditions, HSCs are found in the bone marrow. This niche is designed to support HSCs but also to respond to external factors, which allows hematopoiesis to be a finely tuned and coordinated process. However, the niche, and its regulation, can become dysregulated to potentiate inflammation during disease. This review will highlight the architecture of the bone marrow and key regulators of hematopoiesis within this niche. Emphasis will be placed on how these mechanisms go awry to exacerbate hematopoietic contributions that drive cardiovascular disease.
Collapse
Affiliation(s)
- Adil Rasheed
- University of Ottawa Heart Institute, ON, Canada. Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| |
Collapse
|