1
|
Melo-Silva CR, Sigal LJ. Innate and adaptive immune responses that control lymph-borne viruses in the draining lymph node. Cell Mol Immunol 2024; 21:999-1007. [PMID: 38918577 PMCID: PMC11364670 DOI: 10.1038/s41423-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The interstitial fluids in tissues are constantly drained into the lymph nodes (LNs) as lymph through afferent lymphatic vessels and from LNs into the blood through efferent lymphatics. LNs are strategically positioned and have the appropriate cellular composition to serve as sites of adaptive immune initiation against invading pathogens. However, for lymph-borne viruses, which disseminate from the entry site to other tissues through the lymphatic system, immune cells in the draining LN (dLN) also play critical roles in curbing systemic viral dissemination during primary and secondary infections. Lymph-borne viruses in tissues can be transported to dLNs as free virions in the lymph or within infected cells. Regardless of the entry mechanism, infected myeloid antigen-presenting cells, including various subtypes of dendritic cells, inflammatory monocytes, and macrophages, play a critical role in initiating the innate immune response within the dLN. This innate immune response involves cellular crosstalk between infected and bystander innate immune cells that ultimately produce type I interferons (IFN-Is) and other cytokines and recruit inflammatory monocytes and natural killer (NK) cells. IFN-I and NK cell cytotoxicity can restrict systemic viral spread during primary infections and prevent serious disease. Additionally, the memory CD8+ T-cells that reside or rapidly migrate to the dLN can contribute to disease prevention during secondary viral infections. This review explores the intricate innate immune responses orchestrated within dLNs that contain primary viral infections and the role of memory CD8+ T-cells following secondary infection or CD8+ T-cell vaccination.
Collapse
Affiliation(s)
- Carolina R Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| | - Luis J Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
2
|
Shakerian N, Darzi-Eslam E, Afsharnoori F, Bana N, Noorabad Ghahroodi F, Tarin M, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Therapeutic and diagnostic applications of exosomes in colorectal cancer. Med Oncol 2024; 41:203. [PMID: 39031221 DOI: 10.1007/s12032-024-02440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Exosomes play a key role in colorectal cancer (CRC) related processes. This review explores the various functions of exosomes in CRC and their potential as diagnostic markers, therapeutic targets, and drug delivery vehicles. Exosomal long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) significantly influence CRC progression. Specific exosomal lncRNAs are linked to drug resistance and tumor growth, respectively, highlighting their therapeutic potential. Similarly, miRNAs like miR-21, miR-10b, and miR-92a-3p, carried by exosomes, contribute to chemotherapy resistance by altering signaling pathways and gene expression in CRC cells. The review also discusses exosomes' utility in CRC diagnosis. Exosomes from cancer cells have distinct molecular signatures compared to healthy cells, making them reliable biomarkers. Specific exosomal lncRNAs (e.g., CRNDE-h) and miRNAs (e.g., miR-17-92a) have shown effectiveness in early CRC detection and monitoring of treatment responses. Furthermore, exosomes show promise as vehicles for targeted drug delivery. The potential of mesenchymal stem cell (MSC)-derived exosomes in CRC treatment is also noted, with their role varying from promoting to inhibiting tumor progression. The application of multi-omics approaches to exosome research is highlighted, emphasizing the potential for discovering novel CRC biomarkers through comprehensive genomic, transcriptomic, proteomic, and metabolomic analyses. The review also explores the emerging field of exosome-based vaccines, which utilize exosomes' natural properties to elicit strong immune responses. In conclusion, exosomes represent a promising frontier in CRC research, offering new avenues for diagnosis, treatment, and prevention. Their unique properties and versatile functions underscore the need for continued investigation into their clinical applications and underlying mechanisms.
Collapse
Affiliation(s)
- Neda Shakerian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Elham Darzi-Eslam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Afsharnoori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nikoo Bana
- Kish International Campus, University of Teheran, Tehran, Iran
| | - Faezeh Noorabad Ghahroodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
3
|
Fu Y, Cui LG, Ma JY, Fang M, Lin YX, Li N. Development of a Novel Contrast-Enhanced Ultrasound-Based Nomogram for Superficial Lymphadenopathy Differentiation: Postvascular Phase Value. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:852-859. [PMID: 38448315 DOI: 10.1016/j.ultrasmedbio.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE The aim of this study was to develop and prospectively validate a prediction model for superficial lymphadenopathy differentiation using Sonazoid contrast-enhanced ultrasound (CEUS) combined with ultrasound (US) and clinical data. METHODS The training cohort comprised 260 retrospectively enrolled patients with 260 pathological lymph nodes imaged between January and December 2020. Two clinical US-CEUS models were created using multivariable logistic regression analysis and compared using receiver operating characteristic curve analysis: Model 1 included clinical and US characteristics; Model 2 included all confirmed predictors, including CEUS characteristics. Feature contributions were evaluated using the SHapley Additive exPlanations (SHAP) algorithm. Data from 172 patients were prospectively collected between January and May 2021 for model validation. RESULTS Age, tumor history, long-axis diameter of lymph node, blood flow distribution, echogenic hilus, and the mean postvascular phase intensity (MPI) were identified as independent predictors for malignant lymphadenopathy. The area under the curve (AUC), sensitivity, specificity, and accuracy of MPI alone was 0.858 (95% confidence interval [CI], 0.817-0.891), 86.47%, 74.55%, and 81.2%, respectively. Model 2 had an AUC of 0.919 (95% CI, 0.879-0.949) and good calibration in training and validation cohorts. The incorporation of MPI significantly enhanced diagnostic capability (p < 0.0001 and p = 0.002 for training and validation cohorts, respectively). Decision curve analysis indicated Model 2 as the superior diagnostic tool. SHAP analysis highlighted MPI as the most pivotal feature in the diagnostic process. CONCLUSION The employment of our straightforward prediction model has the potential to enhance clinical decision-making and mitigate the need for unwarranted biopsies.
Collapse
Affiliation(s)
- Ying Fu
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Li-Gang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, China.
| | - Jiu-Yi Ma
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Mei Fang
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yu-Xuan Lin
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Nan Li
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
4
|
Sakurai Y, Oba E, Honda A, Tanaka H, Takano H, Akita H. The stress-responsive cytotoxic effect of diesel exhaust particles on lymphatic endothelial cells. Sci Rep 2024; 14:10503. [PMID: 38714844 PMCID: PMC11076499 DOI: 10.1038/s41598-024-61255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Diesel exhaust particles (DEPs) are very small (typically < 0.2 μm) fragments that have become major air pollutants. DEPs are comprised of a carbonaceous core surrounded by organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs. Inhaled DEPs reach the deepest sites in the respiratory system where they could induce respiratory/cardiovascular dysfunction. Additionally, a previous study has revealed that a portion of inhaled DEPs often activate immune cells and subsequently induce somatic inflammation. Moreover, DEPs are known to localize in lymph nodes. Therefore, in this study we explored the effect of DEPs on the lymphatic endothelial cells (LECs) that are a constituent of the walls of lymph nodes. DEP exposure induced cell death in a reactive oxygen species (ROS)-dependent manner. Following exposure to DEPs, next-generation sequence (NGS) analysis identified an upregulation of the integrated stress response (ISR) pathway and cell death cascades. Both the soluble and insoluble components of DEPs generated intracellular ROS. Three-dimensional Raman imaging revealed that DEPs are taken up by LECs, which suggests internalized DEP cores produce ROS, as well as soluble DEP components. However, significant cell death pathways such as apoptosis, necroptosis, ferroptosis, pyroptosis, and parthanatos seem unlikely to be involved in DEP-induced cell death in LECs. This study clarifies how DEPs invading the body might affect the lymphatic system through the induction of cell death in LECs.
Collapse
Affiliation(s)
- Yu Sakurai
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Eiki Oba
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Akiko Honda
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8530, Japan
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Hirohisa Takano
- Institute for International Academic Research, Kyoto University of Advanced Science, Kyoto, 621-8555, Japan
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 615-8530, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
5
|
Houbaert D, Nikolakopoulos AP, Jacobs KA, Meçe O, Roels J, Shankar G, Agrawal M, More S, Ganne M, Rillaerts K, Boon L, Swoboda M, Nobis M, Mourao L, Bosisio F, Vandamme N, Bergers G, Scheele CLGJ, Agostinis P. An autophagy program that promotes T cell egress from the lymph node controls responses to immune checkpoint blockade. Cell Rep 2024; 43:114020. [PMID: 38554280 DOI: 10.1016/j.celrep.2024.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.
Collapse
Affiliation(s)
- Diede Houbaert
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Apostolos Panagiotis Nikolakopoulos
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Kathryn A Jacobs
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Odeta Meçe
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Jana Roels
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; VIB Single Cell Core, Leuven, Belgium
| | - Gautam Shankar
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Sanket More
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Kristine Rillaerts
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | | | - Magdalena Swoboda
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Max Nobis
- Intravital Imaging Expertise Center, VIB-CCB, Leuven, Belgium
| | - Larissa Mourao
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Niels Vandamme
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; VIB Single Cell Core, Leuven, Belgium
| | - Gabriele Bergers
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Colinda L G J Scheele
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium.
| |
Collapse
|
6
|
Sheridan RM, Doan TA, Lucas C, Forward TS, Uecker-Martin A, Morrison TE, Hesselberth JR, Tamburini BAJ. A specific and portable gene expression program underlies antigen archiving by lymphatic endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587647. [PMID: 38617225 PMCID: PMC11014631 DOI: 10.1101/2024.04.01.587647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Antigens from protein subunit vaccination traffic from the tissue to the draining lymph node, either passively via the lymph or carried by dendritic cells at the local injection site. Lymph node (LN) lymphatic endothelial cells (LEC) actively acquire and archive foreign antigens, and archived antigen can be released during subsequent inflammatory stimulus to improve immune responses. Here, we answer questions about how LECs achieve durable antigen archiving and whether there are transcriptional signatures associated with LECs containing high levels of antigen. We used single cell sequencing in dissociated LN tissue to quantify antigen levels in LEC and dendritic cell populations at multiple timepoints after immunization, and used machine learning to define a unique transcriptional program within archiving LECs that can predict LEC archiving capacity in independent data sets. Finally, we validated this modeling, showing we could predict antigen archiving from a transcriptional dataset of CHIKV infected mice and demonstrated in vivo the accuracy of our prediction. Collectively, our findings establish a unique transcriptional program in LECs that promotes antigen archiving that can be translated to other systems.
Collapse
Affiliation(s)
- Ryan M. Sheridan
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine
| | - Thu A. Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine
- Immunology Graduate Program, University of Colorado School of Medicine
| | - Cormac Lucas
- Department of Immunology and Microbiology, Aurora, CO, USA
| | - Tadg S. Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine
| | - Aspen Uecker-Martin
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine
| | | | - Jay R. Hesselberth
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine
| | - Beth A. Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine
- Immunology Graduate Program, University of Colorado School of Medicine
- Department of Immunology and Microbiology, Aurora, CO, USA
| |
Collapse
|
7
|
Wang W, Jiang F, Wu WQ, Zhu XL, Wang HX, Zhang L, Fan ZY. Identification of lymph node adulteration in minced pork by comprehensive metabolomics and lipidomics approach based on UPLC/LTQ-Orbitrap MS. J Food Sci 2024; 89:2249-2260. [PMID: 38477648 DOI: 10.1111/1750-3841.17005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
The deliberate pork adulteration with lymph nodes is a common adulteration phenomenon, and it poses a serious threat to public health and food safety. An untargeted metabolomics and lipidomics approach based on ultrahigh performance liquid chromatography coupled with linear ion trap quadrupole-Orbitrap high resolution mass spectrometry (MS) was used to distinguish lymph nodes from minced pork. The principal component analysis and orthogonal projection to latent structures discriminant analysis models were established with the good of fitness and predictivity. The results showed that there were significant differences in metabolites and lipids between lymph nodes and pork. A total of 16 significantly differentiated metabolites were identified, of which 1-palmitoylglycerophosphocholine, 12,13-dihydroxy-9-octadecenoic acid, and prostaglandin E2 (PGE2) were positively correlated with lymph node content and were identified as potential markers of lymph nodes. These three markers were combined to create a binary logistic regression model, and a combined-factor exceeding 0.75 was ultimately identified as a marker for pork adulteration with lymph nodes. The desorption electrospray ionization-MS images showed that PGE2 had a higher relative abundance in the lymph node region than in adjacent non-lymph node regions, indicating that PGE2 was a marker that contributed significantly for identifying lymph nodes adulteration into pork. Our results provide a theoretical basis for identifying lymph node adulteration, which will contribute to combating fraud in the meat industry.
Collapse
Affiliation(s)
- Wei Wang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, China
| | - Feng Jiang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, China
| | - Wan-Qin Wu
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, China
| | - Xiao-Ling Zhu
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, China
| | - Hui-Xia Wang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, China
| | - Li Zhang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, China
| | - Zhi-Yong Fan
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, China
| |
Collapse
|
8
|
Mone P, De Luca A, Kansakar U, Santulli G. Leukocytes and Endothelial Cells Participate in the Pathogenesis of Alzheimer's Disease: Identifying New Biomarkers Mirroring Metabolic Alterations. J Alzheimers Dis 2024; 97:1685-1687. [PMID: 38306052 PMCID: PMC11385823 DOI: 10.3233/jad-231464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder marked by amyloid-β accumulation, tau dysfunction, and neuroinflammation, involving endothelial cells and leukocytes. The breakdown of the blood-brain barrier allows immune cell infiltration, intensifying inflammation. A decreased ratio of Connexin-37 (Cx37, also known as GJA4: Gap Junction Protein Alpha 4) and Prolyl Hydroxylase Domain-Containing Protein 3 (PHD3, also known as EGLN3: Egl-9 Family Hypoxia Inducible Factor 3), Cx37/PHD3, consistently observed in different AD-related models, may represent a novel potential biomarker of AD, albeit the exact mechanisms underlying this phenomenon, most likely based on gap junction-mediated cellular interaction that modulate the cellular metabolite status, remain to be fully elucidated.
Collapse
Affiliation(s)
- Pasquale Mone
- Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
- Casa di Cura "Montevergine", Mercogliano (Avellino), Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Urna Kansakar
- Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY, USA
| | - Gaetano Santulli
- Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY, USA
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
- Department of Medicine, Einstein Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
9
|
Kumar V. Editorial: Manipulation of immune-vascular crosstalk in solid tumors. Front Immunol 2023; 14:1295953. [PMID: 37868975 PMCID: PMC10585256 DOI: 10.3389/fimmu.2023.1295953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
|
10
|
Ji H, Hu C, Yang X, Liu Y, Ji G, Ge S, Wang X, Wang M. Lymph node metastasis in cancer progression: molecular mechanisms, clinical significance and therapeutic interventions. Signal Transduct Target Ther 2023; 8:367. [PMID: 37752146 PMCID: PMC10522642 DOI: 10.1038/s41392-023-01576-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 09/28/2023] Open
Abstract
Lymph nodes (LNs) are important hubs for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites through a series of mechanisms, and it has been proved that lymph node metastasis (LNM) is an essential prognostic indicator in many different types of cancer. Therefore, it is important for oncologists to understand the mechanisms of tumor cells to metastasize to LNs, as well as how LNM affects the prognosis and therapy of patients with cancer in order to provide patients with accurate disease assessment and effective treatment strategies. In recent years, with the updates in both basic and clinical studies on LNM and the application of advanced medical technologies, much progress has been made in the understanding of the mechanisms of LNM and the strategies for diagnosis and treatment of LNM. In this review, current knowledge of the anatomical and physiological characteristics of LNs, as well as the molecular mechanisms of LNM, are described. The clinical significance of LNM in different anatomical sites is summarized, including the roles of LNM playing in staging, prognostic prediction, and treatment selection for patients with various types of cancers. And the novel exploration and academic disputes of strategies for recognition, diagnosis, and therapeutic interventions of metastatic LNs are also discussed.
Collapse
Affiliation(s)
- Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xuhui Yang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuanhao Liu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
11
|
Viúdez-Pareja C, Kreft E, García-Caballero M. Immunomodulatory properties of the lymphatic endothelium in the tumor microenvironment. Front Immunol 2023; 14:1235812. [PMID: 37744339 PMCID: PMC10512957 DOI: 10.3389/fimmu.2023.1235812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
The tumor microenvironment (TME) is an intricate complex and dynamic structure composed of various cell types, including tumor, stromal and immune cells. Within this complex network, lymphatic endothelial cells (LECs) play a crucial role in regulating immune responses and influencing tumor progression and metastatic dissemination to lymph node and distant organs. Interestingly, LECs possess unique immunomodulatory properties that can either promote or inhibit anti-tumor immune responses. In fact, tumor-associated lymphangiogenesis can facilitate tumor cell dissemination and metastasis supporting immunoevasion, but also, different molecular mechanisms involved in LEC-mediated anti-tumor immunity have been already described. In this context, the crosstalk between cancer cells, LECs and immune cells and how this communication can shape the immune landscape in the TME is gaining increased interest in recent years. In this review, we present a comprehensive and updated report about the immunomodulatory properties of the lymphatic endothelium within the TME, with special focus on primary tumors and tumor-draining lymph nodes. Furthermore, we outline emerging research investigating the potential therapeutic strategies targeting the lymphatic endothelium to enhance anti-tumor immune responses. Understanding the intricate mechanisms involved in LEC-mediated immune modulation in the TME opens up new possibilities for the development of innovative approaches to fight cancer.
Collapse
Affiliation(s)
- Cristina Viúdez-Pareja
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Ewa Kreft
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
12
|
Arroz-Madeira S, Bekkhus T, Ulvmar MH, Petrova TV. Lessons of Vascular Specialization From Secondary Lymphoid Organ Lymphatic Endothelial Cells. Circ Res 2023; 132:1203-1225. [PMID: 37104555 PMCID: PMC10144364 DOI: 10.1161/circresaha.123.322136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Secondary lymphoid organs, such as lymph nodes, harbor highly specialized and compartmentalized niches. These niches are optimized to facilitate the encounter of naive lymphocytes with antigens and antigen-presenting cells, enabling optimal generation of adaptive immune responses. Lymphatic vessels of lymphoid organs are uniquely specialized to perform a staggering variety of tasks. These include antigen presentation, directing the trafficking of immune cells but also modulating immune cell activation and providing factors for their survival. Recent studies have provided insights into the molecular basis of such specialization, opening avenues for better understanding the mechanisms of immune-vascular interactions and their applications. Such knowledge is essential for designing better treatments for human diseases given the central role of the immune system in infection, aging, tissue regeneration and repair. In addition, principles established in studies of lymphoid organ lymphatic vessel functions and organization may be applied to guide our understanding of specialization of vascular beds in other organs.
Collapse
Affiliation(s)
- Silvia Arroz-Madeira
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| | - Tove Bekkhus
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Maria H. Ulvmar
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| |
Collapse
|
13
|
Blei F. Update April 2023. Lymphat Res Biol 2023; 21:194-226. [PMID: 37093172 DOI: 10.1089/lrb.2023.29139.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Affiliation(s)
- Francine Blei
- Hassenfeld Children's Hospital at NYU Langone, The Laurence D. And Lori Weider Fink Children's Ambulatory Care Center, New York, New York, USA
| |
Collapse
|