1
|
Jutla A, Shuffrey LC, Guter SJ, O’Reilly KC, Anderson GM, Sutcliffe JS, Cook EH, Veenstra-VanderWeele J. Relationship between maternal serotonin levels and autism-associated genetic variants. J Clin Invest 2024; 134:e179238. [PMID: 38963701 PMCID: PMC11364378 DOI: 10.1172/jci179238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Affiliation(s)
- Amandeep Jutla
- Columbia University, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
| | | | | | - Kally C. O’Reilly
- Columbia University, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
| | - George M. Anderson
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Edwin H. Cook
- University of Illinois Chicago (UIC), Chicago, Illinois, USA
| | | |
Collapse
|
2
|
Wegiel J, Chadman K, London E, Wisniewski T, Wegiel J. Contribution of the serotonergic system to developmental brain abnormalities in autism spectrum disorder. Autism Res 2024; 17:1300-1321. [PMID: 38500252 PMCID: PMC11272444 DOI: 10.1002/aur.3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
This review highlights a key role of the serotonergic system in brain development and in distortions of normal brain development in early stages of fetal life resulting in cascades of abnormalities, including defects of neurogenesis, neuronal migration, neuronal growth, differentiation, and arborization, as well as defective neuronal circuit formation in the cortex, subcortical structures, brainstem, and cerebellum of autistic subjects. In autism, defects in regulation of neuronal growth are the most frequent and ubiquitous developmental changes associated with impaired neuron differentiation, smaller size, distorted shape, loss of spatial orientation, and distortion of cortex organization. Common developmental defects of the brain in autism include multiregional focal dysplastic changes contributing to local neuronal circuit distortion, epileptogenic activity, and epilepsy. There is a discrepancy between more than 500 reports demonstrating the contribution of the serotonergic system to autism's behavioral anomalies, highlighted by lack of studies of autistic subjects' brainstem raphe nuclei, the center of brain serotonergic innervation, and of the contribution of the serotonergic system to the diagnostic features of autism spectrum disorder (ASD). Discovery of severe fetal brainstem auditory system neuronal deficits and other anomalies leading to a spectrum of hearing deficits contributing to a cascade of behavioral alterations, including deficits of social and verbal communication in individuals with autism, is another argument to intensify postmortem studies of the type and topography of, and the severity of developmental defects in raphe nuclei and their contribution to abnormal brain development and to the broad spectrum of functional deficits and comorbid conditions in ASD.
Collapse
Affiliation(s)
- Jarek Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Kathryn Chadman
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Eric London
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Thomas Wisniewski
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- Center for Cognitive Neurology, Department of Neurology, Pathology and Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
3
|
Esposito D, Cruciani G, Zaccaro L, Di Carlo E, Spitoni GF, Manti F, Carducci C, Fiori E, Leuzzi V, Pascucci T. A Systematic Review on Autism and Hyperserotonemia: State-of-the-Art, Limitations, and Future Directions. Brain Sci 2024; 14:481. [PMID: 38790459 PMCID: PMC11119126 DOI: 10.3390/brainsci14050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Hyperserotonemia is one of the most studied endophenotypes in autism spectrum disorder (ASD), but there are still no unequivocal results about its causes or biological and behavioral outcomes. This systematic review summarizes the studies investigating the relationship between blood serotonin (5-HT) levels and ASD, comparing diagnostic tools, analytical methods, and clinical outcomes. A literature search on peripheral 5-HT levels and ASD was conducted. In total, 1104 publications were screened, of which 113 entered the present systematic review. Of these, 59 articles reported hyperserotonemia in subjects with ASD, and 26 presented correlations between 5-HT levels and ASD-core clinical outcomes. The 5-HT levels are increased in about half, and correlations between hyperserotonemia and clinical outcomes are detected in a quarter of the studies. The present research highlights a large amount of heterogeneity in this field, ranging from the characterization of ASD and control groups to diagnostic and clinical assessments, from blood sampling procedures to analytical methods, allowing us to delineate critical topics for future studies.
Collapse
Affiliation(s)
- Dario Esposito
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Gianluca Cruciani
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
| | - Laura Zaccaro
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
| | - Emanuele Di Carlo
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Grazia Fernanda Spitoni
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Elena Fiori
- Rome Technopole Foundation, P.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Tiziana Pascucci
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
- Centro “Daniel Bovet”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
4
|
Fu Z, Yang X, Jiang Y, Mao X, Liu H, Yang Y, Chen J, Chen Z, Li H, Zhang XS, Mao X, Li N, Wang D, Jiang J. Microbiota profiling reveals alteration of gut microbial neurotransmitters in a mouse model of autism-associated 16p11.2 microduplication. Front Microbiol 2024; 15:1331130. [PMID: 38596370 PMCID: PMC11002229 DOI: 10.3389/fmicb.2024.1331130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
The gut-brain axis is evident in modulating neuropsychiatric diseases including autism spectrum disorder (ASD). Chromosomal 16p11.2 microduplication 16p11.2dp/+ is among the most prevalent genetic copy number variations (CNV) linked with ASD. However, the implications of gut microbiota status underlying the development of ASD-like impairments induced by 16p11.2dp/+ remains unclear. To address this, we initially investigated a mouse model of 16p11.2dp/+, which exhibits social novelty deficit and repetitive behavior characteristic of ASD. Subsequently, we conducted a comparative analysis of the gut microbial community and metabolomic profiles between 16p11.2dp/+ and their wild-type counterparts using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC/MS). Our microbiota analysis revealed structural dysbiosis in 16p11.2dp/+ mice, characterized by reduced biodiversity and alterations in species abundance, as indicated by α/β-diversity analysis. Specifically, we observed reduced relative abundances of Faecalibaculum and Romboutsia, accompanied by an increase in Turicibacter and Prevotellaceae UCG_001 in 16p11.2dp/+ group. Metabolomic analysis identified 19 significantly altered metabolites and unveiled enriched amino acid metabolism pathways. Notably, a disruption in the predominantly histamine-centered neurotransmitter network was observed in 16p11.2dp/+ mice. Collectively, our findings delineate potential alterations and correlations among the gut microbiota and microbial neurotransmitters in 16p11.2dp/+ mice, providing new insights into the pathogenesis of and treatment for 16p11.2 CNV-associated ASD.
Collapse
Affiliation(s)
- Zhang Fu
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiuyan Yang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Youheng Jiang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xinliang Mao
- Guangdong Perfect Life Health Science and Technology Research Institute Co., Ltd., Zhongshan, Guangdong, China
| | - Hualin Liu
- Guangdong Perfect Life Health Science and Technology Research Institute Co., Ltd., Zhongshan, Guangdong, China
| | - Yanming Yang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jia Chen
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhumei Chen
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-Sen University (SYSU), Shenzhen, Guangdong, China
| | - Huiliang Li
- Division of Medicine, Wolfson Institute for Biomedical Research, Faculty of Medical Sciences, University College London, London, United Kingdom
- China-UK Institute for Frontier Science, Shenzhen, Guangdong, China
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Xinjun Mao
- Department of Anesthesiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Ningning Li
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- China-UK Institute for Frontier Science, Shenzhen, Guangdong, China
| | - Dilong Wang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Jiang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Ye X, Ghosh S, Shin BC, Ganguly A, Maggiotto L, Jacobs JP, Devaskar SU. Brain serotonin and serotonin transporter expression in male and female postnatal rat offspring in response to perturbed early life dietary exposures. Front Neurosci 2024; 18:1363094. [PMID: 38576870 PMCID: PMC10991790 DOI: 10.3389/fnins.2024.1363094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Serotonin (5-HT) is critical for neurodevelopment and the serotonin transporter (SERT) modulates serotonin levels. Perturbed prenatal and postnatal dietary exposures affect the developing offspring predisposing to neurobehavioral disorders in the adult. We hypothesized that the postnatal brain 5-HT-SERT imbalance associated with gut dysbiosis forms the contributing gut-brain axis dependent mechanism responsible for such ultimate phenotypes. Methods Employing maternal diet restricted (IUGR, n=8) and high fat+high fructose (HFhf, n=6) dietary modifications, rodent brain serotonin was assessed temporally by ELISA and SERT by quantitative Western blot analysis. Simultaneously, colonic microbiome studies were performed. Results At early postnatal (P) day 2 no changes in the IUGR, but a ~24% reduction in serotonin (p = 0.00005) in the HFhf group occurred, particularly in the males (p = 0.000007) revealing a male versus female difference (p = 0.006). No such changes in SERT concentrations emerged. At late P21 the IUGR group reared on HFhf (IUGR/HFhf, (n = 4) diet revealed increased serotonin by ~53% in males (p = 0.0001) and 36% in females (p = 0.023). While only females demonstrated a ~40% decrease in serotonin (p = 0.010), the males only trended lower without a significant change within the HFhf group (p = 0.146). SERT on the other hand was no different in HFhf or IUGR/RC, with only the female IUGR/HFhf revealing a 28% decrease (p = 0.036). In colonic microbiome studies, serotonin-producing Bacteriodes increased with decreased Lactobacillus at P2, while the serotonin-producing Streptococcus species increased in IUGR/HFhf at P21. Sex-specific changes emerged in association with brain serotonin or SERT in the case of Alistipase, Anaeroplasma, Blautia, Doria, Lactococcus, Proteus, and Roseburia genera. Discussion We conclude that an imbalanced 5-HT-SERT axis during postnatal brain development is sex-specific and induced by maternal dietary modifications related to postnatal gut dysbiosis. We speculate that these early changes albeit transient may permanently alter critical neural maturational processes affecting circuitry formation, thereby perturbing the neuropsychiatric equipoise.
Collapse
Affiliation(s)
- Xin Ye
- Department of Pediatrics, Division of Neonatology & Developmental Biology and The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Shubhamoy Ghosh
- Department of Pediatrics, Division of Neonatology & Developmental Biology and The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology & Developmental Biology and The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Amit Ganguly
- Department of Pediatrics, Division of Neonatology & Developmental Biology and The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Liesbeth Maggiotto
- Department of Pediatrics, Division of Neonatology & Developmental Biology and The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jonathan P. Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Sherin U. Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology and The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
6
|
Anderson GM, Ramsey CM, Lynch KG, Gelernter J, Oslin DW. Baseline platelet serotonin in a multi-site treatment study of depression in veterans administration patients: Distribution and effects of demographic variables and serotonin reuptake inhibitors. J Affect Disord 2023; 327:368-377. [PMID: 36754092 DOI: 10.1016/j.jad.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND The objectives of the study were: (1) to examine the overall distribution of baseline platelet serotonin (5-hydroxytryptamine, 5-HT) values in patients seeking treatment for depression and to define subgroups based on the apparent presence or absence of drug exposure; (2) to assess the bioeffect of 5-HT reuptake inhibitors (SRIs) at the platelet 5-HT transporter; and (3) to examine the relationships of demographic variables including population (ancestry), sex, age, and season of sampling to platelet 5-HT concentration. METHODS Platelet 5-HT levels were measured in a cross-sectional study of 1433 Veterans Administration (VA) patients participating in a pragmatic multi-site pharmacogenomic treatment study of depression. Patients were characterized medically and demographically using VA health records and self-report. RESULTS A clearly bimodal distribution was observed for platelet 5-HT levels with the lower mode associated with patients exposed to SRIs at baseline. Median transporter blockade bioeffects were similar across the various selective 5-HT reuptake inhibitors (SSRIs) and 5-HT/norepinephrine reuptake inhibitors (SNRIs). In a subset of patients apparently not exposed to an SRI, significant effects of population and sex were observed with group mean platelet 5-HT levels being 25 % greater (p < 0.001) in African-American (AA) individuals compared to European-Americans (EAs). The female group mean was 14 % (p < 0.001) greater than male group mean. An effect of age was observed (r = -0.11, p < 0.001) and no effect of season or month of sampling was seen. CONCLUSIONS Further research is warranted to understand the bases and clinical implications of the population and sex differences. The apparent similarity in bioeffect at the 5-HT transporter across SSRIs and when comparing SSRIs and SNRIs informs discussions about initiating, dose adjustment and switching of 5-HT reuptake inhibitors.
Collapse
Affiliation(s)
- George M Anderson
- Child Study Center, Yale University School of Medicine, 230 S. Frontage Rd., New Haven, CT 06525, USA; Department of Laboratory Medicine, Yale University School of Medicine, 230 S. Frontage Rd., New Haven, CT 06525, USA.
| | - Christine M Ramsey
- Veterans Integrated Service Network 4, Mental Illness Research, Education, and Clinical Center (MIRECC), Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA; Yale Center for Medical Informatics, Yale University School of Medicine, West Haven, CT, USA; Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Kevin G Lynch
- Veterans Integrated Service Network 4, Mental Illness Research, Education, and Clinical Center (MIRECC), Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA; Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - David W Oslin
- Veterans Integrated Service Network 4, Mental Illness Research, Education, and Clinical Center (MIRECC), Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Identification of subgroups of children in the Australian Autism Biobank using latent class analysis. Child Adolesc Psychiatry Ment Health 2023; 17:27. [PMID: 36805686 PMCID: PMC9940381 DOI: 10.1186/s13034-023-00565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The identification of reproducible subtypes within autistic populations is a priority research area in the context of neurodevelopment, to pave the way for identification of biomarkers and targeted treatment recommendations. Few previous studies have considered medical comorbidity alongside behavioural, cognitive, and psychiatric data in subgrouping analyses. This study sought to determine whether differing behavioural, cognitive, medical, and psychiatric profiles could be used to distinguish subgroups of children on the autism spectrum in the Australian Autism Biobank (AAB). METHODS Latent profile analysis was used to identify subgroups of children on the autism spectrum within the AAB (n = 1151), utilising data on social communication profiles and restricted, repetitive, and stereotyped behaviours (RRBs), in addition to their cognitive, medical, and psychiatric profiles. RESULTS Our study identified four subgroups of children on the autism spectrum with differing profiles of autism traits and associated comorbidities. Two subgroups had more severe clinical and cognitive phenotype, suggesting higher support needs. For the 'Higher Support Needs with Prominent Language and Cognitive Challenges' subgroup, social communication, language and cognitive challenges were prominent, with prominent sensory seeking behaviours. The 'Higher Support Needs with Prominent Medical and Psychiatric and Comorbidity' subgroup had the highest mean scores of challenges relating to social communication and RRBs, with the highest probability of medical and psychiatric comorbidity, and cognitive scores similar to the overall group mean. Individuals within the 'Moderate Support Needs with Emotional Challenges' subgroup, had moderate mean scores of core traits of autism, and the highest probability of depression and/or suicidality. A fourth subgroup contained individuals with fewer challenges across domains (the 'Fewer Support Needs Group'). LIMITATIONS Data utilised to identify subgroups within this study was cross-sectional as longitudinal data was not available. CONCLUSIONS Our findings support the holistic appraisal of support needs for children on the autism spectrum, with assessment of the impact of co-occurring medical and psychiatric conditions in addition to core autism traits, adaptive functioning, and cognitive functioning. Replication of our analysis in other cohorts of children on the autism spectrum is warranted, to assess whether the subgroup structure we identified is applicable in a broader context beyond our specific dataset.
Collapse
|
8
|
Mathew S, Bichenapally S, Khachatryan V, Muazzam A, Hamal C, Velugoti LSDR, Tabowei G, Gaddipati GN, Mukhtar M, Alzubaidee MJ, Dwarampudi RS, Alfonso M. Role of Serotoninergic Antidepressants in the Development of Autism Spectrum Disorders: A Systematic Review. Cureus 2022; 14:e28505. [PMID: 36185843 PMCID: PMC9514805 DOI: 10.7759/cureus.28505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/28/2022] [Indexed: 11/06/2022] Open
Abstract
Autism spectrum disorders (ASDs) are one of the most common, highly heritable neurodevelopmental diseases affecting 1-2% of children under the age of 3. Although studies have implicated genetic predispositions, environmental risk factors, and maternal depression as the pathophysiology of ASD, it remains unclear. The association between antidepressant (AD) usage during pregnancy and the likelihood of ASD in children is still debatable. We carried out a systematic review to determine the relation of ASD with AD in offspring exposed to ADs in utero. We used the following terms of medical subject heading (MeSH) and keywords separately and in combination: "antidepressants," "maternal/pregnancy depression," "autism spectrum disorders/autism," and "selective serotonin reuptake inhibitors (SSRI)." Our data search was conducted on PubMed, PubMed Central, Google Scholar, and Cochrane, which resulted in 28,141 articles. We identified and eliminated duplicates and then screened 9,965 articles by title and abstract. We then applied eligibility criteria over 143 relevant articles; a quality assessment was performed, and finally we included 18 selected studies. Mothers who had taken ADs during pregnancy for at least two medication prescription cycles and children detected to have ASD from two years to 18 years of age were included. We excluded articles in languages other than English, grey literature, case reports, letters to the editor, books, documents, animal studies, and studies published before 2017. Out of 18 studies, 17 evaluated ASD as the primary outcome, and for one study, the outcome was child behavioral as well as neurodevelopmental changes. Other additional outcomes studied were attention deficit hyperactivity disorder (ADHD), preterm birth, spontaneous abortion, small for gestational age, maternal mental illness, and persistent pulmonary hypertension. After adjusting for confounding factors, in six studies, the higher correlations between ASD and ADs were eliminated. Also, paternal AD use, maternal pre-conceptional AD drug use, and maternal depression itself are additional factors that raise the incidence of ASD.
Collapse
Affiliation(s)
- Sheena Mathew
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sumahitha Bichenapally
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Vahe Khachatryan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Asmaa Muazzam
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Chandani Hamal
- Internal Medicine/Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Godfrey Tabowei
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Greeshma N Gaddipati
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maria Mukhtar
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohammed J Alzubaidee
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Michael Alfonso
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
9
|
Perspective: Chicken Models for Studying the Ontogenetic Origin of Neuropsychiatric Disorders. Biomedicines 2022; 10:biomedicines10051155. [PMID: 35625892 PMCID: PMC9138209 DOI: 10.3390/biomedicines10051155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 12/29/2022] Open
Abstract
Nutrients and xenobiotics cross the blood–placenta barrier, potentially depositing in the fetal brain. The prenatal exposure affects the neuroendocrine and microbial development. The mechanism underlying maternal risk factors reprograming the microbiota–gut–brain axis with long-term effects on psychosocial behaviors in offspring is not clear. In humans, it is not possible to assess the nutrient or xenobiotic deposition in the fetal brain and gastrointestinal system for ethical reasons. Moreover, the maternal–fetal microbe transfer during gestation, natural labor, and breast-feeding constitutes the initial gut microbiome in the progeny, which is inevitable in the most widely utilized rodent models. The social predisposition in precocial birds, including chickens, provides the possibility to test behavioral responses shortly after being hatched. Hence, chickens are advantageous in investigating the ontogenetic origin of behaviors. Chicken embryos are suitable for deposition assessment and mechanistic study due to the accessibility, self-contained development, uniform genetic background, robust microbiota, and easy in vivo experimental manipulation compared to humans and rodents. Therefore, chicken embryos can be used as an alternative to the rodent models in assessing the fetal exposure effect on neurogenesis and investigating the mechanism underlying the ontogenetic origin of neuropsychiatric disorders.
Collapse
|
10
|
Maternal serotonin transporter genotype and offsprings' clinical and cognitive measures of ADHD and ASD. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110354. [PMID: 34000292 DOI: 10.1016/j.pnpbp.2021.110354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Serotonin (5-HT) is an important factor for prenatal neurodevelopment whereby its neurotrophic actions can be regulated through maternal-fetal interactions. We explored if maternal 5-HTTLPR genotype is associated with clinical and cognitive measures of attention-deficit/hyperactivity disorder (ADHD) and comorbid autism spectrum disorder (ASD) in typically-developing and ADHD-diagnosed offspring, beyond classical inheritance and environmental- and comorbidity-mediators/confounders. Family-based variance decomposition analyses were performed incorporating 6-31 year-old offsprings' as well as parental genotypes of 462 ADHD and control families from the NeuroIMAGE cohort. Dependent measures were offsprings' ADHD symptom- and ASD trait-scores and cognitive measures including executive functioning (including response inhibition and cognitive flexibility), sustained attention, reward processing, motor control, and emotion recognition. Offsprings' stereotyped behavior was predicted by an interaction between maternal 5-HTTLPR genotype and offsprings' sex. Furthermore, offspring of mothers with low-expressing genotypes demonstrated larger reward-related reductions in reaction time. While specifically adult male offspring of these mothers reported a faster reversal learning with less errors, specifically young female offspring of these mothers were more accurate in identifying happy faces. Adult offspring from the mothers with low-expressing 5-HTTLPR genotypes were also slower in identifying happy faces. However, this association seemed to be mediated by offsprings' high anxiety levels. In sum, we found some support for a role of the maternal 5-HT system in modulating fetal brain development and behavior. Offsprings' cognitive measures might be more sensitive to small alterations within the maternal 5-HT system than their ADHD and ASD clinical phenotypes. Further studies are needed to specify the association between maternal genotype and risk for neurodevelopmental disorders.
Collapse
|
11
|
Agelink van Rentergem JA, Deserno MK, Geurts HM. Validation strategies for subtypes in psychiatry: A systematic review of research on autism spectrum disorder. Clin Psychol Rev 2021; 87:102033. [PMID: 33962352 DOI: 10.1016/j.cpr.2021.102033] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/14/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022]
Abstract
Heterogeneity within autism spectrum disorder (ASD) is recognized as a challenge to both biological and psychological research, as well as clinical practice. To reduce unexplained heterogeneity, subtyping techniques are often used to establish more homogeneous subtypes based on metrics of similarity and dissimilarity between people. We review the ASD literature to create a systematic overview of the subtyping procedures and subtype validation techniques that are used in this field. We conducted a systematic review of 156 articles (2001-June 2020) that subtyped participants (range N of studies = 17-20,658), of which some or all had an ASD diagnosis. We found a large diversity in (parametric and non-parametric) methods and (biological, psychological, demographic) variables used to establish subtypes. The majority of studies validated their subtype results using variables that were measured concurrently, but were not included in the subtyping procedure. Other investigations into subtypes' validity were rarer. In order to advance clinical research and the theoretical and clinical usefulness of identified subtypes, we propose a structured approach and present the SUbtyping VAlidation Checklist (SUVAC), a checklist for validating subtyping results.
Collapse
Affiliation(s)
- Joost A Agelink van Rentergem
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Dutch Autism & ADHD Research Center, the Netherlands.
| | - Marie K Deserno
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Dutch Autism & ADHD Research Center, the Netherlands
| | - Hilde M Geurts
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Dutch Autism & ADHD Research Center, the Netherlands; Dr. Leo Kannerhuis, the Netherlands
| |
Collapse
|
12
|
Luhach K, Kulkarni GT, Singh VP, Sharma B. Effect of papaverine on developmental hyperserotonemia induced autism spectrum disorder related behavioural phenotypes by altering markers of neuronal function, inflammation, and oxidative stress in rats. Clin Exp Pharmacol Physiol 2021; 48:614-625. [PMID: 33480092 DOI: 10.1111/1440-1681.13459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/24/2020] [Indexed: 11/28/2022]
Abstract
Hyperserotonemia, in the early developmental phase, generates a variety of behavioural and biochemical phenotypes associated with autism spectrum disorder (ASD) in rats. Papaverine is known to provide benefits in various brain conditions. We investigated the role of a selective phosphodiesterase-10A (PDE10A) inhibitor, papaverine on ASD related behavioural phenotypes (social behaviour deficits, repetitive behaviour, anxiety and hyperlocomotion) in developmental hyperserotonemia (DHS) rat model. Also, effects on important biochemical markers related with neuronal function (brain-derived neurotrophic factor (BDNF)-neuronal survival and phosphorylated-cAMP response element binding protein (pCREB)-neuronal transcription factor), brain inflammation (interleukin (IL)-6, IL-10 and tumour necrosis factor (TNF)-α) and brain oxidative stress (TBARS and GSH) were studied in important brain areas (frontal cortex, cerebellum, hippocampus and striatum). Administration of a non-selective serotonin receptor agonist, such as 5-methoxytryptamine (5-MT) to rats prenatally (gestational day 12 - day of parturition) and during early stages (postnatal day (PND) 0 -PND20) of development, resulted in impaired behaviour and brain biochemistry. Administration of papaverine (15/30 mg/kg ip) to 5-MT administered rats from PND21 to PND48, resulted in improvement of behavioural deficits. Also, papaverine administration significantly increased the levels of BDNF, pCREB/CREB, IL-10, GSH and significantly decreased TNF-α, IL-6 and TBARS levels in different brain areas. Papaverine, in both doses rectified important behavioural phenotypes related with ASD, the higher dose (30 mg/kg ip) showed significantly greater improvement than 15 mg/kg ip, possibly by improving neuronal function, brain inflammation and brain oxidative stress. Thus, PDE10A could be a probable target for pharmacological interventions and furthering our understanding of ASD pathogenesis.
Collapse
Affiliation(s)
- Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Giriraj T Kulkarni
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Vijay P Singh
- CSIR-Institute of Genomics & Integrative Biology, Academy of scientific and Innovative research, New Delhi, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
- CNS and CVS Pharmacology, Conscience Research, Delhi, India
| |
Collapse
|
13
|
Ye X, Shin BC, Baldauf C, Ganguly A, Ghosh S, Devaskar SU. Developing Brain Glucose Transporters, Serotonin, Serotonin Transporter, and Oxytocin Receptor Expression in Response to Early-Life Hypocaloric and Hypercaloric Dietary, and Air Pollutant Exposures. Dev Neurosci 2021; 43:27-42. [PMID: 33774619 DOI: 10.1159/000514709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Perturbed maternal diet and prenatal exposure to air pollution (AP) affect the fetal brain, predisposing to postnatal neurobehavioral disorders. Glucose transporters (GLUTs) are key in fueling neurotransmission; deficiency of the neuronal isoform GLUT3 culminates in autism spectrum disorders. Along with the different neurotransmitters, serotonin (5-HT) and oxytocin (OXT) are critical for the development of neural connectivity. Serotonin transporter (SERT) modulates synaptic 5-HT levels, while the OXT receptor (OXTR) mediates OXT action. We hypothesized that perturbed brain GLUT1/GLUT3 regulated 5-HT-SERT imbalance, which serves as a contributing factor to postnatal neuropsychiatric phenotypes, with OXT/OXTR providing a counterbalance. Employing maternal diet restriction (intrauterine growth restriction [IUGR]), high-fat (HF) dietary modifications, and prenatal exposure to simulated AP, fetal (E19) murine brain 5-HT was assessed by ELISA with SERT and OXTR being localized by immunohistochemistry and measured by quantitative Western blot analysis. IUGR with lower head weights led to a 48% reduction in male and female fetal brain GLUT3 with no change in GLUT1, when compared to age- and sex-matched controls, with no significant change in OXTR. In addition, a ∼50% (p = 0.005) decrease in 5-HT and SERT concentrations was displayed in fetal IUGR brains. In contrast, despite emergence of microcephaly, exposure to a maternal HF diet or AP caused no significant changes. We conclude that in the IUGR during fetal brain development, reduced GLUT3 is associated with an imbalanced 5-HT-SERT axis. We speculate that these early changes may set the stage for altering the 5HT-SERT neural axis with postnatal emergence of associated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xin Ye
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Claire Baldauf
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Amit Ganguly
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shubhamoy Ghosh
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
14
|
Beversdorf DQ, Shah A, Jhin A, Noel-MacDonnell J, Hecht P, Ferguson BJ, Bruce D, Tilley M, Talebizadeh Z. microRNAs and Gene-Environment Interactions in Autism: Effects of Prenatal Maternal Stress and the SERT Gene on Maternal microRNA Expression. Front Psychiatry 2021; 12:668577. [PMID: 34290629 PMCID: PMC8288023 DOI: 10.3389/fpsyt.2021.668577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Genetics and environment both are critical in autism spectrum disorder (ASD), but their interaction (G × E) is less understood. Numerous studies have shown higher incidence of stress exposures during pregnancies with children later diagnosed with ASD. However, many stress-exposed mothers have unaffected children. The serotonin transporter (SERT) gene affects stress reactivity. Two independent samples have shown that the association between maternal stress exposure and ASD is greatest with maternal presence of the SERT short (S)-allele (deletion in the promoter region). MicroRNAs play a regulatory role in the serotonergic pathway and in prenatal stress and are therefore potential mechanistic targets in this setting. Design/methods: We profiled microRNA expression in blood from mothers of children with ASD, with known stress exposure during pregnancy. Samples were divided into groups based on SERT genotypes (LL/LS/SS) and prenatal stress level (high/low). Results: Two thousand five hundred mature microRNAs were examined. The ANOVA analysis showed differential expression (DE) of 119 microRNAs; 90 were DE in high- vs. low-stress groups (stress-dependent). Two (miR-1224-5p, miR-331-3p) were recently reported by our group to exhibit stress-dependent expression in rodent brain samples from embryos exposed to prenatal stress. Another, miR-145-5p, is associated with maternal stress. Across SERT genotypes, with high stress exposure, 20 significantly DE microRNAs were detected, five were stress-dependent. These microRNAs may be candidates for stress × SERT genotype interactions. This is remarkable as these changes were from mothers several years after stress-exposed pregnancies. Conclusions: Our study provides evidence for epigenetic alterations in relation to a G × E model (prenatal maternal stress × SERT gene) in ASD.
Collapse
Affiliation(s)
- David Q Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri, Columbia, MO, United States.,Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States
| | - Ayten Shah
- Children's Mercy Hospital, Kansas City, MO, United States
| | - Allison Jhin
- Kansas City University, Kansas City, MO, United States
| | - Janelle Noel-MacDonnell
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Patrick Hecht
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States
| | - Bradley J Ferguson
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States.,Health Psychology, Radiology, and Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, Columbia, MO, United States
| | - Danielle Bruce
- Department of Biology, Central Methodist University, Fayette, MO, United States
| | - Michael Tilley
- Department of Biology, Central Methodist University, Fayette, MO, United States
| | - Zohreh Talebizadeh
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| |
Collapse
|
15
|
Chen Z, Shi K, Liu X, Dai Y, Liu Y, Zhang L, Du X, Zhu T, Yu J, Fang S, Li F. Gut Microbial Profile Is Associated With the Severity of Social Impairment and IQ Performance in Children With Autism Spectrum Disorder. Front Psychiatry 2021; 12:789864. [PMID: 34975585 PMCID: PMC8718873 DOI: 10.3389/fpsyt.2021.789864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background and Objective: Autism spectrum disorder (ASD) refers to a heterogeneous set of neurodevelopmental disorders with diverse symptom severity and comorbidities. Although alterations in gut microbiota have been reported in individuals with ASD, it remains unclear whether certain microbial pattern is linked to specific symptom or comorbidity in ASD. We aimed to investigate the associations between gut microbiota and the severity of social impairment and cognitive functioning in children with ASD. Methods: A total of 261 age-matched children, including 138 children diagnosed with ASD, 63 with developmental delay or intellectual disability (DD/ID), and 60 typically developing (TD) children, were enrolled from the Shanghai Xinhua Registry. The children with ASD were further classified into two subgroups: 76 children diagnosed with ASD and developmental disorder (ASD+DD) and 62 with ASD only (ASD-only). The gut microbiome of all children was profiled and evaluated by 16S ribosomal RNA sequencing. Results: The gut microbial analyses demonstrated an altered microbial community structure in children with ASD. The alpha diversity indices of the ASD+DD and ASD-only subgroups were significantly lower than the DD/ID or TD groups. At the genus level, we observed a decrease in the relative abundance of Prevotella. Simultaneously, Bacteroides and Faecalibacterium were significantly increased in ASD compared with DD/ID and TD participants. There was a clear correlation between alpha diversity and the Childhood Autism Rating Scale (CARS) total score for all participants, and this correlation was independent of IQ performance. Similar correlations with the CARS total score were observed for genera Bacteroides, Faecalibacterium, and Oscillospira. However, there was no single genus significantly associated with IQ in all participants. Conclusions: Specific alterations in bacterial taxonomic composition and associations with the severity of social impairment and IQ performance were observed in children with ASD or ASD subgroups, when compared with DD/ID or TD groups. These results illustrate that gut microbiota may serve as a promising biomarker for ASD symptoms. Nevertheless, further investigations are warranted.
Collapse
Affiliation(s)
- Zilin Chen
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Shi
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xin Liu
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Dai
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqi Liu
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingli Zhang
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiujuan Du
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tailin Zhu
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juehua Yu
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuanfeng Fang
- Department of Child Health Care, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Hanswijk SI, Spoelder M, Shan L, Verheij MMM, Muilwijk OG, Li W, Liu C, Kolk SM, Homberg JR. Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. Int J Mol Sci 2020; 21:E5850. [PMID: 32824000 PMCID: PMC7461571 DOI: 10.3390/ijms21165850] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Serotonin (5-HT) is a critical player in brain development and neuropsychiatric disorders. Fetal 5-HT levels can be influenced by several gestational factors, such as maternal genotype, diet, stress, medication, and immune activation. In this review, addressing both human and animal studies, we discuss how these gestational factors affect placental and fetal brain 5-HT levels, leading to changes in brain structure and function and behavior. We conclude that gestational factors are able to interact and thereby amplify or counteract each other's impact on the fetal 5-HT-ergic system. We, therefore, argue that beyond the understanding of how single gestational factors affect 5-HT-ergic brain development and behavior in offspring, it is critical to elucidate the consequences of interacting factors. Moreover, we describe how each gestational factor is able to alter the 5-HT-ergic influence on the thalamocortical- and prefrontal-limbic circuitry and the hypothalamo-pituitary-adrenocortical-axis. These alterations have been associated with risks to develop attention deficit hyperactivity disorder, autism spectrum disorders, depression, and/or anxiety. Consequently, the manipulation of gestational factors may be used to combat pregnancy-related risks for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sabrina I. Hanswijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Marcia Spoelder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Ling Shan
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands;
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Otto G. Muilwijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Weizhuo Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Chunqing Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Sharon M. Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| |
Collapse
|
17
|
Bjørklund G, Meguid NA, El-Bana MA, Tinkov AA, Saad K, Dadar M, Hemimi M, Skalny AV, Hosnedlová B, Kizek R, Osredkar J, Urbina MA, Fabjan T, El-Houfey AA, Kałużna-Czaplińska J, Gątarek P, Chirumbolo S. Oxidative Stress in Autism Spectrum Disorder. Mol Neurobiol 2020; 57:2314-2332. [PMID: 32026227 DOI: 10.1007/s12035-019-01742-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
According to the United States Centers for Disease Control and Prevention (CDC), as of July 11, 2016, the reported average incidence of children diagnosed with an autism spectrum disorder (ASD) was 1 in 68 (1.46%) among 8-year-old children born in 2004 and living within the 11 monitoring sites' surveillance areas in the United States of America (USA) in 2012. ASD is a multifaceted neurodevelopmental disorder that is also considered a hidden disability, as, for the most part; there are no apparent morphological differences between children with ASD and typically developing children. ASD is diagnosed based upon a triad of features including impairment in socialization, impairment in language, and repetitive and stereotypic behaviors. The increasing incidence of ASD in the pediatric population and the lack of successful curative therapies make ASD one of the most challenging disorders for medicine. ASD neurobiology is thought to be associated with oxidative stress, as shown by increased levels of reactive oxygen species and increased lipid peroxidation, as well as an increase in other indicators of oxidative stress. Children with ASD diagnosis are considered more vulnerable to oxidative stress because of their imbalance in intracellular and extracellular glutathione levels and decreased glutathione reserve capacity. Several studies have suggested that the redox imbalance and oxidative stress are integral parts of ASD pathophysiology. As such, early assessment and treatment of antioxidant status may result in a better prognosis as it could decrease the oxidative stress in the brain before it can induce more irreversible brain damage. In this review, many aspects of the role of oxidative stress in ASD are discussed, taking into account that the process of oxidative stress may be a target for therapeutic interventions.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Nagwa A Meguid
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
| | - Mona A El-Bana
- CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
- Medical Biochemistry Department, National Research Centre, Giza, Egypt
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
- CONEM Upper Egypt Pediatric Research Group, Assiut University, Assiut, Egypt
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maha Hemimi
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
- Taipei Medical University, Taipei, Taiwan
| | - Božena Hosnedlová
- CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
- Faculty of Pharmacy, Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Rene Kizek
- CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
- Faculty of Pharmacy, Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Joško Osredkar
- Institute of Clinical Chemistry and Biochemistry (KIKKB), Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Teja Fabjan
- Institute of Clinical Chemistry and Biochemistry (KIKKB), Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Amira A El-Houfey
- CONEM Upper Egypt Pediatric Research Group, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Sabia University College, Jazan University, Jizan, Saudi Arabia
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Department of Chemistry, Technical University of Lodz, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| | - Paulina Gątarek
- Institute of General and Ecological Chemistry, Department of Chemistry, Technical University of Lodz, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|
18
|
Brandenburg C, Blatt GJ. Differential serotonin transporter (5-HTT) and 5-HT 2 receptor density in limbic and neocortical areas of adults and children with autism spectrum disorders: implications for selective serotonin reuptake inhibitor efficacy. J Neurochem 2019; 151:642-655. [PMID: 31325179 PMCID: PMC6900089 DOI: 10.1111/jnc.14832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/17/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022]
Abstract
As selective serotonin reuptake inhibitors (SSRIs) are among the most commonly prescribed medications in autism, we aimed to determine whether targets for SSRIs are differentially affected in three cortical areas in children and adults with autism compared to neurotypical individuals. Utilizing a large cohort of postmortem brain tissue (n = 14–19 per group), saturation ligand binding assays were conducted on sections from the anterior cingulate cortex (ACC), posterior cingulate cortex, and fusiform gyrus (FG). Specific binding to the 5‐HT transporter (5‐HTT) as well as to 5‐HT2 and 1A receptors (5‐HT₂, 5‐HT1A) was quantified in superficial and deep layers of each region using the ligands [3H]‐citalopram (5‐HTT), [3H]‐ketanserin (5‐HT2), and [3H]‐8‐OH‐DPAT (5‐HT1A). A Welch’s t‐test was utilized to compare receptor densities (Bmax), revealing a statistically significant decrease in 5‐HTT within the ACC of the entire autism cohort. There was also a decrease in 5‐HT2 receptor density in the ACC in the adult cohort, but not in child postmortem autism cases as compared to controls. Comparing linear regression lines of Bmax values plotted against age, shows a significantly lower intercept for 5‐HTT in autism (p = 0.025). 5‐HT₂ density increases with age in control cases, whereas in autism there is a decrease with age and significantly different slopes between regression lines (p = 0.032). This suggests a deficit in 5‐HTT within the ACC in individuals with autism, while decreases in 5‐HT₂ density are age‐dependent. There were no differences in receptor densities in the posterior cingulate cortex or FG in autism and no differences in ligand affinity (KD) across all regions and ligands examined. ![]()
Collapse
Affiliation(s)
- Cheryl Brandenburg
- Program on Neuroscience, Hussman Institute for Autism, Baltimore, Maryland, USA
| | - Gene J Blatt
- Program on Neuroscience, Hussman Institute for Autism, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Padmakumar M, Van Raes E, Van Geet C, Freson K. Blood platelet research in autism spectrum disorders: In search of biomarkers. Res Pract Thromb Haemost 2019; 3:566-577. [PMID: 31624776 PMCID: PMC6781926 DOI: 10.1002/rth2.12239] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a clinically heterogeneous neurodevelopmental disorder that is caused by gene-environment interactions. To improve its diagnosis and treatment, numerous efforts have been undertaken to identify reliable biomarkers for autism. None of them have delivered the holy grail that represents a reproducible, quantifiable, and sensitive biomarker. Though blood platelets are mainly known to prevent bleeding, they also play pivotal roles in cancer, inflammation, and neurological disorders. Platelets could serve as a peripheral biomarker or cellular model for autism as they share common biological and molecular characteristics with neurons. In particular, platelet-dense granules contain neurotransmitters such as serotonin and gamma-aminobutyric acid. Molecular players controlling granule formation and secretion are similarly regulated in platelets and neurons. The major platelet integrin receptor αIIbβ3 has recently been linked to ASD as a regulator of serotonin transport. Though many studies revealed associations between platelet markers and ASD, there is an important knowledge gap in linking these markers with autism and explaining the altered platelet phenotypes detected in autism patients. The present review enumerates studies of different biomarkers detected in ASD using platelets and highlights the future needs to bring this research to the next level and advance our understanding of this complex disorder.
Collapse
Affiliation(s)
- Manisha Padmakumar
- Department of Cardiovascular SciencesCenter for Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | - Eveline Van Raes
- Department of Cardiovascular SciencesCenter for Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | - Chris Van Geet
- Department of Cardiovascular SciencesCenter for Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | - Kathleen Freson
- Department of Cardiovascular SciencesCenter for Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| |
Collapse
|
20
|
Methodological Challenges in Studying Autism Spectrum Disorder. J Am Acad Child Adolesc Psychiatry 2018; 57:824-825. [PMID: 30392622 DOI: 10.1016/j.jaac.2018.07.875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/16/2018] [Indexed: 11/20/2022]
Abstract
Evidence from genetic, animal, and epidemiologic studies have consistently implicated the serotonin (5-HT) system as an important risk factor for autism spectrum disorder (ASD).1 Hyperserotonemia has been documented in more than 25% of pediatric ASD cases.2 Although serotonergic functioning is a plausible and tantalizing component of causal models of ASD pathophysiology, specific mechanisms remain poorly understood.2 Barriers to delineating these mechanisms include the difficulty of disentangling the effects of genetic risks, environmental exposures across development (including gestational exposure to selective 5-HT reuptake inhibitors),3 and the possible interactions between these factors in a population with considerable phenotypic and prognostic heterogeneity.
Collapse
|