1
|
Tan E, Kennedy H, Rademaker M. Burden of proof-Critical flaws in the recommendations from the commission on human medicines Isotretinoin expert working group. Australas J Dermatol 2023; 64:579-580. [PMID: 37822144 DOI: 10.1111/ajd.14169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Affiliation(s)
- Eugene Tan
- Department of Dermatology, Skintel, Auckland, New Zealand
| | - Harriet Kennedy
- Auckland City Hospital, Te Whatu Ora, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Marius Rademaker
- Clinical Trials New Zealand, Waikato Hospital Campus, Hamilton, New Zealand
| |
Collapse
|
2
|
Soldati S, Bär A, Vladymyrov M, Glavin D, McGrath JL, Gosselet F, Nishihara H, Goelz S, Engelhardt B. High levels of endothelial ICAM-1 prohibit natalizumab mediated abrogation of CD4 + T cell arrest on the inflamed BBB under flow in vitro. J Neuroinflammation 2023; 20:123. [PMID: 37221552 DOI: 10.1186/s12974-023-02797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION The humanized anti-α4 integrin blocking antibody natalizumab (NTZ) is an effective treatment for relapsing-remitting multiple sclerosis (RRMS) that is associated with the risk of progressive multifocal leukoencephalopathy (PML). While extended interval dosing (EID) of NTZ reduces the risk for PML, the minimal dose of NTZ required to maintain its therapeutic efficacy remains unknown. OBJECTIVE Here we aimed to identify the minimal NTZ concentration required to inhibit the arrest of human effector/memory CD4+ T cell subsets or of PBMCs to the blood-brain barrier (BBB) under physiological flow in vitro. RESULTS Making use of three different human in vitro BBB models and in vitro live-cell imaging we observed that NTZ mediated inhibition of α4-integrins failed to abrogate T cell arrest to the inflamed BBB under physiological flow. Complete inhibition of shear resistant T cell arrest required additional inhibition of β2-integrins, which correlated with a strong upregulation of endothelial intercellular adhesion molecule (ICAM)-1 on the respective BBB models investigated. Indeed, NTZ mediated inhibition of shear resistant T cell arrest to combinations of immobilized recombinant vascular cell adhesion molecule (VCAM)-1 and ICAM-1 was abrogated in the presence of tenfold higher molar concentrations of ICAM-1 over VCAM-1. Also, monovalent NTZ was less potent than bivalent NTZ in inhibiting T cell arrest to VCAM-1 under physiological flow. In accordance with our previous observations ICAM-1 but not VCAM-1 mediated T cell crawling against the direction of flow. CONCLUSION Taken together, our in vitro observations show that high levels of endothelial ICAM-1 abrogate NTZ mediated inhibition of T cell interaction with the BBB. EID of NTZ in MS patients may thus require consideration of the inflammatory status of the BBB as high levels of ICAM-1 may provide an alternative molecular cue allowing for pathogenic T cell entry into the CNS in the presence of NTZ.
Collapse
Affiliation(s)
- Sasha Soldati
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - Alexander Bär
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - Mykhailo Vladymyrov
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - Dale Glavin
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory, University of Artois, Lens, France
| | - Hideaki Nishihara
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
- Department of Neurotherapeutics, Yamaguchi University, Yamaguchi, Japan
| | | | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland.
| |
Collapse
|
3
|
Nakamichi K, Miura Y, Shimokawa T, Takahashi K, Suzuki T, Funata N, Harada M, Mori K, Sanjo N, Yukitake M, Takahashi K, Hamaguchi T, Izaki S, Oji S, Nakahara J, Ae R, Kosami K, Nukuzuma S, Nakamura Y, Nomura K, Kishida S, Mizusawa H, Yamada M, Takao M, Ebihara H, Saijo M. Nationwide Laboratory Surveillance of Progressive Multifocal Leukoencephalopathy in Japan: Fiscal Years 2011-2020. Viruses 2023; 15:v15040968. [PMID: 37112948 PMCID: PMC10144269 DOI: 10.3390/v15040968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a devastating demyelinating disease caused by JC virus (JCV), predominantly affecting patients with impaired cellular immunity. PML is a non-reportable disease with a few exceptions, making national surveillance difficult. In Japan, polymerase chain reaction (PCR) testing for JCV in the cerebrospinal fluid (CSF) is performed at the National Institute of Infectious Diseases to support PML diagnosis. To clarify the overall profile of PML in Japan, patient data provided at the time of CSF-JCV testing over 10 years (FY2011-2020) were analyzed. PCR testing for 1537 new suspected PML cases was conducted, and 288 (18.7%) patients tested positive for CSF-JCV. An analysis of the clinical information on all individuals tested revealed characteristics of PML cases, including the geographic distribution, age and sex patterns, and CSF-JCV-positivity rates among the study subjects for each type of underlying condition. During the last five years of the study period, a surveillance system utilizing ultrasensitive PCR testing and widespread clinical attention to PML led to the detection of CSF-JCV in the earlier stages of the disease. The results of this study will provide valuable information not only for PML diagnosis, but also for the treatment of PML-predisposing conditions.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshiharu Miura
- Department of Neurology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Toshio Shimokawa
- Department of Medical Data Science, Graduate School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Nobuaki Funata
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Masafumi Harada
- Department of Radiology, Tokushima University School of Medicine, Tokushima 770-8503, Japan
| | - Koichiro Mori
- Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Nobuo Sanjo
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Motohiro Yukitake
- Department of Neurology, Kouhoukai Takagi Hospital, Okawa-shi 831-0016, Fukuoka, Japan
| | - Kazuya Takahashi
- Department of Neurology, Hokuriku Brain and Neuromuscular Disease Center, National Hospital Organization Iou National Hospital, Kanazawa-shi 920-0192, Ishikawa, Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology, Kanazawa Medical University, Kahoku-gun 920-0293, Ishikawa, Japan
| | - Shoko Izaki
- Department of Neurology, National Hospital Organization Saitama Hospital, Wako-shi 351-0102, Saitama, Japan
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe-shi 350-8550, Saitama, Japan
| | - Satoru Oji
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe-shi 350-8550, Saitama, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ryusuke Ae
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Shimotsuke-shi 329-0498, Tochigi, Japan
| | - Koki Kosami
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Shimotsuke-shi 329-0498, Tochigi, Japan
| | - Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, Kobe-shi 650-0046, Hyogo, Japan
| | - Yosikazu Nakamura
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Shimotsuke-shi 329-0498, Tochigi, Japan
| | - Kyoichi Nomura
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe-shi 350-8550, Saitama, Japan
- Higashimatsuyama Municipal Hospital, Higashimatsuyama-shi 355-0005, Saitama, Japan
| | - Shuji Kishida
- Department of Neurology, Narita Tomisato Tokushukai Hospital, Tomisato-shi 286-0201, Chiba, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira-shi, Tokyo 187-8551, Japan
| | - Masahito Yamada
- Division of Neurology, Department of Internal Medicine, Kudanzaka Hospital, Chiyoda-ku, Tokyo 102-0074, Japan
| | - Masaki Takao
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira-shi, Tokyo 187-8551, Japan
- Department of General Internal Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira-shi, Tokyo 187-8551, Japan
| | - Hideki Ebihara
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
- Medical Affairs Department, Health and Welfare Bureau, Sapporo-shi 060-0042, Hokkaido, Japan
| |
Collapse
|
4
|
Reyes M, Kortepeter C, Muñoz M. Postmarket Assessment for Drugs and Biologics Used in Dermatology and Cutaneous Adverse Drug Reactions. Dermatol Clin 2022; 40:265-277. [DOI: 10.1016/j.det.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Drosos AA, Pelechas E, Kaltsonoudis E, Markatseli TE, Voulgari PV. Biologic Therapies and Autoimmune Phenomena. Mediterr J Rheumatol 2021; 32:96-103. [PMID: 34447904 PMCID: PMC8369271 DOI: 10.31138/mjr.32.2.96] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/20/2021] [Indexed: 11/30/2022] Open
Abstract
The use of biologic medications has represented a great advancement in the treatment of autoimmune rheumatic diseases. Despite their excellent efficacy, during the last years, a growing number of reports of autoimmune phenomena and paradoxical inflammation has emerged. These phenomena may range from the discovery of an isolated autoantibody to full-blown autoimmune diseases, organ-specific and systemic. This review has been carried out in order to underline the multitude of the potential adverse manifestations from the use of biologic medications. Thus, early recognition of specific types of autoimmune phenomena is an imperative for the physicians allowing them to have an accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Alexandros A Drosos
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | - Eleftherios Pelechas
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | - Evripidis Kaltsonoudis
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | - Theodora E Markatseli
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | - Paraskevi V Voulgari
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| |
Collapse
|
6
|
Ghilardi N, Pappu R, Arron JR, Chan AC. 30 Years of Biotherapeutics Development-What Have We Learned? Annu Rev Immunol 2021; 38:249-287. [PMID: 32340579 DOI: 10.1146/annurev-immunol-101619-031510] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the birth of biotechnology, hundreds of biotherapeutics have been developed and approved by the US Food and Drug Administration (FDA) for human use. These novel medicines not only bring significant benefit to patients but also represent precision tools to interrogate human disease biology. Accordingly, much has been learned from the successes and failures of hundreds of high-quality clinical trials. In this review, we discuss general and broadly applicable themes that have emerged from this collective experience. We base our discussion on insights gained from exploring some of the most important target classes, including interleukin-1 (IL-1), tumor necrosis factor α (TNF-α), IL-6, IL-12/23, IL-17, IL-4/13, IL-5, immunoglobulin E (IgE), integrins and B cells. We also describe current challenges and speculate about how emerging technological capabilities may enable the discovery and development of the next generation of biotherapeutics.
Collapse
Affiliation(s)
- Nico Ghilardi
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Rajita Pappu
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Joseph R Arron
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Andrew C Chan
- Research-Biology, Genentech, South San Francisco, California 94080, USA;
| |
Collapse
|
7
|
Koritzinsky EH, Tsuda H, Fairchild RL. Endogenous memory T cells with donor-reactivity: early post-transplant mediators of acute graft injury in unsensitized recipients. Transpl Int 2021; 34:1360-1373. [PMID: 33963616 PMCID: PMC8389524 DOI: 10.1111/tri.13900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
The pretransplant presence of endogenous donor-reactive memory T cells is an established risk factor for acute rejection and poorer transplant outcomes. A major source of these memory T cells in unsensitized recipients is heterologously generated memory T cells expressing reactivity to donor allogeneic MHC molecules. Multiple clinical studies have shown that the pretransplant presence of high numbers of circulating endogenous donor-reactive memory T cells correlates with higher incidence of acute rejection and decreased graft function during the first-year post-transplant. These findings have spurred investigation in preclinical models to better understand mechanisms underlying endogenous donor-reactive memory T-cell-mediated allograft injury in unsensitized graft recipients. These studies have led to the identification of unique mechanisms underlying the activation of these memory T cells within allografts at early times after transplant. In particular, optimal activation to mediate acute allograft injury is dependent on the intensity of ischaemia-reperfusion injury. Therapeutic strategies directed at the recruitment and activation of endogenous donor-reactive memory T cells are effective in attenuating acute injury in allografts experiencing increased ischaemia-reperfusion injury in preclinical models and should be translatable to clinical transplantation.
Collapse
Affiliation(s)
- Erik H. Koritzinsky
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Hidetoshi Tsuda
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Robert L. Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
8
|
Complications neurologiques de l’infection par le virus JC : revue générale. Rev Med Interne 2021; 42:177-185. [DOI: 10.1016/j.revmed.2020.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
|
9
|
Shao S, Wang G, Maverakis E, Gudjonsson JE. Targeted Treatment for Erythrodermic Psoriasis: Rationale and Recent Advances. Drugs 2020; 80:525-534. [PMID: 32180204 DOI: 10.1007/s40265-020-01283-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Erythrodermic psoriasis (EP) is an extreme and often refractory variant of psoriasis with high morbidity and increased mortality, and is frequently classified as a dermatological emergency. The pathophysiology of EP is largely unknown but is thought to differ from that of plaque psoriasis. Treatment of EP is challenging, and usually based on clinical experience and patient co-morbidities, due to its low incidence and limited clinical evidence. Conventional treatments, such as topical glucocorticoid therapy, cyclosporin, acitretin, and methotrexate have some but limited efficacy in EP, and treatment discontinuation may result in flares. Newer biological drugs, including anti-TNF, anti-IL-17, and anti-IL-12/23 agents, have shown promise in therapeutic management of EP, but most of the available evidence is currently based on small case series and reports. Few studies have compared available treatment options for EP, and further clinical studies are necessary to provide clinical data and optimal treatment guidelines for EP patients. Here, we provide a comprehensive review of the background of EP, assess the available clinical data on the efficacy of targeted therapies, and aim to provide a foundation for clinical decision making for this rare form of psoriasis.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, 710032, China
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, 710032, China
| | - Emanual Maverakis
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, 95616, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Lauver MD, Lukacher AE. JCPyV VP1 Mutations in Progressive MultifocalLeukoencephalopathy: Altering Tropismor Mediating Immune Evasion? Viruses 2020; 12:v12101156. [PMID: 33053912 PMCID: PMC7600905 DOI: 10.3390/v12101156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Polyomaviruses are ubiquitous human pathogens that cause lifelong, asymptomatic infections in healthy individuals. Although these viruses are restrained by an intact immune system, immunocompromised individuals are at risk for developing severe diseases driven by resurgent viral replication. In particular, loss of immune control over JC polyomavirus can lead to the development of the demyelinating brain disease progressive multifocal leukoencephalopathy (PML). Viral isolates from PML patients frequently carry point mutations in the major capsid protein, VP1, which mediates virion binding to cellular glycan receptors. Because polyomaviruses are non-enveloped, VP1 is also the target of the host's neutralizing antibody response. Thus, VP1 mutations could affect tropism and/or recognition by polyomavirus-specific antibodies. How these mutations predispose susceptible individuals to PML and other JCPyV-associated CNS diseases remains to be fully elucidated. Here, we review the current understanding of polyomavirus capsid mutations and their effects on viral tropism, immune evasion, and virulence.
Collapse
|
11
|
Lauver MD, Goetschius DJ, Netherby-Winslow CS, Ayers KN, Jin G, Haas DG, Frost EL, Cho SH, Bator CM, Bywaters SM, Christensen ND, Hafenstein SL, Lukacher AE. Antibody escape by polyomavirus capsid mutation facilitates neurovirulence. eLife 2020; 9:e61056. [PMID: 32940605 PMCID: PMC7541085 DOI: 10.7554/elife.61056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
JCPyV polyomavirus, a member of the human virome, causes progressive multifocal leukoencephalopathy (PML), an oft-fatal demyelinating brain disease in individuals receiving immunomodulatory therapies. Mutations in the major viral capsid protein, VP1, are common in JCPyV from PML patients (JCPyV-PML) but whether they confer neurovirulence or escape from virus-neutralizing antibody (nAb) in vivo is unknown. A mouse polyomavirus (MuPyV) with a sequence-equivalent JCPyV-PML VP1 mutation replicated poorly in the kidney, a major reservoir for JCPyV persistence, but retained the CNS infectivity, cell tropism, and neuropathology of the parental virus. This mutation rendered MuPyV resistant to a monoclonal Ab (mAb), whose specificity overlapped the endogenous anti-VP1 response. Using cryo-EM and a custom sub-particle refinement approach, we resolved an MuPyV:Fab complex map to 3.2 Å resolution. The structure revealed the mechanism of mAb evasion. Our findings demonstrate convergence between nAb evasion and CNS neurovirulence in vivo by a frequent JCPyV-PML VP1 mutation.
Collapse
Affiliation(s)
- Matthew D Lauver
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| | - Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | | | - Katelyn N Ayers
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| | - Ge Jin
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| | - Daniel G Haas
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| | - Elizabeth L Frost
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| | - Sung Hyun Cho
- Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
| | - Carol M Bator
- Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
| | - Stephanie M Bywaters
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Neil D Christensen
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
- Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
- Department of Medicine, Penn State College of MedicineHersheyUnited States
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| |
Collapse
|
12
|
Fifty Years of JC Polyomavirus: A Brief Overview and Remaining Questions. Viruses 2020; 12:v12090969. [PMID: 32882975 PMCID: PMC7552028 DOI: 10.3390/v12090969] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022] Open
Abstract
In the fifty years since the discovery of JC polyomavirus (JCPyV), the body of research representing our collective knowledge on this virus has grown substantially. As the causative agent of progressive multifocal leukoencephalopathy (PML), an often fatal central nervous system disease, JCPyV remains enigmatic in its ability to live a dual lifestyle. In most individuals, JCPyV reproduces benignly in renal tissues, but in a subset of immunocompromised individuals, JCPyV undergoes rearrangement and begins lytic infection of the central nervous system, subsequently becoming highly debilitating-and in many cases, deadly. Understanding the mechanisms allowing this process to occur is vital to the development of new and more effective diagnosis and treatment options for those at risk of developing PML. Here, we discuss the current state of affairs with regards to JCPyV and PML; first summarizing the history of PML as a disease and then discussing current treatment options and the viral biology of JCPyV as we understand it. We highlight the foundational research published in recent years on PML and JCPyV and attempt to outline which next steps are most necessary to reduce the disease burden of PML in populations at risk.
Collapse
|
13
|
Davis JS, Ferreira D, Paige E, Gedye C, Boyle M. Infectious Complications of Biological and Small Molecule Targeted Immunomodulatory Therapies. Clin Microbiol Rev 2020; 33:e00035-19. [PMID: 32522746 PMCID: PMC7289788 DOI: 10.1128/cmr.00035-19] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The past 2 decades have seen a revolution in our approach to therapeutic immunosuppression. We have moved from relying on broadly active traditional medications, such as prednisolone or methotrexate, toward more specific agents that often target a single receptor, cytokine, or cell type, using monoclonal antibodies, fusion proteins, or targeted small molecules. This change has transformed the treatment of many conditions, including rheumatoid arthritis, cancers, asthma, and inflammatory bowel disease, but along with the benefits have come risks. Contrary to the hope that these more specific agents would have minimal and predictable infectious sequelae, infectious complications have emerged as a major stumbling block for many of these agents. Furthermore, the growing number and complexity of available biologic agents makes it difficult for clinicians to maintain current knowledge, and most review articles focus on a particular target disease or class of agent. In this article, we review the current state of knowledge about infectious complications of biologic and small molecule immunomodulatory agents, aiming to create a single resource relevant to a broad range of clinicians and researchers. For each of 19 classes of agent, we discuss the mechanism of action, the risk and types of infectious complications, and recommendations for prevention of infection.
Collapse
Affiliation(s)
- Joshua S Davis
- Department of Infectious Diseases and Immunology, John Hunter Hospital, Newcastle, NSW, Australia
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - David Ferreira
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Emma Paige
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
| | - Craig Gedye
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Oncology, Calvary Mater Hospital, Newcastle, NSW, Australia
| | - Michael Boyle
- Department of Infectious Diseases and Immunology, John Hunter Hospital, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
14
|
Carballido JM, Regairaz C, Rauld C, Raad L, Picard D, Kammüller M. The Emerging Jamboree of Transformative Therapies for Autoimmune Diseases. Front Immunol 2020; 11:472. [PMID: 32296421 PMCID: PMC7137386 DOI: 10.3389/fimmu.2020.00472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Standard treatments for autoimmune and autoinflammatory disorders rely mainly on immunosuppression. These are predominantly symptomatic remedies that do not affect the root cause of the disease and are associated with multiple side effects. Immunotherapies are being developed during the last decades as more specific and safer alternatives to small molecules with broad immunosuppressive activity, but they still do not distinguish between disease-causing and protective cell targets and thus, they still have considerable risks of increasing susceptibility to infections and/or malignancy. Antigen-specific approaches inducing immune tolerance represent an emerging trend carrying the potential to be curative without inducing broad immunosuppression. These therapies are based on antigenic epitopes derived from the same proteins that are targeted by the autoreactive T and B cells, and which are administered to patients together with precise instructions to induce regulatory responses capable to restore homeostasis. They are not personalized medicines, and they do not need to be. They are precision therapies exquisitely targeting the disease-causing cells that drive pathology in defined patient populations. Immune tolerance approaches are truly transformative options for people suffering from autoimmune diseases.
Collapse
Affiliation(s)
- José M. Carballido
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Camille Regairaz
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Celine Rauld
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Layla Raad
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Damien Picard
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Michael Kammüller
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
15
|
Khalili A, Craigie M, Donadoni M, Sariyer IK. Host-Immune Interactions in JC Virus Reactivation and Development of Progressive Multifocal Leukoencephalopathy (PML). J Neuroimmune Pharmacol 2019; 14:649-660. [PMID: 31452013 PMCID: PMC6898772 DOI: 10.1007/s11481-019-09877-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
With the advent of immunomodulatory therapies and the HIV epidemic, the impact of JC Virus (JCV) on the public health system has grown significantly due to the increased incidence of Progressive Multifocal Leukoencephalopathy (PML). Currently, there are no pharmaceutical agents targeting JCV infection for the treatment and the prevention of viral reactivation leading to the development of PML. As JCV primarily reactivates in immunocompromised patients, it is proposed that the immune system (mainly the cellular-immunity component) plays a key role in the regulation of JCV to prevent productive infection and PML development. However, the exact mechanism of JCV immune regulation and reactivation is not well understood. Likewise, the impact of host factors on JCV regulation and reactivation is another understudied area. Here we discuss the current literature on host factor-mediated and immune factor-mediated regulation of JCV gene expression with the purpose of developing a model of the factors that are bypassed during JCV reactivation, and thus are potential targets for the development of therapeutic interventions to suppress PML initiation. Graphical Abstract.
Collapse
Affiliation(s)
- Amir Khalili
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA
| | - Michael Craigie
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA
| | - Martina Donadoni
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA
| | - Ilker Kudret Sariyer
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW To describe the latest developments in the field of anti-trafficking agents (ATAs), a class of therapeutics with growing importance in the field of inflammatory bowel diseases (IBDs) that specifically inhibit steps of immune cell trafficking. RECENT FINDINGS Several translational and clinical studies have further shaped the knowledge about the mechanisms and effects of the anti-α4β7 integrin antibody vedolizumab. In parallel, new ATAs like the anti-β7 integrin antibody etrolizumab and the anti-MAdCAM-1 antibody ontamalimab are investigated in phase III clinical trials and might soon increase the therapeutic armamentarium in IBD. SUMMARY ATAs have unique mechanisms of action and can meanwhile be considered an indispensable column of IBD therapy. Further efforts are necessary to elucidate complex mechanistic aspects, to exactly define their role in relation to other therapeutic approaches and to identify novel treatment targets as well as biomarkers for personalized medicine.
Collapse
|
17
|
High Dimensional Renal Profiling: Towards a Better Understanding or Renal Transplant Immune Suppression. CURRENT TRANSPLANTATION REPORTS 2019; 6:60-68. [PMID: 31595214 DOI: 10.1007/s40472-019-0225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE OF REVIEW The goal of this review is to discuss new approaches to avoid CNI/CCS toxicities with a focus on new biologics and new methods to understand transplant rejection at the single-cell level. RECENT FINDINGS Recently developed biologics hold significant promise as the next wave of therapeutics designed to promote CNI/CCS-free long-term allograft acceptance. Indeed, belatacept, soluble CTLA4-Ig, is largely devoid of CNI-like toxicities, although it is accompanied by an increased frequency of acute rejection. Besides belatacept, other biologics hold promise as CNI-free immune suppressive approaches. Finally, powerful new single cell approaches can enable characterization of cellular populations that drive rejection within the rejecting allograft. SUMMARY We propose that the incorporated single cell profiling into studies investigating new biologics in transplantation, could be tailored to each patient, correlated with potential biomarkers in the blood and urine, and provide a platform where therapeutic targets can be rationally defined, mechanistically-based, and exploited.
Collapse
|
18
|
Cohen SR, Pona A, Cline AE, Feldman SR. The complexity of adverse event assessment and counseling for patients on biologic treatment. Expert Rev Clin Immunol 2019; 15:809-811. [PMID: 31290340 DOI: 10.1080/1744666x.2019.1642749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Stephanie R Cohen
- a Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Adrian Pona
- a Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Abigail E Cline
- a Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Steven R Feldman
- a Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine , Winston-Salem , NC , USA.,b Department of Pathology, Wake Forest School of Medicine , Winston-Salem , NC , USA.,c Department of Social Sciences & Health Policy, Wake Forest School of Medicine , Winston-Salem , NC , USA
| |
Collapse
|
19
|
Lu YC, Chuang CH, Chuang KH, Chen IJ, Huang BC, Lee WH, Wang HE, Li JJ, Cheng YA, Cheng KW, Wang JY, Hsieh YC, Lin WW, Cheng TL. Specific activation of pro-Infliximab enhances selectivity and safety of rheumatoid arthritis therapy. PLoS Biol 2019; 17:e3000286. [PMID: 31194726 PMCID: PMC6563948 DOI: 10.1371/journal.pbio.3000286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
During rheumatoid arthritis (RA) treatment, long-term injection of antitumor necrosis factor α antibodies (anti-TNFα Abs) may induce on-target toxicities, including severe infections (tuberculosis [TB] or septic arthritis) and malignancy. Here, we used an immunoglobulin G1 (IgG1) hinge as an Ab lock to cover the TNFα-binding site of Infliximab by linking it with matrix metalloproteinase (MMP) -2/9 substrate to generate pro-Infliximab that can be specifically activated in the RA region to enhance the selectivity and safety of treatment. The Ab lock significantly inhibits the TNFα binding and reduces the anti-idiotypic (anti-Id) Ab binding to pro-Infliximab by 395-fold, 108-fold compared with Infliximab, respectively, and MMP-2/9 can completely restore the TNFα neutralizing ability of pro-Infliximab to block TNFα downstream signaling. Pro-Infliximab was only selectively activated in the disease site (mouse paws) and presented similar pharmacokinetics (PKs) and bio-distribution to Infliximab. Furthermore, pro-Infliximab not only provided equivalent therapeutic efficacy to Infliximab but also maintained mouse immunity against Listeria infection in the RA mouse model, leading to a significantly higher survival rate (71%) than that of the Infliximab treatment group (0%). The high-selectivity pro-Infliximab maintains host immunity and keeps the original therapeutic efficiency, providing a novel strategy for RA therapy. During treatment of rheumatoid arthritis, systemic administration of anti-TNFα antibodies may induce on-target toxicities, limiting their application. The incorporation of IgG1 hinge as an antibody lock generates a pro-Infliximab whose activation is specific to the disease region, enabling safer RA therapy.
Collapse
Affiliation(s)
- Yun-Chi Lu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Chuang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - I-Ju Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bo-Cheng Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wen-Han Lee
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
- Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Je Li
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi-An Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kai-Wen Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Chin Hsieh
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Wei Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (WWL); (TLC)
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- * E-mail: (WWL); (TLC)
| |
Collapse
|
20
|
Pérez-Jeldres T, Tyler CJ, Boyer JD, Karuppuchamy T, Bamias G, Dulai PS, Boland BS, Sandborn WJ, Patel DR, Rivera-Nieves J. Cell Trafficking Interference in Inflammatory Bowel Disease: Therapeutic Interventions Based on Basic Pathogenesis Concepts. Inflamm Bowel Dis 2019; 25:270-282. [PMID: 30165490 PMCID: PMC6327230 DOI: 10.1093/ibd/izy269] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 12/27/2022]
Abstract
After 20 years of successful targeting of pro-inflammatory cytokines for the treatment of IBD, an alternative therapeutic strategy has emerged, based on several decades of advances in understanding the pathogenesis of IBD. The targeting of molecules involved in leukocyte traffic has recently become a safe and effective alternative. With 2 currently approved drugs (ie, natalizumab, vedolizumab) and several others in phase 3 trials (eg, etrolizumab, ozanimod, anti-MAdCAM-1), the blockade of trafficking molecules has firmly emerged as a new therapeutic era for IBD. We discuss the targets that have been explored in clinical trials: chemokines and its receptors (eg, IP10, CCR9), integrins (eg, natalizumab, AJM300, vedolizumab, and etrolizumab), and its endothelial ligands (MAdCAM-1, ICAM-1). We also discuss a distinct strategy that interferes with lymphocyte recirculation by blocking lymphocyte egress from lymph nodes (small molecule sphingosine-phosphate receptor [S1PR] agonists: fingolimod, ozanimod, etrasimod, amiselimod). Strategies on the horizon include additional small molecules, allosteric inhibitors that specifically bind to the active integrin form and nanovectors that allow for the use of RNA interference in the quest to modulate pro-inflammatory leukocyte trafficking in IBD.
Collapse
Affiliation(s)
- Tamara Pérez-Jeldres
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- Hospital San Borja Arriarán, Santiago, Chile
- Universidad Católica de Chile, Santiago, Chile
| | - Christopher J Tyler
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Joshua D Boyer
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Thangaraj Karuppuchamy
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Parambir S Dulai
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Brigid S Boland
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - William J Sandborn
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - Derek R Patel
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - Jesús Rivera-Nieves
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
21
|
Grantham HJ, Reynolds NJ. The devil is in the data: differences in drug persistence between SNIIRAM, the French national health insurance database, and psoriasis biologics intervention registers. Br J Dermatol 2019; 180:8-10. [PMID: 30604531 DOI: 10.1111/bjd.17275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Henry J Grantham
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K.,Newcastle Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, U.K
| | - Nick J Reynolds
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K.,Newcastle Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, U.K
| |
Collapse
|
22
|
Egeberg A. The good, the bad and the malignant. Br J Dermatol 2018; 179:809-810. [DOI: 10.1111/bjd.17022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- A. Egeberg
- Department of Dermatology and Allergy; Herlev and Gentofte Hospital; University of Copenhagen; Kildegårdsvej 28 2900 Hellerup Denmark
| |
Collapse
|
23
|
Lamb CA, O'Byrne S, Keir ME, Butcher EC. Gut-Selective Integrin-Targeted Therapies for Inflammatory Bowel Disease. J Crohns Colitis 2018; 12:S653-S668. [PMID: 29767705 DOI: 10.1093/ecco-jcc/jjy060] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrins are cell surface receptors with bidirectional signalling capabilities that can bind to adhesion molecules in order to mediate homing of leukocytes to peripheral tissues. Gut-selective leukocyte homing is facilitated by interactions between α4β7 and its ligand, mucosal addressin cellular adhesion molecule-1 [MAdCAM-1], while retention of lymphocytes in mucosal tissues is mediated by αEβ7 binding to its ligand E-cadherin. Therapies targeting gut-selective trafficking have shown efficacy in inflammatory bowel disease [IBD], confirming the importance of leukocyte trafficking in disease pathobiology. This review will provide an overview of integrin structure, function and signalling, and highlight the role that these molecules play in leukocyte homing and retention. Anti-integrin therapeutics, including gut-selective antibodies against the β7 integrin subunit [etrolizumab] and the α4β7 integrin heterodimer [vedolizumab and abrilumab], and the non-gut selective anti-α4 integrin [natalizumab], will be discussed, as well as novel targeting approaches using small molecules.
Collapse
Affiliation(s)
- Christopher A Lamb
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sharon O'Byrne
- Global Medical Affairs, Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - Mary E Keir
- Genentech Research & Early Development, South San Francisco, CA, USA
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| |
Collapse
|
24
|
Yuan C, Deberardinis C, Patel R, Shroff SM, Messina SA, Goldstein S, Mori S. Progressive multifocal leukoencephalopathy after allogeneic stem cell transplantation: Case report and review of the literature. Transpl Infect Dis 2018. [PMID: 29512846 DOI: 10.1111/tid.12879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare, yet typically fatal complication of allogeneic stem cell transplantation. It is caused by reactivation of the John Cunningham (JC) virus in an immunocompromised host. This report describes an unfortunate case of PML in a recipient of an allogeneic stem cell transplant for acute myelogenous leukemia. The JC virus was undetectable in the patient's cerebrospinal fluid by polymerase chain reaction (PCR); however, a positive diagnosis was made after a brain biopsy. This and other published cases demonstrate that recipients of allogeneic stem cells can develop PML. Moreover, early diagnosis of the disease is often difficult and, as demonstrated in this case, screening with PCR does not appear to have strong diagnostic significance. With no effective treatment presently available, restoration of immune function is the only intervention that can affect prognosis. Further prospective studies are needed to understand the pathophysiology and treatment of this disease.
Collapse
Affiliation(s)
- Cai Yuan
- Hematology and Oncology Fellowship, University of Florida, Gainesville, FL, USA
| | | | - Rushang Patel
- Blood & Marrow Transplant Center, Florida Hospital, Orlando, FL, USA
| | - Seema M Shroff
- Pathology Department, Florida Hospital, Orlando, FL, USA
| | | | - Steven Goldstein
- Blood & Marrow Transplant Center, Florida Hospital, Orlando, FL, USA
| | - Shahram Mori
- Blood & Marrow Transplant Center, Florida Hospital, Orlando, FL, USA
| |
Collapse
|
25
|
Herter JM, Margraf A, Volmering S, Correia BE, Bradshaw JM, Bisconte A, Hill RJ, Langrish CL, Lowell CA, Zarbock A. PRN473, an inhibitor of Bruton's tyrosine kinase, inhibits neutrophil recruitment via inhibition of macrophage antigen-1 signalling. Br J Pharmacol 2017; 175:429-439. [PMID: 29130484 DOI: 10.1111/bph.14090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Following inflammatory stimuli, neutrophils are recruited to sites of inflammation and exert effector functions that often have deleterious effects on tissue integrity, which can lead to organ failure. Bruton's tyrosine kinase (Btk) is expressed in neutrophils and constitutes a promising pharmacological target for neutrophil-mediated tissue damage. Here, we evaluate a selective reversible inhibitor of Btk, PRN473, for its ability to dampen neutrophil influx via inhibition of adhesion receptor signalling pathways. EXPERIMENTAL APPROACH In vitro assays were used to assess fMLP receptor 1 (Fpr-1)-mediated binding of ligands to the adhesion receptors macrophage antigen-1 (Mac-1) and lymphocyte function antigen-1. Intravital microscopy of the murine cremaster was used to evaluate post-adhesion strengthening and endoluminal crawling. Finally, neutrophil influx was visualized in a clinically relevant model of sterile liver injury in vivo. Btk knockout animals were used as points of reference for Btk functions. KEY RESULTS Pharmacological inhibition of Btk by PRN473 reduced fMLP-induced phosphorylation of Btk and Mac-1 activation. Biochemical experiments demonstrated the specificity of the inhibitor. PRN473 (20 mg·kg-1 ) significantly reduced intravascular crawling and neutrophil recruitment into inflamed tissue in a model of sterile liver injury, down to levels seen in Btk-deficient animals. A higher dose did not provide additional reduction of intravascular crawling and neutrophil recruitment. CONCLUSIONS AND IMPLICATIONS PRN473, a highly selective inhibitor of Btk, potently attenuates sterile liver injury by inhibiting the activation of the β2 -integrin Mac-1 and subsequently neutrophil recruitment into inflamed tissue.
Collapse
Affiliation(s)
- Jan M Herter
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Stephanie Volmering
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Benedito Eduardo Correia
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | | | | | | | | | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|
26
|
Kubanova AA, Kubanov AA, Karamova AE, Proshutinskaya DV. Biological Therapeutic Treatment of Atopic Dermatitis. VESTNIK DERMATOLOGII I VENEROLOGII 2017. [DOI: 10.25208/0042-4609-2017-93-5-34-46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis is a chronic recurrent inflammatory disease caused, inter alia, by violations of the barrier function of the skin and pathological immune response in the form of an imbalance of Th1 and Th2 lymphocytes with increased production of IL-4, IL-5, IL-13, IL-31. Treatment of severe forms of atopic dermatitis is not an easy task due to the variability of the individual response to treatment, the short duration of the therapeutic effect and the frequent development of undesirable phenomena associated with the use of existing methods of systemic immunosuppressive therapy. The study of the pathogenesis of atopic dermatitis made it possible to identify the spectrum of molecular targets, providing the basis for researching alternative variants to the previously used systemic therapy methods – genetic engineering biological preparations. Contemporary data on the pathogenesis of atopic dermatitis as well as potential molecular targets for innovative biological preparations, the efficacy of which has been evaluated through clinical trials, are presented in the review.
Collapse
|
27
|
Bohra C, Sokol L, Dalia S. Progressive Multifocal Leukoencephalopathy and Monoclonal Antibodies: A Review. Cancer Control 2017; 24:1073274817729901. [PMID: 28975841 PMCID: PMC5937251 DOI: 10.1177/1073274817729901] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/03/2017] [Indexed: 11/27/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a viral infection predominantly seen in patients with HIV infection. However, with the increased use of monoclonal antibodies (MAB) for various lymphoproliferative disorders, we are now seeing this infection in non-HIV patients on drugs such as natalizumab, rituximab, and so on. The aim of this article is to review the relationship between the occurrence of PML and MAB used in the treatment of hematological malignancies and autoimmune diseases. Review of articles from PubMed-indexed journals which study PML in relation to the use of MAB. Relevant literature demonstrated an increased risk of reactivation of latent John Cunningham polyomavirus (JCV) resulting in development of PML in patients on long-term therapy with MAB. The highest incidence of 1 PML case per 1000 treated patients and 1 case per 32 000 was observed in patients treated with natalizumab and rituximab, respectively. Serological and polymerase chain reaction tests for the detection of JCV can be helpful in risk stratification of patients for the development of PML before and during therapy with MAB. Treatment with MAB can result in development of PML. Clinicians should include PML in differential diagnosis in patients treated with these agents if they manifest central nervous system symptoms.
Collapse
Affiliation(s)
- Chandrashekar Bohra
- Internal Medicine Program, University of South Florida, Tampa, FL, USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center &
Research Institute, Tampa, FL, USA
- Mercy Oncology and Hematology–Joplin, Joplin, MO, USA
| | - Lubomir Sokol
- Internal Medicine Program, University of South Florida, Tampa, FL, USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center &
Research Institute, Tampa, FL, USA
- Mercy Oncology and Hematology–Joplin, Joplin, MO, USA
| | - Samir Dalia
- Internal Medicine Program, University of South Florida, Tampa, FL, USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center &
Research Institute, Tampa, FL, USA
- Mercy Oncology and Hematology–Joplin, Joplin, MO, USA
| |
Collapse
|
28
|
Zheng X, Soroush F, Long J, Hall ET, Adishesha PK, Bhattacharya S, Kiani MF, Bhalla V. Murine glomerular transcriptome links endothelial cell-specific molecule-1 deficiency with susceptibility to diabetic nephropathy. PLoS One 2017; 12:e0185250. [PMID: 28934365 PMCID: PMC5608371 DOI: 10.1371/journal.pone.0185250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/08/2017] [Indexed: 01/03/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of kidney disease; however, there are no early biomarkers and no cure. Thus, there is a large unmet need to predict which individuals will develop nephropathy and to understand the molecular mechanisms that govern this susceptibility. We compared the glomerular transcriptome from mice with distinct susceptibilities to DN at four weeks after induction of diabetes, but before histologic injury, and identified differential regulation of genes that modulate inflammation. From these genes, we identified endothelial cell specific molecule-1 (Esm-1), as a glomerular-enriched determinant of resistance to DN. Glomerular Esm-1 mRNA and protein were lower in DN-susceptible, DBA/2, compared to DN-resistant, C57BL/6, mice. We demonstrated higher Esm-1 secretion from primary glomerular cultures of diabetic mice, and high glucose was sufficient to increase Esm-1 mRNA and protein secretion in both strains of mice. However, induction was significantly attenuated in DN-susceptible mice. Urine Esm-1 was also significantly higher only in DN-resistant mice. Moreover, using intravital microscopy and a biomimetic microfluidic assay, we showed that Esm-1 inhibited rolling and transmigration in a dose-dependent manner. For the first time we have uncovered glomerular-derived Esm-1 as a potential non-invasive biomarker of DN. Esm-1 inversely correlates with disease susceptibility and inhibits leukocyte infiltration, a critical factor in protecting the kidney from DN.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Fariborz Soroush
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Jin Long
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Evan T. Hall
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Puneeth K. Adishesha
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sanchita Bhattacharya
- Institute of Computational Health Sciences, University of California, San Francisco, California, United States of America
| | - Mohammad F. Kiani
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn's disease and ulcerative colitis? Ann Rheum Dis 2017; 77:175-187. [PMID: 28765121 DOI: 10.1136/annrheumdis-2017-211555] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/31/2017] [Accepted: 07/01/2017] [Indexed: 01/11/2023]
Abstract
The past three decades have witnessed remarkable advances in our ability to target specific elements of the immune and inflammatory response, fuelled by advances in both biotechnology and disease knowledge. As well as providing superior treatments for immune-mediated inflammatory diseases (IMIDs), such therapies also offer unrivalled opportunities to study the underlying immunopathological basis of these conditions.In this review, we explore recent approaches to the treatment of IMIDs and the insights to pathobiology that they provide. We review novel biologic agents targeting the T-helper 17 axis, including therapies directed towards interleukin (IL)-17 (secukinumab, ixekizumab, bimekizumab), IL-17R (brodalumab), IL-12/23p40 (ustekinumab, briakinumab) and IL-23p19 (guselkumab, tildrakizumab, brazikumab, risankizumab, mirikizumab). We also present an overview of biologics active against type I and II interferons, including sifalumumab, rontalizumab, anifrolumab and fontolizumab. Emerging strategies to interfere with cellular adhesion processes involved in lymphocyte recruitment are discussed, including both integrin blockade (natalizumab, vedolizumab, etrolizumab) and sphingosine-1-phosphate receptor inhibition (fingolimod, ozanimod). We summarise the development and recent application of Janus kinase (JAK) inhibitors in the treatment of IMIDs, including first-generation pan-JAK inhibitors (tofacitinib, baricitinib, ruxolitinib, peficitinib) and second-generation selective JAK inhibitors (decernotinib, filgotinib, upadacitinib). New biologics targeting B-cells (including ocrelizumab, veltuzumab, tabalumab and atacicept) and the development of novel strategies for regulatory T-cell modulation (including low-dose IL-2 therapy and Tregitopes) are also discussed. Finally, we explore recent biotechnological advances such as the development of bispecific antibodies (ABT-122, COVA322), and their application to the treatment of IMIDs.
Collapse
Affiliation(s)
- Kenneth F Baker
- Musculoskeletal Research Group and Arthritis Research UK Centre of Excellence in Rheumatoid Arthritis Pathogenesis, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - John D Isaacs
- Musculoskeletal Research Group and Arthritis Research UK Centre of Excellence in Rheumatoid Arthritis Pathogenesis, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
30
|
JC Polyomavirus Attachment and Entry: Potential Sites for PML Therapeutics. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017; 4:132-141. [PMID: 28989857 DOI: 10.1007/s40588-017-0069-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW JC polyomavirus (JCPyV) is a significant human pathogen that causes an asymptomatic infection in the kidney in the majority of the population. In immunosuppressed individuals, the virus can become reactivated and spread to the brain, causing the fatal, demyelinating disease progressive multifocal leukoencephalopathy (PML). There are currently limited treatment options for this fatal disease. Attachment to receptors and entry into host cells are the initiating events in JCPyV infection and therefore an attractive target for therapeutics to prevent or treat PML. This review provides the current understanding of JCPyV attachment and entry events and the potential therapeutics to target these areas. RECENT FINDINGS JCPyV attachment and entry to host cells is mediated by α2,6-linked lactoseries tetrasaccharide c (LSTc) and 5-hydroxytryptamine receptors (5-HT2Rs), respectively, and subsequent trafficking to the endoplasmic reticulum is required for infection. Recently, vaccines, monoclonal antibodies, and small molecules have shown promise as anti-viral and PML therapies. SUMMARY This review summarizes our current understanding of JCPyV attachment, entry, and trafficking and the development of potential PML therapeutics that inhibit these critical steps in JCPyV infection.
Collapse
|
31
|
Assetta B, Atwood WJ. The biology of JC polyomavirus. Biol Chem 2017; 398:839-855. [PMID: 28493815 DOI: 10.1515/hsz-2016-0345] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
JC polyomavirus (JCPyV) is the causative agent of a fatal central nervous system demyelinating disease known as progressive multifocal leukoencephalopathy (PML). PML occurs in people with underlying immunodeficiency or in individuals being treated with potent immunomodulatory therapies. JCPyV is a DNA tumor virus with a double-stranded DNA genome and encodes a well-studied oncogene, large T antigen. Its host range is highly restricted to humans and only a few cell types support lytic infection in vivo or in vitro. Its oncogenic potential in humans has not been firmly established and the international committee on oncogenic viruses lists JCPyV as possibly carcinogenic. Significant progress has been made in understanding the biology of JCPyV and here we present an overview of the field and discuss some important questions that remain unanswered.
Collapse
|
32
|
Abstract
Alopecia areata (AA), a prevalent inflammatory cause of hair loss, lacks FDA-approved therapeutics for extensive cases, which are associated with very poor rates of spontaneous hair regrowth and major psychological distress. Current treatments for severe cases include broad immune-suppressants, which are associated with significant adverse effects, precluding long-term use, with rapid hair loss following treatment termination. As a result of the extent of the disease in severe cases, topical contact sensitizers and intralesional treatments are of limited use. The pathogenesis of AA is not yet fully understood, but recent investigations of the immune activation in AA skin reveal Th1/IFN-γ, as well as Th2, PDE4, IL-23, and IL-9 upregulations. Tissue analyses of both animal models and human lesions following broad-acting and cytokine-specific therapeutics (such as JAK inhibitors and ustekinumab, respectively) provide another opportunity for important insights into the pathogenesis of AA. As reviewed in this paper, numerous novel therapeutics are undergoing clinical trials for AA, emphasizing the potential transformation of the clinical practice of AA, which is currently lacking. Dermatologists are already familiar with the revolution in disease management of psoriasis, stemming from better understanding of immune dysregulations, and atopic dermatitis will soon follow a similar path. In light of these recent developments, the therapeutic arena of AA treatments is finally getting more exciting. AA will join the lengthening list of dermatologic diseases with mechanism-targeted drugs, thus changing the face of AA.
Collapse
Affiliation(s)
- Yael Renert-Yuval
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Emma Guttman-Yassky
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
33
|
Clavel G, Moulignier A, Semerano L. Progressive multifocal leukoencephalopathy and rheumatoid arthritis treatments. Joint Bone Spine 2017; 84:671-675. [PMID: 28323224 DOI: 10.1016/j.jbspin.2017.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2016] [Indexed: 12/15/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system due to reactivation of the JC virus (JCV). PML is extremely uncommon despite the high prevalence of the virus in the general population. No specific treatment is available, and the prognosis is bleak. The diagnosis is based on brain imaging findings, detection of the JCV genome in cerebrospinal fluid samples and, in some cases, histological studies of the brain lesions. The pathophysiological mechanisms that drive the development of PML are incompletely understood. However, a consistent feature is the presence of a predisposing factor, most notably immunosuppression. The risk of developing PML varies with the underlying disease (e.g., HIV infection or autoimmune disease) and with the drugs used to treat them. Biologics have been ranked according to the risk of PML during their use. Natalizumab, a monoclonal antibody given to treat multiple sclerosis, is among the drugs associated with a high risk of PML. Patients given natalizumab are now closely monitored based on anti-JCV antibody titers and index values. In rheumatology, the expanding use of biologics has led to an increase in cases of PML, with rituximab being associated with the highest risk. Given the absence of specific recommendations, exhaustive registries and postmarketing observational studies are urgently needed to gauge the risk of PML according to the underlying disease and drug treatments, with the goal of defining optimal monitoring protocols.
Collapse
Affiliation(s)
- Gaëlle Clavel
- Service de médecine interne, Fondation A. de Rothschild, 25-29, rue Manin, 75019 Paris, France; Inserm UMR 1125, 74, rue Marcel-Cachin, 93017 Bobigny, France; Sorbonne Paris Cité, université Paris 13, 74, rue Marcel-Cachin, 93017 Bobigny, France.
| | | | - Luca Semerano
- Inserm UMR 1125, 74, rue Marcel-Cachin, 93017 Bobigny, France; Sorbonne Paris Cité, université Paris 13, 74, rue Marcel-Cachin, 93017 Bobigny, France; Service de rhumatologie, groupe hospitalier Avicenne Jean-Verdier-René-Muret, Assistance publique-Hopitaux de Paris (AP-HP), 93017 Bobigny, France
| |
Collapse
|
34
|
Kean LS, Turka LA, Blazar BR. Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy. Immunol Rev 2017; 276:192-212. [PMID: 28258702 PMCID: PMC5338458 DOI: 10.1111/imr.12523] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, the power of harnessing T-cell co-signaling pathways has become increasingly understood to have significant clinical importance. In cancer immunotherapy, the field has concentrated on two related modalities: First, targeting cancer antigens through highly activated chimeric antigen T cells (CAR-Ts) and second, re-animating endogenous quiescent T cells through checkpoint blockade. In each of these strategies, the therapeutic goal is to re-ignite T-cell immunity, in order to eradicate tumors. In transplantation, there is also great interest in targeting T-cell co-signaling, but with the opposite goal: in this field, we seek the Yin to cancer immunotherapy's Yang, and focus on manipulating T-cell co-signaling to induce tolerance rather than activation. In this review, we discuss the major T-cell signaling pathways that are being investigated for tolerance induction, detailing preclinical studies and the path to the clinic for many of these molecules. These include blockade of co-stimulation pathways and agonism of coinhibitory pathways, in order to achieve the delicate state of balance that is transplant tolerance: a state which guarantees lifelong transplant acceptance without ongoing immunosuppression, and with preservation of protective immune responses. In the context of the clinical translation of immune tolerance strategies, we discuss the significant challenge that is embodied by the fact that targeted pathway modulators may have opposing effects on tolerance based on their impact on effector vs regulatory T-cell biology. Achieving this delicate balance holds the key to the major challenge of transplantation: lifelong control of alloreactivity while maintaining an otherwise intact immune system.
Collapse
Affiliation(s)
- Leslie S Kean
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
- The Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Immune Tolerance Network, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
35
|
Asgari MM, Ray GT, Geier JL, Quesenberry CP. Malignancy rates in a large cohort of patients with systemically treated psoriasis in a managed care population. J Am Acad Dermatol 2017; 76:632-638. [PMID: 28162854 DOI: 10.1016/j.jaad.2016.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 09/28/2016] [Accepted: 10/01/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Moderate to severe psoriasis often requires treatment with systemic agents, many of which have immunosuppressive properties and could increase cancer risk, including nonmelanoma skin cancer (NMSC). OBJECTIVE We sought to estimate the overall malignancy rate (excluding NMSC) and NMSC rate among 5889 patients with systemically treated psoriasis. METHODS We identified a cohort of adult Kaiser Permanente Northern California health plan members with psoriasis diagnosed from 1998 to 2011 and treated with at least 1 systemic antipsoriatic agent and categorized them into ever-biologic or nonbiologic users. Malignancy rates were calculated per 1000 person-years of follow-up with 95% confidence intervals (CI). Crude and confounder-adjusted hazard ratios (aHRs) were calculated using Cox regression. RESULTS Most biologic-exposed members were treated with TNF-alfa inhibitors (n = 2214, 97%). Overall incident cancer rates were comparable between ever-biologic as compared to nonbiologic users (aHR 0.86, 95% CI 0.66-1.13). NMSC rates were 42% higher among individuals ever exposed to a biologic (aHR 1.42, 95% CI 1.12-1.80), largely driven by increased cutaneous squamous cell carcinoma risk (aHR 1.81, 95% CI 1.23-2.67). LIMITATIONS No information was available on disease severity. CONCLUSION We found increased incidence of cutaneous squamous cell carcinoma among patients with systemically treated psoriasis who were ever exposed to biologics, the majority of which were TNF-alfa inhibitors. Increased skin cancer surveillance in this population may be warranted.
Collapse
Affiliation(s)
- Maryam M Asgari
- Division of Research, Kaiser Permanente Northern California, Oakland, California; Department of Dermatology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts.
| | - G Thomas Ray
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | | | | |
Collapse
|
36
|
Deep-Sequence Identification and Role in Virus Replication of a JC Virus Quasispecies in Patients with Progressive Multifocal Leukoencephalopathy. J Virol 2016; 91:JVI.01335-16. [PMID: 27795410 DOI: 10.1128/jvi.01335-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022] Open
Abstract
JC virus (JCV) is a DNA virus causing progressive multifocal leukoencephalopathy (PML) in immunodeficient patients. In the present study, 22 genetic quasispecies with more than 1.5% variant frequency were detected in JCV genomes from six clinical samples of PML by next-generation sequencing. A mutation from A to C at nucleotide (nt) 3495 in JCV Mad1 resulting in a V-to-G amino acid substitution at amino acid (aa) position 392 of the large T antigen (TAg) was identified in all six cases of PML at 3% to 19% variant frequencies. Transfection of JCV Mad1 DNA possessing the V392G substitution in TAg into IMR-32 and human embryonic kidney 293 (HEK293) cells resulted in dramatically decreased production of JCV-encoded proteins. The virus DNA copy number was also reduced in supernatants of the mutant virus-transfected cells. Transfection of the IMR-32 and HEK293 cells with a virus genome containing a revertant mutation recovered viral production and protein expression. Cotransfection with equal amounts of wild-type genome and mutated JCV genome did not reduce the expression of viral proteins or viral replication, suggesting that the mutation did not have any dominant-negative function. Finally, immunohistochemistry demonstrated that TAg was expressed in all six pathological samples in which the quasispecies were detected. In conclusion, the V392G amino acid substitution in TAg identified frequently in PML lesions has a function in suppressing JCV replication, but the frequency of the mutation was restricted and its role in PML lesions was limited. IMPORTANCE DNA viruses generally have lower mutation frequency than RNA viruses, and the detection of quasispecies in JCV has rarely been reported. In the present study, a next-generation sequencer identified a JCV quasispecies with an amino acid substitution in the T antigen in patients with PML. In vitro studies showed that the mutation strongly repressed the expression of JC viral proteins and reduced the viral replication. However, because the frequency of the mutation was low in each case, the total expression of virus proteins was sustained in vivo. Thus, JC virus replicates in PML lesions in the presence of a mutant virus which is able to repress virus replication.
Collapse
|
37
|
Teixeira MZ. Biological therapies (immunomodulatory drugs), worsening of psoriasis and rebound effect: new evidence of similitude. HOMEOPATHY 2016; 105:344-355. [PMID: 27914574 DOI: 10.1016/j.homp.2016.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/25/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Employing the secondary action or adaptative reaction of the organism as therapeutic response, homeopathy uses the treatment by similitude (similia similibus curentur) administering to sick individuals the medicines that caused similar symptoms in healthy individuals. Such homeostatic or paradoxical reaction of the organism is scientifically explained through the rebound effect of drugs, which cause worsening of symptoms after withdrawal of several palliative treatments. Despite promoting an improvement in psoriasis at the beginning of the treatment, modern biological therapies provoke worsening of the psoriasis (rebound psoriasis) after discontinuation of drugs. METHOD Exploratory qualitative review of the literature on the occurrence of the rebound effect with the use of immunomodulatory drugs [T-cell modulating agents and tumor necrosis factor (TNF) inhibitors drugs] in the treatment of psoriasis. RESULTS Several researches indicate the rebound effect as the mechanism of worsening of psoriasis with the use of efalizumab causing the suspension of its marketing authorization in 2009, in view of some severe cases. Other studies also have demonstrated the occurrence of rebound psoriasis with the use of alefacept, etanercept and infliximab. CONCLUSION As well as studied in other classes of drugs, the rebound effect of biologic agents supports the principle of similitude (primary action of the drugs followed by secondary action and opposite of the organism).
Collapse
Affiliation(s)
- Marcus Zulian Teixeira
- Department of Internal Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
38
|
Crohn's Disease: Evolution, Epigenetics, and the Emerging Role of Microbiome-Targeted Therapies. Curr Gastroenterol Rep 2016; 18:13. [PMID: 26908281 DOI: 10.1007/s11894-016-0487-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Crohn's disease (CD) is a chronic, systemic, immune-mediated inflammation of the gastrointestinal tract. Originally described in 1932 as non-caseating granulomatous inflammation limited to the terminal ileum, it is now recognized as an expanding group of heterogeneous diseases defined by intestinal location, extent, behavior, and systemic extraintestinal manifestations. Joint diseases, including inflammatory spondyloarthritis and ankylosing spondylitis, are the most common extraintestinal manifestations of CD and share more genetic susceptibility loci than any other inflammatory bowel disease (IBD) trait. The high frequency and overlap with genes associated with infectious diseases, specifically Mendelian susceptibility to mycobacterial diseases (MSMD), suggest that CD may represent an evolutionary adaptation to environmental microbes. Elucidating the diversity of the enteric microbiota and the protean mucosal immune responses in individuals may personalize microbiome-targeted therapies and molecular classifications of CD. This review will focus on CD's natural history and therapies in the context of epigenetics, immunogenetics, and the microbiome.
Collapse
|
39
|
Garcia-Doval I, Ingram JR, Naldi L, Anstey A. Case reports in dermatology: loved by clinicians, loathed by editors, and occasionally important. Br J Dermatol 2016; 175:449-51. [PMID: 27632956 DOI: 10.1111/bjd.14869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- I Garcia-Doval
- Complexo Hospitalario Universitario de Vigo, Vigo. Meixoeiro s.n. 36200, Vigo, Spain. .,Research Unit, Fundación Piel Sana AEDV, Madrid, Spain.
| | - J R Ingram
- Department of Dermatology & Wound Healing, Division of Infection and Immunity, Cardiff University, University Hospital of Wales, 3rd Floor Glamorgan House, Heath Park, Cardiff, CF14 4XN, U.K
| | - L Naldi
- Centro Studi GISED, Via Garibaldi 13/15, Azienda Ospedaliera papa Giovanni XXIII, 24100, Bergamo, Italy
| | - A Anstey
- Betsi Cadwaladr University Health Board, Ysbyty Gwynedd, Penrhosgarnedd, Bangor, Gwynedd, LL57 2PY, U.K
| |
Collapse
|
40
|
Miskin DP, Herman ST, Ngo LH, Koralnik IJ. Predictors and characteristics of seizures in survivors of progressive multifocal leukoencephalopathy. J Neurovirol 2016; 22:464-71. [PMID: 26676826 PMCID: PMC4937716 DOI: 10.1007/s13365-015-0414-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/20/2015] [Accepted: 12/08/2015] [Indexed: 11/29/2022]
Abstract
This study aims to determine the risk factors for epileptogenesis and characteristics of seizures in patients with progressive multifocal leukoencephalopathy (PML) who survive more than 1 year from onset of neurological symptoms (PML survivors). We reviewed clinical data including seizure history and MR imaging studies from PML survivors evaluated at our institution between 1997 and 2014. PML progressors who passed away within 1 year and patients with a history of seizures prior to PML diagnosis were excluded from the analysis. Of 64 PML survivors, 28 (44 %) developed seizures. The median time from the onset of PML symptoms to the first seizure was 5.4 months (range 0-159) and 64 % of patients with seizures had them within the first year. The presence of juxtacortical PML lesions was associated with a relative risk of seizures of 3.5 (p < 0.02; 95 % confidence interval (CI) 1.3-9.4) in multivariate analyses. Of all seizure types, 86 % were focal and 60 % most likely originated from the frontal lobes. Among seizure patients, 89 % required treatment, including one (54 %), two (25 %), or three (10.5 %) antiepileptic drugs. Seizures are a frequent complication in PML and can develop throughout the entire course of the disease. However, late onset seizures did not signify PML relapse. Seizures may require treatment with multiple antiepileptic medications and are a significant co-morbidity in PML.
Collapse
Affiliation(s)
- Dhanashri P. Miskin
- Division of Neuro-Immunology, Department of Neurology, Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Susan T. Herman
- Division of Epilepsy, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Long H. Ngo
- Division of General Medicine and Primary Care Section for Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Igor J. Koralnik
- Division of Neuro-Immunology, Department of Neurology, Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
41
|
Drug-associated progressive multifocal leukoencephalopathy: a clinical, radiological, and cerebrospinal fluid analysis of 326 cases. J Neurol 2016; 263:2004-21. [PMID: 27401179 PMCID: PMC5037162 DOI: 10.1007/s00415-016-8217-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
The implementation of a variety of immunosuppressive therapies has made drug-associated progressive multifocal leukoencephalopathy (PML) an increasingly prevalent clinical entity. The purpose of this study was to investigate its diagnostic characteristics and to determine whether differences herein exist between the multiple sclerosis (MS), neoplasm, post-transplantation, and autoimmune disease subgroups. Reports of possible, probable, and definite PML according to the current diagnostic criteria were obtained by a systematic search of PubMed and the Dutch pharmacovigilance database. Demographic, epidemiologic, clinical, radiological, cerebrospinal fluid (CSF), and histopathological features were extracted from each report and differences were compared between the disease categories. In the 326 identified reports, PML onset occurred on average 29.5 months after drug introduction, varying from 14.2 to 37.8 months in the neoplasm and MS subgroups, respectively. The most common overall symptoms were motor weakness (48.6 %), cognitive deficits (43.2 %), dysarthria (26.3 %), and ataxia (24.1 %). The former two also constituted the most prevalent manifestations in each subgroup. Lesions were more often localized supratentorially (87.7 %) than infratentorially (27.4 %), especially in the frontal (64.1 %) and parietal lobes (46.6 %), and revealed enhancement in 27.6 % of cases, particularly in the MS (42.9 %) subgroup. Positive JC virus results in the first CSF sample were obtained in 63.5 %, while conversion after one or more negative outcomes occurred in 13.7 % of cases. 52.2 % of patients died, ranging from 12.0 to 83.3 % in the MS and neoplasm subgroups, respectively. In conclusion, despite the heterogeneous nature of the underlying diseases, motor weakness and cognitive changes were the two most common manifestations of drug-associated PML in all subgroups. The frontal and parietal lobes invariably constituted the predilection sites of drug-related PML lesions.
Collapse
|
42
|
Renert-Yuval Y, Guttman-Yassky E. A novel therapeutic paradigm for patients with extensive alopecia areata. Expert Opin Biol Ther 2016; 16:1005-14. [DOI: 10.1080/14712598.2016.1188076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Wharton KA, Quigley C, Themeles M, Dunstan RW, Doyle K, Cahir-McFarland E, Wei J, Buko A, Reid CE, Sun C, Carmillo P, Sur G, Carulli JP, Mansfield KG, Westmoreland SV, Staugaitis SM, Fox RJ, Meier W, Goelz SE. JC Polyomavirus Abundance and Distribution in Progressive Multifocal Leukoencephalopathy (PML) Brain Tissue Implicates Myelin Sheath in Intracerebral Dissemination of Infection. PLoS One 2016; 11:e0155897. [PMID: 27191595 PMCID: PMC4871437 DOI: 10.1371/journal.pone.0155897] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 05/05/2016] [Indexed: 12/22/2022] Open
Abstract
Over half of adults are seropositive for JC polyomavirus (JCV), but rare individuals develop progressive multifocal leukoencephalopathy (PML), a demyelinating JCV infection of the central nervous system. Previously, PML was primarily seen in immunosuppressed patients with AIDS or certain cancers, but it has recently emerged as a drug safety issue through its association with diverse immunomodulatory therapies. To better understand the relationship between the JCV life cycle and PML pathology, we studied autopsy brain tissue from a 70-year-old psoriasis patient on the integrin alpha-L inhibitor efalizumab following a ~2 month clinical course of PML. Sequence analysis of lesional brain tissue identified PML-associated viral mutations in regulatory (non-coding control region) DNA, capsid protein VP1, and the regulatory agnoprotein, as well as 9 novel mutations in capsid protein VP2, indicating rampant viral evolution. Nine samples, including three gross PML lesions and normal-appearing adjacent tissues, were characterized by histopathology and subject to quantitative genomic, proteomic, and molecular localization analyses. We observed a striking correlation between the spatial extent of demyelination, axonal destruction, and dispersion of JCV along white matter myelin sheath. Our observations in this case, as well as in a case of PML-like disease in an immunocompromised rhesus macaque, suggest that long-range spread of polyomavirus and axonal destruction in PML might involve extracellular association between virus and the white matter myelin sheath.
Collapse
Affiliation(s)
- Keith A. Wharton
- Translational Pathology Laboratory, Biogen Inc., Cambridge, MA, United States of America
- * E-mail:
| | - Catherine Quigley
- Translational Pathology Laboratory, Biogen Inc., Cambridge, MA, United States of America
| | - Marian Themeles
- Translational Pathology Laboratory, Biogen Inc., Cambridge, MA, United States of America
| | - Robert W. Dunstan
- Translational Pathology Laboratory, Biogen Inc., Cambridge, MA, United States of America
| | - Kathryn Doyle
- Immunology, Biogen Inc., Cambridge, MA, United States of America
| | | | - Jing Wei
- Bioanalytical Chemistry, Biogen Inc., Cambridge, MA, United States of America
| | - Alex Buko
- Bioanalytical Chemistry, Biogen Inc., Cambridge, MA, United States of America
| | - Carl E. Reid
- Molecular Discovery, Biogen Inc., Cambridge, MA, United States of America
| | - Chao Sun
- Molecular Discovery, Biogen Inc., Cambridge, MA, United States of America
| | - Paul Carmillo
- Molecular Discovery, Biogen Inc., Cambridge, MA, United States of America
| | - Gargi Sur
- Molecular Discovery, Biogen Inc., Cambridge, MA, United States of America
| | - John P. Carulli
- Molecular Discovery, Biogen Inc., Cambridge, MA, United States of America
| | - Keith G. Mansfield
- Department of Pathology, Harvard Medical School, New England Primate Research Center, Southborough, MA, United States of America
| | - Susan V. Westmoreland
- Department of Pathology, Harvard Medical School, New England Primate Research Center, Southborough, MA, United States of America
| | - Susan M. Staugaitis
- Departments of Pathology, Neurosciences, and Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, United States of America
| | - Robert J. Fox
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, United States of America
| | - Werner Meier
- Discovery Sciences, Biogen Inc, Cambridge, MA, United States of America
| | - Susan E. Goelz
- Neurology, Biogen Inc, Cambridge, MA, United States of America
| |
Collapse
|
44
|
Md Yusof MY, Vital EM, Buch MH. B Cell Therapies, Approved and Emerging: a Review of Infectious Risk and Prevention During Use. Curr Rheumatol Rep 2016; 17:65. [PMID: 26290110 DOI: 10.1007/s11926-015-0539-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of B cell-targeted biologics represents a major advance in the treatment of autoimmune rheumatic diseases. As with other immunosuppressive agents, risk of infection is a key clinical concern. This review summarises safety data from 15 years of experience of rituximab in autoimmune diseases with a particular focus on opportunistic infection and class-specific complications and infection risk. Rarely, cases of progressive multifocal leucoencephalopathy in rituximab-treated patients (5/100 000) have accumulated over time although no proven causal association has yet been shown. With repeat cycles of therapy, hypogammaglobulinaemia has been observed in a larger proportion of patients and is associated with increased risk of serious infections. The infection profile of the newer B cell-targeted agent, belimumab, in patients with active systemic lupus erythematosus is also discussed. Data from registries are needed to extend insights further and also to evaluate for any impact with the difference in mode of action of belimumab and infection risk in this population.
Collapse
Affiliation(s)
- Md Yuzaiful Md Yusof
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Chapeltown Road, Leeds, LS7 4SA, UK
| | | | | |
Collapse
|
45
|
Alfaro J, Pérez D, Jiménez C, Serrano M, Martínez-Flores JÁ, Grau M, Sánchez-Zapardiel E, Paz-Artal E, Serrano A. Blockade of cell adhesion molecules enhances cell engraftment in a murine model of liver cell transplantation. Transpl Immunol 2016; 35:7-11. [PMID: 26875547 DOI: 10.1016/j.trim.2016.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/13/2015] [Accepted: 01/30/2016] [Indexed: 11/26/2022]
Abstract
AIM OLT is the best alternative for patients with end-stage liver diseases. However, as the need for organs surpasses donor availability, alternatives to OLT are required. LCT could be a useful option versus OLT in several patients even though its low cell-engraftment hampers its efficiency. Endothelial cell barrier is the main obstacle for the implantation of cells into the parenchyma. Our study has focused on the modification of the endothelial barrier with monoclonal antibodies against adhesion molecules in order to increase cell engraftment in a mouse model of liver cell transplantation. METHODS Anti-mouse CD54 and anti-mouse CD61 antibodies were administered intrasplenically to healthy mice within 60 min prior to stem cell transplantation. Animals were sacrificed either short term at 2h or middle term seven days after transplantation. Immunohistochemical techniques to detect alkaline phosphatase activity were used to identify the transplanted cells within the liver parenchyma. RESULTS Anti-CD54 and anti-CD61 administration increases vascular patency and cell engraftment. This represents a 32% and 45% increase, respectively, of engrafted cells compared to the control (p<0.05). CONCLUSION Modification of the vascular wall with monoclonal antibodies against endothelial adhesion molecules before cell transplantation enhances cell engraftment into the mouse liver.
Collapse
Affiliation(s)
- Javier Alfaro
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Dolores Pérez
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Carlos Jiménez
- Department of General Surgery and Liver Transplantation, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Manuel Serrano
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Montserrat Grau
- Department of General Surgery and Liver Transplantation, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Estela Paz-Artal
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Section of Immunology, Universidad San Pablo-CEU. Madrid, Spain
| | - Antonio Serrano
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Section of Immunology, Universidad San Pablo-CEU. Madrid, Spain
| |
Collapse
|
46
|
Sammut L, Wallis D, Holroyd C. Progressive multifocal leukoencephalopathy associated with infliximab. J R Coll Physicians Edinb 2016; 46:163-165. [DOI: 10.4997/jrcpe.2016.305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
47
|
Zaidi A, Meng Q, Popkin D. Can We Repurpose FDA-Approved Alefacept to Diminish the HIV Reservoir? IMMUNOTHERAPY (LOS ANGELES, CALIF.) 2015; 1:104. [PMID: 27110598 PMCID: PMC4841618 DOI: 10.4172/imt.1000104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current anti-retroviral treatment (ART) for HIV is effective in maintaining HIV at undetectable levels. However, cessation of ART results in immediate and brisk rebound of viremia to high levels. This rebound is driven by an HIV reservoir mainly enriched in memory CD4+ T cells. In order to provide any form of functional HIV Cure, elimination of this viral reservoir has become the focus of current HIV cure strategies. Alefacept was initially developed for the treatment of chronic plaque psoriasis. Alefacept is a chimeric fusion protein consisting of the CD2-binding portion of human leukocyte function antigen-3 (LFA3) linked to the Fc region of human IgG1 (LFA3-Fc). Alefacept was designed to inhibit memory T cell activation that contributes to the chronic autoimmune disease psoriasis by blocking the CD2 coreceptor. However, it was found to deplete memory T cells that express high levels of CD2 via NK cell-mediated antibody dependent cell cytotoxicity (ADCC) in vivo. Phase II and phase III clinical trials of alefacept with psoriasis patients demonstrated promising results and an excellent safety profile. Subsequently, alefacept has been successfully repurposed for other memory T cell-mediated autoimmune diseases including skin diseases other than psoriasis, organ transplantation and type I diabetes (T1D). Herein, we review our specific strategy to repurpose the FDA approved biologic alefacept to decrease and hopefully someday eliminate the HIV reservoir, for which CD2hi memory CD4+ T cells are a significant contributor.
Collapse
Affiliation(s)
- Asifa Zaidi
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Qinglai Meng
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Daniel Popkin
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
48
|
Kreuger J, Phillipson M. Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nat Rev Drug Discov 2015; 15:125-42. [PMID: 26612664 DOI: 10.1038/nrd.2015.2] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulation of vascular permeability, recruitment of leukocytes from blood to tissue and angiogenesis are all processes that occur at the level of the microvasculature during both physiological and pathological conditions. The interplay between microvascular cells and leukocytes during inflammation, together with the emerging roles of leukocytes in the modulation of the angiogenic process, make leukocyte-vascular interactions prime targets for therapeutics to potentially treat a wide range of diseases, including pathological and dysfunctional vessel growth, chronic inflammation and fibrosis. In this Review, we discuss how the different cell types that are present in and around microvessels interact, cooperate and instruct each other, and in this context we highlight drug targets as well as emerging druggable processes that can be exploited to restore tissue homeostasis.
Collapse
Affiliation(s)
- Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Uppsala, 75123, Sweden
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Uppsala, 75123, Sweden
| |
Collapse
|
49
|
Jacobi A, Rustenbach SJ, Augustin M. Comorbidity as a predictor for drug survival of biologic therapy in patients with psoriasis. Int J Dermatol 2015; 55:296-302. [DOI: 10.1111/ijd.12879] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/18/2014] [Accepted: 10/06/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Arnd Jacobi
- Institute for Health Services Research in Dermatology and Nursing (IVDP); University Medical Center Hamburg-Eppendorf; Hamburg Germany
- Department of Dermatology and Allergology; Philipps University Marburg; Marburg Germany
| | - Stephan J. Rustenbach
- Institute for Health Services Research in Dermatology and Nursing (IVDP); University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Matthias Augustin
- Institute for Health Services Research in Dermatology and Nursing (IVDP); University Medical Center Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
50
|
Gupta M, Jafri K, Sharim R, Silverman S, Sindher SB, Shahane A, Kwan M. Immune reconstitution inflammatory syndrome associated with biologic therapy. Curr Allergy Asthma Rep 2015; 15:499. [PMID: 25504263 DOI: 10.1007/s11882-014-0499-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of biologics in the treatment of autoimmune disease, cancer, and other immune conditions has revolutionized medical care in these areas. However, there are drawbacks to the use of these medications including increased susceptibility to opportunistic infections. One unforeseen risk once opportunistic infection has occurred with biologic use is the onset of immune reconstitution inflammatory syndrome (IRIS) upon drug withdrawal. Although originally described in human immunodeficiency virus (HIV) patients receiving highly active antiretroviral therapy, it has become clear that IRIS may occur when recovery of immune function follows opportunistic infection in the setting of previous immune compromise/suppression. In this review, we draw attention to this potential pitfall on the use of biologic drugs.
Collapse
Affiliation(s)
- Malika Gupta
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|