1
|
Bokor BA, Abdolreza A, Kaptás F, Pál M, Battyani Z, Széll M, Nagy N. Novel Variants in Medium and Low Penetrance Predisposing Genes in a Hungarian Malignant Melanoma Cohort With Increased Risk. Pigment Cell Melanoma Res 2025; 38:e13214. [PMID: 39609110 DOI: 10.1111/pcmr.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Both germline and somatic variants contribute to the genetic background and pathogenesis of melanoma. Germline variants include the presence of rare pathogenic or likely pathogenic variants of high, medium, and low penetrance melanoma-predisposing genes. Rare variants of high penetrance melanoma-predisposing genes are associated with melanoma development, whereas the medium and low penetrance predisposing genes can significantly increase melanoma risk. In this study, we clarified the germline genetic background of a Hungarian melanoma cohort (n = 17). Using a gene panel of 30 melanoma-predisposing genes, germline genetic variants were identified in 10 of the 17 patients (58.82%). A novel, likely pathogenic, missense variant (p.Y143C) in a medium penetrance melanoma-predisposing gene, melanocortin 1 receptor gene (MC1R), and two novel, likely pathogenic nonsense variants in low penetrance genes, p.Q218Ter in caspase 8 (CASP8) and p.Q40Ter in the fat mass- and obesity-associated (FTO) gene were detected. This study highlights the importance of elucidating the germline genetic background of melanoma, which may improve prediction of individual risk and the risk of family members and to optimize preventive, screening, and therapeutic measures for each patient and melanoma-prone families.
Collapse
Affiliation(s)
| | - Aliasgari Abdolreza
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network and University of Szeged, Szeged, Hungary
| | - Flóra Kaptás
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - Margit Pál
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network and University of Szeged, Szeged, Hungary
| | | | - Márta Széll
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network and University of Szeged, Szeged, Hungary
| | - Nikoletta Nagy
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network and University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Bokor BA, Abdolreza A, Kaptás F, Pál M, Battyani Z, Széll M, Nagy N. Novel FANCI and RAD54B Variants and the Observed Clinical Outcomes in a Hungarian Melanoma Cohort. Int J Mol Sci 2024; 26:23. [PMID: 39795882 PMCID: PMC11719457 DOI: 10.3390/ijms26010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Accumulating evidence suggests that inherited melanoma is not rare and approx. one in seven individuals with melanoma has clinically relevant hereditable cancer-predisposing and/or -susceptibility variant(s). Concerning its germline genetic background, genetic screening aims to identify either variants of predisposing genes with high penetrance or variants of susceptibility genes with medium or low penetrance. However, less attention is paid to genetic testing of germline variants of genes influencing patients' survival outcomes or enhancing the design of new therapies. We aimed to investigate whether the germline genetic background of a Hungarian melanoma cohort (n = 17) contains any pathogenic or likely pathogenic variants of the BRCA2, POLE, WRN, FANCI, PALB2, and RAD54B genes and if the presence of these variants correlate with the clinical findings of the patients, including the advanced stage of melanoma, poor prognosis, and poor survival. We identified three novel variants in the FANCI gene and one novel variant in the RAD54B gene. We detected rapid disease progression, unfavorable outcome, and therapeutic resistance in the patient carrying the likely pathogenic FANCI variant. Our study highlights the importance of screening germline variants of genes influencing melanoma progression, therapy resistance, and survival of patients.
Collapse
Affiliation(s)
- Barbara Anna Bokor
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (B.A.B.); (A.A.); (F.K.); (M.P.); (M.S.)
| | - Aliasgari Abdolreza
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (B.A.B.); (A.A.); (F.K.); (M.P.); (M.S.)
- HUN-REN-SZTE Functional Clinical Genetics Research Group, University of Szeged, 6720 Szeged, Hungary
| | - Flóra Kaptás
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (B.A.B.); (A.A.); (F.K.); (M.P.); (M.S.)
| | - Margit Pál
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (B.A.B.); (A.A.); (F.K.); (M.P.); (M.S.)
- HUN-REN-SZTE Functional Clinical Genetics Research Group, University of Szeged, 6720 Szeged, Hungary
| | - Zita Battyani
- Mór Kaposi Teaching Hospital, 7400 Kaposvár, Hungary;
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (B.A.B.); (A.A.); (F.K.); (M.P.); (M.S.)
- HUN-REN-SZTE Functional Clinical Genetics Research Group, University of Szeged, 6720 Szeged, Hungary
| | - Nikoletta Nagy
- Department of Medical Genetics, University of Szeged, 6720 Szeged, Hungary; (B.A.B.); (A.A.); (F.K.); (M.P.); (M.S.)
- HUN-REN-SZTE Functional Clinical Genetics Research Group, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
3
|
Tiwari A, Tiwari V, Sharma A, Marrisetti AL, Kumar M, Rochani A, Kaushik D, Mittal V, Jyothi S R, Ali H, Hussain MS, Gupta G. Unlocking the potential: integrating phytoconstituents and nanotechnology in skin cancer therapy - A comprehensive review. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024:jcim-2024-0338. [PMID: 39668578 DOI: 10.1515/jcim-2024-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Skin carcinoma, which includes basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, is influenced by various factors such as genetic predisposition, chemical exposures, immune system imbalances, and ultraviolet (UV) radiation. This review delves into the mechanisms behind the development of these cancers, exploring the therapeutic potential of microbial, plant derived compounds and nanoparticles in advancing skin cancer treatments. Special attention is given to the cytotoxic effects of anti-neoplastic agents from microbial sources on different cancer cell lines, particularly melanoma. Additionally, the review highlights the role of phytochemicals - such as quercetin, resveratrol, and curcumin alongside vitamins, terpenoids, and sulforaphane, in management of skin cancers through mechanisms like apoptosis induction and cell cycle regulation. Recent advancements in nanotechnology-based drug delivery systems, including NP and microemulsion formulations, are also discussed for their enhanced ability to specifically target cancer cells. The diverse roles of NPs in skin cancer therapy, especially in terms of targeted drug delivery and immune modulation, are reviewed. These innovative NPs formulations have showed improved skin penetration and tumor-specific delivery, reduced systemic toxicity and enhanced therapeutic effectiveness.
Collapse
Affiliation(s)
- Abhishek Tiwari
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, Noida, Uttar Pradesh, India
- Amity University Uttar Pradesh, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Varsha Tiwari
- Department of Pharmacognosy Chemistry, Amity Institute of Pharmacy, Lucknow Campus, Lucknow, India
- Amity University Uttar Pradesh, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Ajay Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, India
| | - Arya Lakshmi Marrisetti
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, India
| | - Manish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Ankit Rochani
- Wegmans School of Pharmacy, St John Fisher University, Rochester, NY, USA
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| |
Collapse
|
4
|
Graham S, Dmitrieva M, Vendramini-Costa DB, Francescone R, Trujillo MA, Cukierman E, Wood LD. From precursor to cancer: decoding the intrinsic and extrinsic pathways of pancreatic intraepithelial neoplasia progression. Carcinogenesis 2024; 45:801-816. [PMID: 39514554 DOI: 10.1093/carcin/bgae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the progression of pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma through a dual lens of intrinsic molecular alterations and extrinsic microenvironmental influences. PanIN development begins with Kirsten rat sarcoma viral oncogene (KRAS) mutations driving PanIN initiation. Key additional mutations in cyclin-dependent kinase inhibitor 2A (CDKN2A), tumor protein p53 (TP53), and mothers against decapentaplegic homolog 4 (SMAD4) disrupt cell cycle control and genomic stability, crucial for PanIN progression from low-grade to high-grade dysplasia. Additional molecular alterations in neoplastic cells, including epigenetic modifications and chromosomal alterations, can further contribute to neoplastic progression. In parallel with these alterations in neoplastic cells, the microenvironment, including fibroblast activation, extracellular matrix remodeling, and immune modulation, plays a pivotal role in PanIN initiation and progression. Crosstalk between neoplastic and stromal cells influences nutrient support and immune evasion, contributing to tumor development, growth, and survival. This review underscores the intricate interplay between cell-intrinsic molecular drivers and cell-extrinsic microenvironmental factors, shaping PanIN predisposition, initiation, and progression. Future research aims to unravel these interactions to develop targeted therapeutic strategies and early detection techniques, aiming to alleviate the severe impact of pancreatic cancer by addressing both genetic predispositions and environmental influences.
Collapse
Affiliation(s)
- Sarah Graham
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Mariia Dmitrieva
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Debora Barbosa Vendramini-Costa
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Ralph Francescone
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Maria A Trujillo
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, United States
| |
Collapse
|
5
|
Villa-Gonzalez JM, Carrera Revilla S, Lombardero Gutiérrez L, Gardeazabal García J. Retrospective study of germline variants in patients with hereditary melanoma study criteria in a real clinical practice setting. Clin Exp Dermatol 2024; 49:1532-1536. [PMID: 38833603 DOI: 10.1093/ced/llae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Five to twelve per cent of melanoma cases show aggregation of melanomas or other related tumours within the same family or individual. Genes such as CDKN2A or BAP1, among others, have been associated with this condition. OBJECTIVES To describe the epidemiology and clinical characteristics of patients in whom a germline genetic study was performed due to suspected hereditary melanoma. METHODS This was a retrospective descriptive study that included patients from Cruces University Hospital who underwent a germline genetic analysis for hereditary melanoma from 2016 to 2023, having met any of the following criteria: (i) presence of two or more melanomas in the same individual; (ii) a melanoma and a pancreatic cancer in the same individual; (iii) presence of a melanoma in an individual and one or more first- or second-degree relatives with melanoma or pancreatic cancer; (iv) first- or second-degree relative of an individual with a known deleterious variant in genes associated with melanoma predisposition; or (v) incidental discovery of deleterious variants in genes associated with predisposition to melanoma, within hereditary cancer panels carried out for reasons other than melanoma. RESULTS In total, 59 families were included, comprising 69 patients (64% women). Among these, 8% of families (13% of patients) presented pathogenic/likely pathogenic (P/LP) variants: 6% of families (6% of patients), excluding criteria (iv) and (v), showed P/LP variants in CDKN2A, and 2% of families (1% of patients) presented P/LP variants in BAP1, BRCA2 and TERF2IP. CONCLUSIONS The frequencies of P/LP variants in CDKN2A are similar to those previously described. This study could contribute to the knowledge of the characteristics of patients who meet genetic study criteria for hereditary melanoma in a setting of real-world clinical practice.
Collapse
Affiliation(s)
| | - Sergio Carrera Revilla
- Genetic Counselling, Department of Medical Oncology, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Lara Lombardero Gutiérrez
- Genetic Counselling, Department of Medical Oncology, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | | |
Collapse
|
6
|
Pellegrini S, Potjer TP, Del Bianco P, Vecchiato A, Fabozzi A, Piccin L, Tonello D, van der Stoep N, Tinsley E, Landi MT, Iles MM, Menin C. Polygenic Risk Score Improves Melanoma Risk Assessment in a Patient Cohort from the Veneto Region of Italy. BIOLOGY 2024; 13:954. [PMID: 39596909 PMCID: PMC11592222 DOI: 10.3390/biology13110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Recent genome-wide association studies (GWASs) have identified many single nucleotide polymorphisms (SNPs) that alone weakly affect melanoma risk, but their combined effect on a polygenic risk score (PRS) can have a far bigger impact on estimating risk. However, the PRS is not yet at the stage of being utilized in clinical practice, and further evidence is needed. In this study, 270 melanoma patients fulfilling the criteria for a suspected genetic predisposition but with a negative genetic test for high/medium-penetrance genes were genotyped for 57 SNPs selected in previous GWASs to construct a PRS model. We found a significantly higher mean PRS57 in all melanoma cases than in controls (0.58 vs. 0.00, p < 0.001), and the mean PRS57 in multiple primary melanoma cases was twice that in single melanoma cases (0.689 vs. 0.362, p = 0.025). Interestingly, our results confirm the association of the PRS57 not only with other melanoma risk factors but also with a younger age at diagnosis. This evidence supports the potentially powerful discriminative role of PRS in the selection of high-risk patients who should undergo stricter surveillance protocols.
Collapse
Affiliation(s)
- Stefania Pellegrini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (D.T.); (C.M.)
| | - Thomas P. Potjer
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (T.P.P.); (N.v.d.S.)
| | - Paola Del Bianco
- Clinical Trials and Biostatistics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Antonella Vecchiato
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Alessio Fabozzi
- Oncology 3 Unit, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Luisa Piccin
- Oncology 2 Unit, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Debora Tonello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (D.T.); (C.M.)
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (T.P.P.); (N.v.d.S.)
| | - Emily Tinsley
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS2 9NL, UK; (E.T.); (M.M.I.)
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892-8322, USA;
| | - Mark M. Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS2 9NL, UK; (E.T.); (M.M.I.)
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, UK
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (D.T.); (C.M.)
| |
Collapse
|
7
|
Zhang Y, Ostrowski SM, Fisher DE. Nevi and Melanoma. Hematol Oncol Clin North Am 2024; 38:939-952. [PMID: 38880666 PMCID: PMC11368644 DOI: 10.1016/j.hoc.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cutaneous melanoma is an aggressive form of skin cancer derived from skin melanocytes and is associated with significant morbidity and mortality. A significant fraction of melanomas are associated with precursor lesions, benign clonal proliferations of melanocytes called nevi. Nevi can be either congenital or acquired later in life. Identical oncogenic driver mutations are found in benign nevi and melanoma. While much progress has been made in our understanding of nevus formation and the molecular steps required for transformation of nevi into melanoma, the clinical diagnosis of benign versus malignant lesions remains challenging.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stephen M Ostrowski
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David E Fisher
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Constantinou SM, Bennett DC. Cell Senescence and the Genetics of Melanoma Development. Genes Chromosomes Cancer 2024; 63:e23273. [PMID: 39422311 DOI: 10.1002/gcc.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Cutaneous malignant melanoma is an aggressive skin cancer with an approximate lifetime risk of 1 in 38 in the UK. While exposure to ultraviolet radiation is a key environmental risk factor for melanoma, up to ~10% of patients report a family history of melanoma, and ~1% have a strong family history. The understanding of causal mutations in melanoma has been critical to the development of novel targeted therapies that have contributed to improved outcomes for late-stage patients. Here, we review current knowledge of the genes affected by familial melanoma mutations and their partial overlap with driver genes commonly mutated in sporadic melanoma development. One theme linking a set of susceptibility loci/genes is the regulation of skin pigmentation and suntanning. The largest functional set of susceptibility variants, typically with high penetrance, includes CDKN2A, RB1, and telomerase reverse transcriptase (TERT) mutations, associated with attenuation of cell senescence. We discuss the mechanisms of action of these gene sets in the biology and progression of nevi and melanoma.
Collapse
Affiliation(s)
- Sophie M Constantinou
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| | - Dorothy C Bennett
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| |
Collapse
|
9
|
Kuo ME, Smith EH, Plotzke J, Chan M, Else T, Cha KB. Incidental melanoma and thyroid cancer lead to diagnosis of Lynch syndrome and endometrial cancer: A case report. JAAD Case Rep 2024; 51:66-68. [PMID: 39188332 PMCID: PMC11347038 DOI: 10.1016/j.jdcr.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Affiliation(s)
- Molly E. Kuo
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan
| | - Emily H. Smith
- Departments of Dermatology and Dermatopathology, Saint Louis University, St. Louis, Missouri
| | - Jaclyn Plotzke
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - May Chan
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Tobias Else
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kelly B. Cha
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
Zheng C, Sarin KY. Unveiling the genetic landscape of hereditary melanoma: From susceptibility to surveillance. Cancer Treat Res Commun 2024; 40:100837. [PMID: 39137473 DOI: 10.1016/j.ctarc.2024.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
The multifactorial etiology underlying melanoma development involves an array of genetic, phenotypic, and environmental factors. Genetic predisposition for melanoma is further influenced by the complex interplay between high-, medium-, and low-penetrance genes, each contributing to varying degrees of susceptibility. Within this network, high-penetrance genes, including CDKN2A, CDK4, BAP1, and POT1, are linked to a pronounced risk for disease, whereas medium- and low-penetrance genes, such as MC1R, MITF, and others, contribute only moderately to melanoma risk. Notably, these genetic factors not only heighten the risk of melanoma but may also increase susceptibility towards internal malignancies, such as pancreatic cancer, renal cell cancer, or neural tumors. Genetic testing and counseling hold paramount importance in the clinical context of suspected hereditary melanoma, facilitating risk assessment, personalized surveillance strategies, and informed decision-making. As our understanding of the genomic landscape deepens, this review paper aims to comprehensively summarize the genetic underpinnings of hereditary melanoma, as well as current screening and management strategies for the disease.
Collapse
Affiliation(s)
- Chenming Zheng
- Stanford University Department of Dermatology, Redwood City, CA, USA
| | - Kavita Y Sarin
- Stanford University Department of Dermatology, Redwood City, CA, USA.
| |
Collapse
|
11
|
Funchain P, Ni Y, Heald B, Bungo B, Arbesman M, Behera TR, McCormick S, Song JM, Kennedy LB, Nielsen SM, Esplin ED, Nizialek E, Ko J, Diaz-Montero CM, Gastman B, Stratigos AJ, Artomov M, Tsao H, Arbesman J. Germline cancer susceptibility in individuals with melanoma. J Am Acad Dermatol 2024; 91:265-272. [PMID: 38513832 DOI: 10.1016/j.jaad.2023.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/05/2023] [Accepted: 11/27/2023] [Indexed: 03/23/2024]
Abstract
BACKGROUND Prior studies have estimated a small number of individuals with melanoma (2%-2.5%) have germline cancer predisposition, yet a recent twin study suggested melanoma has the highest hereditability among cancers. OBJECTIVE To determine the incidence of hereditary melanoma and characterize the spectrum of cancer predisposition genes that may increase the risk of melanoma. METHODS Four hundred individuals with melanoma and personal or family history of cancers underwent germline testing of >80 cancer predisposition genes. Comparative analysis of germline data was performed on 3 additional oncologic and dermatologic data sets. RESULTS Germline pathogenic/likely pathogenic (P/LP) variants were identified in 15.3% (61) individuals with melanoma. Most variants (41, 67%) involved genes considered unrelated to melanoma (BLM, BRIP1, CHEK2, MLH1, MSH2, PMS2, RAD51C). A third (20, 33%) were in genes previously associated with familial melanoma (BAP1, BRCA2, CDKN2A, MITF, TP53). Nearly half (30, 46.9%) of P/LP variants were in homologous repair deficiency genes. Validation cohorts demonstrated P/LP rates of 10.6% from an unselected oncologic cohort, 15.8% from a selected commercial testing cohort, and 14.5% from a highly selected dermatologic study. LIMITATIONS Cohorts with varying degrees of selection, some retrospective. CONCLUSION Germline predisposition in individuals with melanoma is common, with clinically actionable findings diagnosed in 10.6% to 15.8%.
Collapse
Affiliation(s)
- Pauline Funchain
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| | - Ying Ni
- Center for Immunotherapy & Precision Immuno-Oncology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Brandie Heald
- Genomic Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Invitae Corporation, South San Francisco, California
| | - Brandon Bungo
- Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Michelle Arbesman
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Tapas R Behera
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Center for Immunotherapy & Precision Immuno-Oncology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Shelley McCormick
- Center Cancer Risk Assessment, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Jung Min Song
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Hematology/Oncology, MetroHealth, Cleveland, Ohio
| | | | | | | | - Emily Nizialek
- Department of Medical Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Jennifer Ko
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Claudia M Diaz-Montero
- Center for Immunotherapy & Precision Immuno-Oncology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Brian Gastman
- Dermatology and Plastic Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Alexander J Stratigos
- Department of Dermatology-Venereology, A. Sygros Hospital Medical School, University of Athens, Athens, Greece
| | | | - Hensin Tsao
- Department of Dermatology, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Joshua Arbesman
- Dermatology and Plastic Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
12
|
Sorino C, Iezzi S, Ciuffreda L, Falcone I. Immunotherapy in melanoma: advances, pitfalls, and future perspectives. Front Mol Biosci 2024; 11:1403021. [PMID: 39086722 PMCID: PMC11289331 DOI: 10.3389/fmolb.2024.1403021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/16/2024] [Indexed: 08/02/2024] Open
Abstract
Cutaneous melanoma is the deadliest and most aggressive form of skin cancer owing to its high capacity for metastasis. Over the past few decades, the management of this type of malignancy has undergone a significant revolution with the advent of both targeted therapies and immunotherapy, which have greatly improved patient quality of life and survival. Nevertheless, the response rates are still unsatisfactory for the presence of side effects and development of resistance mechanisms. In this context, tumor microenvironment has emerged as a factor affecting the responsiveness and efficacy of immunotherapy, and the study of its interplay with the immune system has offered new promising clinical strategies. This review provides a brief overview of the currently available immunotherapeutic strategies for melanoma treatment by analyzing both the positive aspects and those that require further improvement. Indeed, a better understanding of the mechanisms involved in the immune evasion of melanoma cells, with particular attention on the role of the tumor microenvironment, could provide the basis for improving current therapies and identifying new predictive biomarkers.
Collapse
|
13
|
Narod SA, Metcalfe K, Finch A, Chan AW, Armel SR, Aeilts A, Eisen A, Karlan B, Bordeleau L, Tung N, Foulkes WD, Neuhausen SL, Eng C, Olopade O, Zakalik D, Couch F, Cullinane C, Pal T, Sun P, Kotsopoulos J. The risk of skin cancer in women who carry BRCA1 or BRCA2 mutations. Hered Cancer Clin Pract 2024; 22:7. [PMID: 38741145 DOI: 10.1186/s13053-024-00277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND It has not been clearly established if skin cancer or melanoma are manifestations of BRCA1 or BRCA2 mutation carrier status. Estimating the risk of skin cancer is an important step towards developing screening recommendations. METHODS We report the findings of a prospective cohort study of 6,207 women from North America who carry BRCA1 or BRCA2 mutations. Women were followed from the date of baseline questionnaire to the diagnosis of skin cancer, to age 80 years, death from any cause, or the date of last follow-up. RESULTS During the mean follow-up period of eight years, 3.7% of women with a BRCA1 mutation (133 of 3,623) and 3.8% of women with a BRCA2 mutation (99 of 2,584) reported a diagnosis of skin cancer (including both keratinocyte carcinomas and melanoma). The cumulative risk of all types of skin cancer from age 20 to 80 years was 14.1% for BRCA1 carriers and 10.7% for BRCA2 carriers. The cumulative risk of melanoma was 2.5% for BRCA1 carriers and 2.3% for BRCA2 carriers, compared to 1.5% for women in the general population in the United States. The strongest risk factor for skin cancer was a prior diagnosis of skin cancer. CONCLUSION The risk of non-melanoma skin cancer in women who carry a mutation in BRCA1 or BRCA2 is similar to that of non-carrier women. The risk of melanoma appears to be slightly elevated. We suggest that a referral to a dermatologist or primary care provider for BRCA mutation carriers for annual skin examination and counselling regarding limiting UV exposure, the use of sunscreen and recognizing the early signs of melanoma might be warranted, but further studies are necessary.
Collapse
Affiliation(s)
- Steven A Narod
- Women's College Research Institute, Women's College Hospital, 76 Grenville St, M5S 1B1, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| | - Kelly Metcalfe
- Women's College Research Institute, Women's College Hospital, 76 Grenville St, M5S 1B1, Toronto, ON, Canada
- Bloomberg School of Nursing, University of Toronto, Toronto, ON, Canada
| | - Amy Finch
- Women's College Research Institute, Women's College Hospital, 76 Grenville St, M5S 1B1, Toronto, ON, Canada
| | - An-Wen Chan
- Women's College Research Institute, Women's College Hospital, 76 Grenville St, M5S 1B1, Toronto, ON, Canada
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Susan Randall Armel
- Princess Margaret Hospital, Familial Cancer Clinic, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Amber Aeilts
- Division of Human Genetics, Comprehensive Cancer Center, the Ohio State University Medical Center, Columbus, OH, USA
| | | | - Beth Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Louise Bordeleau
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Nadine Tung
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - William D Foulkes
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montréal, QC, Canada
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olufunmilayo Olopade
- Department of Medicine and Human Genetics, University of Chicago, Chicago, IL, USA
| | - Dana Zakalik
- Cancer Genetics Program, Beaumont Hospital, Royal Oak, MI, USA
| | - Fergus Couch
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Tuya Pal
- Division of Genetics, Department of Medicine, Vanderbilt University Medical Centre and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Ping Sun
- Women's College Research Institute, Women's College Hospital, 76 Grenville St, M5S 1B1, Toronto, ON, Canada
| | - Joanne Kotsopoulos
- Women's College Research Institute, Women's College Hospital, 76 Grenville St, M5S 1B1, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Naddeo M, Broseghini E, Venturi F, Vaccari S, Corti B, Lambertini M, Ricci C, Fontana B, Durante G, Pariali M, Scotti B, Milani G, Campione E, Ferracin M, Dika E. Association of miR-146a-5p and miR-21-5p with Prognostic Features in Melanomas. Cancers (Basel) 2024; 16:1688. [PMID: 38730639 PMCID: PMC11083009 DOI: 10.3390/cancers16091688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Cutaneous melanoma (CM) is one of the most lethal tumors among skin cancers and its incidence is rising worldwide. Recent data support the role of microRNAs (miRNAs) in melanoma carcinogenesis and their potential use as disease biomarkers. METHODS We quantified the expression of miR-146a-5p and miR-21-5p in 170 formalin-fixed paraffin embedded (FFPE) samples of CM, namely 116 superficial spreading melanoma (SSM), 26 nodular melanoma (NM), and 28 lentigo maligna melanoma (LMM). We correlated miRNA expression with specific histopathologic features including Breslow thickness (BT), histological subtype, ulceration and regression status, and mitotic index. RESULTS miR-146a-5p and miR-21-5p were significantly higher in NM compared to SSM and LMM. The positive correlation between miR-146a-5p and miR-21-5p expression and BT was confirmed for both miRNAs in SSM. Considering the ulceration status, we assessed that individual miR-21-5p expression was significantly higher in ulcerated CMs. The increased combined expression of the two miRNAs was strongly associated with ulceration (p = 0.0093) and higher mitotic rate (≥1/mm2) (p = 0.0005). We demonstrated that the combination of two-miRNA expression and prognostic features (BT and ulceration) can better differentiate cutaneous melanoma prognostic groups, considering overall survival and time-to-relapse clinical outcomes. Specifically, miRNA expression can further stratify prognostic groups among patients with BT ≥ 0.8 mm but without ulceration. Our findings provide further insights into the characterization of CM with specific prognostic features. The graphical abstract was created with BioRender.com.
Collapse
Affiliation(s)
- Maria Naddeo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (M.N.); (E.B.)
| | - Elisabetta Broseghini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (M.N.); (E.B.)
| | - Federico Venturi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| | - Sabina Vaccari
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| | - Barbara Corti
- Division of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy;
| | - Martina Lambertini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| | - Costantino Ricci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
- Pathology Unit, Ospedale Maggiore, 40133 Bologna, Italy
| | - Beatrice Fontana
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
| | - Giorgio Durante
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
| | - Milena Pariali
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, 40126 Bologna, Italy;
| | - Biagio Scotti
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| | - Giulia Milani
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| | - Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Manuela Ferracin
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (M.N.); (E.B.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
| | - Emi Dika
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| |
Collapse
|
15
|
Knoedler L, Huelsboemer L, Hollmann K, Alfertshofer M, Herfeld K, Hosseini H, Boroumand S, Stoegner VA, Safi AF, Perl M, Knoedler S, Pomahac B, Kauke-Navarro M. From standard therapies to monoclonal antibodies and immune checkpoint inhibitors - an update for reconstructive surgeons on common oncological cases. Front Immunol 2024; 15:1276306. [PMID: 38715609 PMCID: PMC11074450 DOI: 10.3389/fimmu.2024.1276306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/05/2024] [Indexed: 05/23/2024] Open
Abstract
Malignancies represent a persisting worldwide health burden. Tumor treatment is commonly based on surgical and/or non-surgical therapies. In the recent decade, novel non-surgical treatment strategies involving monoclonal antibodies (mAB) and immune checkpoint inhibitors (ICI) have been successfully incorporated into standard treatment algorithms. Such emerging therapy concepts have demonstrated improved complete remission rates and prolonged progression-free survival compared to conventional chemotherapies. However, the in-toto surgical tumor resection followed by reconstructive surgery oftentimes remains the only curative therapy. Breast cancer (BC), skin cancer (SC), head and neck cancer (HNC), and sarcoma amongst other cancer entities commonly require reconstructive surgery to restore form, aesthetics, and functionality. Understanding the basic principles, strengths, and limitations of mAB and ICI as (neo-) adjuvant therapies and treatment alternatives for resectable or unresectable tumors is paramount for optimized surgical therapy planning. Yet, there is a scarcity of studies that condense the current body of literature on mAB and ICI for BC, SC, HNC, and sarcoma. This knowledge gap may result in suboptimal treatment planning, ultimately impairing patient outcomes. Herein, we aim to summarize the current translational endeavors focusing on mAB and ICI. This line of research may serve as an evidence-based fundament to guide targeted therapy and optimize interdisciplinary anti-cancer strategies.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Katharina Hollmann
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Faculty of Medicine, University of Wuerzbuerg, Wuerzburg, Germany
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians University Munich, Munich, Germany
| | - Konstantin Herfeld
- Department of Internal Medicine III (Oncology and Haematology), University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Helia Hosseini
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Sam Boroumand
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Ali-Farid Safi
- Craniologicum, Center for Cranio-Maxillo-Facial Surgery, Bern, Switzerland
- Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Markus Perl
- Department of Internal Medicine III (Oncology and Haematology), University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Samuel Knoedler
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
16
|
Cong L, Zhao Q, Sun H, Zhou Z, Hu Y, Li C, Hao M, Cong X. A novel long non-coding RNA SLNCR1 promotes proliferation, migration, and invasion of melanoma via transcriptionally regulating SOX5. Cell Death Discov 2024; 10:160. [PMID: 38561355 PMCID: PMC10984963 DOI: 10.1038/s41420-024-01922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Steroid receptor RNA activator (SRA)-like non-coding RNA (SLNCR1) has been implicated in various tumorigenic processes, but the precise regulatory role in melanoma progression remains uncertain. We performed a comprehensive analysis to investigate the prognostic value of SLNCR1 expression in patients with melanoma by TCGA database and melanoma tissue samples via the Kaplan-Meier method. Subsequently, we conducted qRT-PCR and Fluorescence in Situ Hybridization (FISH) assays to identify SLNCR1 expression levels and localization in tissues and cells, respectively. Loss-of-function assays utilizing shRNAs vectors were used to investigate the potential impact of SLNCR1. Our data showed that SLNCR1 is significantly up-regulated in human malignant melanoma tissues and cell lines and functions as an oncogene. Silencing of SLNCR1 suppressed melanoma cell proliferation, migration, invasion, and inhibited tumorigenesis in a mouse xenograft model. Additionally, we employed bioinformatic predictive analysis, combined with dual-luciferase reporter analysis and functional rescue assays, to elucidate the mechanistic target of the SLNCR1/SOX5 axis in melanoma. Mechanistically, we discovered that SLNCR1 promotes EMT of human melanoma by targeting SOX5, as downregulation of SLNCR1 expression leads to a decrease in SOX5 protein levels and inhibits melanoma tumorigenesis. Our research offers promising insights for more precise diagnosis and treatment of human melanoma.
Collapse
Affiliation(s)
- Lele Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Qing Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hongyan Sun
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zilong Zhou
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | - Xianling Cong
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
17
|
Reshkin SJ, Cardone RA, Koltai T. Genetic Signature of Human Pancreatic Cancer and Personalized Targeting. Cells 2024; 13:602. [PMID: 38607041 PMCID: PMC11011857 DOI: 10.3390/cells13070602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease with a 5-year survival rate of around 11-12%. Surgery, being the treatment of choice, is only possible in 20% of symptomatic patients. The main reason is that when it becomes symptomatic, IT IS the tumor is usually locally advanced and/or has metastasized to distant organs; thus, early diagnosis is infrequent. The lack of specific early symptoms is an important cause of late diagnosis. Unfortunately, diagnostic tumor markers become positive at a late stage, and there is a lack of early-stage markers. Surgical and non-surgical cases are treated with neoadjuvant and/or adjuvant chemotherapy, and the results are usually poor. However, personalized targeted therapy directed against tumor drivers may improve this situation. Until recently, many pancreatic tumor driver genes/proteins were considered untargetable. Chemical and physical characteristics of mutated KRAS are a formidable challenge to overcome. This situation is slowly changing. For the first time, there are candidate drugs that can target the main driver gene of pancreatic cancer: KRAS. Indeed, KRAS inhibition has been clinically achieved in lung cancer and, at the pre-clinical level, in pancreatic cancer as well. This will probably change the very poor outlook for this disease. This paper reviews the genetic characteristics of sporadic and hereditary predisposition to pancreatic cancer and the possibilities of a personalized treatment according to the genetic signature.
Collapse
Affiliation(s)
- Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Tomas Koltai
- Oncomed, Via Pier Capponi 6, 50132 Florence, Italy
| |
Collapse
|
18
|
Wunderlich K, Suppa M, Gandini S, Lipski J, White JM, Del Marmol V. Risk Factors and Innovations in Risk Assessment for Melanoma, Basal Cell Carcinoma, and Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:1016. [PMID: 38473375 DOI: 10.3390/cancers16051016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Skin cancer is the most frequently diagnosed cancer globally and is preventable. Various risk factors contribute to different types of skin cancer, including melanoma, basal cell carcinoma, and squamous cell carcinoma. These risk factors encompass both extrinsic, such as UV exposure and behavioral components, and intrinsic factors, especially involving genetic predisposition. However, the specific risk factors vary among the skin cancer types, highlighting the importance of precise knowledge to facilitate appropriate early diagnosis and treatment for at-risk individuals. Better understanding of the individual risk factors has led to the development of risk scores, allowing the identification of individuals at particularly high risk. These advances contribute to improved prevention strategies, emphasizing the commitment to mitigating the impact of skin cancer.
Collapse
Affiliation(s)
- K Wunderlich
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - M Suppa
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Department of Dermatology, Institute Jules Bordet, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - S Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology, IRCCS, 20139 Milan, Italy
| | - J Lipski
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - J M White
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - V Del Marmol
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Department of Dermatology, Institute Jules Bordet, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
19
|
Adamus-Grabicka AA, Hikisz P, Sikora J. Nanotechnology as a Promising Method in the Treatment of Skin Cancer. Int J Mol Sci 2024; 25:2165. [PMID: 38396841 PMCID: PMC10889690 DOI: 10.3390/ijms25042165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The incidence of skin cancer continues to grow. There are an estimated 1.5 million new cases each year, of which nearly 350,000 are melanoma, which is often fatal. Treatment is challenging and often ineffective, with conventional chemotherapy playing a limited role in this context. These disadvantages can be overcome by the use of nanoparticles and may allow for the early detection and monitoring of neoplastic changes and determining the effectiveness of treatment. This article briefly reviews the present understanding of the characteristics of skin cancers, their epidemiology, and risk factors. It also outlines the possibilities of using nanotechnology, especially nanoparticles, for the transport of medicinal substances. Research over the previous decade on carriers of active substances indicates that drugs can be delivered more accurately to the tumor site, resulting in higher therapeutic efficacy. The article describes the application of liposomes, carbon nanotubes, metal nanoparticles, and polymer nanoparticles in existing therapies. It discusses the challenges encountered in nanoparticle therapy and the possibilities of improving their performance. Undoubtedly, the use of nanoparticles is a promising method that can help in the fight against skin cancer.
Collapse
Affiliation(s)
- Angelika A. Adamus-Grabicka
- Department of Bioinorganic Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
20
|
Shao L, Zhao Y, Heinrich M, Prieto-Garcia JM, Manzoni C. Active natural compounds perturb the melanoma risk-gene network. G3 (BETHESDA, MD.) 2024; 14:jkad274. [PMID: 38035793 PMCID: PMC10849364 DOI: 10.1093/g3journal/jkad274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
Cutaneous melanoma is an aggressive type of skin cancer with a complex genetic landscape caused by the malignant transformation of melanocytes. This study aimed at providing an in silico network model based on the systematic profiling of the melanoma-associated genes considering germline mutations, somatic mutations, and genome-wide association study signals accounting for a total of 232 unique melanoma risk genes. A protein-protein interaction network was constructed using the melanoma risk genes as seeds and evaluated to describe the functional landscape in which the melanoma genes operate within the cellular milieu. Not only were the majority of the melanoma risk genes able to interact with each other at the protein level within the core of the network, but this showed significant enrichment for genes whose expression is altered in human melanoma specimens. Functional annotation showed the melanoma risk network to be significantly associated with processes related to DNA metabolism and telomeres, DNA damage and repair, cellular ageing, and response to radiation. We further explored whether the melanoma risk network could be used as an in silico tool to predict the efficacy of anti-melanoma phytochemicals, that are considered active molecules with potentially less systemic toxicity than classical cytotoxic drugs. A significant portion of the melanoma risk network showed differential expression when SK-MEL-28 human melanoma cells were exposed to the phytochemicals harmine and berberine chloride. This reinforced our hypothesis that the network modeling approach not only provides an alternative way to identify molecular pathways relevant to disease but it may also represent an alternative screening approach to prioritize potentially active compounds.
Collapse
Affiliation(s)
- Luying Shao
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, WC1N 1AX London, UK
| | - Yibo Zhao
- Department of Pharmacology, UCL School of Pharmacy, WC1N 1AX London, UK
| | - Michael Heinrich
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, WC1N 1AX London, UK
- Chinese Medicine Research Center, and Department of Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
| | - Jose M Prieto-Garcia
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Claudia Manzoni
- Department of Pharmacology, UCL School of Pharmacy, WC1N 1AX London, UK
| |
Collapse
|
21
|
Primiero CA, Maas EJ, Wallingford CK, Soyer HP, McInerney-Leo AM. Genetic testing for familial melanoma. Ital J Dermatol Venerol 2024; 159:34-42. [PMID: 38287743 DOI: 10.23736/s2784-8671.23.07761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
While the average lifetime risk of melanoma worldwide is approximately 3%, those with inherited high-penetrance mutations face an increased lifetime risk of 52-84%. In countries of low melanoma incidence, such as in Southern Europe, familial melanoma genetic testing may be warranted when there are two first degree relatives with a melanoma diagnosis. Testing criteria for high incidence countries such as USA, or with very-high incidence, such as Australia and New Zealand, would require a threshold of 3 to 4 affected family members. A mutation in the most common gene associated with familial melanoma, CDKN2A, is identified in approximately 10-40% of those meeting testing criteria. However, the use of multi-gene panels covering additional less common risk genes can significantly increase the diagnostic yield. Currently, genetic testing for familial melanoma is typically conducted by qualified genetic counsellors, however with increasing demand on testing services and high incidence rate in certain countries, a mainstream model should be considered. With appropriate training, dermatologists are well placed to identify high risk individuals and offer melanoma genetic test in dermatology clinics. Genetic testing should be given in conjunction with pre- and post-test consultation. Informed patient consent should cover possible results, the limitations and implications of testing including inconclusive results, and potential for genetic discrimination. Previous studies reporting on participant outcomes of genetic testing for familial melanoma have found significant improvements in both sun protective behavior and screening frequency in mutation carriers.
Collapse
Affiliation(s)
- Clare A Primiero
- Frazer Institute, Dermatology Research Centre, The University of Queensland, Brisbane, Australia
- Department of Dermatology, Hospital Clinic and Fundació Clínic per la Recerca Biomèdica - August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Ellie J Maas
- Frazer Institute, Dermatology Research Centre, The University of Queensland, Brisbane, Australia
| | - Courtney K Wallingford
- Frazer Institute, Dermatology Research Centre, The University of Queensland, Brisbane, Australia
| | - H Peter Soyer
- Frazer Institute, Dermatology Research Centre, The University of Queensland, Brisbane, Australia -
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Australia
| | - Aideen M McInerney-Leo
- Frazer Institute, Dermatology Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
22
|
Boşoteanu LA, Gheorghe E, Aşchie M, Cozaru GC, Deacu M, Orășanu CI, Boşoteanu M. Immunophenotypic p14 and p16 correlations with CDKN2A mutations in primary multiple and familial melanoma: An observational study. Medicine (Baltimore) 2023; 102:e36756. [PMID: 38134090 PMCID: PMC10735120 DOI: 10.1097/md.0000000000036756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Melanoma represents an aggressive malignant tumor, encapsulating frequent loss of differentiation markers, with familial melanoma constituting a relatively commonly encountered entity, in direct relationship with cyclin-dependent kinase inhibitor 2A (CDKN2A). The present study aims to identify the association between the immunohistochemical p14-p16 profile, the molecular CDKN2A findings and clinically diagnosed familial or multiple primary melanomas (MPM). We conducted a 5-year retrospective cross-sectional study, on patients diagnosed with familial or MPM. P14 and p16 immunohistochemical staining has been applied on the selected surgical specimens simultaneously with the performance of fluorescence in situ hybridization (FISH) CDKN2A testing. 13 out of the 23 included cases displayed p14 and/or p16 immunohistochemical absence and the main positive relationships were encountered between CDKN2A homozygous deletion and p14 ± p16 negative immunoreactions. Cases with exclusive p16 absent reaction (n = 7) were more frequently associated with the presence of distant metastases (85.71%), while samples with exclusive p14 immunohistochemical loss exhibited more favorable histopathological prognostic markers. The average percentage of p16-stained nuclei in the superficial dermis and the deep dermis were equal (29.54% for each), therefore infirming its potential predictive and/or prognostic utility. The present study is the first of its type to approach the clinical, evolutionary and immunophenotypic correlations between p14-p16 immunohistochemical testing, CDKN2A molecular biology pattern, familial melanoma and spontaneous MPM in a cohort of Romanian patients. This analysis highlighted the value of singular p16 immunohistochemical absence as a predictor for aggressive biological behavior and unfavorable prognosis in familial melanoma and/or MPM, in comparison with the exclusive loss of p14, indifferent to the histopathological subtype. The present study emphasizes the utility of immunohistochemistry as a less expensive method of complementing the current testing arsenal and could represent the starting point for the elaboration of tailored diagnostic and therapeutic algorithms, based on the discovered p14-p16-CDKN2A significant correlation.
Collapse
Affiliation(s)
- Luana-Andreea Boşoteanu
- Department of Dermatovenerology, “Elias” Emergency University Hospital, Bucharest, Romania
- Institute of Doctoral Studies, Doctoral School of Medicine, “Ovidius” University of Constanţa, Constanţa, Romania
| | - Emma Gheorghe
- Department of Dermatology, “Sf. Apostol Andrei” Emergency County Hospital, Constanţa, Romania
- Department of Histology, Faculty of Medicine, “Ovidius” University of Constanţa, Constanţa, Romania
| | - Mariana Aşchie
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanţa, Romania
- Department of Pathology, Faculty of Medicine, “Ovidius” University of Constanţa, Constanţa, Romania
- Department VIII – Medical Sciences, Academy of Romanian Scientists, Bucharest, Romania
| | - Georgeta Camelia Cozaru
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanţa, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), Constanța, Romania
| | - Mariana Deacu
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanţa, Romania
- Department of Pathology, Faculty of Medicine, “Ovidius” University of Constanţa, Constanţa, Romania
| | - Cristian Ionuț Orășanu
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanţa, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), Constanța, Romania
| | - Mădălina Boşoteanu
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanţa, Romania
- Department of Pathology, Faculty of Medicine, “Ovidius” University of Constanţa, Constanţa, Romania
| |
Collapse
|
23
|
Danishevich A, Bilyalov A, Nikolaev S, Khalikov N, Isaeva D, Levina Y, Makarova M, Nemtsova M, Chernevskiy D, Sagaydak O, Baranova E, Vorontsova M, Byakhova M, Semenova A, Galkin V, Khatkov I, Gadzhieva S, Bodunova N. CDKN2A Gene Mutations: Implications for Hereditary Cancer Syndromes. Biomedicines 2023; 11:3343. [PMID: 38137564 PMCID: PMC10741544 DOI: 10.3390/biomedicines11123343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Malignant neoplasms, including pancreatic cancer and melanoma, are major global health challenges. This study investigates melanoma pancreatic syndrome, a rare hereditary tumor syndrome associated with CDKN2A gene mutations. CDKN2A mutations contribute to a lifetime risk of melanoma ranging from 28% to 67%. This study reports the clinical features of six individuals with CDKN2A mutations and identifies recurrent alterations such as c.307_308del, c.159G>C and c.71G>C. It highlights the need for CDKN2A mutation testing in suspected cases of familial atypical multiple mole melanoma. Clinically significant variants show associations with melanoma and pancreatic cancer. The challenges of treating individuals with CDKN2A mutations are discussed, and the lack of specific targeted therapies is highlighted. Preclinical studies suggest a potential benefit of CDK4/6 inhibitors, although clinical trials show mixed results. This study underscores the importance of continued research into improved diagnostic and therapeutic strategies to address the complexities of hereditary cancer syndromes.
Collapse
Affiliation(s)
- Anastasiia Danishevich
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (N.K.); (D.I.)
| | - Airat Bilyalov
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (N.K.); (D.I.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergey Nikolaev
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (N.K.); (D.I.)
| | - Nodirbec Khalikov
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (N.K.); (D.I.)
| | - Daria Isaeva
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (N.K.); (D.I.)
| | - Yuliya Levina
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (N.K.); (D.I.)
| | - Maria Makarova
- LLC Evogen, 115191 Moscow, Russia
- Federal State Budgetary Institution Russian Scientific Center of Roentgenoradiology, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia
| | - Marina Nemtsova
- LLC Evogen, 115191 Moscow, Russia
- Research Centre for Medical Genetics of N.P. Bochkov, 115522 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, Ministry of Health of Russian Federation, 119991 Moscow, Russia
| | - Denis Chernevskiy
- LLC Evogen, 115191 Moscow, Russia
- FSBEI HE “Privolzhsky Research Medical University”, Ministry of Health of Russian Federation, 603950 Nizhny Novgorod, Russia
| | - Olesya Sagaydak
- LLC Evogen, 115191 Moscow, Russia
- Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Elena Baranova
- LLC Evogen, 115191 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Russia, 125993 Moscow, Russia
| | - Maria Vorontsova
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- The National Medical Research Center for Endocrinology, 117292 Moscow, Russia
| | - Mariya Byakhova
- Moscow Healthcare Department, Moscow State Budgetary Healthcare Institution Moscow City Oncological Hospital No. 1, 117152 Moscow, Russia
| | - Anna Semenova
- Moscow Healthcare Department, Moscow State Budgetary Healthcare Institution Moscow City Oncological Hospital No. 1, 117152 Moscow, Russia
| | - Vsevolod Galkin
- Moscow Healthcare Department, Moscow State Budgetary Healthcare Institution Moscow City Oncological Hospital No. 1, 117152 Moscow, Russia
| | - Igor Khatkov
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (N.K.); (D.I.)
| | | | - Natalia Bodunova
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia (N.K.); (D.I.)
| |
Collapse
|
24
|
Logesh R, Prasad SR, Chipurupalli S, Robinson N, Mohankumar SK. Natural tyrosinase enzyme inhibitors: A path from melanin to melanoma and its reported pharmacological activities. Biochim Biophys Acta Rev Cancer 2023; 1878:188968. [PMID: 37657683 DOI: 10.1016/j.bbcan.2023.188968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
The skin containing melanin pigment acts as a protective barrier and counteracts the UVR and other environmental stressors to maintain or restore disrupted cutaneous homeostasis. The production of melanin pigment is dependent on tyrosine levels. L-tyrosine and L-dihydroxyphenylalanine (L-DOPA) can serve both as a substrates and intermediates of melanin synthetic pathway and as inducers and positive regulators of melanogenesis. The biosynthesis of melanin is stimulated upon exposure to UVR, which can also stimulate local production of hormonal factors, which can stimulate melanoma development by altering the chemical properties of eu- and pheomelanin. The process of melanogenesis can be altered by several pathways. One involves activation of POMC, with the production of POMC peptides including MSH and ACTH, which increase intracellular cAMP levels, which activates the MITF, and helps to stimulate tyrosinase (TYR) expression and activity. Defects in OCA1 to 4 affects melanogenic activity via posttranslational modifications resulting in proteasomal degradation and reducing pigmentation. Further, altering, the MITF factor, helps to regulate the expression of MRGE in melanoma, and helps to increase the TYR glycosylation in ER. CRH stimulates POMC peptides that regulate melanogenesis and also by itself can stimulate melanogenesis. The POMC, P53, ACTH, MSH, MC1R, MITF, and 6-BH4 are found to be important regulators for pigmentation. Melanogenesis can affect melanoma behaviour and inhibit immune responses. Therefore, we reviewed natural products that would alter melanin production. Our special focus was on targeting melanin synthesis and TYR enzyme activity to inhibit melanogenesis as an adjuvant therapy of melanotic melanoma. Furthermore, this review also outlines the current updated pharmacological studies targeting the TYR enzyme from natural sources and its consequential effects on melanin production.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| | - Sagar Rajendra Prasad
- Department of Pharmacognosy, Varadaraja Institute of Pharmaceutical Education and Research, Tumkur 572102, Karnataka, India
| | - Sandhya Chipurupalli
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Nirmal Robinson
- Cellular Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Suresh Kumar Mohankumar
- Pharmacy, Swansea University Medical School, Singleton Park, Swansea University, Wales SA2 8PP, United Kingdom
| |
Collapse
|
25
|
Shraim R, Farran MZ, He G, Marunica Karsaj J, Zgaga L, McManus R. Systematic review on gene-sun exposure interactions in skin cancer. Mol Genet Genomic Med 2023; 11:e2259. [PMID: 37537768 PMCID: PMC10568388 DOI: 10.1002/mgg3.2259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The risk of skin cancer is determined by environmental factors like ultraviolet radiation (UVR), personal habits like time spent outdoors and genetic factors. This review aimed to survey existing studies in gene-environment (GxE) interaction on skin cancer risk, and report on GxE effect estimates. METHODS We searched Embase, Medline (Ovid) and Web of Science (Core Collection) and included only primary research that reported on GxE on the risk of the three most common types of skin cancer: basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and melanoma. Quality assessment followed the Newcastle-Ottawa Scale. Meta-analysis was not possible because no two studies examined the same interaction. This review was registered on PROSPERO (CRD42021238064). RESULTS In total 260 records were identified after exclusion of duplicates. Fifteen studies were included in the final synthesis-12 used candidate gene approach. We found some evidence of GxE interactions with sun exposure, notably, with MC1R, CAT and NOS1 genes in melanoma, HAL and IL23A in BCC and HAL and XRCC1 in SCC. CONCLUSION Sun exposure seems to interact with genes involved in pigmentation, oxidative stress and immunosuppression, indicating that excessive UV exposure might exhaust oxidative defence and repair systems differentially, dependent on genetic make-up. Further research is warranted to better understand skin cancer epidemiology and develop sun exposure recommendations. A genome-wide approach is recommended as it might uncover unknown disease pathways dependent on UV radiation.
Collapse
Affiliation(s)
- Rasha Shraim
- Department of Public Health and Primary Care, Institute of Population HealthTrinity College DublinDublinIreland
- Department of Clinical Medicine, Trinity Translational Medicine InstituteTrinity College DublinDublinIreland
- The SFI Centre for Research Training in Genomics Data SciencesUniversity of GalwayGalwayIreland
| | - Mohamed Ziad Farran
- Department of Public Health and Primary Care, Institute of Population HealthTrinity College DublinDublinIreland
- Department of Clinical Medicine, Trinity Translational Medicine InstituteTrinity College DublinDublinIreland
| | - George He
- Department of Public Health and Primary Care, Institute of Population HealthTrinity College DublinDublinIreland
- Department of Clinical Medicine, Trinity Translational Medicine InstituteTrinity College DublinDublinIreland
| | - Jelena Marunica Karsaj
- Department of Rheumatology, Physical Medicine and RehabilitationSestre milosrdnice University Hospital CenterZagrebCroatia
| | - Lina Zgaga
- Department of Public Health and Primary Care, Institute of Population HealthTrinity College DublinDublinIreland
| | - Ross McManus
- Department of Clinical Medicine, Trinity Translational Medicine InstituteTrinity College DublinDublinIreland
| |
Collapse
|
26
|
Liebmann A, Admard J, Armeanu-Ebinger S, Wild H, Abele M, Gschwind A, Seibel-Kelemen O, Seitz C, Bonzheim I, Riess O, Demidov G, Sturm M, Schadeck M, Pogoda M, Bien E, Krawczyk M, Jüttner E, Mentzel T, Cesen M, Pfaff E, Kunc M, Forchhammer S, Forschner A, Leiter-Stöppke U, Eigentler TK, Schneider DT, Schroeder C, Ossowski S, Brecht IB. UV-radiation and MC1R germline mutations are risk factors for the development of conventional and spitzoid melanomas in children and adolescents. EBioMedicine 2023; 96:104797. [PMID: 37716236 PMCID: PMC10511785 DOI: 10.1016/j.ebiom.2023.104797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Genomic characterisation has led to an improved understanding of adult melanoma. However, the aetiology of melanoma in children is still unclear and identifying the correct diagnosis and therapeutic strategies remains challenging. METHODS Exome sequencing of matched tumour-normal pairs from 26 paediatric patients was performed to study the mutational spectrum of melanomas. The cohort was grouped into different categories: spitzoid melanoma (SM), conventional melanoma (CM), and other melanomas (OT). FINDINGS In all patients with CM (n = 10) germline variants associated with melanoma were found in low to moderate melanoma risk genes: in 8 patients MC1R variants, in 2 patients variants in MITF, PTEN and BRCA2. Somatic BRAF mutations were detected in 60% of CMs, homozygous deletions of CDKN2A in 20%, TERTp mutations in 30%. In the SM group (n = 12), 5 patients carried at least one MC1R variant; somatic BRAF mutations were detected in 8.3%, fusions in 25% of the cases. No SM showed a homozygous CDKN2A deletion nor a TERTp mutation. In 81.8% of the CM/SM cases the UV damage signatures SBS7 and/or DBS1 were detected. The patient with melanoma arising in giant congenital nevus (CNM) demonstrated the characteristic NRAS Q61K mutation. INTERPRETATION UV-radiation and MC1R germline variants are risk factors in the development of conventional and spitzoid paediatric melanomas. Paediatric CMs share genomic similarities with adult CMs while the SMs differ genetically from the CM group. Consistent genetic characterization of all paediatric melanomas will potentially lead to better subtype differentiation, treatment, and prevention in the future. FUNDING Found in Acknowledgement.
Collapse
Affiliation(s)
- Alexandra Liebmann
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Sorin Armeanu-Ebinger
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Hannah Wild
- Paediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Michael Abele
- Paediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Axel Gschwind
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Olga Seibel-Kelemen
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Christian Seitz
- Paediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Malou Schadeck
- SYNLAB MVZ Human Genetics Freiburg GmbH, Freiburg, Germany
| | - Michaela Pogoda
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany; NGS Competence Center Tübingen, Tübingen, Germany
| | - Ewa Bien
- Department of Paediatrics, Hematology, Oncology, Medical University of Gdansk, Poland
| | - Malgorzata Krawczyk
- Department of Paediatrics, Hematology, Oncology, Medical University of Gdansk, Poland
| | - Eva Jüttner
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Thomas Mentzel
- Dermatohistopathology Friedrichshafen, Friedrichshafen, Germany
| | - Maja Cesen
- Department of Paediatric Haematology and Oncology, University Hospital Ljubljana, Ljubljana, Slovenia
| | - Elke Pfaff
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Michal Kunc
- Department of Pathomorphology, Medical University of Gdansk, Poland
| | - Stephan Forchhammer
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| | - Andrea Forschner
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike Leiter-Stöppke
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| | - Thomas K Eigentler
- Department of Dermatology, Venereology and Allergology, Charite Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Ines B Brecht
- Paediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
27
|
Gironi LC, Esposto E, Zottarelli F, Giorgione R, Farinelli P, Zavattaro E, Cammarata E, Di Cristo N, Ogliara P, Camillo L, Giordano M, Mellone S, Pasini B, Ambrosi A, Savoia P. Temporal correlation between the first melanoma and the first noncutaneous tumor in CKDN2A genotyped patients. Melanoma Res 2023; 33:425-430. [PMID: 37352544 DOI: 10.1097/cmr.0000000000000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
CDKN2A pathogenic variants are well known to be associated with cutaneous melanoma and noncutaneous tumors (NCTs). Herein, we investigated the temporal correlation between the first cutaneous melanoma and NCT both in CDKN2A mutation carriers (MUT) and in wild-type melanoma patients, a poorly explored issue to date. Two hundred forty-five cutaneous melanoma patients were genotyped for the CDKN2A gene and divided into 51 MUT and 189 wild-type; the remaining five variant carriers were excluded from the analyses. MUT developed a significantly higher number of cutaneous melanoma than wild-type, while 13.7% in both genotyped groups received a diagnosis of at least one malignant NCT, without statistically significant differences. The onset of the first cutaneous melanoma preceded that of the first malignant or benign NCT in both MUT and wild-type patients by an average of 4.5 and 3.02 years, respectively. Considering only malignant tumors, the diagnosis of melanoma preceded that of the first NCT on an average of 8 and 4.34 years, in MUT and wild-type patients respectively. We emphasize the relevance to adopt a global vision for the primary and secondary surveillance of patients affected by cutaneous melanoma, not only limited to high-risk for multiple primary skin cancers but also to NCT that may develop several years after the diagnosis of the first cutaneous melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Elisa Zavattaro
- Department of Health Sciences, University of Eastern Piedmont, Novara
| | | | - Nunzia Di Cristo
- Department of Health Sciences, University of Eastern Piedmont, Novara
| | - Paola Ogliara
- Department of Medical Sciences, University of Turin, Turin
| | - Lara Camillo
- Department of Health Sciences, University of Eastern Piedmont, Novara
| | - Mara Giordano
- Department of Health Sciences, University of Eastern Piedmont, Novara
- SCDU of Clinical Biochemistry, Laboratory of Genetics, AOU Maggiore della Carità, Novara
| | - Simona Mellone
- SCDU of Clinical Biochemistry, Laboratory of Genetics, AOU Maggiore della Carità, Novara
| | - Barbara Pasini
- Department of Medical Sciences, University of Turin, Turin
| | - Alessandro Ambrosi
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Savoia
- Department of Health Sciences, University of Eastern Piedmont, Novara
| |
Collapse
|
28
|
Kuras M. Exploring the Complex and Multifaceted Interplay between Melanoma Cells and the Tumor Microenvironment. Int J Mol Sci 2023; 24:14403. [PMID: 37762707 PMCID: PMC10531837 DOI: 10.3390/ijms241814403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Malignant melanoma is a very aggressive skin cancer, characterized by a heterogeneous nature and high metastatic potential. The incidence of melanoma is continuously increasing worldwide, and it is one of the most common cancers in young adults. In the past twenty years, our understanding of melanoma biology has increased profoundly, and disease management for patients with disseminated disease has improved due to the emergence of immunotherapy and targeted therapy. However, a significant fraction of patients relapse or do not respond adequately to treatment. This can partly be explained by the complex signaling between the tumor and its microenvironment, giving rise to melanoma phenotypes with different patterns of disease progression. This review focuses on the key aspects and complex relationship between pathogenesis, genetic abnormalities, tumor microenvironment, cellular plasticity, and metabolic reprogramming in melanoma. By acquiring a deeper understanding of the multifaceted features of melanomagenesis, we can reach a point of more individualized and patient-centered disease management and reduced costs of ineffective treatments.
Collapse
Affiliation(s)
- Magdalena Kuras
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden;
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| |
Collapse
|
29
|
De Giorgi V, Magnaterra E, Zuccaro B, Magi S, Magliulo M, Medri M, Mazzoni L, Venturi F, Silvestri F, Tomassini GM, Gola M, Tramontana M, Berti S, Stanganelli I, Stingeni L, Covarelli P. Is Pediatric Melanoma Really That Different from Adult Melanoma? A Multicenter Epidemiological, Clinical and Dermoscopic Study. Cancers (Basel) 2023; 15:cancers15061835. [PMID: 36980721 PMCID: PMC10046848 DOI: 10.3390/cancers15061835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/26/2023] [Accepted: 03/11/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE To improve the diagnostic accuracy and optimal management of pediatric melanomas. METHODS We conducted a retrospective descriptive, multicenter study of the epidemiological, clinical, and dermoscopic characteristics of histopathologically proven melanomas diagnosed in patients less than 18 years old. Data on sociodemographic variables, clinical and dermoscopic characteristics, histopathology, local extension, therapy and follow-up, lymph node staging, and outcome were collected from the databases of three Italian dermatology units. We performed a clinical evaluation of the morphological characteristics of each assessed melanoma, using both classic ABCDE criteria and the modified ABCDE algorithm for pediatric melanoma to evaluate which of the two algorithms best suited our series. RESULTS The study population consisted of 39 patients with a histologically confirmed diagnosis of pediatric melanoma. Comparing classic ABCDE criteria with the modified ABCDE algorithm for pediatric melanomas, the modified pediatric ABCDE algorithm was less sensitive than the conventional criteria. Dermoscopically, the most frequent finding was the presence of irregular streaks/pseudopods (74.4%). When evaluating the total number of different suspicious dermoscopy criteria per lesion, 64.1% of the lesion assessments recognized two dermoscopic characteristics, 20.5% identified three, and 15.4% documented four or more assessments. CONCLUSIONS Contrary to what has always been described in the literature, from a clinical point of view, about 95% of our cases presented in a pigmented and non-amelanotic form, and these data must be underlined in the various prevention campaigns where pediatric melanoma is currently associated with a more frequently amelanotic form. All the pediatric melanomas analyzed presented at least two dermoscopic criteria of melanoma, suggesting that this could be a key for the dermoscopic diagnosis of suspected pediatric melanoma, making it possible to reach an early diagnosis even in this age group.
Collapse
Affiliation(s)
- Vincenzo De Giorgi
- Section of Dermatology, Department of Health Sciences, University of Florence, 50121 Florence, Italy
- Cancer Research "Attilia Pofferi" Foundation, 51100 Pistoia, Italy
| | - Elisabetta Magnaterra
- Section of Dermatology, Department of Health Sciences, University of Florence, 50121 Florence, Italy
| | - Biancamaria Zuccaro
- Section of Dermatology, Department of Health Sciences, University of Florence, 50121 Florence, Italy
| | - Serena Magi
- Skin Cancer Unit, Istituto Scientifico Romagnolo per lo Studio dei Tumori "Dino Amadori" (IRST) IRCCS, 47014 Meldola, Italy
| | - Manfredi Magliulo
- Section of Dermatology, Department of Health Sciences, University of Florence, 50121 Florence, Italy
| | - Matelda Medri
- Skin Cancer Unit, Istituto Scientifico Romagnolo per lo Studio dei Tumori "Dino Amadori" (IRST) IRCCS, 47014 Meldola, Italy
| | - Laura Mazzoni
- Skin Cancer Unit, Istituto Scientifico Romagnolo per lo Studio dei Tumori "Dino Amadori" (IRST) IRCCS, 47014 Meldola, Italy
| | - Federico Venturi
- Section of Dermatology, Department of Health Sciences, University of Florence, 50121 Florence, Italy
| | - Flavia Silvestri
- Section of Dermatology, Department of Health Sciences, University of Florence, 50121 Florence, Italy
| | - Gian Marco Tomassini
- Dermatology Section, Department of Medicine and Surgery, University of Perugia, 06156 Perugia, Italy
| | - Massimo Gola
- Section of Dermatology, Department of Health Sciences, University of Florence, 50121 Florence, Italy
| | - Marta Tramontana
- Dermatology Section, Department of Medicine and Surgery, University of Perugia, 06156 Perugia, Italy
| | - Samantha Berti
- Section of Dermatology, Department of Health Sciences, University of Florence, 50121 Florence, Italy
| | - Ignazio Stanganelli
- Skin Cancer Unit, Istituto Scientifico Romagnolo per lo Studio dei Tumori "Dino Amadori" (IRST) IRCCS, 47014 Meldola, Italy
- Dermatology Unit, Department Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Luca Stingeni
- Dermatology Section, Department of Medicine and Surgery, University of Perugia, 06156 Perugia, Italy
| | - Piero Covarelli
- Surgical Oncology Section, Department of Medicine and Surgery, University of Perugia, 06156 Perugia, Italy
| |
Collapse
|
30
|
Cutaneous Melanoma and Glioblastoma Multiforme Association—Case Presentation and Literature Review. Diagnostics (Basel) 2023; 13:diagnostics13061046. [PMID: 36980355 PMCID: PMC10047677 DOI: 10.3390/diagnostics13061046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The occurrence of both melanoma and glioma was first suggested by the observation of a familial association between these conditions, which was later confirmed by the description of the melanoma–astrocytoma syndrome, an extremely rare, inherited affliction in which people have an increased risk of developing melanoma and nervous system tumors. Taking into consideration the common embryologic precursor, the neuroectoderm, it was hypothesized that this syndrome is associated with a genetic disorder. While some families with germline CDKN2A mutations are prone to develop just melanomas, others develop both melanomas and astrocytomas or even other nervous-system neoplasms. Herein, we report the case of a 63-year-old male patient with no personal or family history of malignancy who had primary melanoma followed by glioblastoma. Our case report suggests that the occurrence of both melanoma and glioblastoma is most likely not coincidental but instead linked to genetic mutations of common embryologic precursors or signaling pathways.
Collapse
|
31
|
Okamoto I, Pfisterer K, Wielscher M, Weninger W. Discovery of a previously unreported deletion in the CDKN2A gene in a case of familial melanoma in Austria. Eur J Cancer 2023; 181:21-22. [PMID: 36628896 DOI: 10.1016/j.ejca.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
|
32
|
Schanknecht E, Bachari A, Nassar N, Piva T, Mantri N. Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment. Int J Mol Sci 2023; 24:ijms24010859. [PMID: 36614303 PMCID: PMC9820847 DOI: 10.3390/ijms24010859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa's biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.
Collapse
Affiliation(s)
- Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Terrence Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
33
|
Zob DL, Augustin I, Caba L, Panzaru MC, Popa S, Popa AD, Florea L, Gorduza EV. Genomics and Epigenomics in the Molecular Biology of Melanoma-A Prerequisite for Biomarkers Studies. Int J Mol Sci 2022; 24:ijms24010716. [PMID: 36614156 PMCID: PMC9821083 DOI: 10.3390/ijms24010716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Melanoma is a common and aggressive tumor originating from melanocytes. The increasing incidence of cutaneous melanoma in recent last decades highlights the need for predictive biomarkers studies. Melanoma development is a complex process, involving the interplay of genetic, epigenetic, and environmental factors. Genetic aberrations include BRAF, NRAS, NF1, MAP2K1/MAP2K2, KIT, GNAQ, GNA11, CDKN2A, TERT mutations, and translocations of kinases. Epigenetic alterations involve microRNAs, non-coding RNAs, histones modifications, and abnormal DNA methylations. Genetic aberrations and epigenetic marks are important as biomarkers for the diagnosis, prognosis, and prediction of disease recurrence, and for therapeutic targets. This review summarizes our current knowledge of the genomic and epigenetic changes in melanoma and discusses the latest scientific information.
Collapse
Affiliation(s)
- Daniela Luminita Zob
- Department of Medical Oncology, AI. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Iolanda Augustin
- Department of Medical Oncology, AI. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
- Correspondence: (I.A.); (L.C.)
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Correspondence: (I.A.); (L.C.)
| | - Monica-Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Alina Delia Popa
- Nursing Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Laura Florea
- Department of Nephrology-Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
34
|
Wong SL, Martiniuc D, Kiuru M. CDKN2A exon 1B deletion predisposing to melanoma and neural system tumour syndrome. Clin Exp Dermatol 2022; 47:2284-2285. [PMID: 35904890 PMCID: PMC9712160 DOI: 10.1111/ced.15354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
CDKN2A at chromosome positon 9p21 is a tumour suppressor gene encoding the cell cycle regulators p16 and p14ARF. While melanoma is associated with variants affecting both transcripts, families with mutations involving the p14ARF-specific exon 1B may be predisposed to central nervous system tumours. We describe a family with a deletion of exon 1B in CDKN2A, who had multiple cutaneous melanomas, neural tumours and various malignancies.
Collapse
Affiliation(s)
- Samantha L. Wong
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Daniela Martiniuc
- Hereditary Cancer Program, Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA
| | - Maija Kiuru
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
35
|
Overview of familial syndromes with increased skin malignancies. Arch Dermatol Res 2022; 315:707-727. [PMID: 36342513 DOI: 10.1007/s00403-022-02447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
The vast majority of skin cancers can be classified into two main types: melanoma and keratinocyte carcinomas. The most common keratinocyte carcinomas include basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Multiple familial syndromes have been identified that can increase the risk of developing SCC, BCC, and/or melanoma. The major syndromes include oculocutaneous albinism for SCC, basal cell nevus syndrome for BCC, familial atypical multiple mole-melanoma syndrome, and hereditary breast and ovarian cancer syndrome for melanoma. In addition, familial syndromes that can predispose individuals to all three major skin cancers include xeroderma pigmentosum and Li-Fraumeni syndrome. This review highlights the epidemiology, risk factors, pathogenesis, and etiology of the major and minor syndromes to better identify and manage these conditions. Current investigational trials in genomic medicine are making their way in revolutionizing the clinical diagnosis of these familial syndromes for earlier preventative measures and improvement of long-term prognosis in these patients.
Collapse
|
36
|
Germline Testing for Individuals with Pancreatic Adenocarcinoma and Novel Genetic Risk Factors. Hematol Oncol Clin North Am 2022; 36:943-960. [DOI: 10.1016/j.hoc.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
37
|
Yeap I, Becker T, Azimi F, Kernohan M. The management of hereditary melanoma, FAMMM syndrome and germline CDKN2A mutations: a narrative review. AUSTRALASIAN JOURNAL OF PLASTIC SURGERY 2022. [DOI: 10.34239/ajops.v5n2.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Familial atypical multiple mole melanoma (FAMMM) syndrome is a rare autosomal dominant disorder, in which patients present with a large number of melanocytic naevi and a strong history of malignant melanoma, usually at a young age. The most common genetic alteration, implicated in 40 per cent of FAMMM syndrome families, is a mutation of cyclin-dependent kinase inhibitor 2A (CDKN2A).1 CDKN2A encodes the tumour suppressor gene p16INK4a, a critical cell cycle inhibitor.2
The diagnosis and management of patients with FAMMM syndrome is relevant to the plastic surgeon who manages melanoma. However, clear guidelines on its diagnostic criteria and its relationship to associated but distinct syndromes, such as hereditary melanoma and B-K mole syndrome, are lacking in the extant literature.
The aim of this review is to clarify the diagnostic criteria and management principles for FAMMM syndrome. We propose a new system of classifying FAMMM syndrome patients as a subset of all patients with hereditary melanoma. We also present a management algorithm for these distinct patient groups (FAMMM syndrome, hereditary melanoma and germline CDKN2A mutations).
Collapse
|
38
|
Carotenoids from Marine Microalgae as Antimelanoma Agents. Mar Drugs 2022; 20:md20100618. [PMID: 36286442 PMCID: PMC9604797 DOI: 10.3390/md20100618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma cells are highly invasive and metastatic tumor cells and commonly express molecular alterations that contribute to multidrug resistance (e.g., BRAFV600E mutation). Conventional treatment is not effective in a long term, requiring an exhaustive search for new alternatives. Recently, carotenoids from microalgae have been investigated as adjuvant in antimelanoma therapy due to their safety and acceptable clinical tolerability. Many of them are currently used as food supplements. In this review, we have compiled several studies that show microalgal carotenoids inhibit cell proliferation, cell migration and invasion, as well as induced cell cycle arrest and apoptosis in various melanoma cell lines. MAPK and NF-ĸB pathway, MMP and apoptotic factors are frequently affected after exposure to microalgal carotenoids. Fucoxanthin, astaxanthin and zeaxanthin are the main carotenoids investigated, in both in vitro and in vivo experimental models. Preclinical data indicate these compounds exhibit direct antimelanoma effect but are also capable of restoring melanoma cells sensitivity to conventional chemotherapy (e.g., vemurafenib and dacarbazine).
Collapse
|
39
|
Šerman N, Vranić S, Glibo M, Šerman L, Mokos ZB. Genetic risk factors in melanoma etiopathogenesis and the role of genetic counseling: A concise review. Bosn J Basic Med Sci 2022; 22:673-682. [PMID: 35465855 PMCID: PMC9519167 DOI: 10.17305/bjbms.2021.7378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is a highly aggressive cancer originating from melanocytes. Its etiopathogenesis is strongly related to genetic, epigenetic, and environmental factors. Melanomas encountered in clinical practice are predominantly sporadic, whereas hereditary melanomas account for approximately 10% of the cases. Hereditary melanomas mainly develop due to mutations in the CDKN2A gene, which encodes two tumor suppressor proteins involved in the cell cycle regulation. CDKN2A, along with CDK4, TERT, and POT1 genes, is a high-risk gene for melanoma. Among the genes that carry a moderate risk are MC1R and MITF, whose protein products are involved in melanin synthesis. The environment also contributes to the development of melanoma. Patients at risk of melanoma should be offered genetic counseling to discuss genetic testing options and the importance of skin UV protection, avoidance of sun exposure, and regular preventive dermatological examinations. Although cancer screening cannot prevent the development of the disease, it allows for early diagnosis when the survival rate is the highest.
Collapse
Affiliation(s)
| | - Semir Vranić
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mislav Glibo
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ljiljana Šerman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Zrinka Bukvić Mokos
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
40
|
Calderwood AH, Sawhney MS, Thosani NC, Rebbeck TR, Wani S, Canto MI, Fishman DS, Golan T, Hidalgo M, Kwon RS, Riegert-Johnson DL, Sahani DV, Stoffel EM, Vollmer CM, Al-Haddad MA, Amateau SK, Buxbaum JL, DiMaio CJ, Fujii-Lau LL, Jamil LH, Jue TL, Law JK, Lee JK, Naveed M, Pawa S, Storm AC, Qumseya BJ. American Society for Gastrointestinal Endoscopy guideline on screening for pancreatic cancer in individuals with genetic susceptibility: methodology and review of evidence. Gastrointest Endosc 2022; 95:827-854.e3. [PMID: 35183359 DOI: 10.1016/j.gie.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023]
Affiliation(s)
- Audrey H Calderwood
- Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Mandeep S Sawhney
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nirav C Thosani
- Center for Interventional Gastroenterology at UTHealth, McGovern Medical School, Houston, Texas, USA
| | - Timothy R Rebbeck
- Harvard TH Chan School of Public Health and Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sachin Wani
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marcia I Canto
- Division of Gastroenterology and Hepatology, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Douglas S Fishman
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Talia Golan
- Cancer Center, Sheba Medical Center, Yehuda, Israel
| | - Manuel Hidalgo
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Richard S Kwon
- Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas L Riegert-Johnson
- Department of Clinical Genomics and Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Dushyant V Sahani
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Elena M Stoffel
- Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles M Vollmer
- Department of Surgery, Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Mohammad A Al-Haddad
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Stuart K Amateau
- Division of Gastroenterology Hepatology and Nutrition, University of Minnesota Medical Center, Minneapolis, Minnesota, USA
| | - James L Buxbaum
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Christopher J DiMaio
- Department of Gastroenterology, Mount Sinai School of Medicine, New York, New York, USA
| | - Larissa L Fujii-Lau
- Department of Gastroenterology, The Queen's Medical Center, Honolulu, Hawaii, USA
| | - Laith H Jamil
- Section of Gastroenterology and Hepatology, Beaumont Health, Royal Oak, Michigan, and Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Terry L Jue
- Department of Gastroenterology, The Permanente Medical Group, San Francisco, California, USA
| | - Joanna K Law
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Virginia Mason Medical Center, Seattle, Washington, USA
| | - Jeffrey K Lee
- Department of Gastroenterology, Kaiser Permanente San Francisco Medical Center, San Francisco, California, USA
| | - Mariam Naveed
- Advent Health Medical Group, Gastroenterology/Hepatology, Advent Health Hospital Altamonte Springs, Altamonte Springs, Florida, USA
| | - Swati Pawa
- Department of Gastroenterology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Andrew C Storm
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bashar J Qumseya
- Department of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
41
|
Faraj Y, Beltrani VP. Introduction to Head and Neck Melanoma. Oral Maxillofac Surg Clin North Am 2022; 34:213-220. [DOI: 10.1016/j.coms.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Pauley K, Khan A, Kohlmann W, Jeter J. Considerations for Germline Testing in Melanoma: Updates in Behavioral Change and Pancreatic Surveillance for Carriers of CDKN2A Pathogenic Variants. Front Oncol 2022; 12:837057. [PMID: 35372037 PMCID: PMC8967159 DOI: 10.3389/fonc.2022.837057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/23/2022] [Indexed: 01/13/2023] Open
Abstract
The largest proportion of hereditary melanoma cases are due to pathogenic variants (PVs) in the CDKN2A/p16 gene, which account for 20%-40% of familial melanomas and confer up to a 30%-70% lifetime risk for melanoma in individuals with these variants. In addition, PVs in the CDKN2A gene also increase risk for pancreatic cancer (~5-24% lifetime risk). Individuals with PVs in the CDKN2A gene also tend to have an earlier onset of cancer. Despite these known risks, uptake of germline testing has been limited in the past, largely due to perceptions of limited benefit for patients. Prevention recommendations have been developed for individuals with CDKN2A PVs as well the providers who care for them. On the patient level, behavioral modifications regarding melanoma prevention such as wearing sunscreen, limiting prolonged sun exposure and practicing general sun safety can help reduce risks. Germline testing can provide motivation for some individuals to adhere to these lifestyle changes. On the provider level, pancreatic cancer surveillance for individuals with CDKN2A PVs has been increasingly endorsed by expert consensus, although the efficacy of these surveillance methods remains under study. This review summarizes the updated surveillance guidelines for individuals with CDKN2A PVs and explores the impact of genetic counseling and testing in influencing behavioral changes in these individuals.
Collapse
Affiliation(s)
- Kristen Pauley
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, Salt Lake City, UT, United States
| | - Ambreen Khan
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, Salt Lake City, UT, United States
| | - Wendy Kohlmann
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, Salt Lake City, UT, United States
| | - Joanne Jeter
- Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, UT, United States
| |
Collapse
|
43
|
Abstract
Though melanocytic nevi are ubiquitous in the general population, they can also be key cutaneous manifestations of genetic syndromes. We describe genodermatoses associated with melanocytic nevi and discuss their clinical characteristics, cutaneous manifestations, underlying genetics, and, if applicable, guidelines for when genetic testing should be performed. We categorized these genodermatoses based on their association with congenital nevi, acquired nevi, or nevi whose first appearance is unknown. In many cases, the distinctive morphology or distribution of melanocytic nevi can be an important clue that an underlying genetic syndrome is present, allowing both the patient as well as family members to be screened for the more serious complications of their genetic disorder and receive education on potential preventative measures. As we continue to advance our understanding of how various genotypes give rise to the wide spectrum of phenotypes observed in these genodermatoses, we shall be able to better stratify risk and tailor our screening methods to clinically manage the heterogeneous manifestations of genodermatoses among these patients.
Collapse
Affiliation(s)
- Julie Y Ramseier
- Department of Dermatology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Sara H Perkins
- Department of Dermatology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520.
| |
Collapse
|
44
|
Jeong AR, Forbes K, Orosco RK, Cohen EEW. Hereditary oral squamous cell carcinoma associated with CDKN2A germline mutation: a case report. J Otolaryngol Head Neck Surg 2022; 51:5. [PMID: 35123577 PMCID: PMC8818223 DOI: 10.1186/s40463-022-00556-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Germline CDKN2A mutations are a well-known cause of familial atypical multiple mole melanoma (OMIM #155601) and melanoma-pancreatic cancer syndrome (OMIM #606719). Increased risk of head and neck squamous cell carcinoma (HNSCC), particularly oral squamous cell carcinoma (OSCC) in those with germline CDKN2A mutations, has been described. However, screening for HNSCC is not a routine practice in patients with CDKN2A germline mutations and these mutations are not a conventional test for HNSCC patients without obvious risk factors. CASE PRESENTATION We describe a female with no smoking history who developed oral squamous cell carcinoma at age 39 and had a complex clinical course of recurrent multifocal squamous cell carcinoma (SCC) and carcinoma in situ of the oral cavity and oropharynx. Detailed family history demonstrated that her mother was diagnosed with OSCC and melanoma in her 40 s, and her maternal grandfather was diagnosed with metastatic melanoma in his 40 s. Genetic testing of the patient and her mother revealed CDKN2A c.301G>T mutation. She was referred to genetic counseling as well as to dermatology, gastroenterology, and neurology for cancer surveillance. She was treated with resections and has no evidence of disease 3 years after diagnosis. CONCLUSIONS We report a family with a CDKN2A c.301 G>T mutation who also have significant history of OSCC, adding to the growing body of literature suggesting increased risk of HNSCC, particularly OSCC, in CDKN2A germline mutation carriers. It is important to consider CDKN2A mutation testing in familial HNSCC and young patients without obvious risk factors. Moreover, surveillance for HNSCC should be routine practice in those with a CDKN2A germline mutation.
Collapse
Affiliation(s)
- Ah-Reum Jeong
- Division of Hematology and Oncology, Department of Medicine, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, 92093-0960, USA
| | - Kimberly Forbes
- Division of Hematology and Oncology, Department of Medicine, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, 92093-0960, USA
| | - Ryan K Orosco
- Division of Otolaryngology, Department of Surgery, University of California San Diego, La Jolla, CA, 92093, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ezra E W Cohen
- Division of Hematology and Oncology, Department of Medicine, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA, 92093-0960, USA. .,Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
45
|
Abstract
Melanoma is a relentless type of skin cancer which involves myriad signaling pathways which regulate many cellular processes. This makes melanoma difficult to treat, especially when identified late. At present, therapeutics include chemotherapy, surgical resection, biochemotherapy, immunotherapy, photodynamic and targeted approaches. These interventions are usually administered as either a single-drug or in combination, based on tumor location, stage, and patients' overall health condition. However, treatment efficacy generally decreases as patients develop treatment resistance. Genetic profiling of melanocytes and the discovery of novel molecular factors involved in the pathogenesis of melanoma have helped to identify new therapeutic targets. In this literature review, we examine several newly approved therapies, and briefly describe several therapies being assessed for melanoma. The goal is to provide a comprehensive overview of recent developments and to consider future directions in the field of melanoma.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Pavan Kumar Dhanyamraju, Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA17033, USA. Tel: +1-6096474712, E-mail:
| | - Trupti N. Patel
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
46
|
Impact of Next-generation Sequencing on Interobserver Agreement and Diagnosis of Spitzoid Neoplasms. Am J Surg Pathol 2021; 45:1597-1605. [PMID: 34757982 DOI: 10.1097/pas.0000000000001753] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Atypical Spitzoid melanocytic tumors are diagnostically challenging. Many studies have suggested various genomic markers to improve classification and prognostication. We aimed to assess whether next-generation sequencing studies using the Tempus xO assay assessing mutations in 1711 cancer-related genes and performing whole transcriptome mRNA sequencing for structural alterations could improve diagnostic agreement and accuracy in assessing neoplasms with Spitzoid histologic features. Twenty expert pathologists were asked to review 70 consultation level cases with Spitzoid features, once with limited clinical information and again with additional genomic information. There was an improvement in overall agreement with additional genomic information. Most significantly, there was increase in agreement of the diagnosis of conventional melanoma from moderate (κ=0.470, SE=0.0105) to substantial (κ=0.645, SE=0.0143) as measured by an average Cohen κ. Clinical follow-up was available in all 70 cases which substantiated that the improved agreement was clinically significant. Among 3 patients with distant metastatic disease, there was a highly significant increase in diagnostic recognition of the cases as conventional melanoma with genomics (P<0.005). In one case, none of 20 pathologists recognized a tumor with BRAF and TERT promoter mutations associated with fatal outcome as a conventional melanoma when only limited clinical information was provided, whereas 60% of pathologists correctly diagnosed this case when genomic information was also available. There was also a significant improvement in agreement of which lesions should be classified in the Spitz category/WHO Pathway from an average Cohen κ of 0.360 (SE=0.00921) to 0.607 (SE=0.0232) with genomics.
Collapse
|
47
|
Krishnamurthy K, Urioste SN, Cusnir M, Schwartz M, Alghamdi S, Sriganeshan V, Poppiti R. Analysis of Genetic Alterations in Cutaneous Malignant Melanomas Unveils Unique Loco-Regional Variations and Novel Predictors of Metastatic Potential. Am J Dermatopathol 2021; 43:e185-e189. [PMID: 33859081 DOI: 10.1097/dad.0000000000001953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Cutaneous malignant melanoma is an aggressive cancer that contributes significantly to cancer-related mortality. Over the years, a deeper scrutiny of melanoma biology has led to identification of diverse evolutionary patterns involving various genetic pathways. This study attempts to further understand the genetic landscape of cutaneous malignant melanoma in terms of loco-regional variations and malignant potential. Thirty-five cases of cutaneous malignant melanoma were retrieved from the archives and were classified based on location of the primary tumor and presence or absence of metastatic disease. Next-generation sequencing data consisting of base substitutions, copy number variations, indels, and rearrangements in a total of 324 genes were analyzed for recurrent genetic alterations. Statistical analysis was performed using IBM SPSS26 software. Mutations in KDM gene family were found in 62.5% of the melanomas in the head and neck as compared with 10% in melanomas of the extremity and trunk (P = 0.03). Mutations in the RAS gene family were found in 70% of melanomas in the extremities as compared to 12.5% in melanomas of the head and neck (P = 0.003). BTK gene mutations were found exclusively in melanomas of the head and neck (P = 0.032). CREBBP mutations were seen in 50% of the nonmetastatic melanomas as compared with 3.57% of metastatic melanomas (P = 0.005). This study highlights the loco-regional variations in cutaneous malignant melanoma for genetic alterations involving the KDM, RAS, and BTK gene family. In addition, the CREBBP mutational status is identified as a potential prognostic marker for predicting metastatic potential in cutaneous malignant melanomas.
Collapse
Affiliation(s)
- Kritika Krishnamurthy
- A.M. Rywlin, MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL
| | - Sophia N Urioste
- Department of Pathology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL; and
| | - Mike Cusnir
- Department of Medical Oncology, Mount Sinai Medical Center, Miami Beach, FL
| | - Michael Schwartz
- Department of Medical Oncology, Mount Sinai Medical Center, Miami Beach, FL
| | - Sarah Alghamdi
- A.M. Rywlin, MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL
- Department of Pathology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL; and
| | - Vathany Sriganeshan
- A.M. Rywlin, MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL
- Department of Pathology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL; and
| | - Robert Poppiti
- A.M. Rywlin, MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL
- Department of Pathology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL; and
| |
Collapse
|
48
|
Truderung OAH, Sagi JC, Semsei AF, Szalai C. Melanoma susceptibility: an update on genetic and epigenetic findings. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2021; 12:71-89. [PMID: 34853632 PMCID: PMC8611230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Malignant melanoma is one of the most highly ranked cancers in terms of years of life lost. Hereditary melanoma with its increased familial susceptibility is thought to affect up to 12% of all melanoma patients. In the past, only a few high-penetrance genes associated with familial melanoma, such as CDKN2A and CDK4, have been clinically tested. However, findings now indicate that melanoma is a cancer most likely to develop not only due to high-penetrance variants but also due to polygenic inheritance patterns, leaving no clear division between the hereditary and sporadic development of malignant melanoma. Various pathogenic low-penetrance variants were recently discovered through genome-wide association studies, and are now translated into polygenic risk scores. These can show superior sensitivity rates for the prediction of melanoma susceptibility and related mixed cancer syndromes than risk scores based on phenotypic traits of the patients, with odds ratios of up to 5.7 for patients in risk groups. In addition to describing genetic findings, we also review the first results of epigenetic research showing constitutional methylation changes that alter the susceptibility to cutaneous melanoma and its risk factors.
Collapse
Affiliation(s)
- Ole AH Truderung
- Department of Genetics, Cell- and Immunobiology, Semmelweis UniversityH-1089 Budapest, Hungary
| | - Judit C Sagi
- Department of Genetics, Cell- and Immunobiology, Semmelweis UniversityH-1089 Budapest, Hungary
| | - Agnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis UniversityH-1089 Budapest, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis UniversityH-1089 Budapest, Hungary
- Heim Pal Children’s HospitalH-1089 Budapest, Hungary
| |
Collapse
|
49
|
CDKN2A-Mutated Pancreatic Ductal Organoids from Induced Pluripotent Stem Cells to Model a Cancer Predisposition Syndrome. Cancers (Basel) 2021; 13:cancers13205139. [PMID: 34680288 PMCID: PMC8533699 DOI: 10.3390/cancers13205139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) provide a unique platform to study hereditary disorders and predisposition syndromes by resembling germline mutations of affected individuals and by their potential to differentiate into nearly every cell type of the human body. We employed plucked human hair from two siblings with a family history of cancer carrying a pathogenic CDKN2A variant, P16-p.G101W/P14-p.R115L, to generate patient-specific iPSCs in a cancer-prone ancestry for downstream analytics. The differentiation capacity to pancreatic progenitors and to pancreatic duct-like organoids (PDLOs) according to a recently developed protocol remained unaffected. Upon inducible expression of KRASG12Dusing a piggyBac transposon system in CDKN2A-mutated PDLOs, we revealed structural and molecular changes in vitro, including disturbed polarity and epithelial-to-mesenchymal (EMT) transition. CDKN2A-mutated KRASG12DPDLO xenotransplants formed either a high-grade precancer lesion or a partially dedifferentiated PDAC-like tumor. Intriguingly, P14/P53/P21 and P16/RB cell-cycle checkpoint controls have been only partly overcome in these grafts, thereby still restricting the tumorous growth. Hereby, we provide a model for hereditary human pancreatic cancer that enables dissection of tumor initiation and early development starting from patient-specific CDKN2A-mutated pluripotent stem cells.
Collapse
|
50
|
Etiologies of Melanoma Development and Prevention Measures: A Review of the Current Evidence. Cancers (Basel) 2021; 13:cancers13194914. [PMID: 34638397 PMCID: PMC8508267 DOI: 10.3390/cancers13194914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Melanoma constitutes a major public health risk, with the rates of diagnosis increasing on a yearly basis. Monitoring for risk factors and preventing dangerous behaviors that increase melanoma risk, such as tanning, are important measures for melanoma prevention. Additionally, assessing the effectiveness of various methods to prevent sun exposure and sunburns—which can lead to melanoma—is important to help identify ways to reduce the development of melanoma. We summarize the recent evidence regarding the heritable and behavioral risks underlying melanoma, as well as the current methods used to reduce the risk of developing melanoma and to improve the diagnosis of this disease. Abstract (1) Melanoma is the most aggressive dermatologic malignancy, with an estimated 106,110 new cases to be diagnosed in 2021. The annual incidence rates continue to climb, which underscores the critical importance of improving the methods to prevent this disease. The interventions to assist with melanoma prevention vary and typically include measures such as UV avoidance and the use of protective clothing, sunscreen, and other chemopreventive agents. However, the evidence is mixed surrounding the use of these and other interventions. This review discusses the heritable etiologies underlying melanoma development before delving into the data surrounding the preventive methods highlighted above. (2) A comprehensive literature review was performed to identify the clinical trials, observational studies, and meta-analyses pertinent to melanoma prevention and incidence. Online resources were queried to identify epidemiologic and clinical trial information. (3) Evidence exists to support population-wide screening programs, the proper use of sunscreen, and community-targeted measures in the prevention of melanoma. Clinical evidence for the majority of the proposed preventive chemotherapeutics is presently minimal but continues to evolve. (4) Further study of these chemotherapeutics, as well as improvement of techniques in artificial intelligence and imaging techniques for melanoma screening, is warranted for continued improvement of melanoma prevention.
Collapse
|