1
|
Muric M, Nikolic M, Todorovic A, Jakovljevic V, Vucicevic K. Comparative Cardioprotective Effectiveness: NOACs vs. Nattokinase-Bridging Basic Research to Clinical Findings. Biomolecules 2024; 14:956. [PMID: 39199344 PMCID: PMC11352257 DOI: 10.3390/biom14080956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
The use of non-vitamin K antagonist oral anticoagulants (NOACs) has brought a significant progress in the management of cardiovascular diseases, considered clinically superior to vitamin K antagonists (VKAs) particularly in the prevention and treatment of thromboembolic events. In addition, numerous advantages such as fixed dosing, lack of laboratory monitoring, and fewer food and drug-to-drug interactions make the use of NOACs superior to VKAs. While NOACs are synthetic drugs prescribed for specific conditions, nattokinase (NK) is a natural enzyme derived from food that has potential health benefits. Various experimental and clinical studies reported the positive effects of NK on the circulatory system, including the thinning of blood and the dissolution of blood clots. This enzyme showed not only fibrinolytic activity due to its ability to degrade fibrin, but also an affinity as a substrate for plasmin. Recent studies have shown that NK has additional cardioprotective effects, such as antihypertensive and anti-atherosclerotic effects. In this narrative review, we presented the cardioprotective properties of two different approaches that go beyond anticoagulation: NOACs and NK. By combining evidence from basic research with clinical findings, we aim to elucidate the comparative cardioprotective efficacy of these interventions and highlight their respective roles in modern cardiovascular care.
Collapse
Affiliation(s)
- Maja Muric
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (V.J.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
| | - Marina Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (V.J.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
| | - Andreja Todorovic
- Department of Cardiology, General Hospital Ćuprija, 35230 Ćuprija, Serbia;
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (V.J.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
- Department of Human Pathology, First Moscow State Medical, University IM Sechenov, 119991 Moscow, Russia
| | - Ksenija Vucicevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
2
|
Ruf L, Bukowska A, Gardemann A, Goette A. Coagulation Factor Xa Has No Effects on the Expression of PAR1, PAR2, and PAR4 and No Proinflammatory Effects on HL-1 Cells. Cells 2023; 12:2849. [PMID: 38132169 PMCID: PMC10741780 DOI: 10.3390/cells12242849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Atrial fibrillation (AF), characterised by irregular high-frequency contractions of the atria of the heart, is of increasing clinical importance. The reasons are the increasing prevalence and thromboembolic complications caused by AF. So-called atrial remodelling is characterised, among other things, by atrial dilatation and fibrotic remodelling. As a result, AF is self-sustaining and forms a procoagulant state. But hypercoagulation not only appears to be the consequence of AF. Coagulation factors can exert influence on cells via protease-activated receptors (PAR) and thereby the procoagulation state could contribute to the development and maintenance of AF. In this work, the influence of FXa on Heart Like-1 (HL-1) cells, which are murine adult atrial cardiomyocytes (immortalized), was investigated. PAR1, PAR2, and PAR4 expression was detected. After incubations with FXa (5-50 nM; 4-24 h) or PAR1- and PAR2-agonists (20 µM; 4-24 h), no changes occurred in PAR expression or in the inflammatory signalling cascade. There were no time- or concentration-dependent changes in the phosphorylation of the MAP kinases ERK1/2 or the p65 subunit of NF-κB. In addition, there was no change in the mRNA expression of the cell adhesion molecules (ICAM-1, VCAM-1, fibronectin). Thus, FXa has no direct PAR-dependent effects on HL-1 cells. Future studies should investigate the influence of FXa on human cardiomyocytes or on other cardiac cell types like fibroblasts.
Collapse
Affiliation(s)
- Lukas Ruf
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Alicja Bukowska
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Gardemann
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Goette
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Department of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital Paderborn, Am Busdorf 2, 33098 Paderborn, Germany
| |
Collapse
|
3
|
Wang H, Poe A, Martinez Yus M, Pak L, Nandakumar K, Santhanam L. Lysyl oxidase-like 2 processing by factor Xa modulates its activity and substrate preference. Commun Biol 2023; 6:375. [PMID: 37029269 PMCID: PMC10082071 DOI: 10.1038/s42003-023-04748-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) has been identified as an essential mediator of extracellular matrix (ECM) remodeling in several disease processes including cardiovascular disease. Thus, there is growing interest in understanding the mechanisms by which LOXL2 is regulated in cells and tissue. While LOXL2 occurs both in full length and processed forms in cells and tissue, the precise identity of the proteases that process LOXL2 and the consequences of processing on LOXL2's function remain incompletely understood. Here we show that Factor Xa (FXa) is a protease that processes LOXL2 at Arg-338. Processing by FXa does not affect the enzymatic activity of soluble LOXL2. However, in situ in vascular smooth muscle cells, LOXL2 processing by FXa results in decreased cross-linking activity in the ECM and shifts substrate preference of LOXL2 from type IV collagen to type I collagen. Additionally, processing by FXa increases the interactions between LOXL2 and prototypical LOX, suggesting a potential compensatory mechanism to preserve total LOXs activity in the vascular ECM. FXa expression is prevalent in various organ systems and shares similar roles in fibrotic disease progression as LOXL2. Thus, LOXL2 processing by FXa could have significant implications in pathologies where LOXL2 is involved.
Collapse
Affiliation(s)
- Huilei Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Alan Poe
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Marta Martinez Yus
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Lydia Pak
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Kavitha Nandakumar
- Department of Anesthesiology and CCM, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore MD, 21205, Baltimore, MD, USA
| | - Lakshmi Santhanam
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, 3400 N Charles St, Baltimore, MD, 21218, USA.
- Department of Anesthesiology and CCM, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore MD, 21205, Baltimore, MD, USA.
| |
Collapse
|
4
|
The Complex Relation between Atrial Cardiomyopathy and Thrombogenesis. Cells 2022; 11:cells11192963. [PMID: 36230924 PMCID: PMC9563762 DOI: 10.3390/cells11192963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Heart disease, as well as systemic metabolic alterations, can leave a ‘fingerprint’ of structural and functional changes in the atrial myocardium, leading to the onset of atrial cardiomyopathy. As demonstrated in various animal models, some of these changes, such as fibrosis, cardiomyocyte hypertrophy and fatty infiltration, can increase vulnerability to atrial fibrillation (AF), the most relevant manifestation of atrial cardiomyopathy in clinical practice. Atrial cardiomyopathy accompanying AF is associated with thromboembolic events, such as stroke. The interaction between AF and stroke appears to be far more complicated than initially believed. AF and stroke share many risk factors whose underlying pathological processes can reinforce the development and progression of both cardiovascular conditions. In this review, we summarize the main mechanisms by which atrial cardiomyopathy, preceding AF, supports thrombogenic events within the atrial cavity and myocardial interstitial space. Moreover, we report the pleiotropic effects of activated coagulation factors on atrial remodeling, which may aggravate atrial cardiomyopathy. Finally, we address the complex association between AF and stroke, which can be explained by a multidirectional causal relation between atrial cardiomyopathy and hypercoagulability.
Collapse
|
5
|
Oh H, Park HE, Song MS, Kim H, Baek JH. The Therapeutic Potential of Anticoagulation in Organ Fibrosis. Front Med (Lausanne) 2022; 9:866746. [PMID: 35652066 PMCID: PMC9148959 DOI: 10.3389/fmed.2022.866746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
Fibrosis, also known as organ scarring, describes a pathological stiffening of organs or tissues caused by increased synthesis of extracellular matrix (ECM) components. In the past decades, mounting evidence has accumulated showing that the coagulation cascade is directly associated with fibrotic development. Recent findings suggest that, under inflammatory conditions, various cell types (e.g., immune cells) participate in the coagulation process causing pathological outcomes, including fibrosis. These findings highlighted the potential of anticoagulation therapy as a strategy in organ fibrosis. Indeed, preclinical and clinical studies demonstrated that the inhibition of blood coagulation is a potential intervention for the treatment of fibrosis across all major organs (e.g., lung, liver, heart, and kidney). In this review, we aim to summarize our current knowledge on the impact of components of coagulation cascade on fibrosis of various organs and provide an update on the current development of anticoagulation therapy for fibrosis.
Collapse
|
6
|
D’Alessandro E, Scaf B, Munts C, van Hunnik A, Trevelyan CJ, Verheule S, Spronk HMH, Turner NA, ten Cate H, Schotten U, van Nieuwenhoven FA. Coagulation Factor Xa Induces Proinflammatory Responses in Cardiac Fibroblasts via Activation of Protease-Activated Receptor-1. Cells 2021; 10:2958. [PMID: 34831181 PMCID: PMC8616524 DOI: 10.3390/cells10112958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022] Open
Abstract
Coagulation factor (F) Xa induces proinflammatory responses through activation of protease-activated receptors (PARs). However, the effect of FXa on cardiac fibroblasts (CFs) and the contribution of PARs in FXa-induced cellular signalling in CF has not been fully characterised. To answer these questions, human and rat CFs were incubated with FXa (or TRAP-14, PAR-1 agonist). Gene expression of pro-fibrotic and proinflammatory markers was determined by qRT-PCR after 4 and 24 h. Gene silencing of F2R (PAR-1) and F2RL1 (PAR-2) was achieved using siRNA. MCP-1 protein levels were measured by ELISA of FXa-conditioned media at 24 h. Cell proliferation was assessed after 24 h of incubation with FXa ± SCH79797 (PAR-1 antagonist). In rat CFs, FXa induced upregulation of Ccl2 (MCP-1; >30-fold at 4 h in atrial and ventricular CF) and Il6 (IL-6; ±7-fold at 4 h in ventricular CF). Increased MCP-1 protein levels were detected in FXa-conditioned media at 24 h. In human CF, FXa upregulated the gene expression of CCL2 (>3-fold) and IL6 (>4-fold) at 4 h. Silencing of F2R (PAR-1 gene), but not F2RL1 (PAR-2 gene), downregulated this effect. Selective activation of PAR-1 by TRAP-14 increased CCL2 and IL6 gene expression; this was prevented by F2R (PAR-1 gene) knockdown. Moreover, SCH79797 decreased FXa-induced proliferation after 24 h. In conclusion, our study shows that FXa induces overexpression of proinflammatory genes in human CFs via PAR-1, which was found to be the most abundant PARs isoform in this cell type.
Collapse
Affiliation(s)
- Elisa D’Alessandro
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6220 MD Maastricht, The Netherlands; (E.D.); (H.M.H.S.); (H.t.C.)
| | - Billy Scaf
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (B.S.); (C.M.); (A.v.H.); (S.V.); (U.S.)
| | - Chantal Munts
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (B.S.); (C.M.); (A.v.H.); (S.V.); (U.S.)
| | - Arne van Hunnik
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (B.S.); (C.M.); (A.v.H.); (S.V.); (U.S.)
| | - Christopher J. Trevelyan
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (C.J.T.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (B.S.); (C.M.); (A.v.H.); (S.V.); (U.S.)
| | - Henri M. H. Spronk
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6220 MD Maastricht, The Netherlands; (E.D.); (H.M.H.S.); (H.t.C.)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (C.J.T.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Hugo ten Cate
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6220 MD Maastricht, The Netherlands; (E.D.); (H.M.H.S.); (H.t.C.)
- Center for Thrombosis and Haemostasis, Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (B.S.); (C.M.); (A.v.H.); (S.V.); (U.S.)
| | - Frans A. van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (B.S.); (C.M.); (A.v.H.); (S.V.); (U.S.)
| |
Collapse
|
7
|
Yurista SR, Silljé HHW, Nijholt KT, Dokter MM, van Veldhuisen DJ, de Boer RA, Westenbrink BD. Factor Xa Inhibition with Apixaban Does Not Influence Cardiac Remodelling in Rats with Heart Failure After Myocardial Infarction. Cardiovasc Drugs Ther 2021; 35:953-963. [PMID: 32458320 PMCID: PMC8452585 DOI: 10.1007/s10557-020-06999-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heart failure (HF) is considered to be a prothrombotic condition and it has been suggested that coagulation factors contribute to maladaptive cardiac remodelling via activation of the protease-activated receptor 1 (PAR1). We tested the hypothesis that anticoagulation with the factor Xa (FXa) inhibitor apixaban would ameliorate cardiac remodelling in rats with HF after myocardial infarction (MI). METHODS AND RESULTS Male Sprague-Dawley rats were either subjected to permanent ligation of the left ascending coronary artery (MI) or sham surgery. The MI and sham animals were randomly allocated to treatment with placebo or apixaban in the chow (150 mg/kg/day), starting 2 weeks after surgery. Cardiac function was assessed using echocardiography and histological and molecular markers of cardiac hypertrophy were assessed in the left ventricle (LV). Apixaban resulted in a fivefold increase in anti-FXa activity compared with vehicle, but no overt bleeding was observed and haematocrit levels remained similar in apixaban- and vehicle-treated groups. After 10 weeks of treatment, LV ejection fraction was 42 ± 3% in the MI group treated with apixaban and 37 ± 2 in the vehicle-treated MI group (p > 0.05). Both vehicle- and apixaban-treated MI groups also displayed similar degrees of LV dilatation, LV hypertrophy and interstitial fibrosis. Histological and molecular markers for pathological remodelling were also comparable between groups, as was the activity of signalling pathways downstream of the PAR1 receptor. CONCLUSION FXa inhibition with apixaban does not influence pathological cardiac remodelling after MI. These data do not support the use of FXa inhibitor in HF patients with the aim to amend the severity of HF. Graphical Abstract.
Collapse
Affiliation(s)
- Salva R Yurista
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - Kirsten T Nijholt
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - Martin M Dokter
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands.
| |
Collapse
|
8
|
Nekrasov AA, Timoshchenko ES, Nekrasova TA, Timoshchenko MV, Suleimanova AV. The effect of rivaroxaban low doses on the stable angina of the II-III functional class clinical manifestations and the quality of life in patients with ischemic heart disease. KARDIOLOGIYA 2021; 61:47-51. [PMID: 34713785 DOI: 10.18087/cardio.2021.9.n1696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022]
Abstract
Aim To evaluate the effect of low-dose rivaroxaban on quality of life of patients and clinical manifestations of functional class (FC) II-III stable angina.Material and methods 26 patients with ischemic heart disease (IHD) with FC II-III stable angina, who were newly prescribed rivaroxaban 2.5 mg twice a day in combination with acetylsalicylic acid 75-100 mg, were followed for 10 weeks. During the first (before the beginning of treatment) and the last weeks of study, patients kept diaries, in which they reported angina attacks and short-acting nitrate intake, filled in an angina questionnaire (SAQ), and underwent electrocardiogram (ECG) Holter monitoring (HM).Results The treatment was associated with decreases in the frequency of angina attacks (by 19.5 %; р=0.027) and the number of taken short-acting nitrate pills (by 17.1 %; р=0.021) and an improvement of quality of life according to stability scales (р=0.042). Data from ECG HM showed decreases in the number and duration of ischemic episodes (p≤0.05).Conclusion The treatment of IHD patients with rivaroxaban 2.5 mg twice a day in combination with acetylsalicylic acid 75-100 mg for 2 mos. was associated with decreased frequency of angina attacks, reduced requirement for short-acting nitrate, and with improvement of quality of life.
Collapse
Affiliation(s)
- A A Nekrasov
- Privolzhsky Research Medical University, Nizhny Novgorod
| | | | - T A Nekrasova
- Privolzhsky Research Medical University, Nizhny Novgorod
| | | | - A V Suleimanova
- I. I. Mechnikov North-Western State Medical University, St. Petersburg
| |
Collapse
|
9
|
Kolpakov AR, Knyazev RA. Endogenous Cardiotonics: Search And Problems. Cardiovasc Hematol Disord Drug Targets 2021; 21:95-103. [PMID: 33874876 DOI: 10.2174/1871529x21666210419121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
Medicinal preparations currently used for the treatment of patients with chronic cardiac failure involve those that reduce the heart load (vasodilators, diuretics, beta-blockers, and angiotensin-converting enzyme (ACE) inhibitors). Cardiotonic drugs with the cAMP-dependent mechanism are unsuitable for long-term administration due to the intensification of metabolic processes and an increase in the oxygen demand of the myocardium and all tissues of the body. For many years, digoxin has remained the only preparation enhancing the efficiency of myocardial performance. The detection of digoxin and ouabain in intact animals has initiated a search for other compounds with cardiotonic activity. The review summarizes current data on the effect exerted on the heart performance by endogenous compounds, from simple, such as NO and CO, to steroids, fatty acids, polypeptides, and proteins. Controversial questions and problems with the introduction of scientific achievements into clinical practice are discussed. The results obtained by the authors and their colleagues after many years of studies on the cardiotropic properties of serum lipoproteins are also reported. The experimentally established cardiotonic activity of apoprotein A-1, which is accompanied by a decrease in the relative consumption of oxygen, maybe of great interest.
Collapse
Affiliation(s)
- Arkady R Kolpakov
- Institute of Biochemistry of Federal Research Center for Fundamental and Translational Medicine, Novosibirsk. Russian Federation
| | - Roman A Knyazev
- Institute of Biochemistry of Federal Research Center for Fundamental and Translational Medicine, Novosibirsk. Russian Federation
| |
Collapse
|
10
|
Daci A, Da Dalt L, Alaj R, Shurdhiqi S, Neziri B, Ferizi R, Danilo Norata G, Krasniqi S. Rivaroxaban improves vascular response in LPS-induced acute inflammation in experimental models. PLoS One 2020; 15:e0240669. [PMID: 33301454 PMCID: PMC7728205 DOI: 10.1371/journal.pone.0240669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Rivaroxaban (RVX) was suggested to possess anti-inflammatory and vascular tone modulatory effects. The goal of this study was to investigate whether RVX impacts lipopolysaccharide (LPS)-induced acute vascular inflammatory response. Male rats were treated with 5 mg/kg RVX (oral gavage) followed by 10 mg/kg LPS i.p injection. Circulating levels of IL-6, MCP-1, VCAM-1, and ICAM-1 were measured in plasma 6 and 24 hours after LPS injection, while isolated aorta was used for gene expression analysis, immunohistochemistry, and vascular tone evaluation. RVX pre-treatment significantly reduced LPS mediated increase after 6h and 24h for IL-6 (4.4±2.2 and 2.8±1.7 fold), MCP-1 (1.4±1.5 and 1.3±1.4 fold) VCAM-1 (1.8±2.0 and 1.7±2.1 fold). A similar trend was observed in the aorta for iNOS (5.5±3.3 and 3.3±1.9 folds reduction, P<0.01 and P<0.001, respectively), VCAM-1 (1.3±1.2 and 1.4±1.3 fold reduction, P<0.05), and MCP-1 (3.9±2.2 and 1.9±1.6 fold reduction, P<0.01). Moreover, RVX pre-treatment, improved LPS-induced PE contractile dysfunction in aortic rings (Control vs LPS, Emax reduction = 35.4 and 31.19%, P<0.001; Control vs LPS+RVX, Emax reduction = 10.83 and 11.48%, P>0.05, respectively), resulting in 24.5% and 19.7% change in maximal constriction in LPS and LPS+RVX respectively. These data indicate that RVX pre-treatment attenuates LPS-induced acute vascular inflammation and contractile dysfunction.
Collapse
Affiliation(s)
- Armond Daci
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Lorenzo Da Dalt
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rame Alaj
- Cardiovascular Surgery Clinic, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Shpejtim Shurdhiqi
- Cardiovascular Surgery Clinic, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Burim Neziri
- Institute of Pathophysiology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Rrahman Ferizi
- Department of Premedical Courses-Biology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Giuseppe Danilo Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Centro SISA per lo Studio dell’Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Shaip Krasniqi
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- * E-mail:
| |
Collapse
|
11
|
Frydman GH, Streiff MB, Connors JM, Piazza G. The Potential Role of Coagulation Factor Xa in the Pathophysiology of COVID-19: A Role for Anticoagulants as Multimodal Therapeutic Agents. ACTA ACUST UNITED AC 2020; 4:e288-e299. [PMID: 33043235 PMCID: PMC7541169 DOI: 10.1055/s-0040-1718415] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 infection (COVID-19) results in local and systemic activation of inflammation and coagulation. In this review article, we will discuss the potential role of coagulation factor Xa (FXa) in the pathophysiology of COVID-19. FXa, a serine protease, has been shown to play a role in the cleavage of SARS-CoV-1 spike protein (SP), with the inhibition of FXa resulting in the inhibition of viral infectivity. FX is known to be primarily produced in the liver, but it is also expressed by multiple cells types, including alveolar epithelium, cardiac myocytes, and macrophages. Considering that patients with preexisting conditions, including cardiopulmonary disease, are at an increased risk of severe COVID-19, we discuss the potential role of increased levels of FX in these patients, resulting in a potential increased propensity to have a higher infectious rate and viral load, increased activation of coagulation and inflammation, and development of fibrosis. With these observations in mind, we postulate as to the potential therapeutic role of FXa inhibitors as a prophylactic and therapeutic treatment for high-risk patients with COVID-19.
Collapse
Affiliation(s)
- Galit H Frydman
- Coagulo Medical Technologies, Inc., Auburndale, Massachusetts, United States.,Center for Biomedical Engineering, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States.,Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Michael B Streiff
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jean M Connors
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Gregory Piazza
- Division of Cardiovascular Medicine Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Yokono Y, Hanada K, Narita M, Tatara Y, Kawamura Y, Miura N, Kitayama K, Nakata M, Nozaka M, Kato T, Kudo N, Tsushima M, Toyama Y, Itoh K, Tomita H. Blockade of PAR-1 Signaling Attenuates Cardiac Hypertrophy and Fibrosis in Renin-Overexpressing Hypertensive Mice. J Am Heart Assoc 2020; 9:e015616. [PMID: 32495720 PMCID: PMC7429042 DOI: 10.1161/jaha.119.015616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Although PAR‐1 (protease‐activated receptor‐1) exerts important functions in the pathophysiology of the cardiovascular system, the role of PAR‐1 signaling in heart failure development remains largely unknown. We tested the hypothesis that PAR‐1 signaling inhibition has protective effects on the progression of cardiac remodeling induced by chronic renin–angiotensin system activation using renin‐overexpressing hypertensive (Ren‐Tg) mice. Methods and Results We treated 12‐ to 16‐week‐old male wild‐type (WT) mice and Ren‐Tg mice with continuous subcutaneous infusion of the PAR‐1 antagonist SCH79797 or vehicle for 4 weeks. The thicknesses of interventricular septum and the left ventricular posterior wall were greater in Ren‐Tg mice than in WT mice, and SCH79797 treatment significantly decreased these thicknesses in Ren‐Tg mice. The cardiac fibrosis area and monocyte/macrophage deposition were greater in Ren‐Tg mice than in WT mice, and both conditions were attenuated by SCH79797 treatment. Cardiac mRNA expression levels of PAR‐1, TNF‐α (tumor necrosis factor‐α), TGF‐β1 (transforming growth factor‐β1), and COL3A1 (collagen type 3 α1 chain) and the ratio of β‐myosin heavy chain (β‐MHC) to α‐MHC were all greater in Ren‐Tg mice than in WT mice; SCH79797 treatment attenuated these increases in Ren‐Tg mice. Prothrombin fragment 1+2 concentration and factor Xa in plasma were greater in Ren‐Tg mice than in WT mice, and both conditions were unaffected by SCH79797 treatment. In isolated cardiac fibroblasts, both thrombin and factor Xa enhanced ERK1/2 (extracellular signal‐regulated kinase 1/2) phosphorylation, and SCH79797 pretreatment abolished this enhancement. Furthermore, gene expression of PAR‐1, TGF‐β1, and COL3A1 were enhanced by factor Xa, and all were inhibited by SCH79797. Conclusions The results indicate that PAR‐1 signaling is involved in cardiac remodeling induced by renin–angiotensin system activation, which may provide a novel therapeutic target for heart failure.
Collapse
Affiliation(s)
- Yoshikazu Yokono
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Kenji Hanada
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Masato Narita
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yota Tatara
- Department of Glycotechnology Center for Advanced Medical Research Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yousuke Kawamura
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Naotake Miura
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Kazutaka Kitayama
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Masamichi Nakata
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Masashi Nozaka
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Tomo Kato
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Natsumi Kudo
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Michiko Tsushima
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yuichi Toyama
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Ken Itoh
- Department of Stress Response Science Center for Advanced Medical Research Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Hirofumi Tomita
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| |
Collapse
|