1
|
Singh M, Jhajharia A, Pruthi R, Carmichael OT. 31P-MRS-Measured Phosphocreatine Recovery Kinetics in Human Muscles in Health and Disease-A Systematic Review and Meta-Analysis. NMR IN BIOMEDICINE 2025; 38:e70023. [PMID: 40189235 DOI: 10.1002/nbm.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 03/06/2025] [Accepted: 03/22/2025] [Indexed: 05/17/2025]
Abstract
The noninvasive, in vivo measurement of postexercise phosphocreatine (PCr) recovery kinetics using 31-phosphorus magnetic resonance spectroscopy (31P-MRS) is a highly prevalent method for assessing skeletal muscle energetics. However, 31P-MRS methodology is notoriously laboratory-specific, leading to uncertainty about the normal range of PCr recovery kinetics among healthy individuals, as well as relationships with disease and demographic factors. This systematic review and meta-analysis characterized the normal range of PCr recovery kinetics from 31P-MRS in human skeletal muscles across the lifespan, differences between healthy and those with muscle-related diseases, and relationships between intermuscular PCr recovery measurements and demographic factors. PubMed, Web of Science, Cochrane, and Google Scholar databases were searched for PCr recovery studies, which resulted in a final set of 128 studies eligible for meta-analysis. Studies were categorized into three muscle groups (forearm, upper leg, and lower leg) and further subdivided into three groups: diseased, control (the comparator group in studies of disease), and healthy (those recruited into studies that lacked a disease group). Only English-language studies were included. All statistical analysis was performed using Stata 17 software. Forest plots showed significant heterogeneity across PCr recovery time estimates and outlier study removal significantly reduced this heterogeneity. Greater age was associated with longer PCr recovery in upper leg muscles among both healthy (ρ = 0.387, p < 0.05) and diseased (ρ = 0.733, p < 0.05) individuals. Additionally, longer PCr recovery time was correlated with more acidic end-of-exercise pH in all three muscle groups among healthy individuals. In conclusion, skeletal muscle energetics as indexed by 31P-MRS-based PCr recovery time is similar across three different skeletal muscle groups among healthy people. Common diseases significantly prolong PCr recovery times. Methodological heterogeneity has a significant impact on PCr recovery time measurements in this literature. Greater age and more acidic pH increase PCr recovery time among healthy people.
Collapse
Affiliation(s)
- Maninder Singh
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Aditya Jhajharia
- School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Rajat Pruthi
- School of Plant Environmental and Soil Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | | |
Collapse
|
2
|
Divakaran S, Harms HJ, Robertson M, Merugumala SK, Park MA, Kijewski MF, Martell LB, Morgan V, Barrett L, Perillo A, Yang D, Jarolim P, Feinberg MW, Gerhard-Herman MD, Belkin M, Lin AP, Creager MA, Bonaca MP, Di Carli MF. Post-walking exercise skeletal muscle perfusion and energetics in patients with symptomatic lower extremity peripheral artery disease. J Nucl Cardiol 2025; 46:102143. [PMID: 39889951 DOI: 10.1016/j.nuclcard.2025.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND The pathophysiology of symptoms and reduced exercise capacity from peripheral artery disease (PAD) remains unclear. Additionally, there is limited information on blood flow and skeletal muscle energetics after walking exercise in patients with claudication in comparison to healthy individuals. METHODS We prospectively enrolled 19 patients with claudication from PAD and 12 healthy subjects. All participants underwent rest and post-exercise perfusion imaging of the lower leg muscles via PET/CT. Participants exercised on a treadmill following the Gardner-Skinner protocol. Skeletal muscle blood flow (SMBF) was quantified in each leg at rest and immediately after exercise. Phosphocreatine (PCr) recovery and NAD+/NADH concentrations were measured pre- and post-exercise by 31P magnetic resonance spectroscopy (MRS) in a subset of participants. Comparisons were made between the legs of healthy subjects and the asymptomatic and symptomatic legs of patients with PAD. RESULTS SMBF increased post-exercise in all participants. Among patients with PAD, the post-exercise/rest SMBF ratio, was higher in the symptomatic (n = 25) than asymptomatic (n = 13) legs (8.03 ± 2.84 vs 6.03 ± 2.81, P = 0.046) and higher than the post-exercise/rest SMBF ratio measured in the legs of healthy subjects (4.40 ± 1.47, P < 0.001). The post-exercise/rest PCr and NAD+/NADH ratios were lower in the legs of patients with PAD (n = 3) when compared with the legs of healthy subjects (n = 6) (0.79 ± 0.06 vs 1.00 ± 0.07 (P = 0.004) and 1.15 ± 0.43 vs 2.08 ± 0.30 (P = 0.007), respectively). CONCLUSIONS SMBF increased post-exercise to the greatest degree in the symptomatic legs of patients with PAD and post-exercise skeletal muscle mitochondrial function was abnormal in patients with PAD. These data suggest that the causes of symptoms and reduced exercise capacity from PAD are not limited to abnormal perfusion pressure in the legs.
Collapse
Affiliation(s)
- Sanjay Divakaran
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hendrik J Harms
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew Robertson
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sai K Merugumala
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mi-Ae Park
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marie F Kijewski
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurel B Martell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victoria Morgan
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leanne Barrett
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Perillo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Yang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marie D Gerhard-Herman
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Belkin
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander P Lin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark A Creager
- Heart and Vascular Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA; Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Marc P Bonaca
- CPC Clinical Research, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marcelo F Di Carli
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. https://twitter.com/@mdicarli
| |
Collapse
|
3
|
Thangada ND. Post-walking exercise skeletal muscle perfusion and energetics in patients with symptomatic lower extremity peripheral artery disease. J Nucl Cardiol 2025; 46:102204. [PMID: 40240118 DOI: 10.1016/j.nuclcard.2025.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Affiliation(s)
- Neela D Thangada
- Division of Cardiovascular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
4
|
Ju L, Schär M, Wang K, Li A, Wu Y, Samuel TJ, Ganji S, van Zijl PCM, Yadav NN, Weiss RG, Xu J. Mitochondrial oxidative phosphorylation capacity in skeletal muscle measured by ultrafast Z-spectroscopy (UFZ) MRI at 3T. Magn Reson Med 2025; 93:1273-1284. [PMID: 39428676 DOI: 10.1002/mrm.30354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE To investigate the feasibility of rapid CEST MRI acquisition for evaluating oxidative phosphorylation (OXPHOS) in human skeletal muscle at 3T, utilizing ultrafast Z-spectroscopy (UFZ) combined with MRI and the Polynomial and Lorentzian line-shape Fitting (PLOF) technique. METHODS UFZ MRI on muscle was evaluated with turbo spin echo (TSE) and 3D EPI readouts. Five healthy subjects performed in-magnet plantar flexion exercise (PFE) and subsequent changes of amide, PCr, and partial PCr mixed Cr (Cr+) CEST dynamic signals post-exercise were enabled by PLOF fitting. PCr/Cr CEST signal was further refined through pH correction by using the ratios between PCr/Cr and amide signals, named PCAR/CAR, respectively. RESULTS UFZ MRI with TSE readout significantly reduces acquisition time, achieving a temporal resolution of <50 s for collecting high-resolution Z-spectra. Following PFE, the recovery/decay times (τ) for both PCr and Cr in the gastrocnemius muscle of the calf were notably longer when determined using PCr/Cr CEST compared to those after pH correction with amideCEST, namelyτ Cr + $$ {\tau}_{Cr^{+}} $$ = 87.1 ± 15.8 s andτ PCr $$ {\tau}_{PCr} $$ = 98.1 ± 20.4 s versusτ CAR $$ {\tau}_{CAR} $$ = 32.9 ± 19.7 s andτ PCAR $$ {\tau}_{PCAR} $$ = 43.0 ± 13.0 s, respectively.τ PCr $$ {\tau}_{PCr} $$ obtained via 31P MRS (τ PCr $$ {\tau}_{PCr} $$ = 50.3 ± 6.2 s) closely resemble those obtained from pH-corrected PCr/Cr CEST signals. CONCLUSION The outcomes suggest potential of UFZ MRI as a robust tool for non-invasive assessment of mitochondrial function in skeletal muscles. pH correction is critical for the reliable OXPHOS measurement by CEST.
Collapse
Affiliation(s)
- Licheng Ju
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kexin Wang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Anna Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Yihan Wu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - T Jake Samuel
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sandeep Ganji
- Philips Healthcare, MR R&D, Rochester, Minnesota, USA
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter C M van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nirbhay N Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert G Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Lin X, Zhang J, Kong X, Li Y, Xu X, Du L, Zhang JL. Exercise-induced changes in intramuscular total creatine concentration measured with 1H magnetic resonance spectroscopy: A pilot study. Physiol Rep 2024; 12:e16171. [PMID: 39095332 PMCID: PMC11296883 DOI: 10.14814/phy2.16171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Total amount of creatine (Cr) and phosphocreatine, or total creatine (tCr), may have a significant impact on the performance of skeletal muscles. In sports such as bodybuilding, it is popular to take Cr supplements to maintain tCr level. However, no study has explored the quantitative relationship between exercise intensity and the induced change in muscle's tCr. In this well-controlled study, straight-leg plantar flexion with specific load and duration was performed by 10 healthy subjects inside an MRI scanner, immediately followed by 1H MR spectroscopy (MRS) for measuring tCr concentration in gastrocnemius. For repeatability assessment, the experiment was repeated for each subject on two different days. Across all the subjects, baseline tCr was 46.6 ± 2.4 mM, ranging from 40.6 to 50.1 mM; with exercise, tCr significantly decreased by 10.9% ± 1.0% with 6-lb load and 21.0% ± 1.3% with 12-lb load (p < 0.0001). Between two different days, baseline tCr, percentage decrease induced by exercise with a 6-lb and 12-lb load differed by 2.2% ± 2.3%, 11.7% ± 6.0% and 4.9% ± 3.2%, respectively. In conclusion, the proposed protocol of controlled exercise stimulation and MRS acquisition can reproducibly monitor tCr level and its exercise-induced change in skeletal muscles. The measured tCr level is sensitive to exercise intensity, so can be used to quantitatively assess muscle performance or fatigue.
Collapse
Affiliation(s)
- Xi Lin
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
| | - Jiaying Zhang
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
| | - Xiangwei Kong
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
| | - Yanbin Li
- Central Research Institute, Shanghai United Imaging Healthcare Co., Ltd.ShanghaiChina
| | - Xueqin Xu
- Department of Radiology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lianjun Du
- Department of Radiology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jeff L. Zhang
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
| |
Collapse
|
6
|
Elsaid NMH, Peters DC, Galiana G, Sinusas AJ. Clinical physiology: the crucial role of MRI in evaluation of peripheral artery disease. Am J Physiol Heart Circ Physiol 2024; 326:H1304-H1323. [PMID: 38517227 PMCID: PMC11381027 DOI: 10.1152/ajpheart.00533.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Peripheral artery disease (PAD) is a common vascular disease that primarily affects the lower limbs and is defined by the constriction or blockage of peripheral arteries and may involve microvascular dysfunction and tissue injury. Patients with diabetes have more prominent disease of microcirculation and develop peripheral neuropathy, autonomic dysfunction, and medial vascular calcification. Early and accurate diagnosis of PAD and disease characterization are essential for personalized management and therapy planning. Magnetic resonance imaging (MRI) provides excellent soft tissue contrast and multiplanar imaging capabilities and is useful as a noninvasive imaging tool in the comprehensive physiological assessment of PAD. This review provides an overview of the current state of the art of MRI in the evaluation and characterization of PAD, including an analysis of the many applicable MR imaging techniques, describing the advantages and disadvantages of each approach. We also present recent developments, future clinical applications, and future MRI directions in assessing PAD. The development of new MR imaging technologies and applications in preclinical models with translation to clinical research holds considerable potential for improving the understanding of the pathophysiology of PAD and clinical applications for improving diagnostic precision, risk stratification, and treatment outcomes in patients with PAD.
Collapse
Affiliation(s)
- Nahla M H Elsaid
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Gigi Galiana
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Albert J Sinusas
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
7
|
Ju L, Wang K, Schär M, Xu S, Rogers J, Zhu D, Qin Q, Weiss RG, Xu J. Simultaneous creatine and phosphocreatine mapping of skeletal muscle by CEST MRI at 3T. Magn Reson Med 2024; 91:942-954. [PMID: 37899691 PMCID: PMC10842434 DOI: 10.1002/mrm.29907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Abstract
PURPOSE To confirm that CrCEST in muscle exhibits a slow-exchanging process, and to obtain high-resolution amide, creatine (Cr), and phosphocreatine (PCr) maps of skeletal muscle using a POlynomial and Lorentzian Line-shape Fitting (PLOF) CEST at 3T. METHODS We used dynamic changes in PCr/CrCEST of mouse hindlimb before and after euthanasia to assign the Cr and PCr CEST peaks in the Z-spectrum at 3T and to obtain the optimum saturation parameters. Segmented 3D EPI was employed to obtain multi-slice amide, PCr, and Cr CEST maps of human skeletal muscle. Subsequently, the PCrCEST maps were calibrated using the PCr concentrations determined by 31 P MRS. RESULTS A comparison of the Z-spectra in mouse hindlimb before and after euthanasia indicated that CrCEST is a slow-exchanging process in muscle (<150.7 s-1 ). This allowed us to simultaneously extract PCr/CrCEST signals at 3T using the PLOF method. We determined optimal B1 values ranging from 0.3 to 0.6 μT for CrCEST in muscle and 0.3-1.2 μT for PCrCEST. For the study on human calf muscle, we determined an optimum saturation time of 2 s for both PCr/CrCEST (B1 = 0.6 μT). The PCr/CrCEST using 3D EPI were found to be comparable to those obtained using turbo spin echo (TSE). (3D EPI/TSE PCr: (2.6 ± 0.3) %/(2.3 ± 0.1) %; Cr: (1.3 ± 0.1) %/(1.4 ± 0.07) %). CONCLUSIONS Our study showed that in vivo CrCEST is a slow-exchanging process. Hence, amide, Cr, and PCr CEST in the skeletal muscle can be mapped simultaneously at 3T by PLOF CEST.
Collapse
Affiliation(s)
- Licheng Ju
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kexin Wang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Rogers
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dan Zhu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qin Qin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert G. Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Hosadurg N, Kramer CM. Magnetic Resonance Imaging Techniques in Peripheral Arterial Disease. Adv Wound Care (New Rochelle) 2023; 12:611-625. [PMID: 37058352 PMCID: PMC10468560 DOI: 10.1089/wound.2022.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/12/2023] [Indexed: 04/15/2023] Open
Abstract
Significance: Peripheral arterial disease (PAD) leads to a significant burden of morbidity and impaired quality of life globally. Diabetes is a significant risk factor accelerating the development of PAD with an associated increase in the risk of chronic wounds, tissue, and limb loss. Various magnetic resonance imaging (MRI) techniques are being increasingly acknowledged as useful methods of accurately assessing PAD. Recent Advances: Conventionally utilized MRI techniques for assessing macrovascular disease have included contrast enhanced magnetic resonance angiography (MRA), noncontrast time of flight MRA, and phase contrast MRI, but have significant limitations. In recent years, novel noncontrast MRI methods assessing skeletal muscle perfusion and metabolism such as arterial spin labeling (ASL), blood-oxygen-level dependent (BOLD) imaging, and chemical exchange saturation transfer (CEST) have emerged. Critical Issues: Conventional non-MRI (such as ankle-brachial index, arterial duplex ultrasonography, and computed tomographic angiography) and MRI based modalities image the macrovasculature. The underlying mechanisms of PAD that result in clinical manifestations are, however, complex, and imaging modalities that can assess the interaction between impaired blood flow, microvascular tissue perfusion, and muscular metabolism are necessary. Future Directions: Further development and clinical validation of noncontrast MRI methods assessing skeletal muscle perfusion and metabolism, such as ASL, BOLD, CEST, intravoxel incoherent motion microperfusion, and techniques that assess plaque composition, are advancing this field. These modalities can provide useful prognostic data and help in reliable surveillance of outcomes after interventions.
Collapse
Affiliation(s)
- Nisha Hosadurg
- Department of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher M. Kramer
- Department of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Xu J, Chung JJ, Jin T. Chemical exchange saturation transfer imaging of creatine, phosphocreatine, and protein arginine residue in tissues. NMR IN BIOMEDICINE 2023; 36:e4671. [PMID: 34978371 PMCID: PMC9250548 DOI: 10.1002/nbm.4671] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/06/2021] [Accepted: 12/02/2021] [Indexed: 05/05/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI has become a promising technique to assay target proteins and metabolites through their exchangeable protons, noninvasively. The ubiquity of creatine (Cr) and phosphocreatine (PCr) due to their pivotal roles in energy homeostasis through the creatine phosphate pathway has made them prime targets for CEST in the diagnosis and monitoring of disease pathologies, particularly in tissues heavily dependent on the maintenance of rich energy reserves. Guanidinium CEST from protein arginine residues (i.e. arginine CEST) can also provide information about the protein profile in tissue. However, numerous obfuscating factors stand as obstacles to the specificity of arginine, Cr, and PCr imaging through CEST, such as semisolid magnetization transfer, fast chemical exchanges such as primary amines, and the effects of nuclear Overhauser enhancement from aromatic and amide protons. In this review, the specific exchange properties of protein arginine residues, Cr, and PCr, along with their validation, are discussed, including the considerations necessary to target and tune their signal effects through CEST imaging. Additionally, strategies that have been employed to enhance the specificity of these exchanges in CEST imaging are described, along with how they have opened up possible applications of protein arginine residues, Cr and PCr CEST imaging in the study and diagnosis of pathology. A clear understanding of the capabilities and caveats of using CEST to image these vital metabolites and mitigation strategies is crucial to expanding the possibilities of this promising technology.
Collapse
Affiliation(s)
- Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julius Juhyun Chung
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Qin L, Cui J, Li J. Sympathetic Nerve Activity and Blood Pressure Response to Exercise in Peripheral Artery Disease: From Molecular Mechanisms, Human Studies, to Intervention Strategy Development. Int J Mol Sci 2022; 23:ijms231810622. [PMID: 36142521 PMCID: PMC9505475 DOI: 10.3390/ijms231810622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Sympathetic nerve activity (SNA) regulates the contraction of vascular smooth muscle and leads to a change in arterial blood pressure (BP). It was observed that SNA, vascular contractility, and BP are heightened in patients with peripheral artery disease (PAD) during exercise. The exercise pressor reflex (EPR), a neural mechanism responsible for BP response to activation of muscle afferent nerve, is a determinant of the exaggerated exercise-induced BP rise in PAD. Based on recent results obtained from a series of studies in PAD patients and a rat model of PAD, this review will shed light on SNA-driven BP response and the underlying mechanisms by which receptors and molecular mediators in muscle afferent nerves mediate the abnormalities in autonomic activities of PAD. Intervention strategies, particularly non-pharmacological strategies, improving the deleterious exercise-induced SNA and BP in PAD, and enhancing tolerance and performance during exercise will also be discussed.
Collapse
|
11
|
Beckman JA, Donahue MJ. Is Chemical Exchange Saturation Transfer Best? Circ Cardiovasc Imaging 2022; 15:e014498. [PMID: 35861984 DOI: 10.1161/circimaging.122.014498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Joshua A Beckman
- Cardiovascular Division (J.A.B.), Vanderbilt University Medical Center, Nashville, TN
| | - Manus J Donahue
- Department of Neurology (M.J.D.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
12
|
Sporkin HL, Patel TR, Betz Y, Mathew R, Schumann CL, Meyer CH, Kramer CM. Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Identifies Abnormal Calf Muscle-Specific Energetics in Peripheral Artery Disease. Circ Cardiovasc Imaging 2022; 15:e013869. [PMID: 35861977 DOI: 10.1161/circimaging.121.013869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Peripheral artery disease (PAD) results in exercise-induced ischemia in leg muscles. 31Phosphorus (P) magnetic resonance spectroscopy demonstrates prolonged phosphocreatine recovery time constant after exercise in PAD but has low signal to noise, low spatial resolution, and requires multinuclear hardware. Chemical exchange saturation transfer (CEST) is a quantitative magnetic resonance imaging method for imaging substrate (CEST asymmetry [CESTasym]) concentration by muscle group. We hypothesized that kinetics measured by CEST could distinguish between patients with PAD and controls. METHODS Patients with PAD and age-matched normal subjects were imaged at 3T with a transmit-receive coil around the calf. Four CEST mages were acquired over 24-second intervals. The subjects then performed plantar flexion exercise on a magnetic resonance imaging-compatible ergometer until calf exhaustion. Twenty-five CEST images were obtained at end exercise. Regions of interest were drawn around individual muscle groups, and (CESTasym) decay times were fitted by exponential curve to CEST values. In 10 patients and 11 controls, 31P spectra were obtained 20 minutes later after repeat exercise. Five patients and 5 controls returned at a mean of 1±1 days later for repeat CEST studies. RESULTS Thirty-five patients with PAD (31 male, age 66±8 years) and 29 controls (11 male, age 63±8 years) were imaged with CEST. The CESTasym decay times for the whole calf (341±332 versus 153±72 seconds; P<0.03) as well as for the gastrocnemius and posterior tibialis were longer in patients with PAD. Agreement between CESTasym decay and phosphocreatine recovery time constant was good. CONCLUSIONS CEST is a magnetic resonance imaging method that can distinguish energetics in patients with PAD from age-matched normal subjects on a per muscle group basis. CEST agrees reasonably well with the gold standard 31P magnetic resonance spectroscopy. Moreover, CEST has higher spatial resolution, creates an image, and does not require multinuclear hardware and thus may be more suitable for clinical studies in PAD.
Collapse
Affiliation(s)
- Helen L Sporkin
- Departments of Biomedical Engineering (H.L.S., C.H.M.), University of Virginia Health, Charlottesville
| | - Toral R Patel
- Medicine, Cardiovascular Division (T.R.P., Y.B., R.M., C.L.S., C.M.K.), University of Virginia Health, Charlottesville
| | - Yaqub Betz
- Medicine, Cardiovascular Division (T.R.P., Y.B., R.M., C.L.S., C.M.K.), University of Virginia Health, Charlottesville
| | - Roshin Mathew
- Medicine, Cardiovascular Division (T.R.P., Y.B., R.M., C.L.S., C.M.K.), University of Virginia Health, Charlottesville
| | - Christopher L Schumann
- Medicine, Cardiovascular Division (T.R.P., Y.B., R.M., C.L.S., C.M.K.), University of Virginia Health, Charlottesville
| | - Craig H Meyer
- Departments of Biomedical Engineering (H.L.S., C.H.M.), University of Virginia Health, Charlottesville.,Radiology and Medical Imaging (C.H.M., C.M.K.), University of Virginia Health, Charlottesville
| | - Christopher M Kramer
- Medicine, Cardiovascular Division (T.R.P., Y.B., R.M., C.L.S., C.M.K.), University of Virginia Health, Charlottesville.,Radiology and Medical Imaging (C.H.M., C.M.K.), University of Virginia Health, Charlottesville
| |
Collapse
|
13
|
Unique Metabolomic Profile of Skeletal Muscle in Chronic Limb Threatening Ischemia. J Clin Med 2021; 10:jcm10030548. [PMID: 33540726 PMCID: PMC7867254 DOI: 10.3390/jcm10030548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic limb threatening ischemia (CLTI) is the most severe manifestation of peripheral atherosclerosis. Patients with CLTI have poor muscle quality and function and are at high risk for limb amputation and death. The objective of this study was to interrogate the metabolome of limb muscle from CLTI patients. To accomplish this, a prospective cohort of CLTI patients undergoing either a surgical intervention (CLTI Pre-surgery) or limb amputation (CLTI Amputation), as well as non-peripheral arterial disease (non-PAD) controls were enrolled. Gastrocnemius muscle biopsy specimens were obtained and processed for nuclear magnetic resonance (NMR)-based metabolomics analyses using solution state NMR on extracted aqueous and organic phases and 1H high-resolution magic angle spinning (HR-MAS) on intact muscle specimens. CLTI Amputation specimens displayed classical features of ischemic/hypoxic metabolism including accumulation of succinate, fumarate, lactate, alanine, and a significant decrease in the pyruvate/lactate ratio. CLTI Amputation muscle also featured aberrant amino acid metabolism marked by elevated branched chain amino acids. Finally, both Pre-surgery and Amputation CLTI muscles exhibited pronounced accumulation of lipids, suggesting the presence of myosteatosis, including cholesterol, triglycerides, and saturated fatty acids. Taken together, these metabolite differences add to a growing body of literature that have characterized profound metabolic disturbance’s in the failing ischemic limb of CLTI patients.
Collapse
|
14
|
Skeletal Muscle Mitochondrial Dysfunction and Oxidative Stress in Peripheral Arterial Disease: A Unifying Mechanism and Therapeutic Target. Antioxidants (Basel) 2020; 9:antiox9121304. [PMID: 33353218 PMCID: PMC7766400 DOI: 10.3390/antiox9121304] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral artery disease (PAD) is caused by atherosclerosis in the lower extremities, which leads to a spectrum of life-altering symptomatology, including claudication, ischemic rest pain, and gangrene requiring limb amputation. Current treatments for PAD are focused primarily on re-establishing blood flow to the ischemic tissue, implying that blood flow is the decisive factor that determines whether or not the tissue survives. Unfortunately, failure rates of endovascular and revascularization procedures remain unacceptably high and numerous cell- and gene-based vascular therapies have failed to demonstrate efficacy in clinical trials. The low success of vascular-focused therapies implies that non-vascular tissues, such as skeletal muscle and oxidative stress, may substantially contribute to PAD pathobiology. Clues toward the importance of skeletal muscle in PAD pathobiology stem from clinical observations that muscle function is a strong predictor of mortality. Mitochondrial impairments in muscle have been documented in PAD patients, although its potential role in clinical pathology is incompletely understood. In this review, we discuss the underlying mechanisms causing mitochondrial dysfunction in ischemic skeletal muscle, including causal evidence in rodent studies, and highlight emerging mitochondrial-targeted therapies that have potential to improve PAD outcomes. Particularly, we will analyze literature data on reactive oxygen species production and potential counteracting endogenous and exogenous antioxidants.
Collapse
|
15
|
Santos-Díaz A, Noseworthy MD. Phosphorus magnetic resonance spectroscopy and imaging (31P-MRS/MRSI) as a window to brain and muscle metabolism: A review of the methods. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Chen L, Schär M, Chan KWY, Huang J, Wei Z, Lu H, Qin Q, Weiss RG, van Zijl PCM, Xu J. In vivo imaging of phosphocreatine with artificial neural networks. Nat Commun 2020; 11:1072. [PMID: 32102999 PMCID: PMC7044432 DOI: 10.1038/s41467-020-14874-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/10/2020] [Indexed: 12/01/2022] Open
Abstract
Phosphocreatine (PCr) plays a vital role in neuron and myocyte energy homeostasis. Currently, there are no routine diagnostic tests to noninvasively map PCr distribution with clinically relevant spatial resolution and scan time. Here, we demonstrate that artificial neural network-based chemical exchange saturation transfer (ANNCEST) can be used to rapidly quantify PCr concentration with robust immunity to commonly seen MRI interferences. High-quality PCr mapping of human skeletal muscle, as well as the information of exchange rate, magnetic field and radio-frequency transmission inhomogeneities, can be obtained within 1.5 min on a 3 T standard MRI scanner using ANNCEST. For further validation, we apply ANNCEST to measure the PCr concentrations in exercised skeletal muscle. The ANNCEST outcomes strongly correlate with those from 31P magnetic resonance spectroscopy (R = 0.813, p < 0.001, t test). These results suggest that ANNCEST has potential as a cost-effective and widely available method for measuring PCr and diagnosing related diseases.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie W Y Chan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhiliang Wei
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qin Qin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert G Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA.
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Bakermans AJ, Wessel CH, Zheng KH, Groot PFC, Stroes ESG, Nederveen AJ. Dynamic magnetic resonance measurements of calf muscle oxygenation and energy metabolism in peripheral artery disease. J Magn Reson Imaging 2019; 51:98-107. [PMID: 31218803 PMCID: PMC6916546 DOI: 10.1002/jmri.26841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background Clinical assessments of peripheral artery disease (PAD) severity are insensitive to pathophysiological changes in muscle tissue oxygenation and energy metabolism distal to the affected artery. Purpose To quantify the blood oxygenation level‐dependent (BOLD) response and phosphocreatine (PCr) recovery kinetics on a clinical MR system during a single exercise‐recovery session in PAD patients. Study Type Case–control study. Subjects Fifteen Fontaine stage II patients, and 18 healthy control subjects Field Strength/Sequence Interleaved dynamic multiecho gradient‐echo 1H T2* mapping and adiabatic pulse‐acquire 31P‐MR spectroscopy at 3T. Assessment Blood pressure in the arms and ankles were measured to determine the ankle‐brachial index (ABI). Subjects performed a plantar flexion exercise‐recovery protocol. The gastrocnemius and soleus muscle BOLD responses were characterized using the T2* maps. High‐energy phosphate metabolite concentrations were quantified by fitting the series of 31P‐MR spectra. The PCr recovery time constant (τPCr) was derived as a measure of in vivo mitochondrial oxidative capacity. Statistical Tests Comparisons between groups were performed using two‐sided Mann–Whitney U‐tests. Relations between variables were assessed by Pearson's r correlation coefficients. Results The amplitude of the functional hyperemic BOLD response in the gastrocnemius muscle was higher in PAD patients compared with healthy subjects (–3.8 ± 1.4% vs. –1.4 ± 0.3%; P < 0.001), and correlated with the ABI (r = 0.79; P < 0.001). PCr recovery was slower in PAD patients (τPCr = 52.0 ± 13.5 vs. 30.3 ± 9.7 sec; P < 0.0001), and correlated with the ABI (r = –0.64; P < 0.001). Moreover, τPCr correlated with the hyperemic BOLD response in the gastrocnemius muscle (r = –0.66; P < 0.01). Data Conclusion MR readouts of calf muscle tissue oxygenation and high‐energy phosphate metabolism were acquired essentially simultaneously during a single exercise‐recovery session. A pronounced hypoxia‐triggered vasodilation in PAD is associated with a reduced mitochondrial oxidative capacity. Level of Evidence: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:98–107.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Chang Ho Wessel
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Kang H Zheng
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul F C Groot
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Mathew RC, Kramer CM. Recent advances in magnetic resonance imaging for peripheral artery disease. Vasc Med 2018; 23:143-152. [PMID: 29633922 DOI: 10.1177/1358863x18754694] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The global burden of peripheral artery disease (PAD) is significant. This has led to numerous recent advances in magnetic resonance imaging (MRI) techniques in PAD. Older techniques such as time of flight MRI or phase contrast MRI are burdened by long acquisition times and significant issues with artifacts. In addition, the most used MRI modality, contrast-enhanced MR angiography (CE-MRA) is limited by the use of gadolinium contrast and its potential toxicity. Novel MRI techniques such as arterial spin labeling (ASL), blood-oxygen-level dependent imaging (BOLD), and first-pass perfusion gadolinium enhancement are advancing the field by providing skeletal muscle perfusion/oxygenation data while maintaining excellent spatial and temporal resolution. Perfusion data can be critical to providing objective clinical data of a visualized stenosis. In addition, there are a number of new MRI sequences assessing plaque composition and lesion severity in the absence of contrast. These approaches used in combination can provide useful clinical and prognostic data and provide critical endpoints in PAD research.
Collapse
Affiliation(s)
- Roshin C Mathew
- Departments of Medicine (Cardiology) and Radiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Christopher M Kramer
- Departments of Medicine (Cardiology) and Radiology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
19
|
AlGhatrif M, Zane A, Oberdier M, Canepa M, Studenski S, Simonsick E, Spencer RG, Fishbein K, Reiter D, Lakatta EG, McDermott MM, Ferrucci L. Lower Mitochondrial Energy Production of the Thigh Muscles in Patients With Low-Normal Ankle-Brachial Index. J Am Heart Assoc 2017; 6:JAHA.117.006604. [PMID: 28855165 PMCID: PMC5634302 DOI: 10.1161/jaha.117.006604] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Lower muscle mitochondrial energy production may contribute to impaired walking endurance in patients with peripheral arterial disease. A borderline ankle‐brachial index (ABI) of 0.91 to 1.10 is associated with poorer walking endurance compared with higher ABI. We hypothesized that in the absence of peripheral arterial disease, lower ABI is associated with lower mitochondrial energy production. Methods and Results We examined 363 men and women participating in the Baltimore Longitudinal Study of Aging with an ABI between 0.90 and 1.40. Muscle mitochondrial energy production was assessed by post‐exercise phosphocreatine recovery rate constant (kPCr) measured by phosphorus magnetic resonance spectroscopy of the left thigh. A lower post‐exercise phosphocreatine recovery rate constant reflects decreased mitochondria energy production.The mean age of the participants was 71±12 years. A total of 18.4% had diabetes mellitus and 4% were current and 40% were former smokers. Compared with participants with an ABI of 1.11 to 1.40, those with an ABI of 0.90 to 1.10 had significantly lower post‐exercise phosphocreatine recovery rate constant (19.3 versus 20.8 ms−1, P=0.015). This difference remained significant after adjusting for age, sex, race, smoking status, diabetes mellitus, body mass index, and cholesterol levels (P=0.028). Similarly, post‐exercise phosphocreatine recovery rate constant was linearly associated with ABI as a continuous variable, both in the ABI ranges of 0.90 to 1.40 (standardized coefficient=0.15, P=0.003) and 1.1 to 1.4 (standardized coefficient=0.12, P=0.0405). Conclusions An ABI of 0.90 to 1.10 is associated with lower mitochondrial energy production compared with an ABI of 1.11 to 1.40. These data demonstrate adverse associations of lower ABI values with impaired mitochondrial activity even within the range of a clinically accepted definition of a normal ABI. Further study is needed to determine whether interventions in persons with ABIs of 0.90 to 1.10 can prevent subsequent functional decline.
Collapse
Affiliation(s)
- Majd AlGhatrif
- Laboratory of Cardiovascular Science, National Institute on Aging National Institutes of Health, Baltimore, MD.,Longitudinal Studies Section, National Institute on Aging National Institutes of Health, Baltimore, MD.,Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ariel Zane
- Longitudinal Studies Section, National Institute on Aging National Institutes of Health, Baltimore, MD
| | - Matt Oberdier
- Laboratory of Cardiovascular Science, National Institute on Aging National Institutes of Health, Baltimore, MD
| | - Marco Canepa
- Longitudinal Studies Section, National Institute on Aging National Institutes of Health, Baltimore, MD.,Cardiovascular Unit, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Stephanie Studenski
- Longitudinal Studies Section, National Institute on Aging National Institutes of Health, Baltimore, MD
| | - Eleanor Simonsick
- Longitudinal Studies Section, National Institute on Aging National Institutes of Health, Baltimore, MD
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging National Institutes of Health, Baltimore, MD
| | - Kenneth Fishbein
- Laboratory of Clinical Investigation, National Institute on Aging National Institutes of Health, Baltimore, MD
| | - David Reiter
- Laboratory of Clinical Investigation, National Institute on Aging National Institutes of Health, Baltimore, MD
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging National Institutes of Health, Baltimore, MD
| | - Mary M McDermott
- Departments of Medicine and Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging National Institutes of Health, Baltimore, MD
| |
Collapse
|
20
|
Sfyri P, Matsakas A. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease. J Biomed Sci 2017; 24:42. [PMID: 28688452 PMCID: PMC5502081 DOI: 10.1186/s12929-017-0346-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.
Collapse
Affiliation(s)
- Peggy Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
21
|
Khegai O, Madelin G, Brown R, Parasoglou P. Dynamic phosphocreatine imaging with unlocalized pH assessment of the human lower leg muscle following exercise at 3T. Magn Reson Med 2017; 79:974-980. [PMID: 28560829 DOI: 10.1002/mrm.26728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE To develop a high temporal resolution imaging method that measures muscle-specific phosphocreatine (PCr) resynthesis time constant (τPCr ) and pH changes in muscles of the lower leg following exercise on a clinical 3T MRI scanner. METHODS We developed a frequency-selective 3D non-Cartesian FLORET sequence to measure PCr with 17-mm nominal isotropic resolution (28 mm actual resolution) and 6-s temporal resolution to capture dynamic metabolic muscle activity. The sequence was designed to additionally collect inorganic phosphate spectra for pH quantification, which were localized using sensitivity profiles of individual coil elements. Nineteen healthy volunteers were scanned while performing a plantar flexion exercise on an in-house developed ergometer. Data were acquired with a dual-tuned multichannel coil array that enabled phosphorus imaging and proton localization for muscle segmentation. RESULTS After a 90-s plantar flexion exercise at 0.66 Hz with resistance set to 40% of the maximum voluntary contraction, τPCr was estimated at 22.9 ± 8.8 s (mean ± standard deviation) with statistical coefficient of determination r2 = 0.89 ± 0.05. The corresponding pH values after exercise were in the range of 6.9-7.1 in the gastrocnemius muscle. CONCLUSION The developed technique allows measurement of muscle-specific PCr resynthesis kinetics and pH changes following exercise, with a temporal resolution and accuracy comparable to that of single voxel 31 P-MRS sequences. Magn Reson Med 79:974-980, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Oleksandr Khegai
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ryan Brown
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, New York, USA
| | - Prodromos Parasoglou
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
22
|
Luck JC, Miller AJ, Aziz F, Radtka JF, Proctor DN, Leuenberger UA, Sinoway LI, Muller MD. Blood pressure and calf muscle oxygen extraction during plantar flexion exercise in peripheral artery disease. J Appl Physiol (1985) 2017; 123:2-10. [PMID: 28385920 DOI: 10.1152/japplphysiol.01110.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/14/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022] Open
Abstract
Peripheral artery disease (PAD) is an atherosclerotic vascular disease that affects 200 million people worldwide. Although PAD primarily affects large arteries, it is also associated with microvascular dysfunction, an exaggerated blood pressure (BP) response to exercise, and high cardiovascular mortality. We hypothesized that fatiguing plantar flexion exercise that evokes claudication elicits a greater reduction in skeletal muscle oxygenation (SmO2) and a higher rise in BP in PAD compared with age-matched healthy subjects, but low-intensity steady-state plantar flexion elicits similar responses between groups. In the first experiment, eight patients with PAD and eight healthy controls performed fatiguing plantar flexion exercise (from 0.5 to 7 kg for up to 14 min). In the second experiment, seven patients with PAD and seven healthy controls performed low-intensity plantar flexion exercise (2.0 kg for 14 min). BP, heart rate (HR), and SmO2 were measured continuously using near-infrared spectroscopy (NIRS). SmO2 is the ratio of oxygenated hemoglobin to total hemoglobin, expressed as a percent. At fatigue, patients with PAD had a greater increase in mean arterial BP (18 ± 2 vs. vs. 10 ± 2 mmHg, P = 0.029) and HR (14 ± 2 vs. 6 ± 2 beats/min, P = 0.033) and a greater reduction in SmO2 (-54 ± 10 vs. -12 ± 4%, P = 0.001). However, both groups had similar physiological responses to low-intensity, nonpainful plantar flexion exercise. These data suggest that patients with PAD have altered oxygen uptake and/or utilization during fatiguing exercise coincident with an augmented BP response.NEW & NOTEWORTHY In this laboratory study, patients with peripheral artery disease performed plantar flexion exercise in the supine posture until symptoms of claudication occurred. Relative to age- and sex-matched healthy subjects we found that patients had a higher blood pressure response, a higher heart rate response, and a greater reduction in skeletal muscle oxygenation as determined by near-infrared spectroscopy. Our data suggest that muscle ischemia contributes to the augmented exercise pressor reflex in peripheral artery disease.
Collapse
Affiliation(s)
- J Carter Luck
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - Amanda J Miller
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - Faisal Aziz
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - John F Radtka
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - David N Proctor
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, Hershey, Pennsylvania
| | - Urs A Leuenberger
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - Matthew D Muller
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| |
Collapse
|
23
|
Valkovič L, Chmelík M, Krššák M. In-vivo 31P-MRS of skeletal muscle and liver: A way for non-invasive assessment of their metabolism. Anal Biochem 2017; 529:193-215. [PMID: 28119063 PMCID: PMC5478074 DOI: 10.1016/j.ab.2017.01.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 01/18/2023]
Abstract
In addition to direct assessment of high energy phosphorus containing metabolite content within tissues, phosphorus magnetic resonance spectroscopy (31P-MRS) provides options to measure phospholipid metabolites and cellular pH, as well as the kinetics of chemical reactions of energy metabolism in vivo. Even though the great potential of 31P-MR was recognized over 30 years ago, modern MR systems, as well as new, dedicated hardware and measurement techniques provide further opportunities for research of human biochemistry. This paper presents a methodological overview of the 31P-MR techniques that can be used for basic, physiological, or clinical research of human skeletal muscle and liver in vivo. Practical issues of 31P-MRS experiments and examples of potential applications are also provided. As signal localization is essential for liver 31P-MRS and is important for dynamic muscle examinations as well, typical localization strategies for 31P-MR are also described.
Collapse
Affiliation(s)
- Ladislav Valkovič
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Marek Chmelík
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Martin Krššák
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
A low-cost Mr compatible ergometer to assess post-exercise phosphocreatine recovery kinetics. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 30:281-289. [PMID: 28054143 DOI: 10.1007/s10334-016-0605-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To develop a low-cost pedal ergometer compatible with ultrahigh (7 T) field MR systems to reliably quantify metabolic parameters in human lower leg muscle using phosphorus magnetic resonance spectroscopy. MATERIALS AND METHODS We constructed an MR compatible ergometer using commercially available materials and elastic bands that provide resistance to movement. We recruited ten healthy subjects (eight men and two women, mean age ± standard deviation: 32.8 ± 6.0 years, BMI: 24.1 ± 3.9 kg/m2). All subjects were scanned on a 7 T whole-body magnet. Each subject was scanned on two visits and performed a 90 s plantar flexion exercise at 40% maximum voluntary contraction during each scan. During the first visit, each subject performed the exercise twice in order for us to estimate the intra-exam repeatability, and once during the second visit in order to estimate the inter-exam repeatability of the time constant of phosphocreatine recovery kinetics. We assessed the intra and inter-exam reliability in terms of the within-subject coefficient of variation (CV). RESULTS We acquired reliable measurements of PCr recovery kinetics with an intra- and inter-exam CV of 7.9% and 5.7%, respectively. CONCLUSION We constructed a low-cost pedal ergometer compatible with ultrahigh (7 T) field MR systems, which allowed us to quantify reliably PCr recovery kinetics in lower leg muscle using 31P-MRS.
Collapse
|
25
|
Li Z, Muller MD, Wang J, Sica CT, Karunanayaka P, Sinoway LI, Yang QX. Dynamic characteristics of T2*-weighted signal in calf muscles of peripheral artery disease during low-intensity exercise. J Magn Reson Imaging 2016; 46:40-48. [PMID: 27783446 DOI: 10.1002/jmri.25532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/11/2016] [Indexed: 01/13/2023] Open
Abstract
PURPOSE To evaluate the dynamic characteristics of T2* -weighted signal change in exercising skeletal muscle of healthy subjects and peripheral artery disease (PAD) patients under a low-intensity exercise paradigm. MATERIALS AND METHODS Nine PAD patients and nine age- and sex-matched healthy volunteers underwent a low-intensity exercise paradigm while magnetic resonance imaging (MRI) (3.0T) was obtained. T2*-weighted signal time-courses in lateral gastrocnemius, medial gastrocnemius, soleus, and tibialis anterior were acquired and analyzed. Correlations were performed between dynamic T2*-weighted signal and changes in heart rate, mean arterial pressure, leg pain, and perceived exertion. RESULTS A significant signal decrease was observed during exercise in soleus and tibialis anterior of healthy participants (P = 0.0007-0.04 and 0.001-0.009, respectively). In PAD, negative signals were observed (P = 0.008-0.02 and 0.003-0.01, respectively) in soleus and lateral gastrocnemius during the early exercise stage. Then the signal gradually increased above the baseline in the lateral gastrocnemius during and after exercise in six of the eight patients who completed the study. This signal increase in patients' lateral gastrocnemius was significantly greater than in healthy subjects' during the later exercise stage (two-sample t-tests, P = 0.001-0.03). Heart rate and mean arterial pressure responses to exercise were significantly higher in PAD than healthy subjects (P = 0.036 and 0.008, respectively) and the patients experienced greater leg pain and exertion (P = 0.006 and P = 0.0014, respectively). CONCLUSION During low-intensity exercise, there were different dynamic T2*-weighted signal behavior in the healthy and PAD exercising muscles. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:40-48.
Collapse
Affiliation(s)
- Zhijun Li
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.,Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Matthew D Muller
- Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jianli Wang
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Christopher T Sica
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Prasanna Karunanayaka
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Lawrence I Sinoway
- Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Qing X Yang
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.,Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
26
|
Muller MD, Li Z, Sica CT, Luck JC, Gao Z, Blaha CA, Cauffman AE, Ross AJ, Winkler NJR, Herr MD, Brandt K, Wang J, Gallagher DC, Karunanayaka P, Vesek J, Leuenberger UA, Yang QX, Sinoway LI. Muscle oxygenation during dynamic plantar flexion exercise: combining BOLD MRI with traditional physiological measurements. Physiol Rep 2016; 4:4/20/e13004. [PMID: 27798357 PMCID: PMC5099966 DOI: 10.14814/phy2.13004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 11/24/2022] Open
Abstract
Blood-oxygen-level-dependent magnetic resonance imaging (BOLD MRI) has the potential to quantify skeletal muscle oxygenation with high temporal and high spatial resolution. The purpose of this study was to characterize skeletal muscle BOLD responses during steady-state plantar flexion exercise (i.e., during the brief rest periods between muscle contraction). We used three different imaging modalities (ultrasound of the popliteal artery, BOLD MRI, and near-infrared spectroscopy [NIRS]) and two different exercise intensities (2 and 6 kg). Six healthy men underwent three separate protocols of dynamic plantar flexion exercise on separate days and acute physiological responses were measured. Ultrasound studies showed the percent change in popliteal velocity from baseline to the end of exercise was 151 ± 24% during 2 kg and 589 ± 145% during 6 kg. MRI studies showed an abrupt decrease in BOLD signal intensity at the onset of 2 kg exercise, indicating deoxygenation. The BOLD signal was further reduced during 6 kg exercise (compared to 2 kg) at 1 min (-4.3 ± 0.7 vs. -1.2 ± 0.4%, P < 0.001). Similarly, the change in the NIRS muscle oxygen saturation in the medial gastrocnemius was -11 ± 4% at 2 kg and -38 ± 11% with 6 kg (P = 0.041). In conclusion, we demonstrate that BOLD signal intensity decreases during plantar flexion and this effect is augmented at higher exercise workloads.
Collapse
Affiliation(s)
- Matthew D Muller
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Zhijun Li
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Christopher T Sica
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - J Carter Luck
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Zhaohui Gao
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Cheryl A Blaha
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Aimee E Cauffman
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Amanda J Ross
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Nathan J R Winkler
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Michael D Herr
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Kristen Brandt
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jianli Wang
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - David C Gallagher
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Prasanna Karunanayaka
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jeffrey Vesek
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Urs A Leuenberger
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Qing X Yang
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
27
|
Ryan TE, Schmidt CA, Green TD, Brown DA, Neufer PD, McClung JM. Mitochondrial Regulation of the Muscle Microenvironment in Critical Limb Ischemia. Front Physiol 2015; 6:336. [PMID: 26635622 PMCID: PMC4649016 DOI: 10.3389/fphys.2015.00336] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/02/2015] [Indexed: 01/11/2023] Open
Abstract
Critical limb ischemia (CLI) is the most severe clinical presentation of peripheral arterial disease and manifests as chronic limb pain at rest and/or tissue necrosis. Current clinical interventions are largely ineffective and therapeutic angiogenesis based trials have shown little efficacy, highlighting the dire need for new ideas and novel therapeutic approaches. Despite a decade of research related to skeletal muscle as a determinant of morbidity and mortality outcomes in CLI, very little progress has been made toward an effective therapy aimed directly at the muscle myopathies of this disease. Within the muscle cell, mitochondria are well positioned to modulate the ischemic cellular response, as they are the principal sites of cellular energy production and the major regulators of cellular redox charge and cell death. In this mini review, we update the crucial importance of skeletal muscle to CLI pathology and examine the evolving influence of muscle and endothelial cell mitochondria in the complex ischemic microenvironment. Finally, we discuss the novelty of muscle mitochondria as a therapeutic target for ischemic pathology in the context of the complex co-morbidities often associated with CLI.
Collapse
Affiliation(s)
- Terence E Ryan
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Cameron A Schmidt
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Tom D Green
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - David A Brown
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - P Darrell Neufer
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Joseph M McClung
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University Greenville, NC, USA
| |
Collapse
|
28
|
Rowland B, Merugumala SK, Liao H, Creager MA, Balschi J, Lin AP. Spectral improvement by fourier thresholding of in vivo dynamic spectroscopy data. Magn Reson Med 2015; 76:978-85. [PMID: 26445244 DOI: 10.1002/mrm.25976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/10/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE MR spectroscopy (MRS) typically requires averaging of multiple acquisitions to achieve adequate signal-to-noise ratio (SNR). In systems undergoing dynamic changes this can compromise the temporal resolution of the measurement. One such example is (31) P MRS of exercising skeletal muscle. Spectral improvement by Fourier thresholding (SIFT) offers a way of suppressing noise without averaging. In this study, we evaluate the performance of SIFT in healthy subjects and clinical cases. METHODS (31) P MRS of the calf or thigh muscle of subjects (n = 12) was measured continuously before, during, and after exercise. The data were processed conventionally and with the addition of SIFT before quantifying peak amplitudes and frequencies. The postexercise increase in the amplitude of phosphocreatine was also characterized by fitting with an exponential function to obtain the recovery time constant. RESULTS Substantial reductions in the uncertainty of peak fitting for phosphocreatine (73%) and inorganic phosphate (60%) were observed when using SIFT relative to conventional processing alone. SIFT also reduced the phosphocreatine recovery time constant uncertainty by 38%. CONCLUSION SIFT considerably improves SNR, which improved quantification and parameter estimation. It is suitable for any type of time varying MRS and is both straightforward and fast to apply. Magn Reson Med 76:978-985, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Benjamin Rowland
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sai K Merugumala
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Huijun Liao
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mark A Creager
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - James Balschi
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Physiological NMR Core Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Vemulapalli S, Patel MR, Jones WS. Limb Ischemia: Cardiovascular Diagnosis and Management from Head to Toe. Curr Cardiol Rep 2015; 17:611. [DOI: 10.1007/s11886-015-0611-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Kramer CM. Novel magnetic resonance imaging end points for physiologic studies in peripheral arterial disease: elegance versus practicality. Circ Cardiovasc Imaging 2015; 8:CIRCIMAGING.115.003360. [PMID: 25873725 DOI: 10.1161/circimaging.115.003360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Christopher M Kramer
- From the Departments of Medicine and Radiology, University of Virginia Health System, Charlottesville.
| |
Collapse
|
31
|
In vivo (31)P NMR spectroscopy assessment of skeletal muscle bioenergetics after spinal cord contusion in rats. Eur J Appl Physiol 2014; 114:847-58. [PMID: 24399112 DOI: 10.1007/s00421-013-2810-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE Muscle paralysis after spinal cord injury leads to muscle atrophy, enhanced muscle fatigue, and increased energy demands for functional activities. Phosphorus magnetic resonance spectroscopy ((31)P-MRS) offers a unique non-invasive alternative of measuring energy metabolism in skeletal muscle and is especially suitable for longitudinal investigations. We determined the impact of spinal cord contusion on in vivo muscle bioenergetics of the rat hind limb muscle using (31)P-MRS. METHODS A moderate spinal cord contusion injury (cSCI) was induced at the T8-T10 thoracic spinal segments. (31)P-MRS measurements were performed weekly in the rat hind limb muscles for 3 weeks. Spectra were acquired in a Bruker 11 T/470 MHz spectrometer using a 31P surface coil. The sciatic nerve was electrically stimulated by subcutaneous needle electrodes. Spectra were acquired at rest (5 min), during stimulation (6 min), and recovery (20 min). Phosphocreatine (PCr) depletion rates and the pseudo first-order rate constant for PCr recovery (k PCr) were determined. The maximal rate of PCr resynthesis, the in vivo maximum oxidative capacity (V max) and oxidative adenosine triphosphate (ATP) synthesis rate (Q max) were subsequently calculated. RESULTS One week after cSCI, there was a decline in the resting total creatine of the paralyzed muscle. There was a significant reduction (~24 %) in k PCr measures of the paralyzed muscle, maximum in vivo mitochondrial capacity (V max) and the maximum oxidative ATP synthesis rate (Q max) at 1 week post-cSCI. During exercise, the PCr depletion rates in the paralyzed muscle one week after injury were rapid and to a greater extent than in a healthy muscle. CONCLUSIONS Using in vivo MRS assessments, we reveal an acute oxidative metabolic defect in the paralyzed hind limb muscle. These altered muscle bioenergetics might contribute to the host of motor dysfunctions seen after cSCI.
Collapse
|
32
|
Tecilazich F, Dinh T, Lyons TE, Guest J, Villafuerte RA, Sampanis C, Gnardellis C, Zuo CS, Veves A. Postexercise phosphocreatine recovery, an index of mitochondrial oxidative phosphorylation, is reduced in diabetic patients with lower extremity complications. J Vasc Surg 2013; 57:997-1005. [PMID: 23465172 DOI: 10.1016/j.jvs.2012.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To identify differences in postexercise phosphocreatine (PCr) recovery, an index of mitochondrial function, in diabetic patients with and without lower extremity complications. METHODS We enrolled healthy control subjects and three groups of patients with type 2 diabetes mellitus: without complications, with peripheral neuropathy, and with both peripheral neuropathy and peripheral arterial disease. We used magnetic resonance spectroscopic measurements to perform continuous measurements of phosphorous metabolites (PCr and inorganic phosphate [Pi]) during a 3-minute graded exercise at the level of the posterior calf muscles (gastrocnemius and soleus muscles). Micro- and macrovascular reactivity measurements also were performed. RESULTS The resting Pi/PCr ratio and PCr at baseline and the maximum reached during exercise were similar in all groups. The postexercise time required for recovery of Pi/PCr ratio and PCr levels to resting levels, an assessment of mitochondrial oxidative phosphorylation, was significantly higher in diabetic patients with neuropathy and those with both neuropathy and peripheral arterial disease (P < .01 for both measurements). These two groups also had higher levels of tumor necrosis factor-α (P < .01) and granulocyte colony-stimulating factor (P < .05). Multiple regression analysis showed that only granulocyte colony-stimulating factor, osteoprotegerin, and tumor necrosis factor-α were significant contributing factors in the variation of the Pi/PCr ratio recovery time. No associations were observed between micro- and macrovascular reactivity measurements and Pi/PCr ratio or PCr recovery time. CONCLUSIONS Mitochondrial oxidative phosphorylation is impaired only in type 2 diabetes mellitus patients with neuropathy whether or not peripheral arterial disease is present and is associated with the increased proinflammatory state observed in these groups.
Collapse
Affiliation(s)
- Francesco Tecilazich
- Joslin-Beth Israel Deaconess Foot Center and Microcirculation Lab, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Parasoglou P, Xia D, Chang G, Regatte RR. Dynamic three-dimensional imaging of phosphocreatine recovery kinetics in the human lower leg muscles at 3T and 7T: a preliminary study. NMR IN BIOMEDICINE 2013; 26:348-56. [PMID: 23065754 PMCID: PMC3696475 DOI: 10.1002/nbm.2866] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 05/11/2023]
Abstract
The rate of phosphocreatine (PCr) resynthesis after physical exercise has been extensively studied with phosphorus (³¹P)-MRS. Previous studies have used small surface coils that were limited to measuring one superficial muscle per experiment. This study focuses on the development and implementation of a spectrally selective three-dimensional turbo spin echo (3D-TSE) sequence at 3T and 7T with temporal resolution of 24 s, using two geometrically identical volume coils. We acquired imaging data of PCr recovery from four healthy volunteers and one diabetic patient, who performed plantar flexions using resistance bands. We segmented the anatomical regions of six different muscles from the lower leg, namely the gastrocnemius [lateral (GL) and medial (GM)], the tibialis [anterior (TA) and posterior (TP)], the soleus (S) and the peroneus (P) and measured the local PCr resynthesis rate constants. During the same examination, we also acquired unlocalized (³¹P-MRS data at a temporal resolution of 6 s. At 3T, the PCr resynthesis rate constants were measured at 25.4 ± 3.7 s [n = 4, mean ± standard deviation (SD)] using the MRS method and 25.6 ± 4.4 s using the MRI method. At 7T, the measured rates were 26.4 ± 3.2 s and 26.2 ± 4.7 s for MRS and MRI. Using our imaging method, we measured the local PCr resynthesis rate constants in six individual muscles of the lower leg (min/max 20.2/31.7 ). The recovery rate constants measured for the diabetic patient were 55.5 s (MRS) and 52.7 s (MRI). The successful implementation of our 3D-method suggests that imaging is possible at both fields with a relatively high spatial resolution (voxel size: 4.2 mL at 3T and 1.6 mL at 7T) using volume coils and that local PCr resynthesis rates can be obtained in a single measurement. The advantage of the imaging method is that it can highlight differences in PCr resynthesis rates between different muscles in a single measurement in order to study spatial gradients of metabolic properties of diseased states for which very little is currently known.
Collapse
Affiliation(s)
- Prodromos Parasoglou
- Quantitative Multinuclear Musculoskeletal Imaging Group, Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY, USA.
| | | | | | | |
Collapse
|
34
|
Pollak AW, Kramer CM. MRI in Lower Extremity Peripheral Arterial Disease: Recent Advancements. CURRENT CARDIOVASCULAR IMAGING REPORTS 2013; 6:55-60. [PMID: 23336015 PMCID: PMC3547388 DOI: 10.1007/s12410-012-9175-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Evaluation of peripheral arterial disease by cardiovascular magnetic resonance imaging continues to develop. Of the clinical diagnostics tests currently available, magnetic resonance angiography is well established as one of the preferred techniques for determining areas of arterial occlusive disease affecting the lower extremities. Despite this, there have been new developments in non-gadolinium based contrast-enhanced studies as well as testing done at higher field strength scanners. In the research arena, magnetic resonance spectroscopy, calf muscle perfusion imaging and atherosclerotic plaque evaluation all have made significant advancements over the last year. These techniques are gaining traction as surrogate endpoints in clinical trials of novel therapeutics aimed at alleviating symptoms in patients with peripheral arterial disease.
Collapse
Affiliation(s)
- Amy W. Pollak
- Department of Medicine, Cardiovascular Imaging Center, University of Virginia Health System, University of Virginia, Charlottesville, VA
| | - Christopher M. Kramer
- Department of Medicine, Cardiovascular Imaging Center, University of Virginia Health System, University of Virginia, Charlottesville, VA
- Department of Radiology, Cardiovascular Imaging Center, University of Virginia Health System, University of Virginia, Charlottesville, VA
| |
Collapse
|
35
|
Oxygenation and flow in the limbs: Novel methods to characterize peripheral artery disease. CURRENT CARDIOVASCULAR IMAGING REPORTS 2013; 6:150-157. [PMID: 23504569 DOI: 10.1007/s12410-013-9191-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peripheral arterial disease (PAD) affects approximately 8 million Americans and is associated with high morbidity and increased mortality. Current therapies for PAD are limited and development of new therapeutic agents is needed. Present diagnostic methods for PAD are insensitive to the subtle microvascular and metabolic changes that occur beyond macrovacular stenosis and therefore may be less useful endpoints for clinical trials. Phosphorus-31 magnetic resonance (MR) spectroscopy, MR muscle perfusion, and MR oximetry are novel methods capable of evaluating both the macrovascular and microvascular changes that occur in PAD patients.
Collapse
|
36
|
Pollak AW, Norton PT, Kramer CM. Multimodality imaging of lower extremity peripheral arterial disease: current role and future directions. Circ Cardiovasc Imaging 2013; 5:797-807. [PMID: 23169982 DOI: 10.1161/circimaging.111.970814] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Amy W Pollak
- Departments of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
37
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
38
|
Parasoglou P, Feng L, Xia D, Otazo R, Regatte RR. Rapid 3D-imaging of phosphocreatine recovery kinetics in the human lower leg muscles with compressed sensing. Magn Reson Med 2012; 68:1738-46. [PMID: 23023624 DOI: 10.1002/mrm.24484] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 12/30/2022]
Abstract
The rate of phosphocreatine (PCr) resynthesis following physical exercise is an accepted index of mitochondrial oxidative metabolism and has been studied extensively with unlocalized (31)P-MRS methods and small surface coils. Imaging experiments using volume coils that measure several muscles simultaneously can provide new insights into the variability of muscle function in healthy and diseased states. However, they are limited by long acquisition times relative to the dynamics of PCr recovery. This work focuses on the implementation of a compressed sensing technique to accelerate imaging of PCr resynthesis following physical exercise, using a modified three-dimensional turbo-spin-echo sequence and principal component analysis as sparsifying transform. The compressed sensing technique was initially validated using 2-fold retrospective undersampling of fully sampled data from four volunteers acquired on a 7T MRI system (voxel size: 1.6 mL, temporal resolution: 24 s), which led to an accurate estimation of the mono-exponential PCr resynthesis rate constant (mean error <6.4%). Acquisitions with prospective 2-fold acceleration (temporal resolution: 12 s) demonstrated that three-dimensional mapping of PCr resynthesis is possible at a temporal resolution that is sufficiently high for characterizing the recovery curve of several muscles in a single measurement.
Collapse
Affiliation(s)
- Prodromos Parasoglou
- Department of Radiology, Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), New York University Langone Medical Center, New York, New York 10016, USA.
| | | | | | | | | |
Collapse
|
39
|
Muller MD, Drew RC, Blaha CA, Mast JL, Cui J, Reed AB, Sinoway LI. Oxidative stress contributes to the augmented exercise pressor reflex in peripheral arterial disease patients. J Physiol 2012; 590:6237-46. [PMID: 23006479 DOI: 10.1113/jphysiol.2012.241281] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Exaggerated blood pressure (BP) responses to dynamic exercise predict cardiovascular mortality in patients with peripheral arterial disease (PAD). However, the underlying mechanisms are unclear and no attempt has been made to attenuate this response using antioxidants. Three physiological studies were conducted in patients with PAD and controls. In Protocol 1, subjects underwent 4 min of low-intensity (0.5-2.0 kg), rhythmic plantar flexion in the supine posture. In Protocol 2, patients with PAD received high-dose ascorbic acid intravenously before exercise. In Protocol 3, involuntary exercise was conducted via electrical stimulation of the tibial nerve. The primary outcome measure was Δ mean arterial pressure (MAP) during the first 20 s of exercise (i.e. the onset of sympathoexcitation by muscle afferents). Compared to controls, patients with PAD had significantly greater ΔMAP during plantar flexion, particularly at 0.5 kg with the most affected leg (11 ± 2 vs. 2 ± 1 mmHg) as well as the least affected leg (7 ± 1 vs. 1 ± 1 mmHg). This augmented response occurred before the onset of claudication pain and was attenuated by ∼50% with ascorbic acid. Electrically evoked exercise also elicited larger haemodynamic changes in patients with PAD compared to controls. Further, the ΔMAP during 0.5 kg plantar flexion inversely correlated with the ankle-brachial index, indicating that patients with more severe resting limb ischaemia have a larger BP response to exercise. The BP response to low-intensity exercise was enhanced in PAD. Chronic limb ischaemia may sensitize muscle afferents and potentiate the BP response to muscle contraction in a dose-dependent manner.
Collapse
Affiliation(s)
- Matthew D Muller
- Penn State University College of Medicine, Heart and Vascular Institute, Hershey, PA 17033, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
West AM, Anderson JD, Epstein FH, Meyer CH, Hagspiel KD, Berr SS, Harthun NL, Weltman AL, Annex BH, Kramer CM. Percutaneous intervention in peripheral artery disease improves calf muscle phosphocreatine recovery kinetics: a pilot study. Vasc Med 2012; 17:3-9. [PMID: 22363013 DOI: 10.1177/1358863x11431837] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We hypothesized that percutaneous intervention in the affected lower extremity artery would improve calf muscle perfusion and cellular metabolism in patients with claudication and peripheral artery disease (PAD) as measured by magnetic resonance imaging (MRI) and spectroscopy (MRS). Ten patients with symptomatic PAD (mean ± SD: age 57 ± 9 years; ankle-brachial index (ABI) 0.62 ± 0.17; seven males) were studied 2 months before and 10 months after lower extremity percutaneous intervention. Calf muscle phosphocreatine recovery time constant (PCr) in the revascularized leg was measured by (31)P MRS immediately after symptom-limited exercise on a 1.5-T scanner. Calf muscle perfusion was measured using first-pass gadolinium-enhanced MRI at peak exercise. A 6-minute walk and treadmill test were performed. The PCr recovery time constant improved significantly following intervention (91 ± 33 s to 52 ± 34 s, p < 0.003). Rest ABI also improved (0.62 ± 0.17 to 0.93 ± 0.25, p < 0.003). There was no difference in MRI-measured tissue perfusion or exercise parameters, although the study was underpowered for these endpoints. In conclusion, in this pilot study, successful large vessel percutaneous intervention in patients with symptomatic claudication, results in improved ABI and calf muscle phosphocreatine recovery kinetics.
Collapse
Affiliation(s)
- Amy M West
- Department of Medicine, University of Virginia Health System, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rana P, Sripathy G, Varshney A, Kumar P, Devi MM, Marwaha RK, Tripathi RP, Khushu S. Phosphorous magnetic resonance spectroscopy-based skeletal muscle bioenergetic studies in subclinical hypothyroidism. J Endocrinol Invest 2012; 35:129-34. [PMID: 21508663 DOI: 10.3275/7676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
BACKGROUND Subclinical hypothyroidism (sHT) is considered to be a milder form of thyroid dysfunction. Few earlier studies have reported neuromuscular symptoms as well as impaired muscle metabolism in sHT patients. AIM/OBJECTIVE In this study we report our findings on muscle bioenergetics in sHT patients using phosphorous magnetic resonance spectroscopy (31P MRS) and look upon the possibility to use 31P MRS technique as a clinical marker for monitoring muscle function in subclinical thyroid dysfunction. SUBJECTS AND METHODS Seventeen normal subjects, 15 patients with sHT, and 9 patients with hypothyroidism performed plantar flexion exercise while lying supine in 1.5 T magnetic resonance scanner using custom built exercise device. MR Spectroscopy measurements of inorganic phosphate (Pi), phosphocreatine (PCr), and ATP of the calf muscle were taken during rest, at the end of exercise and in the recovery phase. PCr recovery rate constant (kPCr) and oxidative capacity were calculated by monoexponential fit of PCr vs time (t) at the beginning of recovery. RESULTS We observed that changes in some of the phosphometabolites (increased phosphodiester levels and Pi concentration) in sHT patients which were similar to those detected in patients with hypothyroidism. However, our results do not demonstrate impaired muscle oxidative metabolism in sHT patients based upon PCr dynamics as observed in hypothyroid patients. CONCLUSIONS 31P MRS-based PCr recovery rate could be used as a marker for monitoring muscle oxidative metabolism in sub clinical thyroid dysfunction.
Collapse
Affiliation(s)
- P Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
42
|
West AM, Anderson JD, Epstein FH, Meyer CH, Wang H, Hagspiel KD, Berr SS, Harthun NL, Weltman AL, DiMaria JM, Hunter JR, Christopher JM, Kramer CM. Low-density lipoprotein lowering does not improve calf muscle perfusion, energetics, or exercise performance in peripheral arterial disease. J Am Coll Cardiol 2011; 58:1068-76. [PMID: 21867844 PMCID: PMC3182461 DOI: 10.1016/j.jacc.2011.04.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/02/2011] [Accepted: 04/19/2011] [Indexed: 01/12/2023]
Abstract
OBJECTIVES We hypothesized that low-density lipoprotein (LDL) reduction regardless of mechanism would improve calf muscle perfusion, energetics, or walking performance in peripheral arterial disease (PAD) as measured by magnetic resonance imaging and magnetic resonance spectroscopy. BACKGROUND Statins improve cardiovascular outcome in PAD, and some studies suggest improved walking performance. METHODS Sixty-eight patients with mild to moderate symptomatic PAD (age 65 ± 11 years; ankle-brachial index [ABI] 0.69 ± 0.14) were studied at baseline and annually for 2 years after beginning simvastatin 40 mg (n = 20) or simvastatin 40 mg/ezetimibe 10 mg (n = 18) if statin naïve, or ezetimibe 10 mg (n = 30) if taking a statin. Phosphocreatine recovery time was measured by (31)P magnetic resonance spectroscopy immediately after symptom-limited calf exercise on a 1.5-T scanner. Calf perfusion was measured using first-pass contrast-enhanced magnetic resonance imaging with 0.1 mM/kg gadolinium at peak exercise. Gadolinium-enhanced magnetic resonance angiography was graded. A 6-min walk and a standardized graded Skinner-Gardner exercise treadmill test with peak Vo(2) were performed. A repeated-measures model compared changes over time. RESULTS LDL reduction from baseline to year 2 was greater in the simvastatin 40 mg/ezetimibe 10 mg group (116 ± 42 mg/dl to 56 ± 21 mg/dl) than in the simvastatin 40 mg group (129 ± 40 mg/dl to 90 ± 30 mg/dl, p < 0.01). LDL also decreased in the ezetimibe 10 mg group (102 ± 28 mg/dl to 79 ± 27 mg/dl, p < 0.01). Despite this, there was no difference in perfusion, metabolism, or exercise parameters between groups or over time. Resting ABI did improve over time in the ezetimibe 10 mg group and the entire study group of patients. CONCLUSIONS Despite effective LDL reduction in PAD, neither tissue perfusion, metabolism, nor exercise parameters improved, although rest ABI did. Thus, LDL lowering does not improve calf muscle physiology or functional capacity in PAD. (Comprehensive Magnetic Resonance of Peripheral Arterial Disease; NCT00587678).
Collapse
Affiliation(s)
- Amy M. West
- Department of Medicine, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
| | - Justin D. Anderson
- Department of Medicine, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
| | - Frederick H. Epstein
- Department of Radiology, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
- Department of Biomedical Engineering, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
| | - Craig H. Meyer
- Department of Radiology, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
- Department of Biomedical Engineering, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
| | - Hongkun Wang
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC
| | - Klaus D. Hagspiel
- Department of Medicine, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
- Department of Radiology, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
| | - Stuart S. Berr
- Department of Radiology, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
- Department of Biomedical Engineering, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
| | - Nancy L. Harthun
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Arthur L. Weltman
- Department of Medicine, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
| | - Joseph M. DiMaria
- Department of Radiology, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
| | - Jennifer R. Hunter
- Department of Radiology, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
| | - John M. Christopher
- Department of Radiology, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
| | - Christopher M. Kramer
- Department of Medicine, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
- Department of Radiology, University of Virginia Health System, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
43
|
Krucoff MW, Jones WS, Patel MR. Learning to Walk Before We Run. J Am Coll Cardiol 2011; 58:1077-9. [DOI: 10.1016/j.jacc.2011.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 04/07/2011] [Indexed: 10/17/2022]
|
44
|
Greenman RL, Smithline HA. The feasibility of measuring phosphocreatine recovery kinetics in muscle using a single-shot (31)P RARE MRI sequence. Acad Radiol 2011; 18:917-23. [PMID: 21536463 PMCID: PMC3115448 DOI: 10.1016/j.acra.2011.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 12/28/2022]
Abstract
RATIONALE AND OBJECTIVES Heterogeneity of skeletal muscle structure, composition, and perfusion results in spatial differences in oxidative function between muscles and muscle regions. The simultaneous measurement of the postexercise phosphocreatine (PCr) recovery rate across all muscles of a human limb cross-section may provide new insights into normal physiology and disease states. The objective of this work was to assess the feasibility of acquiring PCr rapid acquisition with relaxation enhancement (RARE) images with sufficient temporal and spatial resolution to accurately measure PCr recovery kinetics in a cross-section of a human limb. MATERIALS AND METHODS One normal subject performed a finger exercise until fatigued. At cessation of exercise surface coil localized pulse-and-acquire phosphorus-31 MR spectra ((31)P- magnetic resonance spectroscopy [MRS]) of the forearm were acquired at 6 S intervals for 4 minutes. The exercise protocol was repeated 7 days later and axial PCr RARE images of the forearm were acquired following exercise with 5.6 cm(3) voxels at 6-second intervals for 4 minutes. RESULTS The PCr recovery time constants for the PCr RARE and (31)P-MRS measurements were 91.0 and 91.1 seconds, respectively, based on a monoexponential fit. A Pearson correlation test showed that the PCr recovery data that resulted from the RARE PCr imaging were highly correlated with the data resulting from the (31)P-MRS (r = 0.91, P < .0001). DISCUSSION Data from selected regions of RARE PCr images acquired at 6-second intervals compare well to those acquired using surface coil (31)P MR spectroscopy and can provide an accurate assessment of PCr recovery kinetics.
Collapse
Affiliation(s)
- Robert L Greenman
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Ma 02115, USA.
| | | |
Collapse
|
45
|
The Prevalence of Asymptomatic and Symptomatic Peripheral Arterial Disease and Peripheral Arterial Disease Risk Factors in the US Population. Holist Nurs Pract 2011; 25:147-61. [DOI: 10.1097/hnp.0b013e3182157c4a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Wu JS, Buettner C, Smithline H, Ngo LH, Greenman RL. Evaluation of skeletal muscle during calf exercise by 31-phosphorus magnetic resonance spectroscopy in patients on statin medications. Muscle Nerve 2011; 43:76-81. [PMID: 21171098 PMCID: PMC3332539 DOI: 10.1002/mus.21847] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Muscle pain is a common side effect of statin medications, but the cause is poorly understood. We characterized phosphocreatine (PCr) exercise recovery kinetics in 10 patients with hypercholesterolemia before and after a 4-week regimen of statin therapy using 31-phosphorus magnetic resonance spectroscopy ((31) P-MRS). (31) P spectra were obtained before, during, and after exercise on a calf flexion pedal ergometer. Creatine kinase (CK) serum levels were drawn before and after statin therapy. The mean metabolic recovery time constant in subjects increased from 28.1 s (SE = 6.5 s) to 55.4 s (SE = 7.4 s) after statin therapy. The unweighted mean of the pre/post-recovery time difference was -27.3 s (SE = 12.4 s; P = 0.02). Pre- and post-therapy CK levels were not significantly different (P = 0.50). Metabolic recovery time in the calf is prolonged in patients after statin use. This suggests that statins impair mitochondrial oxidative function, and (31) P MRS is a potential study model for statin-associated myopathy.
Collapse
Affiliation(s)
- Jim S Wu
- Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.
| | | | | | | | | |
Collapse
|
47
|
Pande RL, Park MA, Perlstein TS, Desai AS, Doyle J, Navarrete N, Copeland-Halperin RS, Redline W, Di Carli MF, Creager MA. Impaired Skeletal Muscle Glucose Uptake by [
18
F]Fluorodeoxyglucose–Positron Emission Tomography in Patients With Peripheral Artery Disease and Intermittent Claudication. Arterioscler Thromb Vasc Biol 2011; 31:190-6. [DOI: 10.1161/atvbaha.110.217687] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Reena L. Pande
- From the Department of Medicine, Cardiovascular Division, Vascular Medicine Section (R.L.P., T.S.P., A.S.D., J.D., N.N., R.S.C.-H., W.R., M.A.C.) and Department of Radiology, Division of Nuclear Medicine/PET (M.-A.P., M.F.D.C.), Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Mi-Ae Park
- From the Department of Medicine, Cardiovascular Division, Vascular Medicine Section (R.L.P., T.S.P., A.S.D., J.D., N.N., R.S.C.-H., W.R., M.A.C.) and Department of Radiology, Division of Nuclear Medicine/PET (M.-A.P., M.F.D.C.), Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Todd S. Perlstein
- From the Department of Medicine, Cardiovascular Division, Vascular Medicine Section (R.L.P., T.S.P., A.S.D., J.D., N.N., R.S.C.-H., W.R., M.A.C.) and Department of Radiology, Division of Nuclear Medicine/PET (M.-A.P., M.F.D.C.), Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Akshay S. Desai
- From the Department of Medicine, Cardiovascular Division, Vascular Medicine Section (R.L.P., T.S.P., A.S.D., J.D., N.N., R.S.C.-H., W.R., M.A.C.) and Department of Radiology, Division of Nuclear Medicine/PET (M.-A.P., M.F.D.C.), Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Jeanne Doyle
- From the Department of Medicine, Cardiovascular Division, Vascular Medicine Section (R.L.P., T.S.P., A.S.D., J.D., N.N., R.S.C.-H., W.R., M.A.C.) and Department of Radiology, Division of Nuclear Medicine/PET (M.-A.P., M.F.D.C.), Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Nicole Navarrete
- From the Department of Medicine, Cardiovascular Division, Vascular Medicine Section (R.L.P., T.S.P., A.S.D., J.D., N.N., R.S.C.-H., W.R., M.A.C.) and Department of Radiology, Division of Nuclear Medicine/PET (M.-A.P., M.F.D.C.), Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Robert S. Copeland-Halperin
- From the Department of Medicine, Cardiovascular Division, Vascular Medicine Section (R.L.P., T.S.P., A.S.D., J.D., N.N., R.S.C.-H., W.R., M.A.C.) and Department of Radiology, Division of Nuclear Medicine/PET (M.-A.P., M.F.D.C.), Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Whitney Redline
- From the Department of Medicine, Cardiovascular Division, Vascular Medicine Section (R.L.P., T.S.P., A.S.D., J.D., N.N., R.S.C.-H., W.R., M.A.C.) and Department of Radiology, Division of Nuclear Medicine/PET (M.-A.P., M.F.D.C.), Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Marcelo F. Di Carli
- From the Department of Medicine, Cardiovascular Division, Vascular Medicine Section (R.L.P., T.S.P., A.S.D., J.D., N.N., R.S.C.-H., W.R., M.A.C.) and Department of Radiology, Division of Nuclear Medicine/PET (M.-A.P., M.F.D.C.), Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Mark A. Creager
- From the Department of Medicine, Cardiovascular Division, Vascular Medicine Section (R.L.P., T.S.P., A.S.D., J.D., N.N., R.S.C.-H., W.R., M.A.C.) and Department of Radiology, Division of Nuclear Medicine/PET (M.-A.P., M.F.D.C.), Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
48
|
Korpisalo P, Ylä-Herttuala S. Stimulation of functional vessel growth by gene therapy. Integr Biol (Camb) 2010; 2:102-12. [PMID: 20473388 DOI: 10.1039/b921869f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The process of growing new blood vessels through gene therapy may be difficult but is certainly possible. This review will discuss the most important factors determining the efficacy of angiogenic gene therapy.
Collapse
Affiliation(s)
- Petra Korpisalo
- A.I. Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | |
Collapse
|
49
|
Anderson JD, Epstein FH, Meyer CH, Hagspiel KD, Wang H, Berr SS, Harthun NL, Weltman A, DiMaria JM, West AM, Kramer CM. Multifactorial determinants of functional capacity in peripheral arterial disease: uncoupling of calf muscle perfusion and metabolism. J Am Coll Cardiol 2009; 54:628-35. [PMID: 19660694 PMCID: PMC2768062 DOI: 10.1016/j.jacc.2009.01.080] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 01/06/2009] [Accepted: 01/14/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVES We aimed to investigate the pathophysiology of peripheral arterial disease (PAD) by examining magnetic resonance imaging (MRI) and spectroscopic (MRS) correlates of functional capacity. BACKGROUND Despite the high prevalence, morbidity, and cost of PAD, its pathophysiology is incompletely understood. METHODS Eighty-five patients (age 68 +/- 10 years) with mild-to-moderate PAD (ankle-brachial index 0.69 +/- 0.14) had their most symptomatic leg studied by MRI/MRS. Percent wall volume in the superficial femoral artery was measured with black blood MRI. First-pass contrast-enhanced MRI calf muscle perfusion and (31)P MRS phosphocreatine recovery time constant (PCr) were measured at peak exercise in calf muscle. All patients underwent magnetic resonance angiography (MRA), treadmill testing with maximal oxygen consumption measurement, and a 6-min walk test. RESULTS Mean MRA index of number and severity of stenoses was 0.84 +/- 0.68 (normal 0), % wall volume 74 +/- 11% (normal 46 +/- 7%), tissue perfusion 0.039 +/- 0.015 s(-1) (normal 0.065 +/- 0.013 s(-1)), and PCr 87 +/- 54 s (normal 34 +/- 16 s). MRA index, % wall volume, and ankle-brachial index correlated with most functional measures. PCr was the best correlate of treadmill exercise time, whereas calf muscle perfusion was the best correlate of 6-min walk distance. No correlation was noted between PCr and tissue perfusion. CONCLUSIONS Functional limitations in PAD are multifactorial. As measured by MRI and spectroscopy, atherosclerotic plaque burden, stenosis severity, tissue perfusion, and energetics all play a role. However, cellular metabolism is uncoupled from tissue perfusion. These findings suggest a potential role for therapies that regress plaque, increase tissue perfusion, and/or improve cellular metabolism. (Comprehensive Magnetic Resonance of Peripheral Arterial Disease; NCT00587678).
Collapse
Affiliation(s)
- Justin D. Anderson
- Department of Medicine, University of Virginia Health System, University of Virginia, Charlottesville, VA
| | - Frederick H. Epstein
- Department of Radiology, University of Virginia Health System, University of Virginia, Charlottesville, VA
- Department of Biomedical Engineering, University of Virginia Health System, University of Virginia, Charlottesville, VA
| | - Craig H. Meyer
- Department of Radiology, University of Virginia Health System, University of Virginia, Charlottesville, VA
- Department of Biomedical Engineering, University of Virginia Health System, University of Virginia, Charlottesville, VA
| | - Klaus D. Hagspiel
- Department of Medicine, University of Virginia Health System, University of Virginia, Charlottesville, VA
- Department of Radiology, University of Virginia Health System, University of Virginia, Charlottesville, VA
| | - Hongkun Wang
- Department of Public Health Sciences, University of Virginia Health System, University of Virginia, Charlottesville, VA
| | - Stuart S. Berr
- Department of Radiology, University of Virginia Health System, University of Virginia, Charlottesville, VA
- Department of Biomedical Engineering, University of Virginia Health System, University of Virginia, Charlottesville, VA
| | - Nancy L. Harthun
- Department of Surgery, University of Virginia Health System, University of Virginia, Charlottesville, VA
| | - Arthur Weltman
- Department of Medicine, University of Virginia Health System, University of Virginia, Charlottesville, VA
| | - Joseph M. DiMaria
- Department of Radiology, University of Virginia Health System, University of Virginia, Charlottesville, VA
| | - Amy M. West
- Department of Medicine, University of Virginia Health System, University of Virginia, Charlottesville, VA
| | - Christopher M. Kramer
- Department of Medicine, University of Virginia Health System, University of Virginia, Charlottesville, VA
- Department of Radiology, University of Virginia Health System, University of Virginia, Charlottesville, VA
| |
Collapse
|
50
|
Wu WC, Mohler E, Ratcliffe SJ, Wehrli FW, Detre JA, Floyd TF. Skeletal muscle microvascular flow in progressive peripheral artery disease: assessment with continuous arterial spin-labeling perfusion magnetic resonance imaging. J Am Coll Cardiol 2009; 53:2372-7. [PMID: 19539149 PMCID: PMC2763280 DOI: 10.1016/j.jacc.2009.03.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/24/2009] [Accepted: 03/10/2009] [Indexed: 11/24/2022]
Abstract
OBJECTIVES We present the novel application of continuous arterial spin-labeling (CASL) magnetic resonance imaging (MRI) for the measurement of calf muscle perfusion in subjects with progressive peripheral arterial disease (PAD). BACKGROUND Peripheral arterial disease is largely considered to be a disease of conduit vessels. The impact of PAD upon microvascular flow in the end-organ, muscle, remains unknown. Continuous arterial spin-labeling is a noninvasive MRI method capable of measuring microvascular flow and might assist in our understanding of the impact of PAD upon the microvasculature. METHODS Forty subjects with varying degrees of PAD and 17 age-matched PAD-free subjects were recruited and underwent measurement of the ankle-to-brachial index (ABI) and CASL. Peak hyperemic flow (PHF) and time-to-peak (TTP) were computed and assessed as a function of ABI and calf muscle group. RESULTS An ABI dependence was found in both PHF (p = 0.04) and TTP (p < 10(-4)). Whereas TTP increased almost immediately with increasing PAD severity, PHF was, in contrast, relatively well preserved until later stages of disease. CONCLUSIONS The CASL flow measurements correlate with disease state as measured by ABI and demonstrate preserved microvascular flow reserve in the presence of early to intermediate vascular disease.
Collapse
Affiliation(s)
- Wen-Chau Wu
- Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|