1
|
Dekleva M, Djordjevic A, Zivkovic S, Lazic JS. Specificities of Myocardial Infarction and Heart Failure in Women. J Clin Med 2024; 13:7319. [PMID: 39685777 DOI: 10.3390/jcm13237319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Substantial evidence from previous clinical studies, randomized trials, and patient registries confirms the existence of significant differences in cardiac morphology, pathophysiology, prevalence of specific coronary artery disease (CAD), and clinical course of myocardial infarction (MI) between men and women. The aim of this review is to investigate the impact of sex or gender on the development and clinical course of MI, the mechanisms and features of left ventricular (LV) remodeling, and heart failure (HF). The main sex-related difference in post-MI LV remodeling is adverse LV dilatation in males versus concentric LV remodeling or concentric LV hypertrophy in females. In addition, women have a higher incidence of microvascular dysfunction, which manifests as impaired coronary flow reserve, distal embolism, and a higher prevalence of the no-reflow phenomenon. Consequently, impaired myocardial perfusion after MI is more common in women than in men. Regardless of age or other comorbidities, the incidence of reinfarction, hospitalization for HF, and mortality is significantly higher in females. There is therefore a "sex paradox": despite the lower prevalence of obstructive CAD and HF with reduced ejection fraction (HFrEF), women have a higher mortality rate after MI. Different characteristics of the coronary network, such as plaque formation, microvascular dysfunction, and endothelial inflammation, as well as the prolonged time to optimal coronary flow restoration, secondary mitral regurgitation, and pulmonary vascular dysfunction, lead to a worse outcome in females. A better understanding of the mechanisms responsible for MI occurrence, LV remodeling, and HF in men and women would contribute to optimized patient therapy that would benefit both sexes.
Collapse
Affiliation(s)
- Milica Dekleva
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Djordjevic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Stefan Zivkovic
- Clinic for Cardiology, Institute for Cardiovascular Disease "Dedinje", 11000 Belgrade, Serbia
| | - Jelena Suzic Lazic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic for Internal Medicine, Cardiology Department, University Clinical Hospital Center "Dr. Dragisa Misovic-Dedinje", 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Gallone G, Ibero J, Morley-Smith A, Monteagudo Vela M, Fiorelli F, Konicoff M, Edwards G, Raj B, Shanmuganathan M, Pidello S, Frea S, De Ferrari GM, Panoulas V, Stock U, Bowles C, Dunning J, Riesgo Gil F. Association of Renin-Angiotensin-Aldosterone System Inhibitors With Clinical Outcomes, Hemodynamics, and Myocardial Remodeling Among Patients With Advanced Heart Failure on Left Ventricular Assist Device Support. J Am Heart Assoc 2024; 13:e032617. [PMID: 38686903 PMCID: PMC11179874 DOI: 10.1161/jaha.123.032617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND We evaluated the potential benefits of renin-angiotensin-aldosterone system inhibitors (RAASi) in patients with left ventricular assist device support. METHODS AND RESULTS A total of 165 consecutive patients undergoing left ventricular assist device implant and alive at 6-month on support were studied. RAASi status after 6-month visit along with clinical reasons for nonprescription/uptitration were retrospectively assessed. The primary outcome was a composite of heart failure hospitalization or cardiovascular death between 6 and 24 months after left ventricular assist device implant. Remodeling and hemodynamic outcomes were explored by studying the association of RAASi new prescription/uptitration versus unmodified therapy at 6-month visit with the change in echocardiographic parameters and hemodynamics between 6 and 18 months. After the 6-month visit, 76% of patients were on RAASi. Patients' characteristics among those receiving and not receiving RAASi were mostly similar. Of 85 (52%) patients without RAASi new prescription/uptitration at 6-month visit, 62% had no apparent clinical reason. RAASi were independently associated with the primary outcome (adjusted hazard ratio, 0.31 [95% CI, 0.16-0.69]). The baseline rates of optimal echocardiographic profile (neutral interventricular septum, mitral regurgitation less than mild, and aortic valve opening) and hemodynamic profile (cardiac index ≥2.2 L/min per m2, wedge pressure <18 mm Hg, and right atrial pressure <12 mm Hg) were similar between groups. At 18 months, patients receiving RAASi new prescription/uptitration at 6 months had higher rates of optimal hemodynamic profile (57.5% versus 37.0%; P=0.032) and trends for higher rates of optimal echocardiographic profile (39.6% versus 22.9%; P=0.055) compared with patients with 6-month unmodified therapy. Optimal 18-month hemodynamic and echocardiographic profiles were associated with the primary outcome (log-rank=0.022 and log-rank=0.035, respectively). CONCLUSIONS RAASi are associated with improved outcomes and improved hemodynamics among mechanically unloaded patients.
Collapse
Affiliation(s)
- Guglielmo Gallone
- Cardiothoracic Transplantation Harefield Hospital, Guy's and St Thomas' National Health Service Foundation Trust London United Kingdom
- Division of Cardiology, Cardiovascular and Thoracic Department Città della Salute e della Scienza Hospital Turin Italy
| | - Javier Ibero
- Department of Medical Sciences University of Turin Turin Italy
| | - Andrew Morley-Smith
- Cardiothoracic Transplantation Harefield Hospital, Guy's and St Thomas' National Health Service Foundation Trust London United Kingdom
| | - Maria Monteagudo Vela
- Cardiothoracic Transplantation Harefield Hospital, Guy's and St Thomas' National Health Service Foundation Trust London United Kingdom
| | - Francesca Fiorelli
- Cardiothoracic Transplantation Harefield Hospital, Guy's and St Thomas' National Health Service Foundation Trust London United Kingdom
| | - Mailen Konicoff
- Cardiothoracic Transplantation Harefield Hospital, Guy's and St Thomas' National Health Service Foundation Trust London United Kingdom
| | - Gemma Edwards
- Cardiothoracic Transplantation Harefield Hospital, Guy's and St Thomas' National Health Service Foundation Trust London United Kingdom
| | - Binu Raj
- Cardiothoracic Transplantation Harefield Hospital, Guy's and St Thomas' National Health Service Foundation Trust London United Kingdom
| | - Mayooran Shanmuganathan
- Cardiothoracic Transplantation Harefield Hospital, Guy's and St Thomas' National Health Service Foundation Trust London United Kingdom
| | - Stefano Pidello
- Division of Cardiology, Cardiovascular and Thoracic Department Città della Salute e della Scienza Hospital Turin Italy
| | - Simone Frea
- Division of Cardiology, Cardiovascular and Thoracic Department Città della Salute e della Scienza Hospital Turin Italy
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Cardiovascular and Thoracic Department Città della Salute e della Scienza Hospital Turin Italy
| | - Vasileios Panoulas
- Cardiothoracic Transplantation Harefield Hospital, Guy's and St Thomas' National Health Service Foundation Trust London United Kingdom
- Cardiovascular Sciences National Heart and Lung Institute, Imperial College London London United Kingdom
| | - Ulrich Stock
- Cardiothoracic Transplantation Harefield Hospital, Guy's and St Thomas' National Health Service Foundation Trust London United Kingdom
| | - Christopher Bowles
- Cardiothoracic Transplantation Harefield Hospital, Guy's and St Thomas' National Health Service Foundation Trust London United Kingdom
| | - John Dunning
- Cardiothoracic Transplantation Harefield Hospital, Guy's and St Thomas' National Health Service Foundation Trust London United Kingdom
| | - Fernando Riesgo Gil
- Cardiothoracic Transplantation Harefield Hospital, Guy's and St Thomas' National Health Service Foundation Trust London United Kingdom
| |
Collapse
|
3
|
RAS inhibitors and renal and general mortality in patients with heart failure supported by left ventricular assist devices: a registry study. Clin Res Cardiol 2022:10.1007/s00392-022-02136-6. [DOI: 10.1007/s00392-022-02136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
|
4
|
Sarohi V, Chakraborty S, Basak T. Exploring the cardiac ECM during fibrosis: A new era with next-gen proteomics. Front Mol Biosci 2022; 9:1030226. [PMID: 36483540 PMCID: PMC9722982 DOI: 10.3389/fmolb.2022.1030226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 10/24/2023] Open
Abstract
Extracellular matrix (ECM) plays a critical role in maintaining elasticity in cardiac tissues. Elasticity is required in the heart for properly pumping blood to the whole body. Dysregulated ECM remodeling causes fibrosis in the cardiac tissues. Cardiac fibrosis leads to stiffness in the heart tissues, resulting in heart failure. During cardiac fibrosis, ECM proteins get excessively deposited in the cardiac tissues. In the ECM, cardiac fibroblast proliferates into myofibroblast upon various kinds of stimulations. Fibroblast activation (myofibroblast) contributes majorly toward cardiac fibrosis. Other than cardiac fibroblasts, cardiomyocytes, epithelial/endothelial cells, and immune system cells can also contribute to cardiac fibrosis. Alteration in the expression of the ECM core and ECM-modifier proteins causes different types of cardiac fibrosis. These different components of ECM culminated into different pathways inducing transdifferentiation of cardiac fibroblast into myofibroblast. In this review, we summarize the role of different ECM components during cardiac fibrosis progression leading to heart failure. Furthermore, we highlight the importance of applying mass-spectrometry-based proteomics to understand the key changes occurring in the ECM during fibrotic progression. Next-gen proteomics studies will broaden the potential to identify key targets to combat cardiac fibrosis in order to achieve precise medicine-development in the future.
Collapse
Affiliation(s)
- Vivek Sarohi
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Sanchari Chakraborty
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| |
Collapse
|
5
|
Wybraniec MT, Orszulak M, Męcka K, Mizia-Stec K. Heart Failure with Improved Ejection Fraction: Insight into the Variable Nature of Left Ventricular Systolic Function. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14400. [PMID: 36361280 PMCID: PMC9656122 DOI: 10.3390/ijerph192114400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The progress of contemporary cardiovascular therapy has led to improved survival in patients with myocardial disease. However, the development of heart failure (HF) represents a common clinical challenge, regardless of the underlying myocardial pathology, due to the severely impaired quality of life and increased mortality comparable with malignant neoplasms. Left ventricular ejection fraction (LVEF) is the main index of systolic function and a key predictor of mortality among HF patients, hence its improvement represents the main indicator of response to instituted therapy. The introduction of complex pharmacotherapy for HF, increased availability of cardiac-implantable electronic devices and advances in the management of secondary causes of HF, including arrhythmia-induced cardiomyopathy, have led to significant increase in the proportion of patients with prominent improvement or even normalization of LVEF, paving the way for the identification of a new subgroup of HF with an improved ejection fraction (HFimpEF). Accumulating data has indicated that these patients share far better long-term prognoses than patients with stable or worsening LVEF. Due to diverse HF aetiology, the prevalence of HFimpEF ranges from roughly 10 to 40%, while the search for reliable predictors and genetic associations corresponding with this clinical presentation is under way. As contemporary guidelines focus mainly on the management of HF patients with clearly defined LVEF, the present review aimed to characterize the definition, epidemiology, predictors, clinical significance and principles of therapy of patients with HFimpEF.
Collapse
Affiliation(s)
- Maciej T. Wybraniec
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 47 Ziołowa St., 40-635 Katowice, Poland
- Upper-Silesian Medical Center, 40-635 Katowice, Poland
- European Reference Network on Heart Diseases—ERN GUARD-HEART, 1105 AZ Amsterdam, The Netherlands
| | - Michał Orszulak
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 47 Ziołowa St., 40-635 Katowice, Poland
- Upper-Silesian Medical Center, 40-635 Katowice, Poland
| | - Klaudia Męcka
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 47 Ziołowa St., 40-635 Katowice, Poland
- Upper-Silesian Medical Center, 40-635 Katowice, Poland
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 47 Ziołowa St., 40-635 Katowice, Poland
- Upper-Silesian Medical Center, 40-635 Katowice, Poland
- European Reference Network on Heart Diseases—ERN GUARD-HEART, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Tseliou E, Lavine KJ, Wever-Pinzon O, Topkara VK, Meyns B, Adachi I, Zimpfer D, Birks EJ, Burkhoff D, Drakos SG. Biology of myocardial recovery in advanced heart failure with long-term mechanical support. J Heart Lung Transplant 2022; 41:1309-1323. [PMID: 35965183 DOI: 10.1016/j.healun.2022.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022] Open
Abstract
Cardiac remodeling is an adaptive, compensatory biological process following an initial insult to the myocardium that gradually becomes maladaptive and causes clinical deterioration and chronic heart failure (HF). This biological process involves several pathophysiological adaptations at the genetic, molecular, cellular, and tissue levels. A growing body of clinical and translational investigations demonstrated that cardiac remodeling and chronic HF does not invariably result in a static, end-stage phenotype but can be at least partially reversed. One of the paradigms which shed some additional light on the breadth and limits of myocardial elasticity and plasticity is long term mechanical circulatory support (MCS) in advanced HF pediatric and adult patients. MCS by providing (a) ventricular mechanical unloading and (b) effective hemodynamic support to the periphery results in functional, structural, cellular and molecular changes, known as cardiac reverse remodeling. Herein, we analyze and synthesize the advances in our understanding of the biology of MCS-mediated reverse remodeling and myocardial recovery. The MCS investigational setting offers access to human tissue, providing an unparalleled opportunity in cardiovascular medicine to perform in-depth characterizations of myocardial biology and the associated molecular, cellular, and structural recovery signatures. These human tissue findings have triggered and effectively fueled a "bedside to bench and back" approach through a variety of knockout, inhibition or overexpression mechanistic investigations in vitro and in vivo using small animal models. These follow-up translational and basic science studies leveraging human tissue findings have unveiled mechanistic myocardial recovery pathways which are currently undergoing further testing for potential therapeutic drug development. Essentially, the field is advancing by extending the lessons learned from the MCS cardiac recovery investigational setting to develop therapies applicable to the greater, not end-stage, HF population. This review article focuses on the biological aspects of the MCS-mediated myocardial recovery and together with its companion review article, focused on the clinical aspects, they aim to provide a useful framework for clinicians and investigators.
Collapse
Affiliation(s)
- Eleni Tseliou
- Division of Cardiovascular Medicine, University of Utah Health, Salt Lake City, UT; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah Health, Salt Lake City, UT
| | - Kory J Lavine
- Division of Cardiology, Washington University School of Medicine, St Louis, MO
| | - Omar Wever-Pinzon
- Division of Cardiovascular Medicine, University of Utah Health, Salt Lake City, UT; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah Health, Salt Lake City, UT
| | - Veli K Topkara
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY
| | - Bart Meyns
- Department of Cardiology and Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Iki Adachi
- Division of Cardiac Surgery, Texas Children's Hospital, Houston, TX
| | - Daniel Zimpfer
- Department of Surgery, Division of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Daniel Burkhoff
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY; Cardiovascular Research Foundation (CRF), New York, NY
| | - Stavros G Drakos
- Division of Cardiovascular Medicine, University of Utah Health, Salt Lake City, UT; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah Health, Salt Lake City, UT.
| |
Collapse
|
7
|
Biomarkers in Patients with Left Ventricular Assist Device: An Insight on Current Evidence. Biomolecules 2022; 12:biom12020334. [PMID: 35204834 PMCID: PMC8869703 DOI: 10.3390/biom12020334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 01/31/2023] Open
Abstract
Left ventricular assist devices (LVADs) have been representing a cornerstone therapy for patients with end-stage heart failure during the last decades. However, their use induces several pathophysiological modifications which are partially responsible for the complications that typically characterize these patients, such as right ventricular failure, thromboembolic events, as well as bleedings. During the last years, biomarkers involved in the pathways of neurohormonal activation, myocardial injury, adverse remodeling, oxidative stress and systemic inflammation have raised attention. The search and analysis of potential biomarkers in LVAD patients could lead to the identification of a subset of patients with an increased risk of developing these adverse events. This could then promote a closer follow-up as well as therapeutic modifications. Furthermore, it might highlight some new therapeutic pharmacological targets that could lead to improved long-term survival. The aim of this review is to provide current evidence on the role of different biomarkers in patients with LVAD, in particular highlighting their possible implications in clinical practice.
Collapse
|
8
|
Cheng CJ, Mandour A, Yoshida T, Watari T, Tanaka R, Matsuura K. Changes in renin-angiotensin-aldosterone system during cardiac remodeling after mitral valvuloplasty in dogs. J Vet Intern Med 2022; 36:397-405. [PMID: 34994485 PMCID: PMC8965262 DOI: 10.1111/jvim.16346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Information regarding changes in renin-angiotensin-aldosterone system (RAAS) during cardiac remodeling after mitral valvuloplasty (MVP) in dogs remains lacking. HYPOTHESIS/OBJECTIVES To assess the longitudinal effects of MVP on circulating RAAS activity. ANIMALS Eight client-owned dogs receiving MVP for myxomatous mitral valve disease (MMVD). METHODS This is a cohort study. Plasma renin activity (PRA), angiotensin II (AT2), aldosterone (PAC), blood urea nitrogen (BUN), and creatinine concentrations, were measured in these dogs before (baseline) and at 3 consecutive monthly follow-ups (Post-1M, Post-2M, Post-3M). Echocardiography was concomitantly used to assess the process of cardiac recovery after MVP. RESULTS The echocardiography revealed a significant decrease in LVIDDN, LA/Ao, FS, E velocity, E/A, E' sep, S' lat, E' lat, and A' lat after MVP compared with baseline (P < .05). There was a significant reduction in the PRA (2.45, 3.05, 2.74 vs 8.8 ng/mL/h; P = .002), AT2 (466, 315, 235 vs 1200 pg/mL; P = .009), and PAC (39.88, 47, 54.62 vs 179.5 pg/mL; P = .01), respectively at Post-1M, Post-2M, Post-3M compared to the baseline. Additionally, BUN and creatinine concentrations decreased from Post-1M. The RAAS variables showed significant, weak to moderate, relationship with selected echocardiographic variables. CONCLUSIONS AND CLINICAL IMPORTANCE Mitral valvuloplasty contributes to decreased RAAS activity in MMVD dogs, which paralleled the process of cardiac reverse remodeling up to Post-3M. This information facilitates formulating strategies to optimize clinical outcomes for dogs after MVP.
Collapse
Affiliation(s)
- Chieh-Jen Cheng
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan.,Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,VCA Japan Shiraishi Animal Hospital, Sayama, Saitama, Japan
| | - Ahmed Mandour
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,VCA Japan Shiraishi Animal Hospital, Sayama, Saitama, Japan
| | - Toshihiro Watari
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Katsuhiro Matsuura
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,VCA Japan Shiraishi Animal Hospital, Sayama, Saitama, Japan
| |
Collapse
|
9
|
Brinkley DM, Wang L, Yu C, Grandin EW, Kiernan MS. Impact of renin-angiotensin-aldosterone system inhibition on morbidity and mortality during long-term continuous-flow left ventricular assist device support: An IMACS report. J Heart Lung Transplant 2021; 40:1605-1613. [PMID: 34663529 DOI: 10.1016/j.healun.2021.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Inhibition of the renin angiotensin aldosterone system (RAAS) improves survival and reduces adverse cardiac events in heart failure with reduced ejection fraction, but the benefit is not well-defined following left ventricular assist device (LVAD). METHODS We analyzed the ISHLT IMACS registry for adults with a primary, continuous-flow LVAD from January 2013 to September 2017 who were alive at postoperative month 3 without a major adverse event, and categorized patients according to treatment an angiotensin converting enzyme inhibitor (ACEI/ARB) or mineralocorticoid receptor antagonist (MRA). Propensity score matching was performed separately for ACEI/ARB vs none (n = 4,118 each) and MRA vs none (n = 3,892 each). RESULTS Of 11,494 patients included, 50% were treated with ACEI/ARB and 38% with MRA. Kaplan-Meier survival was significantly better for patients receiving ACEI/ARB (p < 0.001) but not MRA (p = 0.31). In Cox proportional hazards analyses adjusted for known predictors of mortality following LVAD, ACEI/ARB use (hazard ratio 0.81 [95% confidence interval 0.71-0.93], p < 0.0001) but not MRA use (hazard ratio 1.03 [95% confidence interval 0.88-1.21], p = 0.69) was independently associated with lower mortality. Among patients treated with an ACEI/ARB, there was a significantly lower unadjusted risk of cardiovascular death (p < 0.001), risk of gastrointestinal bleeding (p = 0.01), and creatinine level (p < 0.001). MRA therapy was associated with lower risk of gastrointestinal bleeding (p = 0.01) but higher risk of hemolysis (p < 0.01). Potential limitations include residual confounding and therapy crossover. CONCLUSION These findings suggest a benefit for ACEI/ARB therapy in patients with heart failure after LVAD implantation.
Collapse
Affiliation(s)
- D Marshall Brinkley
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Li Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - E Wilson Grandin
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Michael S Kiernan
- Cardiovascular Division, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
10
|
Briasoulis A, Ruiz Duque E, Mouselimis D, Tsarouchas A, Bakogiannis C, Alvarez P. The role of renin-angiotensin system in patients with left ventricular assist devices. J Renin Angiotensin Aldosterone Syst 2021; 21:1470320320966445. [PMID: 33084480 PMCID: PMC7871286 DOI: 10.1177/1470320320966445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
End-stage heart failure is a condition in which the up-regulation of the systemic and local renin-angiotensin-aldosterone system (RAAS) leads to end-organ damage and is largely irreversible despite optimal medication. Left ventricular assist devices (LVADs) can downregulate RAAS activation by unloading the left ventricle and increasing the cardiac output translating into a better end-organ perfusion improving survival. However, the absence of pulsatility brought about by continuous-flow devices may variably trigger RAAS activation depending on left ventricular (LV) intrinsic contractility, the design and speed of the pump device. Moreover, the concept of myocardial recovery is being tested in clinical trials and in this setting LVAD support combined with intense RAAS inhibition can promote recovery and ensure maintenance of LV function after explantation. Blood pressure control on LVAD recipients is key to avoiding complications as gastrointestinal bleeding, pump thrombosis and stroke. Furthermore, emerging data highlight the role of RAAS antagonists as prevention of arteriovenous malformations that lead to gastrointestinal bleeds. Future studies should focus on the role of angiotensin receptor inhibitors in preventing myocardial fibrosis in patients with LVADs and examine in greater details the target blood pressure for these patients.
Collapse
Affiliation(s)
- Alexandros Briasoulis
- Division of Cardiovascular Diseases, Section of Heart Failure and Transplant, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Ernesto Ruiz Duque
- Division of Cardiovascular Diseases, Section of Heart Failure and Transplant, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Dimitrios Mouselimis
- 3rd Department of Cardiology Hippocration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasios Tsarouchas
- 3rd Department of Cardiology Hippocration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Constantinos Bakogiannis
- Division of Cardiovascular Diseases, Section of Heart Failure and Transplant, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Paulino Alvarez
- Division of Cardiovascular Diseases, Section of Heart Failure and Transplant, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
11
|
Cruz-López EO, Uijl E, Danser AHJ. Cardiac Angiotensin II Is Generated Locally by ACE and Not Chymase. J Am Coll Cardiol 2021; 78:540-541. [PMID: 34325845 DOI: 10.1016/j.jacc.2021.04.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
|
12
|
Abstract
This review provides a comprehensive overview of the past 25+ years of research into the development of left ventricular assist device (LVAD) to improve clinical outcomes in patients with severe end-stage heart failure and basic insights gained into the biology of heart failure gleaned from studies of hearts and myocardium of patients undergoing LVAD support. Clinical aspects of contemporary LVAD therapy, including evolving device technology, overall mortality, and complications, are reviewed. We explain the hemodynamic effects of LVAD support and how these lead to ventricular unloading. This includes a detailed review of the structural, cellular, and molecular aspects of LVAD-associated reverse remodeling. Synergisms between LVAD support and medical therapies for heart failure related to reverse remodeling, remission, and recovery are discussed within the context of both clinical outcomes and fundamental effects on myocardial biology. The incidence, clinical implications and factors most likely to be associated with improved ventricular function and remission of the heart failure are reviewed. Finally, we discuss recognized impediments to achieving myocardial recovery in the vast majority of LVAD-supported hearts and their implications for future research aimed at improving the overall rates of recovery.
Collapse
Affiliation(s)
| | | | - Gabriel Sayer
- Cardiovascular Research Foundation, New York, NY (D.B.)
| | - Nir Uriel
- Cardiovascular Research Foundation, New York, NY (D.B.)
| |
Collapse
|
13
|
Shah P, Psotka M, Taleb I, Alharethi R, Shams MA, Wever-Pinzon O, Yin M, Latta F, Stehlik J, Fang JC, Diao G, Singh R, Ijaz N, Kyriakopoulos CP, Zhu W, May CW, Cooper LB, Desai SS, Selzman CH, Kfoury A, Drakos SG. Framework to Classify Reverse Cardiac Remodeling With Mechanical Circulatory Support: The Utah-Inova Stages. Circ Heart Fail 2021; 14:e007991. [PMID: 33947201 PMCID: PMC8137588 DOI: 10.1161/circheartfailure.120.007991] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Variable definitions and an incomplete understanding of the gradient of reverse cardiac remodeling following continuous flow left ventricular assist device (LVAD) implantation has limited the field of myocardial plasticity. We evaluated the continuum of LV remodeling by serial echocardiographic imaging to define 3 stages of reverse cardiac remodeling following LVAD. METHODS The study enrolled consecutive LVAD patients across 4 study sites. A blinded echocardiographer evaluated the degree of structural (LV internal dimension at end-diastole [LVIDd]) and functional (LV ejection fraction [LVEF]) change after LVAD. Patients experiencing an improvement in LVEF ≥40% and LVIDd ≤6.0 cm were termed responders, absolute change in LVEF of ≥5% and LVEF <40% were termed partial responders, and the remaining patients with no significant improvement in LVEF were termed nonresponders. RESULTS Among 358 LVAD patients, 34 (10%) were responders, 112 (31%) partial responders, and the remaining 212 (59%) were nonresponders. The use of guideline-directed medical therapy for heart failure was higher in partial responders and responders. Structural changes (LVIDd) followed a different pattern with significant improvements even in patients who had minimal LVEF improvement. With mechanical unloading, the median reduction in LVIDd was -0.6 cm (interquartile range [IQR], -1.1 to -0.1 cm; nonresponders), -1.1 cm (IQR, -1.8 to -0.4 cm; partial responders), and -1.9 cm (IQR, -2.9 to -1.1 cm; responders). Similarly, the median change in LVEF was -2% (IQR, -6% to 1%), 9% (IQR, 6%-14%), and 27% (IQR, 23%-33%), respectively. CONCLUSIONS Reverse cardiac remodeling associated with durable LVAD support is not an all-or-none phenomenon and manifests in a continuous spectrum. Defining 3 stages across this continuum can inform clinical management, facilitate the field of myocardial plasticity, and improve the design of future investigations.
Collapse
Affiliation(s)
- Palak Shah
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Mitchell Psotka
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Iosif Taleb
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| | - Rami Alharethi
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - Mortada A. Shams
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia,Division of Cardiology, George Washington University, Washington DC
| | - Omar Wever-Pinzon
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael Yin
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| | - Federica Latta
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia,Department of Cardiology, University of Brescia, Italy, Brescia, Italy
| | - Josef Stehlik
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - James C. Fang
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - Guoqing Diao
- Department of Biostatistics and Bioinformatics, George Washington University, Washington DC
| | - Ramesh Singh
- Cardiac Surgery, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Naila Ijaz
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Christos P. Kyriakopoulos
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| | - Wei Zhu
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Christopher W. May
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Lauren B. Cooper
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - Shashank S. Desai
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - Craig H. Selzman
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| | - Abdallah Kfoury
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - Stavros G. Drakos
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
14
|
Birks EJ, Drakos SG, Patel SR, Lowes BD, Selzman CH, Starling RC, Trivedi J, Slaughter MS, Alturi P, Goldstein D, Maybaum S, Um JY, Margulies KB, Stehlik J, Cunningham C, Farrar DJ, Rame JE. Prospective Multicenter Study of Myocardial Recovery Using Left Ventricular Assist Devices (RESTAGE-HF [Remission from Stage D Heart Failure]). Circulation 2020; 142:2016-2028. [DOI: 10.1161/circulationaha.120.046415] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Left ventricular assist device (LVAD) unloading and hemodynamic support in patients with advanced chronic heart failure can result in significant improvement in cardiac function allowing LVAD removal; however, the rate of this is generally considered to be low. This prospective multicenter nonrandomized study (RESTAGE-HF [Remission from Stage D Heart Failure]) investigated whether a protocol of optimized LVAD mechanical unloading, combined with standardized specific pharmacological therapy to induce reverse remodeling and regular testing of underlying myocardial function, could produce a higher incidence of LVAD explantation.
Methods:
Forty patients with chronic advanced heart failure from nonischemic cardiomyopathy receiving the Heartmate II LVAD were enrolled from 6 centers. LVAD speed was optimized with an aggressive pharmacological regimen, and regular echocardiograms were performed at reduced LVAD speed (6000 rpm, no net flow) to test underlying myocardial function. The primary end point was the proportion of patients with sufficient improvement of myocardial function to reach criteria for explantation within 18 months with sustained remission from heart failure (freedom from transplant/ventricular assist device/death) at 12 months.
Results:
Before LVAD, age was 35.1±10.8 years, 67.5% were men, heart failure mean duration was 20.8±20.6 months, 95% required inotropic and 20% temporary mechanical support, left ventricular ejection fraction was 14.5±5.3%, end-diastolic diameter was 7.33±0.89 cm, end-systolic diameter was 6.74±0.88 cm, pulmonary artery saturations were 46.7±9.2%, and pulmonary capillary wedge pressure was 26.2±7.6 mm Hg. Four enrolled patients did not undergo the protocol because of medical complications unrelated to the study procedures. Overall, 40% of all enrolled (16/40) patients achieved the primary end point,
P
<0.0001, with 50% (18/36) of patients receiving the protocol being explanted within 18 months (pre-explant left ventricular ejection fraction, 57±8%; end-diastolic diameter, 4.81±0.58 cm; end-systolic diameter, 3.53±0.51 cm; pulmonary capillary wedge pressure, 8.1±3.1 mm Hg; pulmonary artery saturations 63.6±6.8% at 6000 rpm). Overall, 19 patients were explanted (19/36, 52.3% of those receiving the protocol). The 15 ongoing explanted patients are now 2.26±0.97 years after explant. After explantation survival free from LVAD or transplantation was 90% at 1-year and 77% at 2 and 3 years.
Conclusions:
In this multicenter prospective study, this strategy of LVAD support combined with a standardized pharmacological and cardiac function monitoring protocol resulted in a high rate of LVAD explantation and was feasible and reproducible with explants occurring in all 6 participating sites.
Registration:
URL:
https://www.clinicaltrials.gov
; Unique identifier: NCT01774656.
Collapse
Affiliation(s)
- Emma J. Birks
- Division of Cardiovascular Medicine (E.J.B.), University of Louisville, KY
- Division of Cardiovascular Medicine, University of Kentucky, Lexington (E.J.B.)
| | - Stavros G. Drakos
- Division of Cardiovascular Medicine (S.G.D., J.S.), University of Utah, Salt Lake City
| | - Snehal R. Patel
- Department of Cardiovascular Medicine (S.R.P.), Montefiore Medical Center, New York
| | - Brian D. Lowes
- Division of Cardiovascular Medicine (B.D.L.), University of Nebraska, Omaha
| | - Craig H. Selzman
- Division of Cardiothoracic Surgery (C.H.S.), University of Utah, Salt Lake City
| | | | - Jaimin Trivedi
- Department of Cardiovascular Surgery (J.T., M.S.S.), University of Louisville, KY
| | - Mark S. Slaughter
- Department of Cardiovascular Surgery (J.T., M.S.S.), University of Louisville, KY
| | - Pavin Alturi
- Department of Surgery, University of Pennsylvania, Philadelphia (P.A.)
| | - Daniel Goldstein
- Department of Cardiovascular Surgery (D.G.), Montefiore Medical Center, New York
| | - Simon Maybaum
- Department of Cardiology, Hofstra Northwell School of Medicine, Hempstead, NY (S.M.)
| | - John Y. Um
- Department of Cardiovascular Surgery (J.Y.U.), University of Nebraska, Omaha
| | - Kenneth B. Margulies
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia (K.B.M., J.E.R.)
| | - Josef Stehlik
- Division of Cardiovascular Medicine (S.G.D., J.S.), University of Utah, Salt Lake City
| | | | | | - Jesus E. Rame
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia (K.B.M., J.E.R.)
- Department of Medicine, Jefferson University Hospital, Philadelphia, PA (J.E.R.)
| |
Collapse
|
15
|
Kassner A, Oezpeker C, Gummert J, Zittermann A, Gärtner A, Tiesmeier J, Fox H, Morshuis M, Milting H. Mechanical circulatory support does not reduce advanced myocardial fibrosis in patients with end-stage heart failure. Eur J Heart Fail 2020; 23:324-334. [PMID: 33038287 DOI: 10.1002/ejhf.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/07/2022] Open
Abstract
AIMS Mechanical unloading by ventricular assist devices (VADs) has become increasingly important for the therapy of end-stage heart failure during the last decade. However, VAD support was claimed to be associated with partial reverse remodelling. Unfortunately, the literature describes the contradictory effects of VAD systems on cardiac fibrosis, a hallmark of cardiac remodelling. To clarify these inconsistent results, the effects on cardiac fibrosis before and after mechanical unloading in 125 patients were examined. METHODS AND RESULTS Left ventricular myocardial tissue from ischaemic or non-ischaemic cardiomyopathy patients undergoing VAD implantation and subsequent cardiac transplantation and non-failing hearts of the control group were analysed for 4-hydroxyproline (4OH-P) content as a marker for collagen protein. In addition, collagen cross-linking and mRNAs of collagens I and III and transforming growth factor beta-1 were measured. 4OH-P content was significantly increased in failing hearts compared with the control group and increased (P < 0.05) after mechanical unloading (nmol/mg tissue, mean ± standard deviation: 16.74 ± 9.68 vs. 7.75 ± 2.39 and 18.57 ± 9.19). However, plotting of the 4OH-P ratios (post/pre-VAD) against the collagen content pre-VAD could be fitted by non-linear regression. Collagen cross-linking correlated strongly with the total collagen content in pre- and post-VAD myocardium (r2 = 0.73 and 0.71, respectively). In contrast to the total collagen content, all three mRNAs of fibrotic genes were significantly down-regulated during VAD support when compared to pre-VAD. CONCLUSIONS This investigation of a comparably large patient cohort revealed that cardiac fibrosis was strongly increased in heart failure and increased even after mechanical unloading. The mRNAs of collagens I and III are independently regulated from the collagen protein.
Collapse
Affiliation(s)
- Astrid Kassner
- Erich & Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart & Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Cenk Oezpeker
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jan Gummert
- Erich & Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart & Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany.,Clinic for Thoracic and Cardiovascular Surgery, Heart & Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Heart & Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Anna Gärtner
- Erich & Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart & Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Jens Tiesmeier
- Hospital Luebbecke-Rhaden, Muehlenkreis Hospitals, Medical-Campus OWL of the Ruhr-University Bochum, Luebbecke, Germany
| | - Henrik Fox
- Clinic for Thoracic and Cardiovascular Surgery, Heart & Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Michiel Morshuis
- Clinic for Thoracic and Cardiovascular Surgery, Heart & Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich & Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart & Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
16
|
Lebek S, Tafelmeier M, Messmann R, Provaznik Z, Schmid C, Maier LS, Birner C, Arzt M, Wagner S. Angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker treatment and haemodynamic factors are associated with increased cardiac mRNA expression of angiotensin-converting enzyme 2 in patients with cardiovascular disease. Eur J Heart Fail 2020; 22:2248-2257. [PMID: 33017071 PMCID: PMC7675329 DOI: 10.1002/ejhf.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/19/2023] Open
Abstract
Aims Coronavirus disease 2019 (COVID‐19) is a widespread pandemic with an increased morbidity and mortality, especially for patients with cardiovascular diseases. Angiotensin‐converting enzyme 2 (ACE2) has been identified as necessary cell entry point for SARS‐CoV‐2. Previous animal studies have demonstrated an increased ACE2 expression following treatment with either angiotensin‐converting enzyme inhibitors (ACEi) or angiotensin II receptor blockers (ARB) that have led to a massive precariousness regarding the optimal cardiovascular therapy during this pandemic. Methods and results We have measured ACE2 mRNA expression using real‐time quantitative polymerase chain reaction in atrial biopsies of 81 patients undergoing coronary artery bypass grafting and we compared 62 patients that received ACEi/ARB vs. 19 patients that were not ACEi/ARB‐treated. We found atrial ACE2 mRNA expression to be significantly increased in patients treated with an ACEi or an ARB, independent of potential confounding comorbidities. Interestingly, the cardiac ACE2 mRNA expression correlated significantly with the expression in white blood cells of 22 patients encouraging further evaluation if the latter may be used as a surrogate for the former. Similarly, analysis of 18 ventricular biopsies revealed a significant and independent increase in ACE2 mRNA expression in patients with end‐stage heart failure that were treated with ACEi/ARB. On the other hand, cardiac unloading with a left ventricular assist device significantly reduced ventricular ACE2 mRNA expression. Conclusion Treatment with ACEi/ARB is independently associated with an increased myocardial ACE2 mRNA expression in patients with coronary artery disease and in patients with end‐stage heart failure. Further trials are needed to test whether this association is deleterious for patients with COVID‐19, or possibly protective. Nevertheless, haemodynamic factors seem to be equally important for regulation of cardiac ACE2 mRNA expression.
Collapse
Affiliation(s)
- Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Maria Tafelmeier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Rebecca Messmann
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Zdenek Provaznik
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Christoph Birner
- Department of Internal Medicine I, Klinikum St. Marien, Amberg, Germany
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Brener MI, Uriel N, Burkhoff D. Left Ventricular Volume Reduction and Reshaping as a Treatment Option for Heart Failure. STRUCTURAL HEART 2020. [DOI: 10.1080/24748706.2020.1777359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Moderate Aortic Insufficiency with a Left Ventricular Assist Device Portends a Worse Long-Term Survival. ASAIO J 2019; 66:780-785. [DOI: 10.1097/mat.0000000000001071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Poglajen G, Gregoric ID, Radovancevic R, Vrtovec B. Stem Cell and Left Ventricular Assist Device Combination Therapy. Circ Heart Fail 2019; 12:e005454. [PMID: 30759999 DOI: 10.1161/circheartfailure.118.005454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ventricular assist device (VAD) technology has evolved significantly over the past decades and currently represents one of the most important treatment strategies for patients with advanced chronic heart failure. There is increasing evidence that in selected patients undergoing long-term VAD support, improvement of myocardial structure and function may occur. However, there seems to be a significant discrepancy between structural and functional recovery of the failing myocardium, as only a small fraction of VAD-supported patients demonstrate reverse structural remodeling and eventually reach clinically significant and stable, functional improvement. More recently, cell therapy has gained a growing interest in the heart failure community because of its potential to augment reverse remodeling of the failing myocardium. Although theoretically the combination of long-term VAD support and cell therapy may offer significant advantages over using these therapeutic modalities separately, it remains largely unexplored. This review aims to summarize the current state of the art of the effects of VAD support and cell therapy on the reverse remodeling of the failing myocardium and to discuss the rationale for using a combined treatment strategy to further promote myocardial recovery in patients with advanced chronic heart failure.
Collapse
Affiliation(s)
- Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Slovenia (G.P., B.V.).,Department of Advanced Cardiopulmonary Therapies and Transplantation, Center for Advanced Heart Failure, University of Texas Health Science Center at Houston (G.P., I.D.G., R.R.)
| | - Igor D Gregoric
- Department of Advanced Cardiopulmonary Therapies and Transplantation, Center for Advanced Heart Failure, University of Texas Health Science Center at Houston (G.P., I.D.G., R.R.)
| | - Rajko Radovancevic
- Department of Advanced Cardiopulmonary Therapies and Transplantation, Center for Advanced Heart Failure, University of Texas Health Science Center at Houston (G.P., I.D.G., R.R.)
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Slovenia (G.P., B.V.)
| |
Collapse
|
20
|
Sustained Cardiac Recovery Hinges on Timing and Natural History of Underlying Condition. Am J Med Sci 2018; 356:47-55. [DOI: 10.1016/j.amjms.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 02/21/2018] [Indexed: 01/12/2023]
|
21
|
Catino AB, Ferrin P, Wever-Pinzon J, Horne BD, Wever-Pinzon O, Kfoury AG, McCreath L, Diakos NA, McKellar S, Koliopoulou A, Bonios MJ, Al-Sarie M, Taleb I, Dranow E, Fang JC, Drakos SG. Clinical and histopathological effects of heart failure drug therapy in advanced heart failure patients on chronic mechanical circulatory support. Eur J Heart Fail 2017; 20:164-174. [PMID: 29094485 DOI: 10.1002/ejhf.1018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 01/22/2023] Open
Abstract
AIMS Adjuvant heart failure (HF) drug therapy in patients undergoing chronic mechanical circulatory support (MCS) is often used in conjunction with a continuous-flow left ventricular assist device (LVAD), but its potential impact is not well defined. The objective of the present study was to examine the effects of conventional HF drug therapy on myocardial structure and function, peripheral organ function and the incidence of adverse events in the setting of MCS. METHODS AND RESULTS Patients with chronic HF requiring LVAD support were prospectively enrolled. Paired myocardial tissue samples were obtained prior to LVAD implantation and at transplantation for histopathology. The Meds group comprised patients treated with neurohormonal blocking therapy (concurrent beta-blocker, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, and aldosterone antagonist), and the No Meds group comprised patients on none of these. Both the Meds (n = 37) and No Meds (n = 44) groups experienced significant improvements in cardiac structure and function over the 6 months following LVAD implantation. The degree of improvement was greater in the Meds group, including after adjustment for baseline differences. There were no differences between the two groups in arrhythmias, end-organ injury, or neurological events. In patients with high baseline pre-LVAD myocardial fibrosis, treatment with HF drug therapy was associated with a reduction in fibrosis. CONCLUSIONS Clinical and histopathological evidence showed that adjuvant HF drug therapy was associated with additional favourable effects on the structure and function of the unloaded myocardium that extended beyond the beneficial effects attributed to LVAD-induced unloading alone. Adjuvant HF drug therapy did not influence the incidence of major post-LVAD adverse events during the follow-up period.
Collapse
Affiliation(s)
- Anna B Catino
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Peter Ferrin
- Nora Eccles Harrison Cardiovascular Research and Training Institution (CVRTI), Salt Lake City, UT, USA
| | - James Wever-Pinzon
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Benjamin D Horne
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Omar Wever-Pinzon
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Abdallah G Kfoury
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Lauren McCreath
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institution (CVRTI), Salt Lake City, UT, USA
| | - Nikolaos A Diakos
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institution (CVRTI), Salt Lake City, UT, USA
| | - Stephen McKellar
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Antigone Koliopoulou
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Michael J Bonios
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Mohammad Al-Sarie
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Iosif Taleb
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Elizabeth Dranow
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - James C Fang
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Stavros G Drakos
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institution (CVRTI), Salt Lake City, UT, USA.,Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Abstract
Advances in medical and device therapies have demonstrated the capacity of the heart to reverse the failing phenotype. The development of normative changes to ventricular size and function led to the concept of reverse remodelling. Among heart failure therapies, durable mechanical circulatory support is most consistently associated with the largest degree of reverse remodelling. Accordingly, research to analyse human tissue after a period of mechanical circulatory support continues to yield a wealth of information. In this Review, we summarize the latest findings on reverse remodelling and myocardial recovery. Accumulating evidence shows that the molecular changes associated with heart failure, in particular in the transcriptome, metabalome, and extracellular matrix, persist in the reverse-remodelled myocardium despite apparent normalization of macrolevel properties. Therefore, reverse remodelling should be distinguished from true myocardial recovery, in which a failing heart regains both normal function and molecular makeup. These findings have implications for future research to develop therapies to repair fully the failing myocardium. Meanwhile, recognition by society guidelines of this new clinical phenotype, which is coming to be known as a state of heart failure remission, underscores the need to accurately define and identify reverse modelled myocardium for the establishment of appropriate therapies.
Collapse
|
23
|
Topkara VK, Garan AR, Fine B, Godier-Furnémont AF, Breskin A, Cagliostro B, Yuzefpolskaya M, Takeda K, Takayama H, Mancini DM, Naka Y, Colombo PC. Myocardial Recovery in Patients Receiving Contemporary Left Ventricular Assist Devices: Results From the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). Circ Heart Fail 2017; 9:CIRCHEARTFAILURE.116.003157. [PMID: 27402861 DOI: 10.1161/circheartfailure.116.003157] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/02/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Time course and predictors of myocardial recovery on contemporary left ventricular assist device support are poorly defined because of limited number of recovery patients at any implanting center. This study sought to investigate myocardial recovery using multicenter data from the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). METHODS AND RESULTS Thirteen thousand four hundred fifty-four adult patients were studied. Device explant rates for myocardial recovery were 0.9% at 1-year, 1.9% at 2-year, and 3.1% at 3-year follow-up. Independent predictors of device explantation for recovery were age <50 years (odds ratio [OR] 2.5), nonischemic etiology (OR 5.4), time since initial diagnosis <2 years (OR 3.4), suboptimal heart failure therapy before implant (OR 2.2), left ventricular end-diastolic diameter <6.5 cm (OR 1.7), pulmonary systolic artery pressure <50 mm Hg (OR 2.0), blood urea nitrogen <30 mg/dL (OR 3.3), and axial-flow device (OR 7.6). Patients with myocarditis (7.7%), postpartum cardiomyopathy (4.4%), and adriamycin-induced cardiomyopathy (4.1%) had highest rates of device explantation for recovery. Use of neurohormonal blockers on left ventricular assist device support was significantly higher in patients who were explanted for recovery. Importantly, 9% of all left ventricular assist device patients who were not explanted for recovery have demonstrated substantial improvement in left ventricular ejection fraction (partial recovery) and had remarkable overlap in clinical characteristic profile compared with patients who were explanted for recovery (complete recovery). Complete and partial recovery rates have declined in parallel with recent changes observed in device indications and technology. CONCLUSIONS Myocardial recovery is a spectrum of improvement rather than a binary clinical end point. One in every 10 left ventricular assist device patients demonstrates partial or complete myocardial recovery and should be targeted for functional assessment and optimization.
Collapse
Affiliation(s)
- Veli K Topkara
- From the Division of Cardiology, Department of Medicine (V.K.T., A.R.G., B.F., A.F.G.G.-F., A.B., M.Y., D.M.M., P.C.C.) and Division of Cardiothoracic Surgery, Department of Surgery (B.C., K.T., H.T., Y.N.), Columbia University Medical Center-New York Presbyterian, New York.
| | - A Reshad Garan
- From the Division of Cardiology, Department of Medicine (V.K.T., A.R.G., B.F., A.F.G.G.-F., A.B., M.Y., D.M.M., P.C.C.) and Division of Cardiothoracic Surgery, Department of Surgery (B.C., K.T., H.T., Y.N.), Columbia University Medical Center-New York Presbyterian, New York
| | - Barry Fine
- From the Division of Cardiology, Department of Medicine (V.K.T., A.R.G., B.F., A.F.G.G.-F., A.B., M.Y., D.M.M., P.C.C.) and Division of Cardiothoracic Surgery, Department of Surgery (B.C., K.T., H.T., Y.N.), Columbia University Medical Center-New York Presbyterian, New York
| | - Amandine F Godier-Furnémont
- From the Division of Cardiology, Department of Medicine (V.K.T., A.R.G., B.F., A.F.G.G.-F., A.B., M.Y., D.M.M., P.C.C.) and Division of Cardiothoracic Surgery, Department of Surgery (B.C., K.T., H.T., Y.N.), Columbia University Medical Center-New York Presbyterian, New York
| | - Alexander Breskin
- From the Division of Cardiology, Department of Medicine (V.K.T., A.R.G., B.F., A.F.G.G.-F., A.B., M.Y., D.M.M., P.C.C.) and Division of Cardiothoracic Surgery, Department of Surgery (B.C., K.T., H.T., Y.N.), Columbia University Medical Center-New York Presbyterian, New York
| | - Barbara Cagliostro
- From the Division of Cardiology, Department of Medicine (V.K.T., A.R.G., B.F., A.F.G.G.-F., A.B., M.Y., D.M.M., P.C.C.) and Division of Cardiothoracic Surgery, Department of Surgery (B.C., K.T., H.T., Y.N.), Columbia University Medical Center-New York Presbyterian, New York
| | - Melana Yuzefpolskaya
- From the Division of Cardiology, Department of Medicine (V.K.T., A.R.G., B.F., A.F.G.G.-F., A.B., M.Y., D.M.M., P.C.C.) and Division of Cardiothoracic Surgery, Department of Surgery (B.C., K.T., H.T., Y.N.), Columbia University Medical Center-New York Presbyterian, New York
| | - Koji Takeda
- From the Division of Cardiology, Department of Medicine (V.K.T., A.R.G., B.F., A.F.G.G.-F., A.B., M.Y., D.M.M., P.C.C.) and Division of Cardiothoracic Surgery, Department of Surgery (B.C., K.T., H.T., Y.N.), Columbia University Medical Center-New York Presbyterian, New York
| | - Hiroo Takayama
- From the Division of Cardiology, Department of Medicine (V.K.T., A.R.G., B.F., A.F.G.G.-F., A.B., M.Y., D.M.M., P.C.C.) and Division of Cardiothoracic Surgery, Department of Surgery (B.C., K.T., H.T., Y.N.), Columbia University Medical Center-New York Presbyterian, New York
| | - Donna M Mancini
- From the Division of Cardiology, Department of Medicine (V.K.T., A.R.G., B.F., A.F.G.G.-F., A.B., M.Y., D.M.M., P.C.C.) and Division of Cardiothoracic Surgery, Department of Surgery (B.C., K.T., H.T., Y.N.), Columbia University Medical Center-New York Presbyterian, New York
| | - Yoshifumi Naka
- From the Division of Cardiology, Department of Medicine (V.K.T., A.R.G., B.F., A.F.G.G.-F., A.B., M.Y., D.M.M., P.C.C.) and Division of Cardiothoracic Surgery, Department of Surgery (B.C., K.T., H.T., Y.N.), Columbia University Medical Center-New York Presbyterian, New York
| | - Paolo C Colombo
- From the Division of Cardiology, Department of Medicine (V.K.T., A.R.G., B.F., A.F.G.G.-F., A.B., M.Y., D.M.M., P.C.C.) and Division of Cardiothoracic Surgery, Department of Surgery (B.C., K.T., H.T., Y.N.), Columbia University Medical Center-New York Presbyterian, New York
| |
Collapse
|
24
|
Heterotopic Abdominal Rat Heart Transplantation as a Model to Investigate Volume Dependency of Myocardial Remodeling. Transplantation 2017; 101:498-505. [PMID: 27906830 DOI: 10.1097/tp.0000000000001585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Heterotopic abdominal rat heart transplantation has been extensively used to investigate ischemic-reperfusion injury, immunological consequences during heart transplantations and also to study remodeling of the myocardium due to volume unloading. We provide a unique review on the latter and present a summary of the experimental studies on rat heart transplantation to illustrate changes that occur to the myocardium due to volume unloading. We divided the literature based on whether normal or failing rat heart models were used. This analysis may provide a basis to understand the physiological effects of mechanical circulatory support therapy.
Collapse
|
25
|
Marinescu KK, Uriel N, Mann DL, Burkhoff D. Left ventricular assist device-induced reverse remodeling: it's not just about myocardial recovery. Expert Rev Med Devices 2016; 14:15-26. [PMID: 27871197 DOI: 10.1080/17434440.2017.1262762] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The abnormal structure, function and molecular makeup of dilated cardiomyopathic hearts can be partially normalized in patients supported by a left ventricular assist device (LVAD), a process called reverse remodeling. This leads to recovery of function in many patients, though the rate of full recovery is low and in many cases is temporary, leading to the concept of heart failure remission, rather than recovery. Areas covered: We summarize data indicative of ventricular reverse remodeling, recovery and remission during LVAD support. These terms were used in searches performed in Pubmed. Duplication of topics covered in depth in prior review articles were avoided. Expert commentary: Although most patients undergoing mechanical circulatory support (MCS) show a significant degree of reverse remodeling, very few exhibit sufficiently improved function to justify device explantation, and many from whom LVADs have been explanted have relapsed back to the original heart failure phenotype. Future research has the potential to clarify the ideal combination of pharmacological, cell, gene, and mechanical therapies that would maximize recovery of function which has the potential to improve exercise tolerance of patients while on support, and to achieve a higher degree of myocardial recovery that is more likely to persist after device removal.
Collapse
Affiliation(s)
- Karolina K Marinescu
- a Department of Medicine, Division of Cardiology, Advanced Heart Failure , Rush University Medical Center , Chicago , IL , USA
| | - Nir Uriel
- b Department of Medicine, Division of Cardiology , University of Chicago , Chicago , IL , USA
| | - Douglas L Mann
- c Department of Medicine, Division of Cardiology , Washington University School of Medicine/Barnes Jewish Hospital , St. Louis , MO , USA
| | - Daniel Burkhoff
- d Department of Medicine, Division of Cardiology , Columbia University Medical Center/New York-Presbyterian Hospital , New York , NY , USA
| |
Collapse
|
26
|
Ton VK, Vunjak-Novakovic G, Topkara VK. Transcriptional patterns of reverse remodeling with left ventricular assist devices: a consistent signature. Expert Rev Med Devices 2016; 13:1029-1034. [PMID: 27685648 DOI: 10.1080/17434440.2016.1243053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Left ventricular assist device (LVAD) therapy has revolutionized the treatment of patients with advanced heart failure. Although originally intended for bridge-to-transplantation and destination therapy indications, a small subset of patients supported with LVADs exhibit complete myocardial recovery leading to device explanation. However, genetic and molecular determinants of partial and/or complete myocardial recovery remain largely unknown. Areas covered: We summarize current knowledge on alterations in heart failure transcriptome in response to LVAD support, as well as discuss common gene signatures potentially responsible for the reverse remodeling phenotype in the failing human heart. Expert commentary: Reverse remodeling after LVAD is likely a continuum between fully and partially recovered myocardium. Multicenter cardiac tissue repositories linked with detailed phenotype information may facilitate identification of genetic signals responsible for myocardial recovery in LVAD supported patients in the foreseeable future.
Collapse
Affiliation(s)
- Van-Khue Ton
- a Division of Cardiology, Department of Medicine , Columbia University Medical Center , New York , NY , USA.,b Division of Cardiovascular Medicine, Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | | | - Veli K Topkara
- a Division of Cardiology, Department of Medicine , Columbia University Medical Center , New York , NY , USA
| |
Collapse
|
27
|
Shreibati JB, Sheng S, Fonarow GC, DeVore AD, Yancy CW, Bhatt DL, Schulte P, Peterson ED, Hernandez A, Heidenreich PA. Heart failure medications prescribed at discharge for patients with left ventricular assist devices. Am Heart J 2016; 179:99-106. [PMID: 27595684 DOI: 10.1016/j.ahj.2016.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Real-world use of traditional heart failure (HF) medications for patients with left ventricular assist devices (LVADs) is not well known. METHODS We conducted a retrospective, observational analysis of 1,887 advanced HF patients with and without LVADs from 32 LVAD hospitals participating in the Get With The Guidelines-Heart Failure registry from January 2009 to March 2015. We examined HF medication prescription at discharge, temporal trends, and predictors of prescription among patients with an in-hospital (n = 258) or prior (n = 171) LVAD implant, and those with advanced HF but no LVAD, as defined by a left ventricular ejection fraction ≤25% and in-hospital receipt of intravenous inotropes or vasopressin receptor antagonists (n = 1,458). RESULTS For β-blocker and angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers (ACEI/ARB), discharge prescriptions were 58.9% and 53.5% for new LVAD patients, 53.8% and 42.9% for prior LVAD patients, and 73.4% and 63.2% for patients without LVAD support, respectively (both P < .0001). Aldosterone antagonist prescription quadrupled among LVAD patients during the study period (P < .0001), whereas ACEI/ARB use decreased nearly 20 percentage points (60.0% to 41.4%, P = .0003). In the multivariable analysis of LVAD patients, patient age was inversely associated with β-blocker, ACEI/ARB, and aldosterone antagonist prescription. CONCLUSIONS Traditional HF therapies were moderately prescribed at discharge to patients with LVADs and were more frequently prescribed to patients with advanced HF without LVAD support. Moderate prescription rates suggest clinical uncertainty in the use of antiadrenergic medication in this population. Further research is needed on the optimal medical regimen for patients with LVADs.
Collapse
|
28
|
Grupper A, Zhao YM, Sajgalik P, Joyce LD, Park SJ, Pereira NL, Stulak JM, Burnett JC, Edwards BS, Daly RC, Kushwaha SS, Schirger JA. Effect of Neurohormonal Blockade Drug Therapy on Outcomes and Left Ventricular Function and Structure After Left Ventricular Assist Device Implantation. Am J Cardiol 2016; 117:1765-70. [PMID: 27079215 DOI: 10.1016/j.amjcard.2016.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 11/27/2022]
Abstract
Neurohormonal blockade drug therapy (NHBDT) is the cornerstone therapy in heart failure (HF) management for promoting reverse cardiac remodeling and improving outcomes. It's utility in left ventricular assist device (LVAD) supported patients remains undefined. Sixty-four patients who received continuous flow LVAD at our institution were retrospectively reviewed and divided into 2 groups: no-NHBDT group (n = 33) received LVAD support only and NHBDT group (n = 31) received concurrent NHBDT based on the clinical judgment of the attending physicians. Cardiac remodeling (echocardiographic parameters and biomarkers) and clinical outcome (functional status, HF-related hospital readmissions, and mortality) data were collected. A statistically significant increase in ejection fraction, decrease in LV end-diastolic diameter index and LV mass index, and a sustained reduction in N-terminal pro B-type natriuretic peptide (NTproBNP) were observed in the NHBDT group at 6 months after LVAD implant (p <0.05). NHBDT-treated patients experienced significantly greater improvement in New York Heart Association functional classification and 6-minute-walk distance throughout the study. The combined end point of cardiovascular death or HF hospitalization was significantly reduced in patients receiving NHBDT (p = 0.013) associated primarily with a 12.1% absolute reduction in HF-related hospitalizations (p = 0.046). In conclusion, NHBDT in LVAD-supported patients is associated with a significant reversal in adverse cardiac remodeling and a reduction in morbidity and mortality compared with LVAD support alone.
Collapse
|
29
|
Sakamuri SSVP, Takawale A, Basu R, Fedak PWM, Freed D, Sergi C, Oudit GY, Kassiri Z. Differential impact of mechanical unloading on structural and nonstructural components of the extracellular matrix in advanced human heart failure. Transl Res 2016; 172:30-44. [PMID: 26963743 DOI: 10.1016/j.trsl.2016.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/05/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
Adverse remodeling of the extracellular matrix (ECM) is a significant characteristic of heart failure. Reverse remodeling of the fibrillar ECM secondary to mechanical unloading of the left ventricle (LV) by left ventricular assist device (LVAD) has been subject of intense investigation; however, little is known about the impacts on nonfibrillar ECM and matricellular proteins that also contribute to disease progression. Explanted failing hearts were procured from patients with nonischemic dilated cardiomyopathy (DCM) with or without LVAD support, and compared to nonfailing control hearts. LV free wall specimens were formalin-fixed, flash-frozen or optimum cutting temperature-mount frozen. Histologic and biochemical assessment of fibrillar ECM showed that LVAD support was associated with lower levels of insoluble collagen, collagen type I mRNA, and collagen I/III ratio compared with no-LVAD hearts. A disintegrin and Metalloproteinase with Thrombospondin Motifs-2 (ADAM-TS2), a procollagen endopeptidase, was reduced in no-LVAD but not in LVAD hearts. The rise in ECM proteolytic activities was significantly lower in LVAD hearts. Matrix metalloproteinases (MMP1, MMP2, MMP8, MMP13, and MT1-MMP/MMP14) were comparable between DCM hearts. Tissue inhibitor of metalloproteinase (TIMP)3 and TIMP4 messenger RNA and protein showed the greatest reduction in no-LVAD hearts. Basement membrane proteins exhibited less severe disarray of laminin and fibronectin-1 in LVAD-supported hearts. The rise in matricellular protein, osteopontin, was suppressed in LVAD hearts, whereas secreted protein, acidic, cysteine-rich (SPARC) levels was unaffected by LVAD. Mechanical unloading of the failing DCM hearts can restore the fibrillar ECM and the basement membrane, contributing toward improved clinical outcomes. However, persistent elevation of matricellular proteins such as SPARC could contribute to the relapse of failing hearts on removal of LVAD support.
Collapse
Affiliation(s)
- Siva S V P Sakamuri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| | - Abhijit Takawale
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| | - Ratnadeep Basu
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta
| | - Darren Freed
- Department of Cardiovascular Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| | - Gavin Y Oudit
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta.
| |
Collapse
|
30
|
Rodrigues PG, Leite-Moreira AF, Falcão-Pires I. Myocardial reverse remodeling: how far can we rewind? Am J Physiol Heart Circ Physiol 2016; 310:H1402-22. [PMID: 26993225 DOI: 10.1152/ajpheart.00696.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
Heart failure (HF) is a systemic disease that can be divided into HF with reduced ejection fraction (HFrEF) and with preserved ejection fraction (HFpEF). HFpEF accounts for over 50% of all HF patients and is typically associated with high prevalence of several comorbidities, including hypertension, diabetes mellitus, pulmonary hypertension, obesity, and atrial fibrillation. Myocardial remodeling occurs both in HFrEF and HFpEF and it involves changes in cardiac structure, myocardial composition, and myocyte deformation and multiple biochemical and molecular alterations that impact heart function and its reserve capacity. Understanding the features of myocardial remodeling has become a major objective for limiting or reversing its progression, the latter known as reverse remodeling (RR). Research on HFrEF RR process is broader and has delivered effective therapeutic strategies, which have been employed for some decades. However, the RR process in HFpEF is less clear partly due to the lack of information on HFpEF pathophysiology and to the long list of failed standard HF therapeutics strategies in these patient's outcomes. Nevertheless, new proteins, protein-protein interactions, and signaling pathways are being explored as potential new targets for HFpEF remodeling and RR. Here, we review recent translational and clinical research in HFpEF myocardial remodeling to provide an overview on the most important features of RR, comparing HFpEF with HFrEF conditions.
Collapse
Affiliation(s)
- Patrícia G Rodrigues
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
Khazanie P, Hammill BG, Patel CB, Kiernan MS, Cooper LB, Arnold SV, Fendler TJ, Spertus JA, Curtis LH, Hernandez AF. Use of Heart Failure Medical Therapies Among Patients With Left Ventricular Assist Devices: Insights From INTERMACS. J Card Fail 2016; 22:672-9. [PMID: 26892975 DOI: 10.1016/j.cardfail.2016.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/04/2016] [Accepted: 02/10/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Use of left ventricular assist devices (LVADs) for treatment of advanced heart failure has expanded significantly over the past decade. However, concomitant use of heart failure medical therapies after implant is poorly characterized. METHODS AND RESULTS We examined the use of heart failure medications before and after LVAD implant in adult patients enrolled in the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) between 2008 and 2013 (N = 9359). Using logistic regression, we examined relationships between patient characteristics and medication use at 3 months after implant. Baseline rates of heart failure therapies before implant were 38% for angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs), 55% for β-blockers, 40% for mineralocorticoid receptor antagonists (MRAs), 87% for loop diuretics, 54% for amiodarone, 11% for phosphodiesterase inhibitors, 22% for warfarin, and 54% for antiplatelet agents. By 3 months after implant, the rates were 50% for ACE inhibitors or ARBs, 68% for β-blockers, 33% for MRAs, 68% for loop diuretics, 42% for amiodarone, 21% for phosphodiesterase inhibitors, 92% for warfarin, and 84% for antiplatelet agents. In general, age, preimplant INTERMACS profile, and prior medication use were associated with medication use at 3 months. CONCLUSIONS Overall use of neurohormonal antagonists was low after LVAD implant, whereas use of loop diuretics and amiodarone remained high. Heart failure medication use is highly variable, but appears to generally increase after LVAD implantation. Low neurohormonal antagonist use may reflect practice uncertainty in the clinical utility of these medications post-LVAD.
Collapse
Affiliation(s)
- Prateeti Khazanie
- Division of Cardiology and the Colorado Cardiovascular Outcomes Consortium, University of Colorado School of Medicine, Aurora, CO
| | - Bradley G Hammill
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Chetan B Patel
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina; Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | | | - Lauren B Cooper
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina; Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | | | | | - John A Spertus
- Saint Luke's Mid America Heart Institute, Kansas City, Missouri
| | - Lesley H Curtis
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina; Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Adrian F Hernandez
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina; Department of Medicine, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
32
|
Building a bridge to recovery: the pathophysiology of LVAD-induced reverse modeling in heart failure. Surg Today 2015; 46:149-54. [PMID: 25840890 DOI: 10.1007/s00595-015-1149-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/20/2015] [Indexed: 10/23/2022]
Abstract
Heart failure mainly caused by ischemic or dilated cardiomyopathy is a life-threatening disorder worldwide. The previous work in cardiac surgery has led to many excellent surgical techniques for treating cardiac diseases, and these procedures are now able to prolong the human lifespan. However, surgical treatment for end-stage heart failure has been under-explored, although left ventricular assist device (LVAD) implantation and heart transplantation are options to treat the condition. LVAD can provide powerful circulatory support for end-stage heart failure patients and improve the survival and quality of life after implantation compared with the existing medical counterparts. Moreover, LVADs play a crucial role in the "bridge to transplantation", "bridge to recovery" and recently have served as "destination therapy". The structural and molecular changes that improve the cardiac function after LVAD implantation are called "reverse remodeling", which means that patients who have received a LVAD can be weaned from the LVAD with restoration of their cardiac function. This strategy is a desirable alternative to heart transplantation in terms of both the patient quality of life and due to the organ shortage. The mechanism of this bridge to recovery is interesting, and is different from other treatments for heart failure. Bridge to recovery therapy is one of the options in regenerative therapy which only a surgeon can provide. In this review, we pathophysiologically analyze the reverse remodeling phenomenon induced by LVAD and comment about the clinical evidence with regard to its impact on the bridge to recovery.
Collapse
|
33
|
Abstract
BACKGROUND Children with decompensated heart failure are at high risk for arrhythmias, and ventricular assist device placement is becoming a more common treatment strategy. The impact of ventricular assist devices on arrhythmias and how arrhythmias affect the clinical course of this population are not well described. METHODS AND RESULTS A single-centre retrospective analysis of children receiving a ventricular assist device between 1998 and 2011 was performed. In all, 45 patients received 56 ventricular assist devices. The median age at initial placement was 13 years (interquartile range 6-15). The median duration of support was 10 days (range 2-260). The aetiology of heart failure included cardiomyopathy, transplant rejection, myocarditis, and congenital heart disease. In all, 32 patients (71%) had an arrhythmia; 19 patients (42%) had an arrhythmia before ventricular assist device and eight patients (18%) developed new arrhythmias on ventricular assist device. Ventricular tachycardia was most common (25/32, 78%). There was no correlation between arrhythmia and risk of death or transplantation (p=0.14). Of the 15 patients who weaned from ventricular assist device, post-ventricular assist device arrhythmias occurred in nine (60%), with five (33%) having their first arrhythmia after weaning. Patients with ventricular dysfunction after ventricular assist device were more likely to have arrhythmias (p<0.02). CONCLUSIONS Arrhythmias, especially ventricular, are common in children requiring ventricular assist device. They frequently persist for those able to wean from ventricular assist device.
Collapse
|
34
|
|
35
|
Ichiki T, Schirger JA, Huntley BK, Brozovich FV, Maleszewski JJ, Sandberg SM, Sangaralingham SJ, Park SJ, Burnett JC. Cardiac fibrosis in end-stage human heart failure and the cardiac natriuretic peptide guanylyl cyclase system: regulation and therapeutic implications. J Mol Cell Cardiol 2014; 75:199-205. [PMID: 25117468 DOI: 10.1016/j.yjmcc.2014.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/09/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
Abstract
Left ventricular assist device (LVAD) support has been used in the treatment of end-stage heart failure (HF), however use of anti-fibrotic co-therapies may improve prognosis. Natriuretic peptides (NPs) possess anti-fibrotic properties through their receptors, GC-A/GC-B/NPR-C. We sought to evaluate cardiac fibrosis and the endogenous NP system in end-stage HF with and without LVAD therapy and to assess the anti-fibrotic actions of the dual GC-A/-B activator CD-NP in vitro. Collagen (Col) protein content was assessed by Picrosirius Red staining and NPs, NP receptors, and Col I mRNA expression were determined by qPCR in LV tissue from patients in end-stage HF (n=13), after LVAD support (n=5) and in normal subjects (n=6). Col I mRNA and protein levels in cardiac fibroblasts (CFs) pretreated with CD-NP were compared to those of BNP or CNP pretreatment. The LV in end-stage HF was characterized by higher Col I mRNA expression and Col protein deposition compared to normal which was sustained after LVAD support. ANP and BNP mRNA expressions were higher while CNP was lower in end-stage HF LV. GC-A expression did not change while GC-B and NPR-C increased compared to normal LV. The changes in NP system expression were not reversed after LVAD support. In vitro, CD-NP reduced Col I production stimulated by TGF-beta 1 greater than BNP or CNP in CFs. We conclude that the failing LV is characterized by increased fibrosis and reduced CNP gene expression. LVAD support did not reverse Col deposition nor restore CNP production, suggesting a therapeutic opportunity for CD-NP.
Collapse
Affiliation(s)
- Tomoko Ichiki
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA.
| | - John A Schirger
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA
| | - Brenda K Huntley
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA
| | | | - Joseph J Maleszewski
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA; Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Soon J Park
- Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - John C Burnett
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
36
|
Lenneman AJ, Birks EJ. Treatment strategies for myocardial recovery in heart failure. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2014; 16:287. [PMID: 24492922 DOI: 10.1007/s11936-013-0287-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OPINION STATEMENT Heart failure is a progressive disorder characterized by adverse left ventricular remodeling. Until recently, this has been thought to be an irreversible process. Mechanical unloading with a left ventricular assist device (LVAD), particularly if combined with neurohormonal blockade with heart failure medications, can lead to a reversal of the heart failure phenotype, a process called "reverse remodeling." Reverse remodeling refers to the regression of pathologic myocardial hypertrophy and improvement in LV chamber size that can occur in response to treatment. Myocardial recovery is the sustained normalization of structural, molecular, and hemodynamic changes sufficient to allow explant of the LVAD. Despite the fact that reverse remodeling is commonly seen in LVAD patients in clinical practice, myocardial recovery sufficient to allow device explantation is still rare. Previous experience suggests that young patients with short duration of heart failure and less myocardial fibrosis may be more likely to recover. Alternatively, it may just be that clinicians make a greater effort to recover these subgroups. A combined approach of mechanical unloading with LVADs and pharmacological management, together with regular testing of underlying myocardial function with the pump reduced to a speed at which it is not contributing, can increase the frequency of sustained recovery from heart failure. The goal is to achieve optimal unloading of the myocardium, combined with pharmacologic therapy aimed at promoting reverse remodeling. Myocardial recovery must be considered as a therapeutic target. Clinical variables such as pump speed and blood pressure must be optimized to promote maximal unloading, leading to reverse remodeling and myocardial recovery. Frequent echocardiographic and hemodynamic evaluation of underlying myocardial function must be performed. The combination of LVAD therapy with optimal neurohormonal blockade appears promising as an approach to myocardial recovery. In addition, there is a growing body of translational research which, when combined with LVADs, may further promote more durable recovery. Strategies to thicken the myocardium to enhance the durability of recovery prior to explantation, such as clenbuterol (which induces "physiological hypertrophy"), or intermittently reducing the pump speed to increase myocardial load may be beneficial. Emergence of cardiac stem cells and alternative biologic agents, when added to current therapies, may have a complementary role in promoting and maintaining myocardial recovery. This review will summarize both current strategies and emerging therapies.
Collapse
Affiliation(s)
- Andrew J Lenneman
- Division of Cardiovascular Medicine, University of Louisville, Rudd Heart and Lung Center, 201 Abraham Flexner Way, Suite 1001, Louisville, KY, 40202, USA,
| | | |
Collapse
|
37
|
Dandel M, Knosalla C, Hetzer R. Contribution of ventricular assist devices to the recovery of failing hearts: a review and the Berlin Heart Center Experience. Eur J Heart Fail 2013; 16:248-63. [DOI: 10.1002/ejhf.18] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/25/2013] [Accepted: 09/27/2013] [Indexed: 11/09/2022] Open
Affiliation(s)
- Michael Dandel
- Department of Cardiothoracic and Vascular Surgery; Deutsches Herzzentrum Berlin; Berlin D-13353 Germany
- DZHK (German Centre for Cardiovascular Research); Berlin Germany
| | - Christoph Knosalla
- Department of Cardiothoracic and Vascular Surgery; Deutsches Herzzentrum Berlin; Berlin D-13353 Germany
- DZHK (German Centre for Cardiovascular Research); Berlin Germany
| | - Roland Hetzer
- Department of Cardiothoracic and Vascular Surgery; Deutsches Herzzentrum Berlin; Berlin D-13353 Germany
- DZHK (German Centre for Cardiovascular Research); Berlin Germany
| |
Collapse
|
38
|
Surgical correction of aortic valve insufficiency after left ventricular assist device implantation. J Thorac Cardiovasc Surg 2013; 146:1247-52. [DOI: 10.1016/j.jtcvs.2013.05.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/15/2013] [Accepted: 05/30/2013] [Indexed: 11/19/2022]
|
39
|
Abstract
Heart failure is associated with remodeling that consists of adverse cellular, structural, and functional changes in the myocardium. Until recently, this was thought to be unidirectional, progressive, and irreversible. However, irreversibility has been shown to be incorrect because complete or partial reversal can occur that can be marked after myocardial unloading with a left ventricular assist device (LVAD). Patients with chronic advanced heart failure can show near-normalization of nearly all structural abnormalities of the myocardium or reverse remodeling after LVAD support. However, reverse remodeling does not always equate with clinical recovery. The molecular changes occurring after LVAD support are reviewed, both those demonstrated with LVAD unloading alone in patients bridged to transplantation and those occurring in the myocardium of patients who have recovered enough myocardial function to have the device removed. Reverse remodeling may be attributable to a reversal of the pathological mechanisms that occur in remodeling or the generation of new pathways. A reduction in cell size occurs after LVAD unloading, which does not necessarily correlate with improved cardiac function. However, some of the changes in both the cardiac myocyte and the matrix after LVAD support are specific to myocardial recovery. In the myocyte, increases in the cytoskeletal proteins and improvements in the Ca²⁺ handling pathway seem to be specifically associated with myocardial recovery. Changes in the matrix are complex, but excessive scarring appears to limit the ability for recovery, and the degree of fibrosis in the myocardium at the time of implantation may predict the ability to recover.
Collapse
Affiliation(s)
- Emma J Birks
- Department of Cardiovascular Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
40
|
Periarteritis in lung from a continuous-flow right ventricular assist device: role of the local Renin-Angiotensin system. Ann Thorac Surg 2013; 96:148-54. [PMID: 23731607 DOI: 10.1016/j.athoracsur.2013.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND We previously reported renal arterial periarteritis after implantation of a continuous-flow left ventricular assist device in calves. The purpose of the present study was to investigate whether the same periarteritis changes occur in the intrapulmonary arteries after implantation of a continuous-flow right ventricular assist device (CFRVAD) in calves and to determine the mechanism of those histologic changes. METHODS Ten calves were implanted with a CFRVAD for 29 ± 7 days, and we compared pulmonary artery samples and hemodynamic data before and after CFRVAD implantation prospectively. RESULTS After implantation, the pulsatility index (pulmonary arterial pulse pressure/pulmonary arterial mean pressure) significantly decreased (0.88 ± 0.40 before vs 0.51 ± 0.22 after; p < 0.05), with severe periarteritis of the intrapulmonary arteries in all animals. Periarterial pathology included hyperplasia and inflammatory cell infiltration. The number of inflammatory cells positive for the angiotensin II type 1 receptor was significantly higher after implantation (7.8 ± 6.5 pre-CFRVAD vs 313.2 ± 145.2 at autopsy; p < 0.01). Serum angiotensin-converting enzyme activity significantly decreased after implantation from 100% to 49.7 ± 17.7% at week 1 (p = 0.01). Tissue levels of angiotensin-converting enzyme also demonstrated a significant reduction (0.381 ± 0.232 before implantation vs 0.123 ± 0.096 at autopsy; p = 0.043). CONCLUSIONS Periarteritis occurred in the intrapulmonary arteries of calves after CFRVAD implantation. The local renin-angiotensin system (not the angiotensin-converting enzyme pathway) plays an important role in such changes.
Collapse
|
41
|
|
42
|
Zhu Z, Wang C, Xu C, Cai Q. Influence of patient-controlled epidural analgesia versus patient-controlled intravenous analgesia on postoperative pain control and recovery after gastrectomy for gastric cancer: a prospective randomized trial. Gastric Cancer 2013; 16:193-200. [PMID: 22806415 DOI: 10.1007/s10120-012-0168-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 05/11/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Patient-controlled epidural analgesia (PCEA) has not been widely used after gastrectomy, although, in other abdominal surgery, it benefits patients more than patient-controlled intravenous analgesia (PCIA). We attempted to determine the effect of PCEA compared with PCIA on postoperative pain control and recovery after gastrectomy for gastric cancer. METHODS A randomized controlled clinical trial that included patients undergoing D2 radical gastrectomy for gastric cancer was conducted for this study. Patients were randomized to a morphine-bupivacaine PCEA group and a morphine PCIA group. Postoperative outcomes such as pain, fasting blood glucose (FBG), time to first passage of flatus, complications, and time staying in hospital after surgery were compared with an intention-to-treat analysis. RESULTS Between March 2010 and October 2010, 67 patients were randomized and 60 were evaluated. The PCEA group showed lower pain scores both at rest and on coughing after the operation (P < 0.05). FBG after the operation was significantly lower in the PCEA group than that in the PCIA group (P < 0.05). Time to first passage of flatus after surgery was shorter in the PCEA group (P < 0.05), while there were no significant differences regarding the incidence of complications between the two groups in terms of the clinical records. The length of hospital stay in the PCEA group was 10.7 ± 1.7 days, which was significantly shorter than that in the PCIA group (11.9 ± 1.8 days, P < 0.05). CONCLUSIONS After gastrectomy for gastric cancer, PCEA, compared with PCIA, offered safer pain relief with superior pain control and resulted in a lower stress response and a quicker return of bowel activity.
Collapse
Affiliation(s)
- Zhenxin Zhu
- Gastro-intestine Surgery Department, Shanghai Changzheng Hospital, 415 FengYang Road, Shanghai, 200003, People's Republic of China
| | | | | | | |
Collapse
|
43
|
Patel SR, Saeed O, Murthy S, Bhatia V, Shin JJ, Wang D, Negassa A, Pullman J, Goldstein DJ, Maybaum S. Combining neurohormonal blockade with continuous-flow left ventricular assist device support for myocardial recovery: A single-arm prospective study. J Heart Lung Transplant 2013; 32:305-12. [DOI: 10.1016/j.healun.2012.11.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/24/2012] [Accepted: 11/09/2012] [Indexed: 11/25/2022] Open
|
44
|
Navaratnarajah M, Ibrahim M, Siedlecka U, van Doorn C, Shah A, Gandhi A, Dias P, Sarathchandra P, Yacoub MH, Terracciano CM. Influence of ivabradine on reverse remodelling during mechanical unloading. Cardiovasc Res 2012; 97:230-9. [DOI: 10.1093/cvr/cvs318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Abstract
OPINION STATEMENT Advanced heart failure (HF) is a condition that is rarely thought of in terms of cure. Left ventricular assist devices (LVADs), like no therapy before them, provide complete decongestion of the left ventricle, with resulting favorable changes at all levels, from reversal of hypertrophy of cardiomyocytes to recovery of normal geometry and function of the ventricles. Although not a frequent phenomenon at most institutions, LV recovery is achieved in 20-25 % of LVAD recipients in some programs. Patients with good chances for recovery are usually young, with nonischemic cardiomyopathy and short duration of HF symptoms. After LVAD removal, patients with recovered function remain asymptomatic for years. To reach this level of sustainable restoration of cardiac function, several steps need to be taken: 1) myocardial recovery has to be recognized as a therapeutic goal, especially in patients with nonischemic cardiomyopathy; 2) HF medications have to be restarted and aggressively uptitrated after LVAD implantation; 3) regular monitoring for signs of myocardial recovery (eg, echocardiography or hemodynamics) should become a standard practice in LVAD centers; and 4) weaning protocols should be discussed and accepted at each LVAD program. While some protocols involve extensive several-day testing both at rest and with exercise, others are mostly guided by echocardiographic evaluation.
Collapse
|
46
|
Assessment of the Heart Failure Pharmacotherapy of Patients with Continuous Flow Left-Ventricular Assist Devices. Int J Artif Organs 2012; 35:177-9. [DOI: 10.5301/ijao.5000068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2011] [Indexed: 11/20/2022]
Abstract
Purpose The purpose of this project was to characterize the use of heart failure medications during the first year after left-ventricular assist device (LVAD) implantation. Methods All patients who received a HeartMate II at our institution between January 1, 2007, and August 1, 2009, and were followed by our multidisciplinary team for at least 6 months were eligible for inclusion. Use of heart failure medications, including dosages, was collected for each patient prior to LVAD implantation, at time of discharge, and at each subsequent monthly office visit for up to 1 year after implantation. The primary end point was the prescription rate for each medication class at discharge. Secondary end points included the use and dosage of these agents during follow up. Results A total of 28 patients were included (mean age = 50±11.5 years; sex 75% male; race 57.1% white; bridge-to-transplant rate 25%). There was a statistically significant decrease in use of digoxin (42.9% vs. 7.1%), spironolactone (50% vs. 17.9%), nitrates (39.3% vs. 7.1%), and milrinone (71.4% vs. 3.6%) postimplantation compared with baseline (p<0.05, for all comparisons). More than 50% of patients received vasodilators, beta-blockers, and hydralazine both preimplantation and postimplantation (p>0.05 for each class). Furthermore, more patients reached target doses of beta-blockers (0% vs. 28.6%; p=0.04) after LVAD implantation. Conclusion Our pilot study shows consistent prescription of heart failure pharmacotherapy in LVAD patients at our institution, with more patients able to tolerate target doses of beta-blockers.
Collapse
|
47
|
Abstract
The use of left ventricular assist devices to induce substantial myocardial recovery with explantation of the device, bridge to recovery (BTR), is an exciting but currently grossly underused application. Recently acquired knowledge relating to BTR and its mechanisms offers unprecedented opportunities to streamline its use and unravel some of the secrets of heart failure with much wider implications. This article reviews the status, challenges, and future of cardiac recovery.
Collapse
Affiliation(s)
- Michael Ibrahim
- Heart Science Centre, Magdi Yacoub Institute, Harefield Hospital, London, UK
| | | | | |
Collapse
|
48
|
The paradox of left ventricular assist device unloading and myocardial recovery in end-stage dilated cardiomyopathy: implications for heart failure in the elderly. Heart Fail Rev 2012; 17:615-33. [DOI: 10.1007/s10741-012-9300-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Hall JL, Fermin DR, Birks EJ, Barton PJR, Slaughter M, Eckman P, Baba HA, Wohlschlaeger J, Miller LW. Clinical, molecular, and genomic changes in response to a left ventricular assist device. J Am Coll Cardiol 2011; 57:641-52. [PMID: 21292124 DOI: 10.1016/j.jacc.2010.11.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/25/2010] [Accepted: 11/08/2010] [Indexed: 12/20/2022]
Abstract
The use of left ventricular assist devices in treating patients with end-stage heart failure has increased significantly in recent years, both as a bridge to transplantation and as destination therapy in those who are ineligible for cardiac transplantation. This increase is based largely on the results of several recently completed clinical trials with the new second-generation continuous-flow devices that showed significant improvements in survival, functional capacity, and quality of life. Additional information on the use of the first- and second-generation left ventricular assist devices has come from a recently released report spanning the years 2006 to 2009, from the Interagency Registry for Mechanically Assisted Circulatory Support, a National Heart, Lung, and Blood Institute-sponsored collaboration between the U.S. Food and Drug Administration, the Centers for Medicare and Medicaid Services, and the scientific community. The authors review the latest clinical trials and data from the registry, with tight integration of the landmark molecular, cellular, and genomic research that accompanies the reverse remodeling of the human heart in response to a left ventricular assist device and functional recovery that has been reported in a subset of these patients.
Collapse
Affiliation(s)
- Jennifer L Hall
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Left ventricular assist device unloading effects on myocardial structure and function: current status of the field and call for action. Curr Opin Cardiol 2011; 26:245-55. [PMID: 21451407 DOI: 10.1097/hco.0b013e328345af13] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Myocardial remodeling driven by excess pressure and volume load is believed to be responsible for the vicious cycle of progressive myocardial dysfunction in chronic heart failure. Left ventricular assist devices (LVADs), by providing significant volume and pressure unloading, allow a reversal of stress-related compensatory responses of the overloaded myocardium. Herein, we summarize and integrate insights from studies which investigated how LVAD unloading influences the structure and function of the failing human heart. RECENT FINDINGS Recent investigations have described the impact of LVAD unloading on key structural features of cardiac remodeling - cardiomyocyte hypertrophy, fibrosis, microvasculature changes, adrenergic pathways and sympathetic innervation. The effects of LVAD unloading on myocardial function, electrophysiologic properties and arrhythmias have also been generating significant interest. We also review information describing the extent and sustainability of the LVAD-induced myocardial recovery, the important advances in understanding of the pathophysiology of heart failure derived from such studies, and the implications of these findings for the development of new therapeutic strategies. Special emphasis is given to the great variety of fundamental questions at the basic, translational and clinical levels that remain unanswered and to specific investigational strategies aimed at advancing the field. SUMMARY Structural and functional reverse remodeling associated with LVADs continues to inspire innovative research. The ultimate goal of these investigations is to achieve sustained recovery of the failing human heart.
Collapse
|