1
|
Ma X, Wang J, Li Z, Zhou X, Liang X, Wang J, Duan Y, Zhao P. Early Assessment of Atherosclerotic Lesions and Vulnerable Plaques in vivo by Targeting Apoptotic Macrophages with AV Nanobubbles. Int J Nanomedicine 2022; 17:4933-4946. [PMID: 36275481 PMCID: PMC9581080 DOI: 10.2147/ijn.s382738] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Background The early detection of atherosclerotic lesions is particularly important for risk prediction of acute cardiovascular events. Macrophages apoptosis was significantly associated with the degree of AS lesions and especially contributed to plaque vulnerability. In this research, we mainly sought to explore the feasibility of a home-made AV-nanobubbles (NBAV) for visualization of apoptotic macrophages and assessment of atherosclerosis (AS) lesions by contrast-enhanced ultrasound (CEUS) imaging. Methods NBAV were prepared by “Optimized Thin-Film Hydration” and “Biotin-Avidin-Biotin” methods. Then, the characterization and echogenicity of NBAV were measured and analyzed in vitro. The targeting ability of NBAV to ox-LDL–induced apoptotic macrophages was observed by laser scanning confocal microscope. The ApoE−/− mice mode fed with high fat diet were observed by high-frequency ultrasound, microanatomy and oil red O staining. CEUS imaging in vivo was performed on AS plaques with NBAV and NBCtrl injection through the tail vein in turn in ApoE−/− mice. After CEUS imaging, the plaques were confirmed and analyzed by histopathological and immunological assessment. Results The prepared NBAV had a nano-scale size distribution with a low PDI and a negative zeta potential. Moreover, NBAV showed an excellent stability and exhibited a significantly echogenic signal than saline in vitro. In addition, we found that NBAV could target apoptotic macrophages induced by ox-LDL. Compared with NBCtrl, CEUS imaging of NBAV showed strong and sustained echo enhancement in plaque area of aortic arch in vivo. Further research showed that NBAV sensitive plaques presented more significant pathological changes with several vulnerable plaque features and abundant TUNEL-positive area. Conclusion NBAV displayed a sensitive indicator to evaluate apoptotic macrophages, indicating a promising CEUS molecular probe for AS lesions and vulnerable plaques identification.
Collapse
Affiliation(s)
- Xiaoju Ma
- Department of Ultrasonic Medicine, Tang Du Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China,Ultrasonic Department, Lin Tong Rehabilitation and Convalescent Center, Lintong, 710600, People’s Republic of China
| | - Jia Wang
- Department of Ultrasonic Medicine, Tang Du Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Zhelong Li
- Department of Ultrasonic Medicine, Tang Du Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Xueying Zhou
- Ultrasonic Department, Air Force Hospital of Central Theater, Datong, 037006, People’s Republic of China
| | - Xiao Liang
- Department of Ultrasonic Medicine, Tang Du Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Junyan Wang
- Department of Nuclear Medicine, Tang Du Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Yunyou Duan
- Department of Ultrasonic Medicine, Tang Du Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Ping Zhao
- Department of Ultrasonic Medicine, Tang Du Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China,Correspondence: Ping Zhao; Yunyou Duan, Email ;
| |
Collapse
|
2
|
Li X, Wu M, Li J, Guo Q, Zhao Y, Zhang X. Advanced targeted nanomedicines for vulnerable atherosclerosis plaque imaging and their potential clinical implications. Front Pharmacol 2022; 13:906512. [PMID: 36313319 PMCID: PMC9606597 DOI: 10.3389/fphar.2022.906512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis plaques caused by cerebrovascular and coronary artery disease have been the leading cause of death and morbidity worldwide. Precise assessment of the degree of atherosclerotic plaque is critical for predicting the risk of atherosclerosis plaques and monitoring postinterventional outcomes. However, traditional imaging techniques to predict cardiocerebrovascular events mainly depend on quantifying the percentage reduction in luminal diameter, which would immensely underestimate non-stenotic high-risk plaque. Identifying the degree of atherosclerosis plaques still remains highly limited. vNanomedicine-based imaging techniques present unique advantages over conventional techniques due to the superior properties intrinsic to nanoscope, which possess enormous potential for characterization and detection of the features of atherosclerosis plaque vulnerability. Here, we review recent advancements in the development of targeted nanomedicine-based approaches and their applications to atherosclerosis plaque imaging and risk stratification. Finally, the challenges and opportunities regarding the future development and clinical translation of the targeted nanomedicine in related fields are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuening Zhang
- Department of Radiology, Tianjin Medical University Second Hospital, Tianjin, China
| |
Collapse
|
3
|
Song Y, Huang Y, Zhou F, Ding J, Zhou W. Macrophage-targeted nanomedicine for chronic diseases immunotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Nies KPH, Smits LJM, Kassem M, Nederkoorn PJ, van Oostenbrugge RJ, Kooi ME. Emerging Role of Carotid MRI for Personalized Ischemic Stroke Risk Prediction in Patients With Carotid Artery Stenosis. Front Neurol 2021; 12:718438. [PMID: 34413828 PMCID: PMC8370465 DOI: 10.3389/fneur.2021.718438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/09/2021] [Indexed: 01/04/2023] Open
Abstract
Rupture of a vulnerable carotid plaque is an important cause of ischemic stroke. Prediction models can support medical decision-making by estimating individual probabilities of future events, while magnetic resonance imaging (MRI) can provide detailed information on plaque vulnerability. In this review, prediction models for medium to long-term (>90 days) prediction of recurrent ischemic stroke among patients on best medical treatment for carotid stenosis are evaluated, and the emerging role of MRI of the carotid plaque for personalized ischemic stroke prediction is discussed. A systematic search identified two models; the European Carotid Surgery Trial (ECST) medical model, and the Symptomatic Carotid Atheroma Inflammation Lumen stenosis (SCAIL) score. We critically appraised these models by means of criteria derived from the CHARMS (CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modeling Studies) and PROBAST (Prediction model Risk Of Bias ASsessment Tool). We found both models to be at high risk of bias. The ECST model, the most widely used model, was derived from data of large but relatively old trials (1980s and 1990s), not reflecting lower risks of ischemic stroke resulting from improvements in drug treatment (e.g., statins and anti-platelet therapy). The SCAIL model, based on the degree of stenosis and positron emission tomography/computed tomography (PET/CT)-based plaque inflammation, was derived and externally validated in limited samples. Clinical implementation of the SCAIL model can be challenging due to high costs and low accessibility of PET/CT. MRI is a more readily available, lower-cost modality that has been extensively validated to visualize all the hallmarks of plaque vulnerability. The MRI methods to identify the different plaque features are described. Intraplaque hemorrhage (IPH), a lipid-rich necrotic core (LRNC), and a thin or ruptured fibrous cap (TRFC) on MRI have shown to strongly predict stroke in meta-analyses. To improve personalized risk prediction, carotid plaque features should be included in prediction models. Prediction of stroke in patients with carotid stenosis needs modernization, and carotid MRI has potential in providing strong predictors for that goal.
Collapse
Affiliation(s)
- Kelly P H Nies
- Department of Radiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Luc J M Smits
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
| | - Mohamed Kassem
- Department of Radiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Paul J Nederkoorn
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Robert J van Oostenbrugge
- Department of Radiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands.,Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands
| | - M Eline Kooi
- Department of Radiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
5
|
Osborn EA, Albaghdadi M, Libby P, Jaffer FA. Molecular Imaging of Atherosclerosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Fedak A, Chrzan R, Chukwu O, Urbanik A. Ultrasound methods of imaging atherosclerotic plaque in carotid arteries: examinations using contrast agents. J Ultrason 2020; 20:e191-e200. [PMID: 33365156 PMCID: PMC7705485 DOI: 10.15557/jou.2020.0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022] Open
Abstract
The primary technique for detecting the presence and monitoring the development of carotid atherosclerotic plaque is ultrasound. The development of ultrasound techniques has made it possible to precisely visualise not only blood flow, but also vessel walls, including atherosclerotic plaque. Contrast-enhanced ultrasound examination enables one to make an objective observation of atherosclerotic plaque neovascularisation, clearly indicating active inflammation, which is an inherent feature of vulnerable (unstable) plaque. Depending on the examination method used, it is possible to precisely visualise different components of the plaque and its behaviour during blood flow through the vessel lumen or through the neovessels of the plaque, and, consequently, determine the possible presence of inflammation, which is a defining feature of plaque stability. The full utilisation of physical phenomena that underlie contrast-enhanced ultrasound will bring further enormous progress of diagnostic and probably also therapeutic methods for carotid atherosclerosis. The selection of the right examination method significantly accelerates diagnosis and adequate classification of plaque, and makes it possible to monitor the progression of atherosclerosis. However, one needs to bear in mind that ultrasound remains a very subjective method. The success of contrast-enhanced ultrasound also depends on the skills and experience of the examiner. Current attempts at increasing the objectivity of contrast-enhanced ultrasound examination using artificial intelligence will make it possible in the future to make a definitive evaluation of atherosclerotic plaque stability. This will allow one to assess the risk of ischaemic stroke adequately.
Collapse
Affiliation(s)
- Andrzej Fedak
- Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
| | - Robert Chrzan
- Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
| | - Ositadima Chukwu
- Student Science Club, Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
| | - Andrzej Urbanik
- Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
7
|
Yao J, Gao W, Wang Y, Wang L, Diabakte K, Li J, Yang J, Jiang Y, Liu Y, Guo S, Zhao X, Cao Z, Chen X, Li Q, Zhang H, Wang W, Tian Z, Li B, Tian F, Wu G, Pourteymour S, Huang X, Tan F, Cao X, Yang Z, Li K, Zhang Y, Li Y, Zhang Z, Jin H, Tian Y. Sonodynamic Therapy Suppresses Neovascularization in Atherosclerotic Plaques via Macrophage Apoptosis-Induced Endothelial Cell Apoptosis. ACTA ACUST UNITED AC 2019; 5:53-65. [PMID: 32043020 PMCID: PMC7000870 DOI: 10.1016/j.jacbts.2019.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 01/26/2023]
Abstract
DVDMS-SDT reduces neovascularization in late-stage atherosclerotic lesions in both rabbit and mouse models. DVDMS-SDT enhances macrophage foam cell apoptosis, which in turn induces neovessel endothelial cell apoptosis and inhibits its proliferation, migration, and tubulogenesis, termed apoptosis-induced apoptosis. Mechanistically, DVDMS-SDT induces macrophage foam cell apoptosis via mitochondrial-caspase pathway, which activates caspase 3 to cleave SP-1, leading to the reduction of HIF-1α and VEGF-A. In the pilot translational study, DVDMS-SDT reduces plaque angiogenesis and inhibits vessel inflammation.
During atherosclerosis plaque progression, pathological intraplaque angiogenesis leads to plaque rupture accompanied by thrombosis, which is probably the most important cause of arteries complications such as cerebral and myocardial infarction. Even though few treatments are available to mitigate plaque rupture, further investigation is required to develop a robust optimized therapeutic method. In this study using rabbit and mouse atherosclerotic models, sinoporphyrin sodium (DVDMS)-mediated sonodynamic therapy reduced abnormal angiogenesis and plaque rupture. Briefly, DVDMS is injected to animals, and then the plaque was locally exposed to pulse ultrasound for a few minutes. Furthermore, a small size clinical trial was conducted on patients with atherosclerosis. Notably, a significant reduction of arterial inflammation and angiogenesis was recorded following a short period of DVDMS-mediated sonodynamic therapy treatment. This beneficial outcome was almost equivalent to the therapeutic outcome after 3-month intensive statin treatment.
Collapse
Key Words
- ALA, 5-aminolevulinic acid
- ApoE, apolipoprotein E
- ChIP, chromatin immunoprecipitation
- DVDMS, sinoporphyrin sodium
- DVDMS-SDT, sinoporphyrin sodium-mediated sonodynamic therapy
- HIF, hypoxia inducible factor
- HUVEC, human umbilical vein endothelial cells
- MVE, normalized maximal video-intensity enhancement
- SDT, sonodynamic therapy
- SP, specificity protein
- TBR, target-to-background ratio
- VEGF-A, vascular endothelial growth factor A
- apoptosis-induced apoptosis
- atherosclerotic plaque
- endothelial cell
- macrophage
- neovascularization
- sonodynamic therapy
Collapse
Affiliation(s)
- Jianting Yao
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Weiwei Gao
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Yu Wang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Lu Wang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Kamal Diabakte
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Jinyang Li
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, People’s Republic of China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, People’s Republic of China
| | - Jiemei Yang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Yongxing Jiang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Yuerong Liu
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Shuyuan Guo
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Xuezhu Zhao
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Zhengyu Cao
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Xi Chen
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Qiannan Li
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Haiyu Zhang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Wei Wang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Zhen Tian
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, People’s Republic of China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, People’s Republic of China
| | - Bicheng Li
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Fang Tian
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Guodong Wu
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | | | - Xi Huang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Fancheng Tan
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, People’s Republic of China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, People’s Republic of China
| | - Xiaoru Cao
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, People’s Republic of China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, People’s Republic of China
| | - Zhuowen Yang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
| | - Kang Li
- Department of Epidemiology and Biostatistics, Harbin Medical University, Harbin, People’s Republic of China
| | - Yan Zhang
- School of Life Science and Technology, Research Center for Computational Biology, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Yong Li
- Department of Positron Emission Tomography–Computed Tomography, the First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Zhiguo Zhang
- Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Hong Jin
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Dr. Hong Jin, Molecular Vascular Medicine, Medicine Department, Bioclinicum, Akademiska Stråket 1, J8:20, Karolinska University Hospital, 17164 Solna, Sweden.
| | - Ye Tian
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, People’s Republic of China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, People’s Republic of China
- Address for correspondence: Dr. Ye Tian, Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China.
| |
Collapse
|
8
|
Mao Y, Liu XQ, Song Y, Zhai CG, Xu XL, Zhang L, Zhang Y. Fibroblast growth factor-2/platelet-derived growth factor enhances atherosclerotic plaque stability. J Cell Mol Med 2019; 24:1128-1140. [PMID: 31755222 PMCID: PMC6933359 DOI: 10.1111/jcmm.14850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Increased immature neovessels contribute to plaque growth and instability. Here, we investigated a method to establish functional and stable neovessel networks to increase plaque stability. Rabbits underwent aortic balloon injury and were divided into six groups: sham, vector and lentiviral transfection with vascular endothelial growth factor‐A (VEGF)‐A, fibroblast growth factor (FGF)‐2, platelet‐derived growth factor (PDGF)‐BB and FGF‐2 + PDGF‐BB. Lentivirus was percutaneously injected into the media‐adventitia of the abdominal aorta by intravascular ultrasound guidance, and plaque‐rupture rate, plaque‐vulnerability index and plaque neovessel density at the injection site were evaluated. Confocal microscopy, Prussian Blue assay, Evans Blue, immunofluorescence and transmission electron microscopy were used to assess neovessel function and pericyte coverage. To evaluate the effect of FGF‐2/PDGF‐BB on pericyte migration, we used the mesenchymal progenitor cell line 10T1/2 as an in vitro model. VEGF‐A‐ and FGF‐2‐overexpression increased the number of immature neovessels, which caused intraplaque haemorrhage and inflammatory cell infiltration, eventually resulting in the plaque vulnerability; however, FGF‐2/PDGF‐BB induced mature and functional neovessels, through increased neovessel pericyte coverage. Additionally, in vitro analysis of 10T1/2 cells revealed that FGF‐2/PDGF‐BB induced epsin‐2 expression and enhanced the VEGF receptor‐2 degradation, which negatively regulated pericyte function consistent with the in vivo data. These results showed that the combination of FGF‐2 and PDGF‐BB promoted the function and maturation of plaque neovessels, thereby representing a novel potential treatment strategy for vulnerable plaques.
Collapse
Affiliation(s)
- Yang Mao
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Qiong Liu
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Song
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun Gang Zhai
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xing Li Xu
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Zhang
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
9
|
Abstract
The introduction of targeted agents into modern cancer therapy pursued the goal of molecularly more specific, and thereby more effective and safer, therapies. Paradoxically, however, several toxicities were brought to greater attention, among these not only cardiac but also vascular toxicities. The latter reach far beyond venous thromboembolism and include a broad spectrum of presentations based on the vascular territories and pathomechanisms involved, including abnormal vascular reactivity, acute thrombosis, or accelerated atherosclerosis. This article provides an overview of the most common presentations and their management strategies.
Collapse
Affiliation(s)
- Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55902, USA.
| |
Collapse
|
10
|
Coronary Vessel Wall Imaging: State of the Art and Future Directions. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9493-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J. Vasa Vasorum Angiogenesis: Key Player in the Initiation and Progression of Atherosclerosis and Potential Target for the Treatment of Cardiovascular Disease. Front Immunol 2018; 9:706. [PMID: 29719532 PMCID: PMC5913371 DOI: 10.3389/fimmu.2018.00706] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 01/08/2023] Open
Abstract
Plaque microvascularization and increased endothelial permeability are key players in the development of atherosclerosis, from the initial stages of plaque formation to the occurrence of acute cardiovascular events. First, endothelial dysfunction and increased permeability facilitate the entry of diverse inflammation-triggering molecules and particles such as low-density lipoproteins into the artery wall from the arterial lumen and vasa vasorum (VV). Recognition of entering particles by resident phagocytes in the vessel wall triggers a maladaptive inflammatory response that initiates the process of local plaque formation. The recruitment and accumulation of inflammatory cells and the subsequent release of several cytokines, especially from resident macrophages, stimulate the expansion of existing VV and the formation of new highly permeable microvessels. This, in turn, exacerbates the deposition of pro-inflammatory particles and results in the recruitment of even more inflammatory cells. The progressive accumulation of leukocytes in the intima, which trigger proliferation of smooth muscle cells in the media, results in vessel wall thickening and hypoxia, which further stimulates neoangiogenesis of VV. Ultimately, this highly inflammatory environment damages the fragile plaque microvasculature leading to intraplaque hemorrhage, plaque instability, and eventually, acute cardiovascular events. This review will focus on the pivotal roles of endothelial permeability, neoangiogenesis, and plaque microvascularization by VV during plaque initiation, progression, and rupture. Special emphasis will be given to the underlying molecular mechanisms and potential therapeutic strategies to selectively target these processes.
Collapse
Affiliation(s)
- Daniel G Sedding
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Erin C Boyle
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jasper A F Demandt
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands.,BHF Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
| | - Jochen Dutzmann
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Xu B, Xing J, Wu W, Zhang WJ, Zhu QQ, Zhang D, Sun NN, Wu C, Kang GJ, Zhai L, Li WD, Meng Y, Du TY. Improved plaque neovascularization following 2-year atorvastatin therapy based on contrast-enhanced ultrasonography: A pilot study. Exp Ther Med 2018; 15:4491-4497. [PMID: 29725384 DOI: 10.3892/etm.2018.5926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 04/07/2017] [Indexed: 01/23/2023] Open
Abstract
The present study assessed changes in carotid plaque neovascularization following long-term atorvastatin therapy (20 mg/day) using contrast-enhanced ultrasonography (CEUS). In this prospective case series, seven males (mean age, 68±9 years) and three females (mean age, 67±10 years) with a total of 13 carotid plaques underwent standard ultrasonography and CEUS at baseline, as well as after 1 and 2 years of atorvastatin treatment. The same plaques were then examined using real-time CEUS. The results of the enhanced intensity of plaque neovascularization at baseline were compared with results obtained during follow-up to examine the effects of long-term atorvastatin therapy. Standard ultrasonography revealed that 7 of the 13 carotid plaques were uniformly echolucent, whereas 6 carotid plaques were predominantly echolucent. CEUS revealed an enhanced intensity of 10.5±2.1 decibels (dB) prior to treatment, which decreased significantly to 7.3±2.6 dB following 2 years atorvastatin therapy (P<0.001). The ratio of enhanced intensity in the carotid artery lumen to that in the plaque was 3.10±1.10 at baseline and this value significantly increased to 4.96±2.98 following treatment for 2 years (P<0.001). The current pilot study therefore indicates that two-year atorvastatin therapy (20 mg/day) may reduce plaque neovascularization in the Chinese population.
Collapse
Affiliation(s)
- Bin Xu
- Department of Neurology, Fuxing Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Jin Xing
- Department of Ultrasound, Fuxing Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Wenqing Wu
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Wen-Jing Zhang
- Department of Neurology, Fuxing Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Qian-Qian Zhu
- Department of Neurology, Fuxing Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Dan Zhang
- Department of Ultrasound, Fuxing Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Nan-Nan Sun
- Department of Neurology, Fuxing Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Chan Wu
- Department of Neurology, Fuxing Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Geng-Jie Kang
- Department of Neurology, Fuxing Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Lin Zhai
- Department of Ultrasound, Fuxing Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Wei-Dong Li
- Department of Neurology, Fuxing Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Yan Meng
- Department of Ultrasound, Fuxing Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Tie-Ying Du
- Department of Neurology, Fuxing Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
13
|
Subbotin VM. Excessive intimal hyperplasia in human coronary arteries before intimal lipid depositions is the initiation of coronary atherosclerosis and constitutes a therapeutic target. Drug Discov Today 2016; 21:1578-1595. [DOI: 10.1016/j.drudis.2016.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/29/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022]
|
14
|
Effects of DHA-enriched fish oil on monocyte/macrophage activation marker sCD163, asymmetric dimethyl arginine, and insulin resistance in type 2 diabetic patients. J Clin Lipidol 2016; 10:798-807. [DOI: 10.1016/j.jacl.2016.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/26/2016] [Indexed: 12/11/2022]
|
15
|
Sezer Zhmurov Ç, Timirci-Kahraman Ö, Amadou FZ, Fazlıoğulları O, Başaran C, Catal T, Zeybek Ü, Bermek H. Expression of Egfl7 and miRNA-126-5p in Symptomatic Carotid Artery Disease. Genet Test Mol Biomarkers 2016; 20:125-9. [DOI: 10.1089/gtmb.2015.0252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Çiğdem Sezer Zhmurov
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Istanbul, Turkey
| | - Özlem Timirci-Kahraman
- Department of Molecular Medicine, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | | | - Osman Fazlıoğulları
- Department of Cardiovascular Surgery, Medical Park Gebze Hospital, Kocaeli, Turkey
| | - Cem Başaran
- Department of Cardiovascular Surgery, Medicana Bahcelievler Hospital, Istanbul, Turkey
| | - Tunc Catal
- Department of Molecular Biology and Genetics, Uskudar University, Istanbul, Turkey
| | - Ümit Zeybek
- Department of Molecular Medicine, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hakan Bermek
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
16
|
Vlaicu SI, Tatomir A, Rus V, Mekala AP, Mircea PA, Niculescu F, Rus H. The role of complement activation in atherogenesis: the first 40 years. Immunol Res 2015; 64:1-13. [DOI: 10.1007/s12026-015-8669-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Lavin B, Phinikaridou A, Henningsson M, Botnar RM. Current Development of Molecular Coronary Plaque Imaging using Magnetic Resonance Imaging towards Clinical Application. CURRENT CARDIOVASCULAR IMAGING REPORTS 2014. [DOI: 10.1007/s12410-014-9309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Mangge H, Almer G, Stelzer I, Reininghaus E, Prassl R. Laboratory medicine for molecular imaging of atherosclerosis. Clin Chim Acta 2014; 437:19-24. [DOI: 10.1016/j.cca.2014.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 12/30/2022]
|
19
|
Giannarelli C, Alique M, Rodriguez DT, Yang DK, Jeong D, Calcagno C, Hutter R, Millon A, Kovacic JC, Weber T, Faries PL, Soff GA, Fayad ZA, Hajjar RJ, Fuster V, Badimon JJ. Alternatively spliced tissue factor promotes plaque angiogenesis through the activation of hypoxia-inducible factor-1α and vascular endothelial growth factor signaling. Circulation 2014; 130:1274-86. [PMID: 25116956 DOI: 10.1161/circulationaha.114.006614] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alternatively spliced tissue factor (asTF) is a novel isoform of full-length tissue factor, which exhibits angiogenic activity. Although asTF has been detected in human plaques, it is unknown whether its expression in atherosclerosis causes increased neovascularization and an advanced plaque phenotype. METHODS AND RESULTS Carotid (n=10) and coronary (n=8) specimens from patients with stable or unstable angina were classified as complicated or uncomplicated on the basis of plaque morphology. Analysis of asTF expression and cell type-specific expression revealed a strong expression and colocalization of asTF with macrophages and neovessels within complicated, but not uncomplicated, human plaques. Our results showed that the angiogenic activity of asTF is mediated via hypoxia-inducible factor-1α upregulation through integrins and activation of phosphatidylinositol-3-kinase/Akt and mitogen-activated protein kinase pathways. Hypoxia-inducible factor-1α upregulation by asTF also was associated with increased vascular endothelial growth factor expression in primary human endothelial cells, and vascular endothelial growth factor-Trap significantly reduced the angiogenic effect of asTF in vivo. Furthermore, asTF gene transfer significantly increased neointima formation and neovascularization after carotid wire injury in ApoE(-/-) mice. CONCLUSIONS The results of this study provide strong evidence that asTF promotes neointima formation and angiogenesis in an experimental model of accelerated atherosclerosis. Here, we demonstrate that the angiogenic effect of asTF is mediated via the activation of the hypoxia-inducible factor-1/vascular endothelial growth factor signaling. This mechanism may be relevant to neovascularization and the progression and associated complications of human atherosclerosis as suggested by the increased expression of asTF in complicated versus uncomplicated human carotid and coronary plaques.
Collapse
Affiliation(s)
- Chiara Giannarelli
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.).
| | - Matilde Alique
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - David T Rodriguez
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Dong Kwon Yang
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Dongtak Jeong
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Claudia Calcagno
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Randolph Hutter
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Antoine Millon
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Jason C Kovacic
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Thomas Weber
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Peter L Faries
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Gerald A Soff
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Zahi A Fayad
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Roger J Hajjar
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Valentin Fuster
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| | - Juan J Badimon
- From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.)
| |
Collapse
|
20
|
Azevedo A, Prado AF, Antonio RC, Issa JP, Gerlach RF. Matrix metalloproteinases are involved in cardiovascular diseases. Basic Clin Pharmacol Toxicol 2014; 115:301-14. [PMID: 24974977 DOI: 10.1111/bcpt.12282] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 06/26/2014] [Indexed: 12/18/2022]
Abstract
This MiniReview describes the essential biochemical and molecular aspects of matrix metalloproteinases (MMPs) and briefly discusses how they engage in different diseases, with particular emphasis on cardiovascular diseases. There is compelling scientific evidence that many MMPs, especially MMP-2, play important roles in the development of cardiovascular diseases; inhibition of these enzymes is beneficial to many cardiovascular conditions, sometimes precluding or postponing end-organ damage and fatal outcomes. Conducting comprehensive discussions and further studies on how MMPs participate in cardiovascular diseases is important, because inhibition of these enzymes may be an alternative or an adjuvant for current cardiovascular disease therapy.
Collapse
Affiliation(s)
- Aline Azevedo
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Mary Jo Mulligan-Kehoe
- From the Department of Surgery, Vascular Section, Geisel School of Medicine at Dartmouth, Lebanon, NH (M.J.M.-K.); and Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (M.S.)
| | - Michael Simons
- From the Department of Surgery, Vascular Section, Geisel School of Medicine at Dartmouth, Lebanon, NH (M.J.M.-K.); and Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (M.S.)
| |
Collapse
|
22
|
Morel S. Multiple roles of connexins in atherosclerosis- and restenosis-induced vascular remodelling. J Vasc Res 2014; 51:149-61. [PMID: 24853725 DOI: 10.1159/000362122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/01/2014] [Indexed: 12/19/2022] Open
Abstract
Endothelial dysfunction is the initial step in atherosclerotic plaque development in large- and medium-sized arteries. This progressive disease, which starts during childhood, is characterized by the accumulation of lipids, macrophages, neutrophils, T lymphocytes and smooth muscle cells in the intima of the vessels. Erosion and rupture of the atherosclerotic plaque may induce myocardial infarction and cerebrovascular accidents, which are responsible for a large percentage of sudden deaths. The most common treatment for atherosclerosis is angioplasty and stent implantation, but these surgical interventions favour a vascular reaction called restenosis and the associated de-endothelialization increases the risk of thrombosis. This review provides an overview of the role of connexins, a large family of transmembrane proteins, in vascular remodelling associated with atherosclerosis and restenosis. The connexins expressed in the vascular wall are Cx37, Cx40, Cx43 and Cx45; their expressions vary with vascular territory and species. Connexins form hemichannels or gap junction channels, allowing the exchange of ions and small metabolites between the cytosol and extracellular space or between neighbouring cells, respectively. Connexins have important roles in vascular physiology; they support radial and longitudinal cell-to-cell communication in the vascular wall, and significant changes in their expression patterns have been described during atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Deciphering the stromal and hematopoietic cell network of the adventitia from non-aneurysmal and aneurysmal human aorta. PLoS One 2014; 9:e89983. [PMID: 24587165 PMCID: PMC3937418 DOI: 10.1371/journal.pone.0089983] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/23/2014] [Indexed: 01/09/2023] Open
Abstract
Aneurysm is associated to a complex remodeling of arteries that affects all their layers. Although events taking place in the intima and the media have received a particular attention, molecular and cellular events taking place in the adventitia have started to be deciphered only recently. In this study, we have precisely described the composition and distribution of stromal and hematopoietic cells in human arterial adventitia, both at steady state and in the setting of aortic aneurysm. Using polychromatic immunofluorescent and flow cytometry analyses, we observed that unlike the medial layer (which comprises mostly macrophages and T cells among leukocytes), the adventitia comprises a much greater variety of leukocytes. We observed an altered balance in macrophages subsets in favor of M2-like macrophages, an increased proliferation of macrophages, a greater number of all stromal cells in aneurysmal aortas. We also confirmed that in this pathological setting, adventitia comprised blood vessels and arterial tertiary lymphoid organs (ATLOs), which contained also M-DC8+ dendritic cells (slanDCs) that could participate in the induction of T-cell responses. Finally, we showed that lymphatic vessels can be detected in aneurysmal adventitia, the functionality of which will have to be evaluated in future studies. All together, these observations provide an integrative outlook of the stromal and hematopoietic cell network of the human adventitia both at steady state and in the context of aneurysm.
Collapse
|
24
|
Kurata M, Nose M, Shimazu Y, Aoba T, Kohada Y, Yorioka S, Suehiro S, Fukuoka E, Matsumoto S, Watanabe H, Kumon Y, Okura T, Higaki J, Masumoto J. Microvasculature of carotid atheromatous plaques: hemorrhagic plaques have dense microvessels with fenestrations to the arterial lumen. J Stroke Cerebrovasc Dis 2014; 23:1440-6. [PMID: 24529356 DOI: 10.1016/j.jstrokecerebrovasdis.2013.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/27/2013] [Accepted: 12/03/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Microvessels in atheromatous plaques are well known to play a role in plaque vulnerability associated with intraplaque hemorrhage, but their architecture remains unclear. The morphometry of the microvasculature and hemorrhage of human carotid atheromatous plaques (CAPs) were evaluated, and 3-dimensional (3D) reconstruction of the microvessels was performed. METHODS CAPs were obtained by endarterectomy in 42 patients. The specimens were analyzed using light microscopy. Plaque hemorrhage was defined as an area-containing red blood cells (>1 mm2). To determine the histopathologic features of plaque hemorrhage, the plaque area was divided into 4 regions: cap, shoulder, lipid/necrotic core, and media. Then, the density of microvessels and macrophages in each region was quantified. Two representative lesions with either hemorrhagic or nonhemorrhagic plaque were cut into 90 serial sections. The sections were double stained with anti-CD34 and anti-α smooth muscle actin antibodies, scanned using a digital microscope, and reconstructed using TRI-SRF2 software. RESULTS The hemorrhagic plaques showed a higher density of microvessels than nonhemorrhagic plaques in the shoulder, cap, and lipid/necrotic core (P=.03, .009, and .001, respectively), and there was positive correlations between its density and macrophages in each regions (P<.001, .001, and .019, respectively). 3D imaging also revealed dense microvessels with a network structure in the cap and shoulder regions of hemorrhagic plaques, and some of the vessels were fenestrated to the arterial lumen. CONCLUSIONS The microvasculature of plaques with intraplaque hemorrhage was dense, some of which fenestrated to the arterial lumen. The pathologic 3D imaging revealed precise architecture of microvasculature of plaques.
Collapse
Affiliation(s)
- Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Toon, Ehime, Japan; Department of Cardiology, Erasmus Medical Center Rotterdam, the Netherlands.
| | - Masato Nose
- Department of Pathology, Division of Pathogenomics, Ehime University, Graduate School of Medicine, Ehime, Japan
| | | | - Takaaki Aoba
- Department of Pathology, The Nippon Dental University, Tokyo, Japan
| | - Yuki Kohada
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Toon, Ehime, Japan
| | - Soichiro Yorioka
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Toon, Ehime, Japan
| | - Satomi Suehiro
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Toon, Ehime, Japan
| | - Erina Fukuoka
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Toon, Ehime, Japan
| | - Shirabe Matsumoto
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hideaki Watanabe
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yoshiaki Kumon
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takafumi Okura
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Jitsuo Higaki
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Toon, Ehime, Japan
| |
Collapse
|
25
|
Wittenborn TR, Larsen EKU, Nielsen T, Rydtoft LM, Hansen L, Nygaard JV, Vorup-Jensen T, Kjems J, Horsman MR, Nielsen NC. Accumulation of nano-sized particles in a murine model of angiogenesis. Biochem Biophys Res Commun 2013; 443:470-6. [PMID: 24321551 DOI: 10.1016/j.bbrc.2013.11.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 11/27/2013] [Indexed: 01/09/2023]
Abstract
PURPOSE To evaluate the ability of nm-scaled iron oxide particles conjugated with Azure A, a classic histological dye, to accumulate in areas of angiogenesis in a recently developed murine angiogenesis model. MATERIALS AND METHODS We characterised the Azure A particles with regard to their hydrodynamic size, zeta potential, and blood circulation half-life. The particles were then investigated by Magnetic Resonance Imaging (MRI) in a recently developed murine angiogenesis model along with reference particles (Ferumoxtran-10) and saline injections. RESULTS The Azure A particles had a mean hydrodynamic diameter of 51.8 ± 43.2 nm, a zeta potential of -17.2 ± 2.8 mV, and a blood circulation half-life of 127.8 ± 74.7 min. Comparison of MR images taken pre- and 24-h post-injection revealed a significant increase in R2(*) relaxation rates for both Azure A and Ferumoxtran-10 particles. No significant difference was found for the saline injections. The relative increase was calculated for the three groups, and showed a significant difference between the saline group and the Azure A group, and between the saline group and the Ferumoxtran-10 group. However, no significant difference was found between the two particle groups. CONCLUSION Ultrahigh-field MRI revealed localisation of both types of iron oxide particles to areas of neovasculature. However, the Azure A particles did not show any enhanced accumulation relative to Ferumoxtran-10, suggesting the accumulation in both cases to be passive.
Collapse
Affiliation(s)
- Thomas R Wittenborn
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Noerrebrogade 44, 8000 Aarhus C, Denmark.
| | - Esben K U Larsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, C.F. Moellers Allé 3, 8000 Aarhus C, Denmark; The Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), Aarhus University, Aarhus, Denmark
| | - Thomas Nielsen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Noerrebrogade 44, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Louise M Rydtoft
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University Hospital, Noerrebrogade 44, 8000 Aarhus C, Denmark
| | - Line Hansen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, C.F. Moellers Allé 3, 8000 Aarhus C, Denmark; The Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), Aarhus University, Aarhus, Denmark
| | - Jens V Nygaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Engineering, Aarhus University, Finlandsgade 22, 8000 Aarhus, Denmark
| | - Thomas Vorup-Jensen
- The Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Bartholins Allé 6, 8000 Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, C.F. Moellers Allé 3, 8000 Aarhus C, Denmark; The Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), Aarhus University, Aarhus, Denmark
| | - Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Noerrebrogade 44, 8000 Aarhus C, Denmark
| | - Niels Chr Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; The Lundbeck Foundation Nanomedicine Center for Individualized Management of Tissue Damage and Regeneration (LUNA), Aarhus University, Aarhus, Denmark; Center for Insoluble Protein Structures (inSPIN) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
26
|
Makowski MR, Botnar RM. MR imaging of the arterial vessel wall: molecular imaging from bench to bedside. Radiology 2013; 269:34-51. [PMID: 24062561 DOI: 10.1148/radiol.13102336] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiovascular diseases remain the leading cause of morbidity and mortality in the Western world and developing countries. In clinical practice, in vivo characterization of atherosclerotic lesions causing myocardial infarction, ischemic stroke, and other complications remains challenging. Imaging methods, limited to the assessment luminal stenosis, are the current reference standard for the assessment of clinically significant coronary and carotid artery disease and the guidance of treatment. These techniques do not allow distinction between stable and potentially vulnerable atherosclerotic plaque. Magnetic resonance (MR) imaging is a modality well suited for visualization and characterization of the relatively thin arterial vessel wall, because it allows imaging with high spatial resolution and excellent soft-tissue contrast. In clinical practice, atherosclerotic plaque components of the carotid artery and aorta may be differentiated and characterized by using unenhanced vessel wall MR imaging. Additional information can be gained by using clinically approved nonspecific contrast agents. With the advent of targeted MR contrast agents, which enhance specific molecules or cells, pathologic processes can be visualized at a molecular level with high spatial resolution. In this article, the pathophysiologic changes of the arterial vessel wall underlying the development of atherosclerosis will be first reviewed. Then basic principles and properties of molecular MR imaging contrast agents will be introduced. Additionally, recent advances in preclinical molecular vessel wall imaging will be reviewed. Finally, the clinical feasibility of arterial vessel wall imaging at unenhanced and contrast material-enhanced MR imaging of the aortic, carotid, and coronary vessel wall will be discussed.
Collapse
Affiliation(s)
- Marcus R Makowski
- Division of Imaging Sciences, BHF Centre of Excellence, Wellcome Trust and EPSRC Medical Engineering Center, and NIHR Biomedical Research Centre, King's College London, 4th Floor, Lambeth Wing, St Thomas Hospital, London SE1 7EH, England
| | | |
Collapse
|
27
|
Makowski MR, Henningsson M, Spuentrup E, Kim WY, Maintz D, Manning WJ, Botnar RM. Characterization of coronary atherosclerosis by magnetic resonance imaging. Circulation 2013; 128:1244-55. [PMID: 24019445 DOI: 10.1161/circulationaha.113.002681] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Marcus R Makowski
- Division of Imaging Sciences and Biomedical Engineering (M.R.M., M.H., R.M.B.), BHF Center of Research Excellence (M.R.M., M.H., R.M.B.), Wellcome Trust and EPSRC Medical Engineering Center (M.H., R.M.B.), and NIHR Biomedical Research Center (M.H., R.M.B.), King's College London, London, UK; Department of Radiology, Charité, Berlin, Germany (M.R.M.); Department of Radiology and Nuclear Medicine, Hospital Saarbrucken, Saarbrucken, Germany (E.S.); Department of Cardiology, Aarhus University Hospital, Skejby Sygehus, Denmark (W.Y.K.); Department of Radiology, University of Cologne, Cologne, Germany (D.M.); and Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (W.J.M.)
| | | | | | | | | | | | | |
Collapse
|
28
|
Romero JM, Pizzolato R, Atkinson W, Meader A, Jaimes C, Lamuraglia G, Jaff MR, Buonanno F, Delgado Almandoz J, Gonzalez RG. Vasa vasorum enhancement on computerized tomographic angiography correlates with symptomatic patients with 50% to 70% carotid artery stenosis. Stroke 2013; 44:3344-9. [PMID: 24172578 DOI: 10.1161/strokeaha.113.002400] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Significant stenosis of the internal carotid artery (ICA) is an established stroke risk factor. Recent evidence suggests that features within the atherosclerotic plaque also have prognostic value. The purpose of this study was to correlate the enhancement of the vasa vasorum (VV) overlying the carotid artery plaque with acute neurological symptoms in patients with 50% to 70% ICA stenosis. METHODS We conducted a 4-year retrospective computerized tomographic angiographic review to identify patients with 50% to 70% stenosis of the ICA. Three types of plaques were identified: enhancing VV, calcified, and nonenhancing-noncalcified. Medical records were reviewed for cardiovascular risk factors and neurological status, and imaging was reviewed for signs of a recent stroke. RESULTS We identified a total of 428 patients with 50% to 70% ICA stenosis: 103 (24.1%) had enhancing VV, 202 (47.2%) calcified, and 123 (28.7%) nonenhancing-noncalcified arteries; 97 were symptomatic and 331 asymptomatic. Thirty-three (34%) symptomatic subjects demonstrated enhancing VV, 42 (20%) had calcified arterial plaques, and 22 (17%) had nonenhancing-noncalcified arterial plaques. Fisher exact tests revealed that the proportion of symptomatic individuals with enhancing VV plaque was double that of the other groups combined (P=0.015; odds ratio, 1.92; 95% confidence interval, 1.17-3.16). Regression analyses confirmed this association as independent from other known cardiovascular risk factors. CONCLUSIONS In patients with 50% to 70% ICA stenosis, VV enhancement recognized on computed tomographic angiography is strongly associated with acute neurological symptoms compared with calcified and nonenhancing-noncalcified arterial plaques. This finding may aid in the identification of patients at increased risk for ischemic stroke within populations with the same degree of stenosis.
Collapse
Affiliation(s)
- Javier M Romero
- From the Departments of Radiology (J.M.R., R.P., W.A., A.M., C.J., R.G.G.), Surgery (G.L.), Cardiology (M.R.J.), and Neurology (F.B.), Massachusetts General Hospital, Harvard University, Boston; and Department of Interventional Neuroradiology, Neuroscience Institute, Abbott Northwestern Hospital, Minneapolis, MN (J.D.A.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rosa GM, Bauckneht M, Masoero G, Mach F, Quercioli A, Seitun S, Balbi M, Brunelli C, Parodi A, Nencioni A, Vuilleumier N, Montecucco F. The vulnerable coronary plaque: update on imaging technologies. Thromb Haemost 2013; 110:706-22. [PMID: 23803753 DOI: 10.1160/th13-02-0121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/01/2013] [Indexed: 12/21/2022]
Abstract
Several studies have been carried out on vulnerable plaque as the main culprit for ischaemic cardiac events. Historically, the most important diagnostic technique for studying coronary atherosclerotic disease was to determine the residual luminal diameter by angiographic measurement of the stenosis. However, it has become clear that vulnerable plaque rupture as well as thrombosis, rather than stenosis, triggers most acute ischaemic events and that the quantification of risk based merely on severity of the arterial stenosis is not sufficient. In the last decades, substantial progresses have been made on optimisation of techniques detecting the arterial wall morphology, plaque composition and inflammation. To date, the use of a single technique is not recommended to precisely identify the progression of the atherosclerotic process in human beings. In contrast, the integration of data that can be derived from multiple methods might improve our knowledge about plaque destabilisation. The aim of this narrative review is to update evidence on the accuracy of the currently available non-invasive and invasive imaging techniques in identifying components and morphologic characteristics associated with coronary plaque vulnerability.
Collapse
Affiliation(s)
- Gian Marco Rosa
- Fabrizio Montecucco, MD, PhD, Division of Cardiology, Faculty of Medicine, Geneva University Hospital, Avenue de la Roseraie 64, 1211 Geneva 4, Switzerland, Tel.: +41 22 372 71 92, Fax: +41 22 382 72 45, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Sandrine Morel
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
31
|
Selwaness M, van den Bouwhuijsen QJ, Verwoert GC, Dehghan A, Mattace-Raso FU, Vernooij M, Franco OH, Hofman A, van der Lugt A, Wentzel JJ, Witteman JC. Blood Pressure Parameters and Carotid Intraplaque Hemorrhage as Measured by Magnetic Resonance Imaging. Hypertension 2013; 61:76-81. [DOI: 10.1161/hypertensionaha.112.198267] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mariana Selwaness
- From the Departments of Epidemiology (M.S., Q.J.A.v.d.B., G.C.V., A.D., F.U.S.M.-R., M.V., O.H.F., A.H., J.C.M.W.), Biomedical Engineering (M.S., J.J.W.), Radiology (M.S., Q.J.A.v.d.B., M.V., A.v.d.L.), and Internal Medicine (G.C.V., F.U.S.M.-R.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Quirijn J.A. van den Bouwhuijsen
- From the Departments of Epidemiology (M.S., Q.J.A.v.d.B., G.C.V., A.D., F.U.S.M.-R., M.V., O.H.F., A.H., J.C.M.W.), Biomedical Engineering (M.S., J.J.W.), Radiology (M.S., Q.J.A.v.d.B., M.V., A.v.d.L.), and Internal Medicine (G.C.V., F.U.S.M.-R.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Germaine C. Verwoert
- From the Departments of Epidemiology (M.S., Q.J.A.v.d.B., G.C.V., A.D., F.U.S.M.-R., M.V., O.H.F., A.H., J.C.M.W.), Biomedical Engineering (M.S., J.J.W.), Radiology (M.S., Q.J.A.v.d.B., M.V., A.v.d.L.), and Internal Medicine (G.C.V., F.U.S.M.-R.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Abbas Dehghan
- From the Departments of Epidemiology (M.S., Q.J.A.v.d.B., G.C.V., A.D., F.U.S.M.-R., M.V., O.H.F., A.H., J.C.M.W.), Biomedical Engineering (M.S., J.J.W.), Radiology (M.S., Q.J.A.v.d.B., M.V., A.v.d.L.), and Internal Medicine (G.C.V., F.U.S.M.-R.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Francesco U.S. Mattace-Raso
- From the Departments of Epidemiology (M.S., Q.J.A.v.d.B., G.C.V., A.D., F.U.S.M.-R., M.V., O.H.F., A.H., J.C.M.W.), Biomedical Engineering (M.S., J.J.W.), Radiology (M.S., Q.J.A.v.d.B., M.V., A.v.d.L.), and Internal Medicine (G.C.V., F.U.S.M.-R.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Meike Vernooij
- From the Departments of Epidemiology (M.S., Q.J.A.v.d.B., G.C.V., A.D., F.U.S.M.-R., M.V., O.H.F., A.H., J.C.M.W.), Biomedical Engineering (M.S., J.J.W.), Radiology (M.S., Q.J.A.v.d.B., M.V., A.v.d.L.), and Internal Medicine (G.C.V., F.U.S.M.-R.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Oscar H. Franco
- From the Departments of Epidemiology (M.S., Q.J.A.v.d.B., G.C.V., A.D., F.U.S.M.-R., M.V., O.H.F., A.H., J.C.M.W.), Biomedical Engineering (M.S., J.J.W.), Radiology (M.S., Q.J.A.v.d.B., M.V., A.v.d.L.), and Internal Medicine (G.C.V., F.U.S.M.-R.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- From the Departments of Epidemiology (M.S., Q.J.A.v.d.B., G.C.V., A.D., F.U.S.M.-R., M.V., O.H.F., A.H., J.C.M.W.), Biomedical Engineering (M.S., J.J.W.), Radiology (M.S., Q.J.A.v.d.B., M.V., A.v.d.L.), and Internal Medicine (G.C.V., F.U.S.M.-R.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Aad van der Lugt
- From the Departments of Epidemiology (M.S., Q.J.A.v.d.B., G.C.V., A.D., F.U.S.M.-R., M.V., O.H.F., A.H., J.C.M.W.), Biomedical Engineering (M.S., J.J.W.), Radiology (M.S., Q.J.A.v.d.B., M.V., A.v.d.L.), and Internal Medicine (G.C.V., F.U.S.M.-R.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jolanda J. Wentzel
- From the Departments of Epidemiology (M.S., Q.J.A.v.d.B., G.C.V., A.D., F.U.S.M.-R., M.V., O.H.F., A.H., J.C.M.W.), Biomedical Engineering (M.S., J.J.W.), Radiology (M.S., Q.J.A.v.d.B., M.V., A.v.d.L.), and Internal Medicine (G.C.V., F.U.S.M.-R.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jacqueline C.M. Witteman
- From the Departments of Epidemiology (M.S., Q.J.A.v.d.B., G.C.V., A.D., F.U.S.M.-R., M.V., O.H.F., A.H., J.C.M.W.), Biomedical Engineering (M.S., J.J.W.), Radiology (M.S., Q.J.A.v.d.B., M.V., A.v.d.L.), and Internal Medicine (G.C.V., F.U.S.M.-R.), Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Queiroz KCS, Bijlsma MF, Tio RA, Zeebregts CJ, Dunaeva M, Ferreira CV, Fuhler GM, Kuipers EJ, Alves MM, Rezaee F, Spek CA, Peppelenbosch MP. Dichotomy in Hedgehog signaling between human healthy vessel and atherosclerotic plaques. Mol Med 2012; 18:1122-7. [PMID: 22371306 DOI: 10.2119/molmed.2011.00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 02/21/2012] [Indexed: 11/06/2022] Open
Abstract
The major cause for plaque instability in atherosclerotic disease is neoangiogenic revascularization, but the factors controlling this process remain only partly understood. Hedgehog (HH) is a morphogen with important functions in revascularization, but its function in human healthy vessel biology as well as in atherosclerotic plaques has not been well investigated. Hence, we determined the status of HH pathway activity both in healthy vessels and atherosclerotic plaques. A series of 10 healthy organ donor-derived human vessels, 17 coronary atherosclerotic plaques and 24 atherosclerotic carotid plaques were investigated for HH pathway activity. We show that a healthy vessel is characterized by a high level of HH pathway activity but that atherosclerotic plaques are devoid of HH signaling despite the presence of HH ligand in these pathological structures. Thus, a dichotomy between healthy vessels and atherosclerotic plaques with respect to the activation status of the HH pathway exists, and it is tempting to suggest that downregulation of HH signaling contributes to long-term plaque stability.
Collapse
Affiliation(s)
- Karla C S Queiroz
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Purushothaman KR, Purushothaman M, Levy AP, Lento PA, Evrard S, Kovacic JC, Briley-Saebo KC, Tsimikas S, Witztum JL, Krishnan P, Kini A, Fayad ZA, Fuster V, Sharma SK, Moreno PR. Increased Expression of Oxidation-Specific Epitopes and Apoptosis Are Associated With Haptoglobin Genotype. J Am Coll Cardiol 2012; 60:112-9. [DOI: 10.1016/j.jacc.2012.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 11/24/2022]
|
34
|
Connexins in atherosclerosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:157-66. [PMID: 22609170 DOI: 10.1016/j.bbamem.2012.05.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/26/2012] [Accepted: 05/04/2012] [Indexed: 11/20/2022]
Abstract
Atherosclerosis, a chronic inflammatory disease of the vessel wall, involves multiple cell types of different origins, and complex interactions and signaling pathways between them. Autocrine and paracrine communication pathways provided by cytokines, chemokines, growth factors and lipid mediators are central to atherogenesis. However, it is becoming increasingly recognized that a more direct communication through both hemichannels and gap junction channels formed by connexins also plays an important role in atherosclerosis development. Three main connexins are expressed in cells involved in atherosclerosis: Cx37, Cx40 and Cx43. Cx37 is found in endothelial cells, monocytes/macrophages and platelets, Cx40 is predominantly an endothelial connexin, and Cx43 is found in a large variety of cells such as smooth muscle cells, resident and circulating leukocytes (neutrophils, dendritic cells, lymphocytes, activated macrophages, mast cells) and some endothelial cells. Here, we will systematically review the expression and function of connexins in cells and processes underlying atherosclerosis. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
|
35
|
Fernandez AB, Wong TY, Klein R, Collins D, Burke G, Cotch MF, Klein B, Sadeghi MM, Chen J. Age-related macular degeneration and incident cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis. Ophthalmology 2012; 119:765-70. [PMID: 22197438 PMCID: PMC3314126 DOI: 10.1016/j.ophtha.2011.09.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/09/2011] [Accepted: 09/23/2011] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To determine whether age-related macular degeneration (AMD) is a risk indicator for coronary heart disease (CHD) and cardiovascular disease (CVD) events independent of other known risk factors in a multi-ethnic cohort. DESIGN Population-based prospective cohort study. PARTICIPANTS A diverse population sample of 6233 men and women aged 45 to 84 years without known CVD from the Multi-Ethnic Study of Atherosclerosis (MESA). METHODS Participants in the MESA had retinal photographs taken between 2002 and 2003. Photographs were evaluated for AMD. Incident CHD and CVD events were ascertained during clinical follow-up visits for up to 8 years after the retinal images were taken. MAIN OUTCOME MEASURES Incident CHD and CVD events. RESULTS Of the 6814 persons at risk of CHD, there were 893 participants with early AMD (13.1%) and 27 patients (0.5%) at baseline. Over a mean follow-up period of 5.4 years, there was no statistically significant difference in incident CHD or CVD between the AMD and non-AMD groups (5.0% vs. 3.9%, P = 0.13 for CHD and 6.6% vs. 5.5%, P = 0.19 for CVD). In Cox regression models adjusting for CVD risk factors, there was no significant relationship between presence of any AMD and any CHD/CVD events (hazard ratio 0.99; 95% confidence interval, 0.74-1.33; P = 0.97). No significant association was found between subgroups of early AMD or late AMD and incident CHD/CVD events. CONCLUSIONS In persons without a history of CVD, AMD was not associated with an increased risk of CHD or CVD.
Collapse
Affiliation(s)
- Antonio B Fernandez
- Department of Cardiology, Rhode Island Hospital, Brown University School of Medicine, 593 Eddy Street, Providence, RI 02903, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Plummer EM, Thomas D, Destito G, Shriver LP, Manchester M. Interaction of cowpea mosaic virus nanoparticles with surface vimentin and inflammatory cells in atherosclerotic lesions. Nanomedicine (Lond) 2012; 7:877-88. [PMID: 22394183 DOI: 10.2217/nnm.11.185] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIMS Detection of atherosclerosis has generally been limited to the late stages of development, after cardiovascular symptoms present or a clinical event occurs. One possibility for early detection is the use of functionalized nanoparticles. The aim of this study was the early imaging of atherosclerosis using nanoparticles with a natural affinity for inflammatory cells in the lesion. MATERIALS & METHODS We investigated uptake of cowpea mosaic virus by macrophages and foam cells in vitro and correlated this with vimentin expression. We also examined the ability of cowpea mosaic virus to interact with atherosclerotic lesions in a murine model of atherosclerosis. RESULTS & CONCLUSION We found that uptake of cowpea mosaic virus is increased in areas of atherosclerotic lesion. This correlated with increased surface vimentin in the lesion compared with nonlesion vasculature. In conclusion, cowpea mosaic virus and its vimentin-binding region holds potential for use as a targeting ligand for early atherosclerotic lesions, and as a probe for detecting upregulation of surface vimentin during inflammation.
Collapse
Affiliation(s)
- Emily M Plummer
- University of California, San Diego, Skaggs School of Pharmacy, La Jolla, CA 92093-0749, USA
| | | | | | | | | |
Collapse
|
37
|
Lobatto ME, Fuster V, Fayad ZA, Mulder WJM. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat Rev Drug Discov 2011; 10:835-52. [PMID: 22015921 PMCID: PMC3623275 DOI: 10.1038/nrd3578] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of nanotechnology for medical purposes--nanomedicine--has grown exponentially over the past few decades. This is exemplified by the US Food and Drug Administration's approval of several nanotherapies for various conditions, as well as the funding of nanomedical programmes worldwide. Although originally the domain of anticancer therapy, recent advances have illustrated the considerable potential of nanomedicine in the diagnosis and treatment of atherosclerosis. This Review elaborates on nanoparticle-targeting concepts in atherosclerotic disease, provides an overview of the use of nanomedicine in atherosclerosis, and discusses potential future applications and clinical benefits.
Collapse
Affiliation(s)
- Mark E Lobatto
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, BOX 1234, New York 10029, USA
| | | | | | | |
Collapse
|
38
|
Cui MZ. Lysophosphatidic acid effects on atherosclerosis and thrombosis. ACTA ACUST UNITED AC 2011; 6:413-426. [PMID: 22162980 DOI: 10.2217/clp.11.38] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lysophosphatidic acid (LPA) has been found to accumulate in high concentrations in atherosclerotic lesions. LPA is a bioactive phospholipid produced by activated platelets and formed during the oxidation of LDL. Accumulating evidence suggests that this lipid mediator may serve as an important risk factor for development of atherosclerosis and thrombosis. The role of LPA in atherogenesis is supported by the evidence that LPA: stimulates endothelial cells to produce adhesion molecules and chemoattractants; induces smooth muscle cells to produce inflammatory cytokines; stimulates smooth muscle cell dedifferentiation, proliferation, and migration; increases monocyte migration and decreases monocyte-derived cell emigration from the vessel wall; induces hypertension and vascular neointimal formation in vivo; and promotes plaque progression in a mouse atherosclerosis model. The role of LPA in thrombogenesis is supported by the evidence that LPA markedly induces the aggregation of platelets and the expression of tissue factor, which is the principal initiator of blood coagulation. Recent experimental data indicate that LPA is produced by specific enzymes and that LPA binds to and activates multiple G-protein-coupled receptors, leading to intracellular signaling. Therapeutics targeting LPA biosynthesis, metabolism and signaling pathways could be viable for prevention and treatment of atherosclerosis and thrombosis.
Collapse
Affiliation(s)
- Mei-Zhen Cui
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| |
Collapse
|
39
|
alpha(5)beta(1) Integrin Ligand PHSRN Induces Invasion and alpha(5) mRNA in Endothelial Cells to Stimulate Angiogenesis. Transl Oncol 2011; 2:8-20. [PMID: 19252747 DOI: 10.1593/tlo.08187] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis requires endothelial cell invasion and is crucial for wound healing and for tumor growth and metastasis. Invasion of native collagen is mediated by the alpha(5)beta(1) integrin fibronectin receptor. Thus, alpha(5)beta(1) up-regulation on the surfaces of endothelial cells may induce endothelial cell invasion to stimulate angiogenesis. We report that the interaction of alpha(5)beta(1) with its PHSRN peptide ligand induces human microvascular endothelial cell invasion and that PHSRN-induced endothelial cell invasion is regulated by alpha(4)beta(1) integrin and requires matrix metalloproteinase 1 (MMP-1). Moreover, our results show that exposure to PHSRN causes rapid, specific up-regulation of surface levels of alpha(5)beta(1) integrin and significantly increases alpha(5) integrin mRNA in microvascular endothelial cells. Consistent with these results, alpha(5) small interfering RNA abrogates PHSRN-induced surface alpha(5) and MMP-1 up-regulation, as well as blocking invasion induction. We also observed dose-dependent, PHSRN-induced alpha(5)beta(1) integrin up-regulation on endothelial cells in vivo in Matrigel plugs. We further report that the PHSCN peptide, an alpha(5)beta(1)-targeted invasion inhibitor, blocks PHSRN-induced invasion, alpha(5)beta(1) up-regulation, alpha(5) mRNA induction, and MMP-1 secretion in microvascular endothelial cells and that systemic PHSCN administration prevents PHSRN-induced alpha(5)beta(1) up-regulation and angiogenesis in Matrigel plugs. These results demonstrate a critical role for alpha(5)beta(1) integrin and MMP-1 in mediating the endothelial cell invasion and angiogenesis and suggest that PHSRN-induced alpha(5) transcription and alpha(5)beta(1) up-regulation may form an important feed-forward mechanism for stimulating angiogenesis.
Collapse
|
40
|
Tellez A, Schuster DS, Alviar C, López-Berenstein G, Sanguino A, Ballantyne C, Perrard XYD, Schulz DG, Rousselle S, Kaluza GL, Granada JF. Intramural coronary lipid injection induces atheromatous lesions expressing proinflammatory chemokines: implications for the development of a porcine model of atherosclerosis. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2011; 12:304-11. [PMID: 21616727 DOI: 10.1016/j.carrev.2011.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/21/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Intramural delivery of lipids into the coronaries of pigs fed high-cholesterol diet results in the formation of localized atherosclerotic-like lesions within 12 weeks. These lesions are located in positively remodeled vessels and are associated to the development of abundant adventitial vasa vasorum and mononuclear cell infiltrate. In this study, we aimed to analyze the degree of expression of various inflammatory chemokines within the developed lesions compared with control segments injected with saline. METHODS Balloon injury was performed in 15 coronary arteries of pigs fed high-cholesterol diet for 12 weeks. Two weeks after procedure, 60 coronary segments were randomized to either intramural injections of complex lipids (n=30) or normal saline (n=30). Neovessel density in the lesions was analyzed by lectin stain. Segments were processed for RNA expression of inflammatory chemokines such as monocyte chemoattractant protein-1 and vascular endothelial growth factor. RESULTS At 12 weeks, the percentage area of stenosis seen in histological sections was modest in both groups (lipids: 17.3±15 vs. saline: 32.4±22.8, P=.017). The lipid group showed higher vasa vasorum (VV) quantity (saline: 18.2±14.9 VV/section vs. lipids: 30.6±21.6 VV/section, P<.05) and vasa vasorum density (saline: 7.3±4.6 VV/mm(2) vs. lipids: 16.5±9 VV/mm(2), P<.001). In addition, monocyte chemoattractant protein-1 expression was higher in the lipid group (1.5±1.12) compared with saline control group (0.83±0.34, P<.01). Vascular endothelial growth factor expression was also higher in the lipid group (1.36±0.9) compared with saline group (0.87±0.33, P<.05). CONCLUSION The intramural injection of complex lipids into the coronary arteries of pigs maintained in a high-cholesterol diet results in focal lesions located in positively remodeled vessels that have a high neovessel count and express proinflammatory chemokines.
Collapse
Affiliation(s)
- Armando Tellez
- Skirball Center for Cardiovascular Research, Cardiovascular Research Foundation, Orangeburg, NY 10965, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lewis DR, Kamisoglu K, York AW, Moghe PV. Polymer-based therapeutics: nanoassemblies and nanoparticles for management of atherosclerosis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:400-20. [PMID: 21523920 DOI: 10.1002/wnan.145] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coronary arterial disease, one of the leading causes of adult mortality, is triggered by atherosclerosis. A disease with complex etiology, atherosclerosis results from the progressive long-term combination of atherogenesis, the accumulation of modified lipoproteins within blood vessel walls, along with vascular and systemic inflammatory processes. The management of atherosclerosis is challenged by the localized flare-up of several multipronged signaling interactions between activated monocytes, atherogenic macrophages and inflamed or dysfunctional endothelial cells. A new generation of approaches is now emerging founded on multifocal, targeted therapies that seek to reverse or ameliorate the atheroinflammatory cascade within the vascular intima. This article reviews the various classes and primary examples of bioactive configurations of nanoscale assemblies. Of specific interest are polymer-based or polymer-lipid micellar assemblies designed as multimodal receptor-targeted blockers or drug carriers whose activity can be tuned by variations in polymer hydrophobicity, charge, and architecture. Also reviewed are emerging reports on multifunctional nanoassemblies and nanoparticles for improved circulation and enhanced targeting to atheroinflammatory lesions and atherosclerotic plaques.
Collapse
Affiliation(s)
- Daniel R Lewis
- Department of Chemical & Biochemical Engineering, Rutgers University, Piscataway, NJ, USA
| | | | | | | |
Collapse
|
42
|
Cai K, Caruthers SD, Huang W, Williams TA, Zhang H, Wickline SA, Lanza GM, Winter PM. MR molecular imaging of aortic angiogenesis. JACC Cardiovasc Imaging 2010; 3:824-32. [PMID: 20705262 DOI: 10.1016/j.jcmg.2010.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/12/2010] [Accepted: 03/04/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The objectives of this study were to use magnetic resonance (MR) molecular imaging to 1) characterize the aortic neovascular development in a rat model of atherosclerosis and 2) monitor the effects of an appetite suppressant on vascular angiogenesis progression. BACKGROUND The James C. Russell:LA corpulent rat strain (JCR:LA-cp) is a model of metabolic syndrome characterized by obesity, insulin resistance, hyperlipidemia, and vasculopathy, although plaque neovascularity has not been reported in this strain. MR molecular imaging with alpha(nu)beta(3)-targeted nanoparticles can serially map angiogenesis in the aortic wall and monitor the progression of atherosclerosis. METHODS Six-week old JCR:LA-cp (+/?; lean, n = 5) and JCR:LA-cp (cp/cp; obese, n = 5) rats received standard chow, and 6 obese rats were fed the appetite suppressant benfluorex over 16 weeks. Body weight and food consumption were recorded at baseline and weeks 4, 8, 12, and 16. MR molecular imaging with alpha(nu)beta(3)-targeted paramagnetic nanoparticles was performed at weeks 0, 8, and 16. Fasted plasma triglyceride, cholesterol, and glucose were measured immediately before MR scans. Plasma insulin and leptin levels were assayed at weeks 8 and 16. RESULTS Benfluorex reduced food consumption (p < 0.05) to the same rate as lean animals, but had no effect on serum cholesterol or triglyceride levels. MR (3-T) aortic signal enhancement with alpha(nu)beta(3)-targeted nanoparticles was initially equivalent between groups, but increased (p < 0.05) in the untreated obese animals over 16 weeks. No signal change (p > 0.05) was observed in the benfluorex-treated or lean rat groups. MR differences paralleled adventitial microvessel counts, which increased (p < 0.05) among the obese rats and were equivalently low in the lean and benfluorex-treated animals (p > 0.05). Body weight, insulin, and leptin were decreased (p < 0.05) from the untreated obese animals by benfluorex, but not to the lean control levels (p < 0.05). CONCLUSIONS Neovascular expansion is a prominent feature of the JCR:LA-cp model. MR imaging with alpha(nu)beta(3)-targeted nanoparticles provided a noninvasive assessment of angiogenesis in untreated obese rats, which was suppressed by benfluorex.
Collapse
Affiliation(s)
- Kejia Cai
- Washington University, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Staub D, Schinkel AF, Coll B, Coli S, van der Steen AF, Reed JD, Krueger C, Thomenius KE, Adam D, Sijbrands EJ, ten Cate FJ, Feinstein SB. Contrast-Enhanced Ultrasound Imaging of the Vasa Vasorum. JACC Cardiovasc Imaging 2010; 3:761-71. [PMID: 20633855 DOI: 10.1016/j.jcmg.2010.02.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/20/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|
44
|
Sakamoto M, Taoka T, Nakagawa H, Takayama K, Wada T, Myouchin K, Akashi T, Miyasaka T, Fukusumi A, Iwasaki S, Kichikawa K. Magnetic resonance plaque imaging to predict the occurrence of the slow-flow phenomenon in carotid artery stenting procedures. Neuroradiology 2010; 52:275-83. [PMID: 19936732 DOI: 10.1007/s00234-009-0623-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/28/2009] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The purpose is to investigate the feasibility of magnetic resonance (MR) plaque imaging in predicting the arterial flow impairment (slow-flow phenomenon) during carotid artery stenting (CAS) using a filter-type protection device. METHODS Thirty-one carotid artery stenotic lesions in 30 patients (28 men and two women; mean age, 71.8 years) were evaluated by MR plaque imaging with black blood T1- and T2-weighted and time-of-flight sequences before CAS. Main plaque components were classified as vulnerable (intraplaque hemorrhage and lipid-rich/necrotic core) or stable (fibrous tissue and dense calcification) from the signal pattern. The plaque classification was statistically compared with the occurrence of slow-flow phenomenon. RESULTS The slow-flow phenomenon was observed in ten CAS procedures (five flow arrests and five flow reductions). Flow arrests consisted of four vulnerable and one stable plaque, and flow reductions consisted of four vulnerable and one stable plaque. The slow-flow phenomenon occurred significantly (P<0.01) more frequently in patients with vulnerable plaque. CONCLUSIONS Vulnerable carotid plaques have a significantly higher risk of slow-flow phenomenon than stable plaques. The occurrence of the slow-flow phenomenon can be predicted by MR plaque imaging before CAS.
Collapse
Affiliation(s)
- Masahiko Sakamoto
- Department of Radiology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Albiero M, Menegazzo L, Fadini GP. Circulating Smooth Muscle Progenitors and Atherosclerosis. Trends Cardiovasc Med 2010; 20:133-40. [DOI: 10.1016/j.tcm.2010.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 11/19/2010] [Indexed: 11/28/2022]
|
46
|
Xu S, Liu AC, Gotlieb AI. Common pathogenic features of atherosclerosis and calcific aortic stenosis: role of transforming growth factor-beta. Cardiovasc Pathol 2009; 19:236-47. [PMID: 19942455 DOI: 10.1016/j.carpath.2009.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 12/20/2022] Open
Abstract
Calcific aortic stenosis and atherosclerosis have been investigated separately in experimental in vitro and in vivo studies and in clinical studies. The similarities identified in both diseases suggest that similar pathogenic pathways are involved in both conditions. Most current therapeutic studies are focused on statins. The evidence suggests that statin effects on valves may, in large part, be independent of the lipid lowering effects of the drug. There are several molecules that play significant regulatory roles on the development and progression of valve sclerosis and calcification and on growth and complications of atherosclerotic plaques. The purpose of this review is to discuss the pathogenic features of the two conditions, highlight the important similarities, and then review the data that suggest that transforming growth factor-beta may play a key regulatory role in both diseases and that this is worthy of study as a potential therapeutic target for both conditions.
Collapse
Affiliation(s)
- Songyi Xu
- Toronto General Research Institute and Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | | | | |
Collapse
|
47
|
Slevin M, Badimon L, Grau-Olivares M, Ramis M, Sendra J, Morrison M, Krupinski J. Combining nanotechnology with current biomedical knowledge for the vascular imaging and treatment of atherosclerosis. MOLECULAR BIOSYSTEMS 2009; 6:444-50. [PMID: 20174673 DOI: 10.1039/b916175a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of vasa vasorum (the microvessels supplying the major arteries) at specific sites in the adventitia initiates their proliferation or 'angiogenesis' concomitant with development of atherosclerotic plaques. Haemorrhagic, leaky blood vessels from unstable plaques proliferate abnormally, are of relatively large calibre but are immature neovessels poorly invested with smooth muscle cells and possess structural weaknesses which may contribute to instability of the plaque by facilitation of inflammatory cell infiltration and haemorrhagic complications. Weak neovascular beds in plaque intima as well as activated adventitial blood vessels are potential targets for molecular imaging and targeted drug therapy, however, the majority of tested, currently available imaging and therapeutic agents have been unsuccessful because of their limited capacity to reach and remain stably within the target tissue or cells in vivo. Nanoparticle technology together with magnetic resonance imaging has allowed the possibility of imaging of neovessels in coronary or carotid plaques, and infusion of nanoparticle suspensions using infusion catheters or implant-based drug delivery represents a novel and potentially much more efficient option for treatment. This review will describe the importance of angiogenesis in mediation of plaque growth and development of plaque instability and go on to investigate the possibility of future design of superparamagnetic/perfluorocarbon-derived nanoparticles for imaging of the vasculature in this disease or which could be directed to the adventitial vasa vasorum or indeed intimal microvessels and which can release active payloads directed against primary key external mitogens and intracellular signalling molecules in endothelial cells responsible for their activation with a view to inhibition of angiogenesis.
Collapse
Affiliation(s)
- M Slevin
- School of Biology, Chemistry and Health Science, Manchester Metropolitan University, Manchester, UK.
| | | | | | | | | | | | | |
Collapse
|
48
|
Koskinas KC, Chatzizisis YS, Baker AB, Edelman ER, Stone PH, Feldman CL. The role of low endothelial shear stress in the conversion of atherosclerotic lesions from stable to unstable plaque. Curr Opin Cardiol 2009; 24:580-90. [PMID: 19809311 PMCID: PMC10926252 DOI: 10.1097/hco.0b013e328331630b] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Local hemodynamic factors are major determinants of the natural history of individual atherosclerotic plaque progression in coronary arteries. The purpose of this review is to summarize the role of low endothelial shear stress (ESS) in the transition of early, stable plaques to high-risk atherosclerotic lesions. RECENT FINDINGS Low ESS regulates multiple pathways within the atherosclerotic lesion, resulting in intense vascular inflammation, progressive lipid accumulation, and formation and expansion of a necrotic core. Upregulation of matrix-degrading proteases promotes thinning of the fibrous cap, severe internal elastic lamina fragmentation, and extracellular matrix remodeling. In the setting of plaque-induced changes of the local ESS, coronary regions persistently exposed to very low ESS develop excessive expansive remodeling, which further exacerbates the proinflammatory low ESS stimulus. Recent studies suggest that the effect of recognized cardioprotective medications may be mediated by attenuation of the proinflammatory effect of the low ESS environment in which a plaque develops. SUMMARY Low ESS determines the severity of vascular inflammation, the status of the extracellular matrix, and the nature of wall remodeling, all of which synergistically promote the transition of stable lesions to thin cap fibroatheromata that may rupture with subsequent formation of an occlusive thrombus and result in an acute coronary syndrome.
Collapse
Affiliation(s)
| | - Yiannis S. Chatzizisis
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA
| | - Aaron B. Baker
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA
| | - Elazer R. Edelman
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA
| | - Peter H. Stone
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Charles L. Feldman
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
49
|
Willemsen H, van der Horst I, Nieuwland W, Slart R, Zeebregts C, de Boef E, Schuitemaker J, Zijlstra F, Tio R. The diagnostic value of soluble CD163 in patients presenting with chest pain. Clin Biochem 2009; 42:1662-6. [DOI: 10.1016/j.clinbiochem.2009.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/04/2009] [Accepted: 06/29/2009] [Indexed: 11/24/2022]
|
50
|
Will the real plaque vasculature please stand up? Why we need to distinguish the vasa plaquorum from the vasa vasorum. Trends Cardiovasc Med 2009; 19:87-94. [PMID: 19679265 DOI: 10.1016/j.tcm.2009.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many studies of experimental atherosclerosis and pathologic observations of human specimens have provided evidence supporting a correlation between vascularization of the atherosclerotic plaque and its natural growth and progression toward acute failure, associated with clinical events. The growing interest in the topic is illustrated by several excellent recent reviews discussing the molecular mechanisms that might play a role in the formation of plaque vasculature and that could explain some of the observed associations with pathologic features of experimental and human atherosclerotic lesions. At the same time, these reviews also emphasize that the field is still largely in uncharted territory. Hoping to spark some new investigations, we are taking this opportunity to question some of the common assumptions and to highlight less explored mechanisms. Finally, we are proposing to adopt the term vasa plaquorum to refer to the neovasculature located within the atherosclerotic plaque to distinguish it clearly from vasa vasorum, the native, supporting vasculature of the artery. We suggest that this new nomenclature offers a potential solution to eliminate ambiguity regarding implicit, but frequently neglected, differences between these structures. We think these points are relevant for future efforts to tailor diagnostic tools and therapeutic interventions targeting plaque neovascularization for the clinical management of atherosclerosis.
Collapse
|