1
|
Xu CZ, Gao QY, Gao GH, Chen ZT, Wu MX, Liao GH, Cai YW, Chen N, Wang JF, Zhang HF. FTMT-dependent mitophagy is crucial for ferroptosis resistance in cardiac fibroblast. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119825. [PMID: 39168410 DOI: 10.1016/j.bbamcr.2024.119825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/05/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Metabolic responses to cellular stress are pivotal in cell ferroptosis, with mitophagy serving as a crucial mechanism in both metabolic processes and ferroptosis. This study aims to elucidate the effects of high glucose on cardiomyocytes (CMs) and cardiac fibroblasts (CFs) regarding ferroptosis and to uncover the underlying mechanisms involved. We examined alterations in glycolysis, mitochondrial oxidative phosphorylation (OXPHOS), and mitophagy, which are essential for metabolic adaptations and ferroptosis. High glucose exposure induced ferroptosis specifically in CMs, while CFs exhibited resistance to ferroptosis, increased glycolytic activity, and no change in OXPHOS. Moreover, high glucose treatment enhanced mitophagy and upregulated mitochondrial ferritin (FTMT). Notably, the combination of FTMT and the autophagy-related protein nuclear receptor coactivator 4 (NCOA4) increased under high glucose conditions. Silencing FTMT significantly impeded mitophagy and eliminated ferroptosis resistance in CFs cultured under high glucose conditions. The transcription factor forkhead box A1 (FOXA1) was upregulated in CFs upon high glucose exposure, playing a crucial role in the increased expression of FTMT. Within the 5'-flanking sequence of the FTMT mRNA, approximately -500 nt from the transcription initiation site, three putative FOXA1 binding sites were identified. High glucose augmented the binding affinity between FOXA1 and these sequences, thereby promoting FTMT transcription. In summary, high glucose upregulated FOXA1 expression and stimulated FTMT promoter activity in CFs, thereby promoting FTMT-dependent mitophagy and conferring ferroptosis resistance in CFs.
Collapse
Affiliation(s)
- Cheng-Zhang Xu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qing-Yuan Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Guang-Hao Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhi-Teng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Mao-Xiong Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Guang-Hong Liao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yang-Wei Cai
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Nuo Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jing-Feng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Hai-Feng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
2
|
Liu J, Tan G, Wang S, Tong B, Wu Y, Zhang L, Jiang B. Artesunate induces HO-1-mediated cell cycle arrest and senescence to protect against ocular fibrosis. Int Immunopharmacol 2024; 141:112882. [PMID: 39151383 DOI: 10.1016/j.intimp.2024.112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Recent research found artesunate could inhibit ocular fibrosis; however, the underlying mechanisms are not fully known. Since the ocular fibroblast is the main effector cell in fibrosis, we hypothesized that artesunate may exert its protective effects by inhibiting the fibroblasts proliferation. TGF-β1-induced ocular fibroblasts and glaucoma filtration surgery (GFS)-treated rabbits were used as ocular fibrotic models. Firstly, we analyzed fibrosis levels by assessing the expression of fibrotic marker proteins, and used Ki67 immunofluorescence, EdU staining, flow cytometry to determine cell cycle status, and SA-β-gal staining to assess cellular senescence levels. Then to predict target genes and pathways of artesunate, we analyzed the differentially expressed genes and enriched pathways through RNA-seq. Western blot and immunohistochemistry were used to detect the pathway-related proteins. Additionally, we validated the dependence of artesunate's effects on HO-1 expression through HO-1 siRNA. Moreover, DCFDA and MitoSOX fluorescence staining were used to examine ROS level. We found artesunate significantly inhibits the expression of fibrosis-related proteins, induces cell cycle arrest and cellular senescence. Knocking down HO-1 in fibroblasts with siRNA reverses these regulatory effects of artesunate. Mechanistic studies show that artesunate significantly inhibits the activation of the Cyclin D1/CDK4-pRB pathway, induces an increase in cellular and mitochondrial ROS levels and activates the Nrf2/HO-1 pathway. In conclusion, the present study identifies that artesunate induces HO-1 expression through ROS to activate the antioxidant Nrf2/HO-1 pathway, subsequently inhibits the cell cycle regulation pathway Cyclin D1/CDK4-pRB in an HO-1-dependent way, induces cell cycle arrest and senescence, and thereby resists periorbital fibrosis.
Collapse
Affiliation(s)
- Jingyuan Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Guangshuang Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shutong Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Boding Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Ying Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Lusi Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| |
Collapse
|
3
|
Zheng H, Li T, Hu Z, Zheng Q, Wang J. The potential of flavonoids to mitigate cellular senescence in cardiovascular disease. Biogerontology 2024; 25:985-1010. [PMID: 39325277 DOI: 10.1007/s10522-024-10141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Aging is one of the most significant factors affecting cardiovascular health, with cellular senescence being a central hallmark. Senescent cells (SCs) secrete a specific set of signaling molecules known as the senescence-associated secretory phenotype (SASP). The SASP has a remarkable impact on age-associated diseases, particularly cardiovascular diseases (CVD). Targeting SCs through anti-aging therapies represents a novel strategy to effectively retard senescence and attenuate disease progression. Accumulating evidence demonstrates that the flavonoids, widely presented in fruits and vegetables worldwide, can delay or treat CVD via selectively eliminating SCs (senolytics) and modulating SASPs (senomorphics). Nevertheless, only sporadic research has illustrated the application of flavonoids in targeting SCs for CVD, which requires further exploration. This review recapitulates the hallmarks and key molecular mechanisms involved in cellular senescence, then summarizes senescence of different types of cardiac cells and describes the mechanisms by which cellular senescence affects CVD development. The discussion culminates with the potential use of flavonoids via exerting their biological effects on cellular senescence to reduce CVD incidence. This summary will provide valuable insights for cardiovascular drug design, development and clinical applications leveraging flavonoids.
Collapse
Affiliation(s)
- Huimin Zheng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
| | - Tiantian Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
| | - Ziyun Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
| | - Qi Zheng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
| | - Junsong Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Meng L, Chen HM, Zhang JS, Wu YR, Xu YZ. Matricellular proteins: From cardiac homeostasis to immune regulation. Biomed Pharmacother 2024; 180:117463. [PMID: 39305814 DOI: 10.1016/j.biopha.2024.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Tissue repair after myocardial injury is a complex process involving changes in all aspects of the myocardial tissue, including the extracellular matrix (ECM). The ECM is composed of large structural proteins such as collagen and elastin and smaller proteins with major regulatory properties called matricellular proteins. Matricellular cell proteins exert their functions and elicit cellular responses by binding to structural proteins not limited to interactions with cell surface receptors, cytokines, or proteases. At the same time, matricellular proteins act as the "bridge" of information exchange between cells and ECM, maintaining the integrity of the cardiac structure and regulating the immune environment, which is a key factor in determining cardiac homeostasis. In this review, we present an overview of the identified matricellular proteins and summarize the current knowledge regarding their roles in maintaining cardiac homeostasis and regulating the immune system.
Collapse
Affiliation(s)
- Li Meng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Hui-Min Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Jia-Sheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Yi-Rong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| | - Yi-Zhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| |
Collapse
|
5
|
Fischer AG, Elliott EM, Brittian KR, Garrett L, Sadri G, Aebersold J, Singhal RA, Nong Y, Leask A, Jones SP, Moore Iv JB. Matricellular protein CCN1 promotes collagen alignment and scar integrity after myocardial infarction. Matrix Biol 2024; 133:14-32. [PMID: 39098433 PMCID: PMC11476287 DOI: 10.1016/j.matbio.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Members of the cellular communication network family (CCN) of matricellular proteins, like CCN1, have long been implicated in the regulation of cellular processes underlying wound healing, tissue fibrogenesis, and collagen dynamics. While many studies suggest antifibrotic actions for CCN1 in the adult heart through the promotion of myofibroblast senescence, they largely relied on exogenous supplementation strategies in in vivo models of cardiac injury where its expression is already induced-which may confound interpretation of its function in this process. The objective of this study was to interrogate the role of the endogenous protein on fibroblast function, collagen structural dynamics, and its associated impact on cardiac fibrosis after myocardial infarction (MI). METHODS/RESULTS Here, we employed CCN1 loss-of-function methodologies, including both in vitro siRNA-mediated depletion and in vivo fibroblast-specific knockout mice to assess the role of the endogenous protein on cardiac fibroblast fibrotic signaling, and its involvement in acute scar formation after MI. In vitro depletion of CCN1 reduced cardiac fibroblast senescence and proliferation. Although depletion of CCN1 decreased the expression of collagen processing and stabilization enzymes (i.e., P4HA1, PLOD1, and PLOD2), it did not inhibit myofibroblast induction or type I collagen synthesis. Alone, fibroblast-specific removal of CCN1 did not negatively impact ventricular performance or myocardial collagen content but did contribute to disorganization of collagen fibrils and increased matrix compliance. Similarly, Ccn1 ablated animals subjected to MI showed no discernible alterations in cardiac structure or function one week after permanent coronary artery ligation, but exhibited marked increases in incidence of mortality and cardiac rupture. Consistent with our findings that CCN1 depletion does not assuage myofibroblast conversion or type I collagen synthesis in vitro, Ccn1 knockout animals revealed no measurable differences in collagen scar width or mass compared to controls; however, detailed structural analyses via SHG and TEM of scar regions revealed marked alterations in their scar collagen topography-exhibiting changes in numerous macro- and micro-level collagen architectural attributes. Specifically, Ccn1 knockout mice displayed heightened ECM structural complexity in post-MI scar regions, including diminished local alignment and heightened tortuosity of collagen fibers, as well as reduced organizational coherency, packing, and size of collagen fibrils. Associated with these changes in ECM topography with the loss of CCN1 were reductions in fibroblast-matrix interactions, as evidenced by reduced fibroblast nuclear and cellular deformation in vivo and reduced focal-adhesion formation in vitro; findings that ultimately suggest CCN1's ability to influence fibroblast-led collagen alignment may in part be credited to its capacity to augment fibroblast-matrix interactions. CONCLUSIONS These findings underscore the pivotal role of endogenous CCN1 in the scar formation process occurring after MI, directing the appropriate arrangement of the extracellular matrix's collagenous components in the maturing scar-shaping the mechanical properties that support its structural stability. While this suggests an adaptive role for CCN1 in regulating collagen structural attributes crucial for supporting scar integrity post MI, the long-term protracted expression of CCN1 holds maladaptive implications, potentially diminishing collagen structural complexity and compliance in non-infarct regions.
Collapse
Affiliation(s)
- Annalara G Fischer
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Erin M Elliott
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Kenneth R Brittian
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Lauren Garrett
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Ghazal Sadri
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Julia Aebersold
- Micro/Nano Technology Center, University of Louisville, Louisville, KY, USA
| | - Richa A Singhal
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Yibing Nong
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven P Jones
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Joseph B Moore Iv
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA.
| |
Collapse
|
6
|
Grootaert MOJ. Cell senescence in cardiometabolic diseases. NPJ AGING 2024; 10:46. [PMID: 39433786 PMCID: PMC11493982 DOI: 10.1038/s41514-024-00170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
Cellular senescence has been implicated in many age-related pathologies including atherosclerosis, heart failure, age-related cardiac remodeling, diabetic cardiomyopathy and the metabolic syndrome. Here, we will review the characteristics of senescent cells and their endogenous regulators, and summarize the metabolic stressors that induce cell senescence. We will discuss the evidence of cell senescence in the onset and progression of several cardiometabolic diseases and the therapeutic potential of anti-senescence therapies.
Collapse
Affiliation(s)
- Mandy O J Grootaert
- Endocrinology, Diabetes and Nutrition, UCLouvain, Brussels, Belgium.
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Singh SK, Parihar S, Jain S, Ho JAA, Vankayala R. Light-responsive functional nanomaterials as pioneering therapeutics: a paradigm shift to combat age-related disorders. J Mater Chem B 2024; 12:8212-8234. [PMID: 39058026 DOI: 10.1039/d4tb00578c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Aging, marked by dysregulated cellular systems, gives rise to a spectrum of age-related disorders, including neurodegeneration, atherosclerosis, immunosenescence, and musculoskeletal issues. These conditions contribute significantly to the global disease burden, posing challenges to health span and economic resources. Current therapeutic approaches, although diverse in mechanism, often fall short in targeting the underlying cellular pathologies. They fail to address the issues compounded by altered pharmacokinetics in the elderly. Nanotechnology emerges as a transformative solution, offering tissue-specific targeted therapies through nanoparticles. Functional nanomaterials (FNMs) respond to internal or external stimuli, with light-responsive nanomaterials gaining prominence. Harnessing the benefits of deep tissue penetration and ease of manipulation particularly in the near-infrared spectrum, light-responsive FNMs present innovative strategies for age-related comorbidities. This review comprehensively summarizes the potential of light-responsive FNM-based approaches for targeting cellular environments in age-related disorders, and also emphasizes the advantages over traditional treatment modalities. Specifically, it focuses on the development of various classes of light-responsive functional nanomaterials including plasmonic nanomaterials, nanomaterials as carriers, upconversion nanomaterials, 2D nanomaterials, transition metal oxide and dichalcogenide nanomaterials and carbon-based nanomaterials against age related diseases. We foresee that such advanced developments in the field of nanotechnology could provide a new hope for clinical diagnosis and treatment of age-related disorders.
Collapse
Affiliation(s)
- Shubham Kumar Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Shivay Parihar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Sanskar Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Ja-An Annie Ho
- Bioanalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
- Interdisciplinary Research Platform, Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, India
| |
Collapse
|
8
|
Chandrasegaran S, Sluka JP, Shanley D. Modelling the spatiotemporal dynamics of senescent cells in wound healing, chronic wounds, and fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602041. [PMID: 39026713 PMCID: PMC11257496 DOI: 10.1101/2024.07.04.602041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cellular senescence is known to drive age-related pathology through the senescence-associated secretory phenotype (SASP). However, it also plays important physiological roles such as cancer suppression, embryogenesis and wound healing. Wound healing is a tightly regulated process which when disrupted results in conditions such as fibrosis and chronic wounds. Senescent cells appear during the proliferation phase of the healing process where the SASP is involved in maintaining tissue homeostasis after damage. Interestingly, SASP composition and functionality was recently found to be temporally regulated, with distinct SASP profiles involved: a fibrogenic, followed by a fibrolytic SASP, which could have important implications for the role of senescent cells in wound healing. Given the number of factors at play a full understanding requires addressing the multiple levels of complexity, pertaining to the various cell behaviours, individually followed by investigating the interactions and influence each of these elements have on each other and the system as a whole. Here, a systems biology approach was adopted whereby a multi-scale model of wound healing that includes the dynamics of senescent cell behaviour and corresponding SASP composition within the wound microenvironment was developed. The model was built using the software CompuCell3D, which is based on a Cellular Potts modelling framework. We used an existing body of data on healthy wound healing to calibrate the model and validation was done on known disease conditions. The model provides understanding of the spatiotemporal dynamics of different senescent cell phenotypes and the roles they play within the wound healing process. The model also shows how an overall disruption of tissue-level coordination due to age-related changes results in different disease states including fibrosis and chronic wounds. Further specific data to increase model confidence could be used to explore senolytic treatments in wound disorders.
Collapse
Affiliation(s)
- Sharmilla Chandrasegaran
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James P Sluka
- Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University Bloomington, Bloomington, IN, USA
| | - Daryl Shanley
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Reynolds LE, Maallin S, Haston S, Martinez-Barbera JP, Hodivala-Dilke KM, Pedrosa AR. Effects of senescence on the tumour microenvironment and response to therapy. FEBS J 2024; 291:2306-2319. [PMID: 37873605 DOI: 10.1111/febs.16984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/04/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Cellular senescence is a state of durable cell arrest that has been identified both in vitro and in vivo. It is associated with profound changes in gene expression and a specific secretory profile that includes pro-inflammatory cytokines, growth factors and matrix-remodelling enzymes, referred to as the senescence-associated secretory phenotype (SASP). In cancer, senescence can have anti- or pro-tumour effects. On one hand, it can inhibit tumour progression in a cell autonomous manner. On the other hand, senescence can also promote tumour initiation, progression, metastatic dissemination and resistance to therapy in a paracrine manner. Therefore, despite efforts to target senescence as a potential strategy to inhibit tumour growth, senescent cancer and microenvironmental cells can eventually lead to uncontrolled proliferation and aggressive tumour phenotypes. This can happen either through overcoming senescence growth arrest or through SASP-mediated effects in adjacent tumour cells. This review will discuss how senescence affects the tumour microenvironment, including extracellular matrix remodelling, the immune system and the vascular compartment, to promote tumourigenesis, metastasis and resistance to DNA-damaging therapies. It will also discuss current approaches used in the field to target senescence: senolytics, improving the immune clearance of senescent cells and targeting the SASP.
Collapse
Affiliation(s)
- Louise E Reynolds
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| | - Seynab Maallin
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| | - Scott Haston
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Kairbaan M Hodivala-Dilke
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| | - Ana-Rita Pedrosa
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| |
Collapse
|
10
|
Torimoto K, Elliott K, Nakayama Y, Yanagisawa H, Eguchi S. Cardiac and perivascular myofibroblasts, matrifibrocytes, and immune fibrocytes in hypertension; commonalities and differences with other cardiovascular diseases. Cardiovasc Res 2024; 120:567-580. [PMID: 38395029 PMCID: PMC11485269 DOI: 10.1093/cvr/cvae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertension is a major cause of cardiovascular diseases such as myocardial infarction and stroke. Cardiovascular fibrosis occurs with hypertension and contributes to vascular resistance, aortic stiffness, and cardiac hypertrophy. However, the molecular mechanisms leading to fibroblast activation in hypertension remain largely unknown. There are two types of fibrosis: replacement fibrosis and reactive fibrosis. Replacement fibrosis occurs in response to the loss of viable tissue to form a scar. Reactive fibrosis occurs in response to an increase in mechanical and neurohormonal stress. Although both types of fibrosis are considered adaptive processes, they become maladaptive when the tissue loss is too large, or the stress persists. Myofibroblasts represent a subpopulation of activated fibroblasts that have gained contractile function to promote wound healing. Therefore, myofibroblasts are a critical cell type that promotes replacement fibrosis. Although myofibroblasts were recognized as the fibroblasts participating in reactive fibrosis, recent experimental evidence indicated there are distinct fibroblast populations in cardiovascular reactive fibrosis. Accordingly, we will discuss the updated definition of fibroblast subpopulations, the regulatory mechanisms, and their potential roles in cardiovascular pathophysiology utilizing new knowledge from various lineage tracing and single-cell RNA sequencing studies. Among the fibroblast subpopulations, we will highlight the novel roles of matrifibrocytes and immune fibrocytes in cardiovascular fibrosis including experimental models of hypertension, pressure overload, myocardial infarction, atherosclerosis, aortic aneurysm, and nephrosclerosis. Exploration into the molecular mechanisms involved in the differentiation and activation of those fibroblast subpopulations may lead to novel treatments for end-organ damage associated with hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Keiichi Torimoto
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Katherine Elliott
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Yuki Nakayama
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Eguchi
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Mehdizadeh M, Naud P, Abu-Taha IH, Hiram R, Xiong F, Xiao J, Saljic A, Kamler M, Vuong-Robillard N, Thorin E, Ferbeyre G, Tardif JC, Sirois MG, Tanguay JF, Dobrev D, Nattel S. The role of cellular senescence in profibrillatory atrial remodelling associated with cardiac pathology. Cardiovasc Res 2024; 120:506-518. [PMID: 38181429 PMCID: PMC11060482 DOI: 10.1093/cvr/cvae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
AIMS Cellular senescence is a stress-related or aging response believed to contribute to many cardiac conditions; however, its role in atrial fibrillation (AF) is unknown. Age is the single most important determinant of the risk of AF. The present study was designed to (i) evaluate AF susceptibility and senescence marker expression in rat models of aging and myocardial infarction (MI), (ii) study the effect of reducing senescent-cell burden with senolytic therapy on the atrial substrate in MI rats, and (iii) assess senescence markers in human atrial tissue as a function of age and the presence of AF. METHODS AND RESULTS AF susceptibility was studied with programmed electrical stimulation. Gene and protein expression was evaluated by immunoblot or immunofluorescence (protein) and digital polymerase chain reaction (PCR) or reverse transcriptase quantitative PCR (messenger RNA). A previously validated senolytic combination, dasatinib and quercetin, (D+Q; or corresponding vehicle) was administered from the time of sham or MI surgery through 28 days later. Experiments were performed blinded to treatment assignment. Burst pacing-induced AF was seen in 100% of aged (18-month old) rats, 87.5% of young MI rats, and 10% of young control (3-month old) rats (P ≤ 0.001 vs. each). Conduction velocity was slower in aged [both left atrium (LA) and right atrium (RA)] and young MI (LA) rats vs. young control rats (P ≤ 0.001 vs. each). Atrial fibrosis was greater in aged (LA and RA) and young MI (LA) vs. young control rats (P < 0.05 for each). Senolytic therapy reduced AF inducibility in MI rats (from 8/9 rats, 89% in MI vehicle, to 0/9 rats, 0% in MI D + Q, P < 0.001) and attenuated LA fibrosis. Double staining suggested that D + Q acts by clearing senescent myofibroblasts and endothelial cells. In human atria, senescence markers were upregulated in older (≥70 years) and long-standing AF patients vs. individuals ≤60 and sinus rhythm controls, respectively. CONCLUSION Our results point to a potentially significant role of cellular senescence in AF pathophysiology. Modulating cell senescence might provide a basis for novel therapeutic approaches to AF.
Collapse
Affiliation(s)
- Mozhdeh Mehdizadeh
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Patrice Naud
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| | - Issam H Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany
| | - Roddy Hiram
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| | - Feng Xiong
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
| | - Jiening Xiao
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
| | - Arnela Saljic
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Norregade 10, P.O. Box 2177, Copenhagen, Denmark
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital Essen, Hufelandstrasse 55, Essen 45122, Germany
| | - Nhung Vuong-Robillard
- Department of Biochemistry, Université de Montréal, CRCHUM, 900 Saint Denis St, Montreal, Quebec H2X 0A9, Canada
| | - Eric Thorin
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Surgery, Université de Montréal, Pavillon Roger-Gaudry, Montreal, Quebec H3C 3J7, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal, CRCHUM, 900 Saint Denis St, Montreal, Quebec H2X 0A9, Canada
| | - Jean-Claude Tardif
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
| | - Martin G Sirois
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Roger-GaudryOffice S-436, 2900 boulevard Édouard-Montpetit, Montreal, Quebec H3T 1J4, Canada
| | - Jean Francois Tanguay
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
| | - Dobromir Dobrev
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Roger-GaudryOffice S-436, 2900 boulevard Édouard-Montpetit, Montreal, Quebec H3T 1J4, Canada
- IHU Liryc and Fondation Bordeaux Université, 166 cours de l’Argonne, Bordeaux 33000, France
| |
Collapse
|
12
|
Zhai P, Sadoshima J. Cardiomyocyte senescence and the potential therapeutic role of senolytics in the heart. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:18. [PMID: 39119147 PMCID: PMC11309366 DOI: 10.20517/jca.2024.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cellular senescence in cardiomyocytes, characterized by cell cycle arrest, resistance to apoptosis, and the senescence-associated secretory phenotype, occurs during aging and in response to various stresses, such as hypoxia/reoxygenation, ischemia/reperfusion, myocardial infarction (MI), pressure overload, doxorubicin treatment, angiotensin II, diabetes, and thoracic irradiation. Senescence in the heart has both beneficial and detrimental effects. Premature senescence of myofibroblasts has salutary effects during MI and pressure overload. On the other hand, persistent activation of senescence in cardiomyocytes precipitates cardiac dysfunction and adverse remodeling through paracrine mechanisms during MI, myocardial ischemia/reperfusion, aging, and doxorubicin-induced cardiomyopathy. Given the adverse roles of senescence in many conditions, specific removal of senescent cells, i.e., senolysis, is of great interest. Senolysis can be achieved using senolytic drugs (such as Navitoclax, Dasatinib, and Quercetin), pharmacogenetic approaches (including INK-ATTAC and AP20187, p16-3MR and Ganciclovir, p16 ablation, and p16-LOX-ATTAC and Cre), and immunogenetic interventions (CAR T cells or senolytic vaccination). In order to enhance the specificity and decrease the off-target effects of senolytic approaches, investigation into the mechanisms through which cardiomyocytes develop and/or maintain the senescent state is needed.
Collapse
Affiliation(s)
- Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
13
|
Ninni S, Algalarrondo V, Brette F, Lemesle G, Fauconnier J. Left atrial cardiomyopathy: Pathophysiological insights, assessment methods and clinical implications. Arch Cardiovasc Dis 2024; 117:283-296. [PMID: 38490844 DOI: 10.1016/j.acvd.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
Atrial cardiomyopathy is defined as any complex of structural, architectural, contractile or electrophysiological changes affecting atria, with the potential to produce clinically relevant manifestations. Most of our knowledge about the mechanistic aspects of atrial cardiomyopathy is derived from studies investigating animal models of atrial fibrillation and atrial tissue samples obtained from individuals who have a history of atrial fibrillation. Several noninvasive tools have been reported to characterize atrial cardiomyopathy in patients, which may be relevant for predicting the risk of incident atrial fibrillation and its related outcomes, such as stroke. Here, we provide an overview of the pathophysiological mechanisms involved in atrial cardiomyopathy, and discuss the complex interplay of these mechanisms, including aging, left atrial pressure overload, metabolic disorders and genetic factors. We discuss clinical tools currently available to characterize atrial cardiomyopathy, including electrocardiograms, cardiac imaging and serum biomarkers. Finally, we discuss the clinical impact of atrial cardiomyopathy, and its potential role for predicting atrial fibrillation, stroke, heart failure and dementia. Overall, this review aims to highlight the critical need for a clinically relevant definition of atrial cardiomyopathy to improve treatment strategies.
Collapse
Affiliation(s)
- Sandro Ninni
- CHU de Lille, Université de Lille, 59000 Lille, France.
| | - Vincent Algalarrondo
- Department of Cardiology, Bichat University Hospital, AP-HP, 75018 Paris, France
| | - Fabien Brette
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34093 Montpellier, France
| | | | - Jérémy Fauconnier
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34093 Montpellier, France
| |
Collapse
|
14
|
Wu R, Sun F, Zhang W, Ren J, Liu GH. Targeting aging and age-related diseases with vaccines. NATURE AGING 2024; 4:464-482. [PMID: 38622408 DOI: 10.1038/s43587-024-00597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/20/2024] [Indexed: 04/17/2024]
Abstract
Aging is a major risk factor for numerous chronic diseases. Vaccination offers a promising strategy to combat these age-related diseases by targeting specific antigens and inducing immune responses. Here, we provide a comprehensive overview of recent advances in vaccine-based interventions targeting these diseases, including Alzheimer's disease, type II diabetes, hypertension, abdominal aortic aneurysm, atherosclerosis, osteoarthritis, fibrosis and cancer, summarizing current approaches for identifying disease-associated antigens and inducing immune responses against these targets. Further, we reflect on the recent development of vaccines targeting senescent cells, as a strategy for more broadly targeting underlying causes of aging and associated pathologies. In addition to highlighting recent progress in these areas, we discuss important next steps to advance the therapeutic potential of these vaccines, including improving and robustly demonstrating efficacy in human clinical trials, as well as rigorously evaluating the safety and long-term effects of these vaccine strategies.
Collapse
Affiliation(s)
- Ruochen Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jie Ren
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Key Laboratory of RNA Science and Engineering, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Kang J, Rhee J, Wang C, Yang Y, Li G, Li H. Unlocking the dark matter: noncoding RNAs and RNA modifications in cardiac aging. Am J Physiol Heart Circ Physiol 2024; 326:H832-H844. [PMID: 38305752 PMCID: PMC11221808 DOI: 10.1152/ajpheart.00532.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Cardiac aging is a multifaceted process that encompasses structural and functional alterations culminating in heart failure. As the elderly population continues to expand, there is a growing urgent need for interventions to combat age-related cardiac functional decline. Noncoding RNAs have emerged as critical regulators of cellular and biochemical processes underlying cardiac disease. This review summarizes our current understanding of how noncoding RNAs function in the heart during aging, with particular emphasis on mechanisms of RNA modification that control their activity. Targeting noncoding RNAs as potential novel therapeutics in cardiac aging is also discussed.
Collapse
Affiliation(s)
- Jiayi Kang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - James Rhee
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
| | - Chunyan Wang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Yolander Yang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Guoping Li
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Haobo Li
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
16
|
Xu C, Tsihlis G, Chau K, Trinh K, Rogers NM, Julovi SM. Novel Perspectives in Chronic Kidney Disease-Specific Cardiovascular Disease. Int J Mol Sci 2024; 25:2658. [PMID: 38473905 PMCID: PMC10931927 DOI: 10.3390/ijms25052658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic kidney disease (CKD) affects > 10% of the global adult population and significantly increases the risk of cardiovascular disease (CVD), which remains the leading cause of death in this population. The development and progression of CVD-compared to the general population-is premature and accelerated, manifesting as coronary artery disease, heart failure, arrhythmias, and sudden cardiac death. CKD and CV disease combine to cause multimorbid cardiorenal syndrome (CRS) due to contributions from shared risk factors, including systolic hypertension, diabetes mellitus, obesity, and dyslipidemia. Additional neurohormonal activation, innate immunity, and inflammation contribute to progressive cardiac and renal deterioration, reflecting the strong bidirectional interaction between these organ systems. A shared molecular pathophysiology-including inflammation, oxidative stress, senescence, and hemodynamic fluctuations characterise all types of CRS. This review highlights the evolving paradigm and recent advances in our understanding of the molecular biology of CRS, outlining the potential for disease-specific therapies and biomarker disease detection.
Collapse
Affiliation(s)
- Cuicui Xu
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
| | - George Tsihlis
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
| | - Katrina Chau
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
- Blacktown Clinical School, School of Medicine, Western Sydney University, Sydney, NSW 2148, Australia
| | - Katie Trinh
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
| | - Natasha M. Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| | - Sohel M. Julovi
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| |
Collapse
|
17
|
Nieto M, Konigsberg M, Silva-Palacios A. Quercetin and dasatinib, two powerful senolytics in age-related cardiovascular disease. Biogerontology 2024; 25:71-82. [PMID: 37747577 DOI: 10.1007/s10522-023-10068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Cellular senescence is characteristic of the development and progression of multiple age-associated diseases. Accumulation of senescent cells in the heart contributes to various age-related pathologies. Several compounds called senolytics have been designed to eliminate these cells within the tissues. In recent years, the use and study of senolytics increased, representing a promising field for finding accessible and safe therapies for cardiovascular disease (CVD) treatment. This mini-review discusses the changes in the aging heart and the participation of senescent cells in CVD, as well as the use of senolytics to prevent the progression of myocardial damage, mainly the effect of dasatinib and quercetin. In particular, the mechanisms and physiological effects of senolytics therapies in the aged heart are discussed.
Collapse
Affiliation(s)
- Mario Nieto
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, Juan Badiano No. 1. Colonia Sección XVI, 14080, Mexico City, Mexico
- Department of Health Sciences, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Mina Konigsberg
- Department of Health Sciences, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, Juan Badiano No. 1. Colonia Sección XVI, 14080, Mexico City, Mexico.
| |
Collapse
|
18
|
Smolgovsky S, Theall B, Wagner N, Alcaide P. Fibroblasts and immune cells: at the crossroad of organ inflammation and fibrosis. Am J Physiol Heart Circ Physiol 2024; 326:H303-H316. [PMID: 38038714 PMCID: PMC11219060 DOI: 10.1152/ajpheart.00545.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The immune and fibrotic responses have evolved to work in tandem to respond to pathogen clearance and promote tissue repair. However, excessive immune and fibrotic responses lead to chronic inflammation and fibrosis, respectively, both of which are key pathological drivers of organ pathophysiology. Fibroblasts and immune cells are central to these responses, and evidence of these two cell types communicating through soluble mediators or adopting functions from each other through direct contact is constantly emerging. Here, we review complex junctions of fibroblast-immune cell cross talk, such as immune cell modulation of fibroblast physiology and fibroblast acquisition of immune cell-like functions, as well as how these systems of communication contribute to organ pathophysiology. We review the concept of antigen presentation by fibroblasts among different organs with different regenerative capacities, and then focus on the inflammation-fibrosis axis in the heart in the complex syndrome of heart failure. We discuss the need to develop anti-inflammatory and antifibrotic therapies, so far unsuccessful to date, that target novel mechanisms that sit at the crossroads of the fibrotic and immune responses.
Collapse
Affiliation(s)
- Sasha Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Brandon Theall
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Noah Wagner
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
19
|
Maruyama N, Fukunaga I, Kogo T, Endo T, Fujii W, Kanai-Azuma M, Naito K, Sugiura K. Accumulation of senescent cells in the stroma of aged mouse ovary. J Reprod Dev 2023; 69:328-336. [PMID: 37926520 PMCID: PMC10721854 DOI: 10.1262/jrd.2023-021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Senescent cells play a detrimental role in age-associated pathogenesis by producing factors involved in senescence-associated secretory phenotype (SASP). The present study was conducted to examine the possibility that senescent cells are present in aged ovaries and, if so, to determine the tissue region where senescent cells accumulate using a mouse model. Female mice at 2-4 and 8-10 months were used as reproductively young and aged models, respectively; the latter included mice with and without reproductive experience. Cells positive for senescence-associated β-galactosidase (SA-β-Gal) staining, one of the markers of cellular senescence, were detected in the stromal region of aged, but not young, ovaries regardless of reproductive experience. Likewise, the localization of cells expressing CDKN2A (cyclin dependent kinase inhibitor 2A), another senescence marker, in the stromal region of aged ovaries was detected with immunohistochemistry. CDKN2A expression detected by western blotting was significantly higher in the ovaries of aged mice with reproductive experience than in those without the experience. Moreover, cells positive for both γH2AX (a senescence marker) and fluorescent SA-β-Gal staining were present in those isolated from aged ovaries. In addition, the transcript levels of several SASP factors were significantly increased in aged ovaries. These results suggest that senescent cells accumulate in the ovarian stroma and may affect ovarian function in aged mice. Additionally, reproductive experience may promote accumulation.
Collapse
Affiliation(s)
- Natsumi Maruyama
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Isuzu Fukunaga
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoaki Kogo
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsutomu Endo
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Present address: Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Lee H, Sahin GS, Chen CW, Sonthalia S, Cañas SM, Oktay HZ, Duckworth AT, Brawerman G, Thompson PJ, Hatzoglou M, Eizirik DL, Engin F. Stress-induced β cell early senescence confers protection against type 1 diabetes. Cell Metab 2023; 35:2200-2215.e9. [PMID: 37949065 PMCID: PMC10842515 DOI: 10.1016/j.cmet.2023.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
During the progression of type 1 diabetes (T1D), β cells are exposed to significant stress and, therefore, require adaptive responses to survive. The adaptive mechanisms that can preserve β cell function and survival in the face of autoimmunity remain unclear. Here, we show that the deletion of the unfolded protein response (UPR) genes Atf6α or Ire1α in β cells of non-obese diabetic (NOD) mice prior to insulitis generates a p21-driven early senescence phenotype and alters the β cell secretome that significantly enhances the leukemia inhibitory factor-mediated recruitment of M2 macrophages to islets. Consequently, M2 macrophages promote anti-inflammatory responses and immune surveillance that cause the resolution of islet inflammation, the removal of terminally senesced β cells, the reduction of β cell apoptosis, and protection against T1D. We further demonstrate that the p21-mediated early senescence signature is conserved in the residual β cells of T1D patients. Our findings reveal a previously unrecognized link between β cell UPR and senescence that, if leveraged, may represent a novel preventive strategy for T1D.
Collapse
Affiliation(s)
- Hugo Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Gulcan Semra Sahin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Chien-Wen Chen
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shreyash Sonthalia
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Sandra Marín Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Hulya Zeynep Oktay
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Alexander T Duckworth
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Gabriel Brawerman
- Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Peter J Thompson
- Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA; Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
21
|
Christian LM, Wilson SJ, Madison AA, Prakash RS, Burd CE, Rosko AE, Kiecolt-Glaser JK. Understanding the health effects of caregiving stress: New directions in molecular aging. Ageing Res Rev 2023; 92:102096. [PMID: 37898293 PMCID: PMC10824392 DOI: 10.1016/j.arr.2023.102096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Dementia caregiving has been linked to multiple health risks, including infectious illness, depression, anxiety, immune dysregulation, weakened vaccine responses, slow wound healing, hypertension, cardiovascular disease, metabolic syndrome, diabetes, frailty, cognitive decline, and reduced structural and functional integrity of the brain. The sustained overproduction of proinflammatory cytokines is a key pathway behind many of these risks. However, contrasting findings suggest that some forms of caregiving may have beneficial effects, such as maintaining caregivers' health and providing a sense of meaning and purpose which, in turn, may contribute to lower rates of functional decline and mortality. The current review synthesizes these disparate literatures, identifies methodological sources of discrepancy, and integrates caregiver research with work on aging biomarkers to propose a research agenda that traces the mechanistic pathways of caregivers' health trajectories with a focus on the unique stressors facing spousal caregivers as compared to other informal caregivers. Combined with a focus on psychosocial moderators and mechanisms, studies using state-of-the-art molecular aging biomarkers such as telomere length, p16INK4a, and epigenetic age could help to reconcile mixed literature on caregiving's sequelae by determining whether and under what conditions caregiving-related experiences contribute to faster aging, in part through inflammatory biology. The biomarkers predict morbidity and mortality, and each contributes non-redundant information about age-related molecular changes -together painting a more complete picture of biological aging. Indeed, assessing changes in these biopsychosocial mechanisms over time would help to clarify the dynamic relationships between caregiving experiences, psychological states, immune function, and aging.
Collapse
Affiliation(s)
- Lisa M Christian
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Stephanie J Wilson
- Department of Psychology, Southern Methodist University, University Park, TX, USA
| | - Annelise A Madison
- The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Ruchika S Prakash
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Center for Cognitive and Behavioral Brain Imaging, Ohio State University, Columbus, OH, USA
| | - Christin E Burd
- Departments of Molecular Genetics, Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Ashley E Rosko
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Janice K Kiecolt-Glaser
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
22
|
Maus M, López-Polo V, Mateo L, Lafarga M, Aguilera M, De Lama E, Meyer K, Sola A, Lopez-Martinez C, López-Alonso I, Guasch-Piqueras M, Hernandez-Gonzalez F, Chaib S, Rovira M, Sanchez M, Faner R, Agusti A, Diéguez-Hurtado R, Ortega S, Manonelles A, Engelhardt S, Monteiro F, Stephan-Otto Attolini C, Prats N, Albaiceta G, Cruzado JM, Serrano M. Iron accumulation drives fibrosis, senescence and the senescence-associated secretory phenotype. Nat Metab 2023; 5:2111-2130. [PMID: 38097808 PMCID: PMC10730403 DOI: 10.1038/s42255-023-00928-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
Fibrogenesis is part of a normal protective response to tissue injury that can become irreversible and progressive, leading to fatal diseases. Senescent cells are a main driver of fibrotic diseases through their secretome, known as senescence-associated secretory phenotype (SASP). Here, we report that cellular senescence, and multiple types of fibrotic diseases in mice and humans are characterized by the accumulation of iron. We show that vascular and hemolytic injuries are efficient in triggering iron accumulation, which in turn can cause senescence and promote fibrosis. Notably, we find that senescent cells persistently accumulate iron, even when the surge of extracellular iron has subdued. Indeed, under normal conditions of extracellular iron, cells exposed to different types of senescence-inducing insults accumulate abundant ferritin-bound iron, mostly within lysosomes, and present high levels of labile iron, which fuels the generation of reactive oxygen species and the SASP. Finally, we demonstrate that detection of iron by magnetic resonance imaging might allow non-invasive assessment of fibrotic burden in the kidneys of mice and in patients with renal fibrosis. Our findings suggest that iron accumulation plays a central role in senescence and fibrosis, even when the initiating events may be independent of iron, and identify iron metabolism as a potential therapeutic target for senescence-associated diseases.
Collapse
Grants
- SAF2017-82613-R "la Caixa" Foundation (Caixa Foundation)
- of M. Serrano was funded by the IRB and “laCaixa” Foundation, and by grants from the Spanish Ministry of Science co-funded by the European Regional Development Fund (ERDF) (SAF2017-82613-R), European Research Council (ERC-2014-AdG/669622), and grant RETOS COLABORACION RTC2019-007125-1 from MCIN/AEI, and Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement of Catalonia (Grup de Recerca consolidat 2017 SGR 282)
- M.M. received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement (No 794744) and from the Spanish Ministry of Science and Innovation (MCIN) (RYC2020-030652-I /AEI /10.13039/501100011033)
- V.L.P. was recipient of a predoctoral contract from Spanish Ministry of Education (FPU-18/05917).
- K.M. was recipient of fellowships from the German Cardiac, the German Research Foundation, and a postdoctoral contract Juan de la Cierva from the MCIN.
- F.H.G. was supported by the PhD4MD Collaborative Research Training Programme for Medical Doctors (IRB Barcelona/Hospital Clinic/IDIBAPS).
- M. Sanchez was funded by grants PID2021-122436OB-I00 from MCIN/ AEI /10.13039/501100011033 / FEDER, UE, and RETOS COLABORACION RTC2019-007074-1 from MCIN/AEI /10.13039/501100011033.
- G.A. was funded by Instituto de Salud Carlos III through project PI 20/01360, FEDER funds.
- J.M.C was funded by Instituto de Salud Carlos III through projects PI18/00910 and PI21/00931 (Co-funded by European Regional Development Fund. ERDF, a way to build Europe), and thanks CERCA Programme / Generalitat de Catalunya for institutional support.
Collapse
Affiliation(s)
- Mate Maus
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| | - Vanessa López-Polo
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lidia Mateo
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Miguel Lafarga
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Mònica Aguilera
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Eugenia De Lama
- Radiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Kathleen Meyer
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Anna Sola
- Nephrology and Renal Transplantation Research Group. Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Cecilia Lopez-Martinez
- Departamento de Biología Funcional, Instituto Universitario de Oncología del principado de Asturias, Universidad de Oviedo, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos. Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ines López-Alonso
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | | | - Fernanda Hernandez-Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Pulmonary Medicine, Respiratory Institute, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Selim Chaib
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Miguel Rovira
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Mayka Sanchez
- Iron Metabolism: Regulation and Diseases Group, Department of Basic Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Rosa Faner
- Biomedicine Department, University of Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Alvar Agusti
- Universitat de Barcelona, Institut Respiratori, Hospital Clinic, IDIBAPS, CIBERES, Barcelona, Spain
| | - Rodrigo Diéguez-Hurtado
- Deparment of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sagrario Ortega
- Transgenics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Anna Manonelles
- Nephrology and Renal Transplantation Research Group. Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Freddy Monteiro
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Guillermo Albaiceta
- Departamento de Biología Funcional, Instituto Universitario de Oncología del principado de Asturias, Universidad de Oviedo, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos. Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep M Cruzado
- Nephrology and Renal Transplantation Research Group. Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Altos Labs, Cambridge Institute of Science, Cambridge, UK.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
23
|
Owesny P, Grune T. The link between obesity and aging - insights into cardiac energy metabolism. Mech Ageing Dev 2023; 216:111870. [PMID: 37689316 DOI: 10.1016/j.mad.2023.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Obesity and aging are well-established risk factors for a range of diseases, including cardiovascular diseases and type 2 diabetes. Given the escalating prevalence of obesity, the aging population, and the subsequent increase in cardiovascular diseases, it is crucial to investigate the underlying mechanisms involved. Both aging and obesity have profound effects on the energy metabolism through various mechanisms, including metabolic inflexibility, altered substrate utilization for energy production, deregulated nutrient sensing, and mitochondrial dysfunction. In this review, we aim to present and discuss the hypothesis that obesity, due to its similarity in changes observed in the aging heart, may accelerate the process of cardiac aging and exacerbate the clinical outcomes of elderly individuals with obesity.
Collapse
Affiliation(s)
- Patricia Owesny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
24
|
Yu Q, Walters HE, Pasquini G, Pal Singh S, Lachnit M, Oliveira CR, León-Periñán D, Petzold A, Kesavan P, Subiran Adrados C, Garteizgogeascoa I, Knapp D, Wagner A, Bernardos A, Alfonso M, Nadar G, Graf AM, Troyanovskiy KE, Dahl A, Busskamp V, Martínez-Máñez R, Yun MH. Cellular senescence promotes progenitor cell expansion during axolotl limb regeneration. Dev Cell 2023; 58:2416-2427.e7. [PMID: 37879337 DOI: 10.1016/j.devcel.2023.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/25/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023]
Abstract
Axolotl limb regeneration is accompanied by the transient induction of cellular senescence within the blastema, the structure that nucleates regeneration. The precise role of this blastemal senescent cell (bSC) population, however, remains unknown. Here, through a combination of gain- and loss-of-function assays, we elucidate the functions and molecular features of cellular senescence in vivo. We demonstrate that cellular senescence plays a positive role during axolotl regeneration by creating a pro-proliferative niche that supports progenitor cell expansion and blastema outgrowth. Senescent cells impact their microenvironment via Wnt pathway modulation. Further, we identify a link between Wnt signaling and senescence induction and propose that bSC-derived Wnt signals facilitate the proliferation of neighboring cells in part by preventing their induction into senescence. This work defines the roles of cellular senescence in the regeneration of complex structures.
Collapse
Affiliation(s)
- Qinghao Yu
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Hannah E Walters
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Giovanni Pasquini
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Martina Lachnit
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Catarina R Oliveira
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Daniel León-Periñán
- Technische Universität Dresden, Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-Concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Preethi Kesavan
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Cristina Subiran Adrados
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | | | - Dunja Knapp
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Anne Wagner
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María Alfonso
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Valencia, Spain
| | - Gayathri Nadar
- Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany
| | - Alwin M Graf
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | | | - Andreas Dahl
- DRESDEN-Concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Maximina H Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany; Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany; Physics of Life Excellence Cluster, Dresden, Germany.
| |
Collapse
|
25
|
Abdellatif M, Rainer PP, Sedej S, Kroemer G. Hallmarks of cardiovascular ageing. Nat Rev Cardiol 2023; 20:754-777. [PMID: 37193857 DOI: 10.1038/s41569-023-00881-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Normal circulatory function is a key determinant of disease-free life expectancy (healthspan). Indeed, pathologies affecting the cardiovascular system, which are growing in prevalence, are the leading cause of global morbidity, disability and mortality, whereas the maintenance of cardiovascular health is necessary to promote both organismal healthspan and lifespan. Therefore, cardiovascular ageing might precede or even underlie body-wide, age-related health deterioration. In this Review, we posit that eight molecular hallmarks are common denominators in cardiovascular ageing, namely disabled macroautophagy, loss of proteostasis, genomic instability (in particular, clonal haematopoiesis of indeterminate potential), epigenetic alterations, mitochondrial dysfunction, cell senescence, dysregulated neurohormonal signalling and inflammation. We also propose a hierarchical order that distinguishes primary (upstream) from antagonistic and integrative (downstream) hallmarks of cardiovascular ageing. Finally, we discuss how targeting each of the eight hallmarks might be therapeutically exploited to attenuate residual cardiovascular risk in older individuals.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- BioTechMed Graz, Graz, Austria.
| | - Peter P Rainer
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
26
|
Habibi-Kavashkohie MR, Scorza T, Oubaha M. Senescent Cells: Dual Implications on the Retinal Vascular System. Cells 2023; 12:2341. [PMID: 37830555 PMCID: PMC10571659 DOI: 10.3390/cells12192341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Cellular senescence, a state of permanent cell cycle arrest in response to endogenous and exogenous stimuli, triggers a series of gradual alterations in structure, metabolism, and function, as well as inflammatory gene expression that nurtures a low-grade proinflammatory milieu in human tissue. A growing body of evidence indicates an accumulation of senescent neurons and blood vessels in response to stress and aging in the retina. Prolonged accumulation of senescent cells and long-term activation of stress signaling responses may lead to multiple chronic diseases, tissue dysfunction, and age-related pathologies by exposing neighboring cells to the heightened pathological senescence-associated secretory phenotype (SASP). However, the ultimate impacts of cellular senescence on the retinal vasculopathies and retinal vascular development remain ill-defined. In this review, we first summarize the molecular players and fundamental mechanisms driving cellular senescence, as well as the beneficial implications of senescent cells in driving vital physiological processes such as embryogenesis, wound healing, and tissue regeneration. Then, the dual implications of senescent cells on the growth, hemostasis, and remodeling of retinal blood vessels are described to document how senescent cells contribute to both retinal vascular development and the severity of proliferative retinopathies. Finally, we discuss the two main senotherapeutic strategies-senolytics and senomorphics-that are being considered to safely interfere with the detrimental effects of cellular senescence.
Collapse
Affiliation(s)
- Mohammad Reza Habibi-Kavashkohie
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| | - Tatiana Scorza
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| | - Malika Oubaha
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| |
Collapse
|
27
|
Jiang Y, Wang Z, Hu J, Wang W, Zhang N, Gao L. Core fucosylation regulates alveolar epithelial cells senescence through activating of transforming growth factor-β pathway in pulmonary fibrosis. Aging (Albany NY) 2023; 15:9572-9589. [PMID: 37724903 PMCID: PMC10564423 DOI: 10.18632/aging.205036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF), a fatal disorder associated with aging, has a terrible prognosis. However, the potential causes of IPF remain a riddle. In this study, we designed to explore whether the modification of the core fucosylation (CF) can ameliorate pulmonary fibrosis by targeting alveolar epithelial cells (AECs) senescence. First, we verified that cellular senescence occurs in the bleomycin-induced lung fibrosis mice models and CF modifications accompanying senescent AECs in pulmonary fibrosis. Next, both gain- and loss- of function research on CF were performed to elucidate its role in promoting AECs senescence and triggering pulmonary fibrosis in vitro. Notably, using alveolar epithelial cell-specific FUT8 conditional knockout mouse models, however, inhibition of cellular senescence by deleting the FUT8 gene could attenuate pulmonary fibrosis in vivo. Finally, blocking the CF modification of transforming growth factor -β type I receptor (TGF-βR I) could reduce the activation of downstream transforming growth factor -β (TGF-β) pathways in AECs senescence both in vivo and in vitro. This study reveals that CF is a crucial interventional target for the treatment of pulmonary fibrosis. Blocking CF modification contributes importantly to inhibiting AECs senescence resulting in pulmonary fibrosis lessen.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhongzhen Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinying Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Wang
- Department of Nephrology, Affiliated Xinhua Hospital of Dalian University, Dalian, China
| | - Na Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lili Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
28
|
Salminen A. The plasticity of fibroblasts: A forgotten player in the aging process. Ageing Res Rev 2023; 89:101995. [PMID: 37391015 DOI: 10.1016/j.arr.2023.101995] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Tissue-resident fibroblasts are mesenchymal cells which possess an impressive plasticity in their ability to modify their properties according to the requirements of the microenvironment. There are diverse subgroups of fibroblast phenotypes associated with different tissue pathological conditions, e.g., cancers, wound healing, and many fibrotic and inflammatory conditions. The heterogeneous phenotypes can be subdivided into fibrogenic and non-fibrogenic, inflammatory and immunosuppressive subtypes as well as cellular senescent subsets. A major hallmark of activated fibroblasts is that they contain different amounts of stress fibers combined with α-smooth muscle actin (α-SMA) protein, i.e., commonly this phenotype has been called the myofibroblast. Interestingly, several stresses associated with the aging process are potent inducers of myofibroblast differentiation, e.g., oxidative and endoplasmic reticulum stresses, extracellular matrix (ECM) disorders, inflammatory mediators, and telomere shortening. Accordingly, anti-aging treatments with metformin and rapamycin inhibited the differentiation of myofibroblasts in tissues. There is evidence that the senescent phenotype induced in cultured fibroblasts does not represent the phenotype of fibroblasts in aged tissues. Considering the versatile plasticity of fibroblasts as well as their frequency and structural importance in tissues, it does seem that fibroblasts are overlooked players in the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
29
|
Liu X, Burke RM, Lighthouse JK, Baker CD, Dirkx RA, Kang B, Chakraborty Y, Mickelsen DM, Twardowski J, Mello SS, Ashton JM, Small EM. p53 Regulates the Extent of Fibroblast Proliferation and Fibrosis in Left Ventricle Pressure Overload. Circ Res 2023; 133:271-287. [PMID: 37409456 PMCID: PMC10361635 DOI: 10.1161/circresaha.121.320324] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Cardiomyopathy is characterized by the pathological accumulation of resident cardiac fibroblasts that deposit ECM (extracellular matrix) and generate a fibrotic scar. However, the mechanisms that control the timing and extent of cardiac fibroblast proliferation and ECM production are not known, hampering the development of antifibrotic strategies to prevent heart failure. METHODS We used the Tcf21 (transcription factor 21)MerCreMer mouse line for fibroblast-specific lineage tracing and p53 (tumor protein p53) gene deletion. We characterized cardiac physiology and used single-cell RNA-sequencing and in vitro studies to investigate the p53-dependent mechanisms regulating cardiac fibroblast cell cycle and fibrosis in left ventricular pressure overload induced by transaortic constriction. RESULTS Cardiac fibroblast proliferation occurs primarily between days 7 and 14 following transaortic constriction in mice, correlating with alterations in p53-dependent gene expression. p53 deletion in fibroblasts led to a striking accumulation of Tcf21-lineage cardiac fibroblasts within the normal proliferative window and precipitated a robust fibrotic response to left ventricular pressure overload. However, excessive interstitial and perivascular fibrosis does not develop until after cardiac fibroblasts exit the cell cycle. Single-cell RNA sequencing revealed p53 null fibroblasts unexpectedly express lower levels of genes encoding important ECM proteins while they exhibit an inappropriately proliferative phenotype. in vitro studies establish a role for p53 in suppressing the proliferative fibroblast phenotype, which facilitates the expression and secretion of ECM proteins. Importantly, Cdkn2a (cyclin-dependent kinase inhibitor 2a) expression and the p16Ink4a-retinoblastoma cell cycle control pathway is induced in p53 null cardiac fibroblasts, which may eventually contribute to cell cycle exit and fulminant scar formation. CONCLUSIONS This study reveals a mechanism regulating cardiac fibroblast accumulation and ECM secretion, orchestrated in part by p53-dependent cell cycle control that governs the timing and extent of fibrosis in left ventricular pressure overload.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ryan M. Burke
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Janet K. Lighthouse
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Wegmans School of Pharmacy, Department of Pharmaceutical Sciences, St. John Fisher College, Rochester, NY, USA
| | - Cameron D. Baker
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ronald A. Dirkx
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Brian Kang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Yashoswini Chakraborty
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Deanne M. Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jennifer Twardowski
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Stephano S. Mello
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - John M. Ashton
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M. Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642
| |
Collapse
|
30
|
Ghigo A, Ameri P. p53 at the Intersection of Cardiac Fibroblast Proliferation and Activation: Answers and Questions. Circ Res 2023; 133:288-290. [PMID: 37471487 DOI: 10.1161/circresaha.123.323209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Affiliation(s)
- Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone," University of Torino, Italy (A.G.)
| | - Pietro Ameri
- Department of Internal Medicine, University of Genova, Italy (P.A.)
- Cardiovascular Disease Unit, Cardiac, Thoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino - IRCCS Italian Cardiology Network, Genova, Italy (P.A.)
| |
Collapse
|
31
|
Mourad O, Mastikhina O, Khan S, Sun X, Hatkar R, Williams K, Nunes SS. Antisenescence Therapy Improves Function in a Human Model of Cardiac Fibrosis-on-a-Chip. ACS MATERIALS AU 2023; 3:360-370. [PMID: 38090129 PMCID: PMC10347691 DOI: 10.1021/acsmaterialsau.3c00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 02/12/2024]
Abstract
Cardiac fibrosis is a significant contributor to heart failure and is characterized by abnormal ECM deposition and impaired contractile function. We have previously developed a model of cardiac fibrosis via TGF-β treatment of engineered microtissues using heart-on-a-chip technology which incorporates human induced pluripotent stem cell-derived cardiomyocytes and cardiac fibroblasts. Here, we describe that these cardiac fibrotic tissues expressed markers associated with cellular senescence via transcriptomic analysis. Treatment of fibrotic tissues with the senolytic drugs dasatinib and quercetin (D+Q) led to an improvement of contractile function, reduced passive tension, and downregulated senescence-related gene expression, an outcome we were previously unable to achieve using standard-of-care drugs. The improvement in functional parameters was also associated with a reduction in fibroblast density, though no changes in absolute collagen deposition were observed. This study demonstrates the benefit of senolytic treatment for cardiac fibrosis in a human-relevant model, supporting data in animal models, and will enable the further elucidation of cell-specific effects of senolytics and how they impact cardiac fibrosis and senescence.
Collapse
Affiliation(s)
- Omar Mourad
- Toronto
General Hospital Research Institute, University
Health Network, Toronto, Canada M5G 2C4
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Canada M5S 3G9
| | - Olya Mastikhina
- Toronto
General Hospital Research Institute, University
Health Network, Toronto, Canada M5G 2C4
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Canada M5S 3G9
| | - Safwat Khan
- Toronto
General Hospital Research Institute, University
Health Network, Toronto, Canada M5G 2C4
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Canada M5S 3G9
| | - Xuetao Sun
- Toronto
General Hospital Research Institute, University
Health Network, Toronto, Canada M5G 2C4
| | - Rupal Hatkar
- Toronto
General Hospital Research Institute, University
Health Network, Toronto, Canada M5G 2C4
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Canada M5S 3G9
| | - Kenneth Williams
- Toronto
General Hospital Research Institute, University
Health Network, Toronto, Canada M5G 2C4
- Laboratory
of Medicine and Pathobiology, University
of Toronto, Toronto, Canada M5S 1A8
| | - Sara S. Nunes
- Toronto
General Hospital Research Institute, University
Health Network, Toronto, Canada M5G 2C4
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Canada M5S 3G9
- Ajmera
Transplant Center, University Health Network, Toronto, Canada M5G 2C4
- Laboratory
of Medicine and Pathobiology, University
of Toronto, Toronto, Canada M5S 1A8
- Heart
& Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Canada M5S 3H2
| |
Collapse
|
32
|
Li F, Zhu H, Chang Z, Li Y. Gentiopicroside alleviates acute myocardial infarction injury in rats by disrupting Nrf2/NLRP3 signaling. Exp Biol Med (Maywood) 2023; 248:1254-1266. [PMID: 37850391 PMCID: PMC10621478 DOI: 10.1177/15353702231199076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/20/2023] [Indexed: 10/19/2023] Open
Abstract
The objective of the present investigation was to assess the protective impact of gentiopicroside (GPS) on acute myocardial infarction (AMI) through the modulation of NF-E2-related factor 2 (Nrf2)/nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) signaling. H9c2 cells were subjected to varying concentrations of GPS, and subsequently, the cells and Sprague-Dawley (SD) rats were segregated into control, model, GPS, t-BHQ (an Nrf2 activator), and GPS + ML385 (an Nrf2 inhibitor) groups. The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were analyzed. Reactive oxygen species (ROS) and cell apoptosis were assessed, while Nrf2 and the expression of the NLRP3 inflammatory body signal pathway were evaluated using western blot and immunofluorescence techniques. The infarct area and pathological changes were also examined. Treatment with varying doses of GPS resulted in increased viability of H9c2 cells. Notably, the model group exhibited significantly elevated levels of cell apoptosis, MDA, and ROS compared to the control group, while SOD and Nrf2 levels were significantly reduced. Furthermore, the expression of NLRP3, cleaved caspase-1, interleukin (IL)-1β, and IL-18 were found to be augmented. Following the implementation of GPS in cells and animals, there was a notable reduction in MDA and ROS levels, a decrease in the rate of cellular apoptosis, and a mitigation of inflammation scores. In addition, there was an increase in the expression of SOD and Nrf2. However, the protective effects of GPS were negated when co-administered with ML385. GPS exhibits therapeutic properties in AMI rats by activating Nrf2 expression, thereby reducing the NLRP3 inflammatory body and alleviating the inflammatory response and oxidative stress of myocardial cells. GPS may hold promise as a potential drug for the treatment of AMI.
Collapse
Affiliation(s)
- Fei Li
- The First Ward of Cardiovascular Medicine, Yantaishan Hospital, Yantai 264000, China
| | - Hongxiang Zhu
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Zijuan Chang
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Ying Li
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai 264000, China
| |
Collapse
|
33
|
Wei X, Mao Y, Chen Z, Kang L, Xu B, Wang K. Exercise-induced myocardial hypertrophy preconditioning promotes fibroblast senescence and improves myocardial fibrosis through Nrf2 signaling pathway. Cell Cycle 2023; 22:1529-1543. [PMID: 37312565 PMCID: PMC10361137 DOI: 10.1080/15384101.2023.2215081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
This study aims to investigate how exercise-induced myocardial hypertrophy preconditioning affects cardiac fibroblasts in the context of myocardial fibrosis, a chronic disease that can cause cardiac arrhythmia and heart failure. Heart failure was induced in male C57BL/6 mice via Transverse aortic constriction, and some mice were given swimming exercise before surgery to test the effects of exercise-induced myocardial hypertrophy preconditioning on myocardial fibrosis. Myocardial tissue was evaluated for fibrosis, senescent cells, and apoptotic cells. Myocardial fibroblasts from rats were cultured and treated with norepinephrine to induce fibrosis which were then treated with si-Nrf2 and analyzed for markers of fibrosis, senescence, apoptosis, and cell proliferation. Exercise-induced myocardial hypertrophy preconditioning reduced myocardial fibrosis in mice, as shown by decreased mRNA expression levels of fibrosis-related indicators and increased cell senescence. In vitro data indicated that norepinephrine (NE) treatment increased fibrosis-related markers and reduced apoptotic and senescent cells, and this effect was reversed by pre-conditioning in PRE+NE group. Preconditioning activated Nrf2 and downstream signaling genes, promoting premature senescence in cardiac fibroblasts and tissues isolated from preconditioned mice. Moreover, Nrf2 knockdown reversed proapoptotic effects, restored cell proliferation, reduced senescence-related protein expression, and increased oxidative stress markers and fibrosis-related genes, indicating Nrf2's crucial role in regulating oxidative stress response of cardiac fibroblasts. Exercise-induced myocardial hypertrophy preconditioning improves myocardial fibrosis which is Nrf2-dependent, indicating the protective effect of hypertrophy preconditioning. These findings may contribute to the development of therapeutic interventions to prevent or treat myocardial fibrosis.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yajing Mao
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Zheng Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Kun Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|
34
|
Zhang Z, Shayani G, Xu Y, Kim A, Hong Y, Feng H, Zhu H. Induction of Senescence by Loss of Gata4 in Cardiac Fibroblasts. Cells 2023; 12:1652. [PMID: 37371122 PMCID: PMC10297635 DOI: 10.3390/cells12121652] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac fibroblasts are a major source of cardiac fibrosis during heart repair processes in various heart diseases. Although it has been shown that cardiac fibroblasts become senescent in response to heart injury, it is unknown how the senescence of cardiac fibroblasts is regulated in vivo. Gata4, a cardiogenic transcription factor essential for heart development, is also expressed in cardiac fibroblasts. However, it remains elusive about the role of Gata4 in cardiac fibroblasts. To define the role of Gata4 in cardiac fibroblasts, we generated cardiac fibroblast-specific Gata4 knockout mice by cross-breeding Tcf21-MerCreMer mice with Gata4fl/fl mice. Using this mouse model, we could genetically ablate Gata4 in Tcf21 positive cardiac fibroblasts in an inducible manner upon tamoxifen administration. We found that cardiac fibroblast-specific deletion of Gata4 spontaneously induces senescence in cardiac fibroblasts in vivo and in vitro. We also found that Gata4 expression in both cardiomyocytes and non-myocytes significantly decreases in the aged heart. Interestingly, when αMHC-MerCreMer mice were bred with Gata4fl/fl mice to generate cardiomyocyte-specific Gata4 knockout mice, no senescent cells were detected in the hearts. Taken together, our results demonstrate that Gata4 deficiency in cardiac fibroblasts activates a program of cellular senescence, suggesting a novel molecular mechanism of cardiac fibroblast senescence.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Gabriella Shayani
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Yanping Xu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Ashley Kim
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Yurim Hong
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Haiyue Feng
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
35
|
Redgrave RE, Dookun E, Booth LK, Camacho Encina M, Folaranmi O, Tual-Chalot S, Gill JH, Owens WA, Spyridopoulos I, Passos JF, Richardson GD. Senescent cardiomyocytes contribute to cardiac dysfunction following myocardial infarction. NPJ AGING 2023; 9:15. [PMID: 37316516 PMCID: PMC10267185 DOI: 10.1038/s41514-023-00113-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
Myocardial infarction is a leading cause of morbidity and mortality. While reperfusion is now standard therapy, pathological remodelling leading to heart failure remains a clinical problem. Cellular senescence has been shown to contribute to disease pathophysiology and treatment with the senolytic navitoclax attenuates inflammation, reduces adverse myocardial remodelling and results in improved functional recovery. However, it remains unclear which senescent cell populations contribute to these processes. To identify whether senescent cardiomyocytes contribute to disease pathophysiology post-myocardial infarction, we established a transgenic model in which p16 (CDKN2A) expression was specifically knocked-out in the cardiomyocyte population. Following myocardial infarction, mice lacking cardiomyocyte p16 expression demonstrated no difference in cardiomyocyte hypertrophy but exhibited improved cardiac function and significantly reduced scar size in comparison to control animals. This data demonstrates that senescent cardiomyocytes participate in pathological myocardial remodelling. Importantly, inhibition of cardiomyocyte senescence led to reduced senescence-associated inflammation and decreased senescence-associated markers within other myocardial lineages, consistent with the hypothesis that cardiomyocytes promote pathological remodelling by spreading senescence to other cell-types. Collectively this study presents the demonstration that senescent cardiomyocytes are major contributors to myocardial remodelling and dysfunction following a myocardial infarction. Therefore, to maximise the potential for clinical translation, it is important to further understand the mechanisms underlying cardiomyocyte senescence and how to optimise senolytic strategies to target this cell lineage.
Collapse
Affiliation(s)
- Rachael E Redgrave
- Vascular Medicine and Biology Medicine Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emily Dookun
- Vascular Medicine and Biology Medicine Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura K Booth
- Vascular Medicine and Biology Medicine Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Maria Camacho Encina
- Vascular Medicine and Biology Medicine Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Omowumi Folaranmi
- Vascular Medicine and Biology Medicine Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Tual-Chalot
- Vascular Medicine and Biology Medicine Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jason H Gill
- Vascular Medicine and Biology Medicine Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - W Andrew Owens
- Vascular Medicine and Biology Medicine Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ioakim Spyridopoulos
- Vascular Medicine and Biology Medicine Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Gavin D Richardson
- Vascular Medicine and Biology Medicine Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
36
|
Walters HE, Troyanovskiy KE, Graf AM, Yun MH. Senescent cells enhance newt limb regeneration by promoting muscle dedifferentiation. Aging Cell 2023; 22:e13826. [PMID: 37025070 PMCID: PMC10265169 DOI: 10.1111/acel.13826] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
Salamanders are able to regenerate their entire limbs throughout lifespan, through a process that involves significant modulation of cellular plasticity. Limb regeneration is accompanied by the endogenous induction of cellular senescence, a state of irreversible cell cycle arrest associated with profound non-cell-autonomous consequences. While traditionally associated with detrimental physiological effects, here, we show that senescent cells can enhance newt limb regeneration. Through a lineage tracing approach, we demonstrate that exogenously derived senescent cells promote dedifferentiation of mature muscle tissue to generate regenerative progenitors. In a paradigm of newt myotube dedifferentiation, we uncover that senescent cells promote myotube cell cycle re-entry and reversal of muscle identity via secreted factors. Transcriptomic profiling and loss of function approaches identify the FGF-ERK signalling axis as a critical mediator of senescence-induced muscle dedifferentiation. While chronic senescence constrains muscle regeneration in physiological mammalian contexts, we thus highlight a beneficial role for cellular senescence as an important modulator of dedifferentiation, a key mechanism for regeneration of complex structures.
Collapse
Affiliation(s)
- Hannah E. Walters
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies DresdenDresdenGermany
| | - Konstantin E. Troyanovskiy
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies DresdenDresdenGermany
- Freie Universität BerlinBerlinGermany
| | - Alwin M. Graf
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies DresdenDresdenGermany
| | - Maximina H. Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies DresdenDresdenGermany
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
- Cluster of Excellence Physics of LifeTechnische Universität DresdenDresdenGermany
| |
Collapse
|
37
|
Baggett BC, Murphy KR, Sengun E, Mi E, Cao Y, Turan NN, Lu Y, Schofield L, Kim TY, Kabakov AY, Bronk P, Qu Z, Camelliti P, Dubielecka P, Terentyev D, del Monte F, Choi BR, Sedivy J, Koren G. Myofibroblast senescence promotes arrhythmogenic remodeling in the aged infarcted rabbit heart. eLife 2023; 12:e84088. [PMID: 37204302 PMCID: PMC10259375 DOI: 10.7554/elife.84088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
Progressive tissue remodeling after myocardial infarction (MI) promotes cardiac arrhythmias. This process is well studied in young animals, but little is known about pro-arrhythmic changes in aged animals. Senescent cells accumulate with age and accelerate age-associated diseases. Senescent cells interfere with cardiac function and outcome post-MI with age, but studies have not been performed in larger animals, and the mechanisms are unknown. Specifically, age-associated changes in timecourse of senescence and related changes in inflammation and fibrosis are not well understood. Additionally, the cellular and systemic role of senescence and its inflammatory milieu in influencing arrhythmogenesis with age is not clear, particularly in large animal models with cardiac electrophysiology more similar to humans than previously studied animal models. Here, we investigated the role of senescence in regulating inflammation, fibrosis, and arrhythmogenesis in young and aged infarcted rabbits. Aged rabbits exhibited increased peri-procedural mortality and arrhythmogenic electrophysiological remodeling at the infarct border zone (IBZ) compared to young rabbits. Studies of the aged infarct zone revealed persistent myofibroblast senescence and increased inflammatory signaling over a 12-week timecourse. Senescent IBZ myofibroblasts in aged rabbits appear to be coupled to myocytes, and our computational modeling showed that senescent myofibroblast-cardiomyocyte coupling prolongs action potential duration (APD) and facilitates conduction block permissive of arrhythmias. Aged infarcted human ventricles show levels of senescence consistent with aged rabbits, and senescent myofibroblasts also couple to IBZ myocytes. Our findings suggest that therapeutic interventions targeting senescent cells may mitigate arrhythmias post-MI with age.
Collapse
Affiliation(s)
- Brett C Baggett
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Kevin R Murphy
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Elif Sengun
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
- Department of Pharmacology, Institute of Graduate Studies in Health Sciences, Istanbul UniversityIstanbulTurkey
| | - Eric Mi
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Yueming Cao
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Nilufer N Turan
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Yichun Lu
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Lorraine Schofield
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Tae Yun Kim
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Anatoli Y Kabakov
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Peter Bronk
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | - Zhilin Qu
- School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of SurreyGuildfordUnited Kingdom
| | - Patrycja Dubielecka
- Brown UniversityProvidenceUnited States
- Department of Hematology, Rhode Island HospitalProvidenceUnited States
| | - Dmitry Terentyev
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | | | - Bum-Rak Choi
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| | | | - Gideon Koren
- Brown UniversityProvidenceUnited States
- Cardiovascular Research Center, Rhode Island HospitalProvidenceUnited States
| |
Collapse
|
38
|
Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison-Hughes GM, Tchkonia T, Kirkland JL. Senescent Cells: A Therapeutic Target in Cardiovascular Diseases. Cells 2023; 12:1296. [PMID: 37174697 PMCID: PMC10177324 DOI: 10.3390/cells12091296] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. Some senolytic clinical trials have already been completed or are underway for a number of diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts, immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senotherapeutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and clinical potential of senotherapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Karl H. Paul
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jordan D. Miller
- Division of Cardiovascular Surgery, Mayo Clinic College of Medicine, 200 First St., S.W., Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| |
Collapse
|
39
|
Li S, Wang N, Dong Q, Dong M, Qu M, Wang Y, Shi W. The senescence difference between the central and peripheral cornea induced by sutures. BMC Ophthalmol 2023; 23:169. [PMID: 37081412 PMCID: PMC10120248 DOI: 10.1186/s12886-023-02917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
INTRODUCTION Cell senescence plays a regulatory role in tissue fibrosis. Corneal scarring is usually more severe in the central cornea based on clinical observation. In this study, we attempted to explore the senescence difference between the central and peripheral cornea in an in vivo mouse model with suture-induced senescence and in an in vitro model of senescence with hydrogen peroxide (H2O2)-induced rabbit corneal fibroblasts. METHODS Male Balb/c mice (6-8 weeks) received sutures in the central, superior, inferior, nasal, and temporal cornea. The sutures were removed on the 14th day. Corneal neovascularization was observed under a slit lamp microscope with a digital camera. The fibroblasts isolated from the central and peripheral rabbit cornea were induced with H2O2 to establish the senescence model in vitro. Senescence was evaluated with SA-β-gal staining and gene expression analysis of p21, p27, and p53. RESULTS Senescent cells accumulated in the corneal stroma from the third day to the 14th day after the operation and peaked on the 14th day. More senescent keratocytes were observed in the peripheral cornea of the mouse model. In vitro, the peripheral corneal fibroblasts were more prone to senescence due to H2O2. The polymerase chain reaction results showed that the senescence-related genes p21, p27, and p53 were highly expressed in the peripheral corneal fibroblasts compared with the central corneal fibroblasts. CONCLUSIONS Senescent fibroblasts can limit tissue fibrosis; hence, the senescence difference between the central and peripheral cornea may contribute to the difference in scarring.
Collapse
Affiliation(s)
- Suxia Li
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Ning Wang
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Qiaoqiao Dong
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Muchen Dong
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Mingli Qu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Yao Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Weiyun Shi
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China.
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China.
| |
Collapse
|
40
|
Redgrave R, Dookun E, Booth L, Folaranm O, Tual-Chalot S, Gill J, Owens A, Spyridopoulos I, Passos J, Richardson G. Senescent cardiomyocytes contribute to cardiac dysfunction following myocardial infarction. RESEARCH SQUARE 2023:rs.3.rs-2776501. [PMID: 37090497 PMCID: PMC10120762 DOI: 10.21203/rs.3.rs-2776501/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Myocardial infarction is a leading cause of morbidity and mortality. While reperfusion is now standard therapy, pathological remodeling leading to heart failure remains a clinical problem. Cellular senescence has been shown to contribute to disease pathophysiology and treatment with the senolytic navitoclax attenuates inflammation, reduces adverse myocardial remodeling and results in improved functional recovery. However, it remains unclear which senescent cell populations contribute to these processes. To identify whether senescent cardiomyocytes contribute to disease pathophysiology post-myocardial infarction, we established a transgenic model in which p16 (CDKN2A) expression was specifically knocked-out in the cardiomyocyte population. Following myocardial infarction, mice lacking cardiomyocyte p16 expression demonstrated no difference in cardiomyocyte hypertrophy but exhibited improved cardiac function and significantly reduced scar size in comparison to control animals. This data demonstrates that senescent cardiomyocytes participate in pathological myocardial remodeling. Importantly, inhibition of cardiomyocyte senescence led to reduced senescence-associated inflammation and decreased senescence-associated markers within other myocardial lineages, consistent with the hypothesis that cardiomyocytes promote pathological remodeling by spreading senescence to other cell-types. Collectively this study presents a novel demonstration that senescent cardiomyocytes are major contributors to myocardial remodeling and dysfunction following a myocardial infarction. Therefore, to maximize the potential for clinical translation, it is important to further understand the mechanisms underlying cardiomyocyte senescence and how to optimize senolytic strategies to target this cell lineage.
Collapse
|
41
|
McElhinney K, Irnaten M, O’Brien C. p53 and Myofibroblast Apoptosis in Organ Fibrosis. Int J Mol Sci 2023; 24:ijms24076737. [PMID: 37047710 PMCID: PMC10095465 DOI: 10.3390/ijms24076737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Organ fibrosis represents a dysregulated, maladaptive wound repair response that results in progressive disruption of normal tissue architecture leading to detrimental deterioration in physiological function, and significant morbidity/mortality. Fibrosis is thought to contribute to nearly 50% of all deaths in the Western world with current treatment modalities effective in slowing disease progression but not effective in restoring organ function or reversing fibrotic changes. When physiological wound repair is complete, myofibroblasts are programmed to undergo cell death and self-clearance, however, in fibrosis there is a characteristic absence of myofibroblast apoptosis. It has been shown that in fibrosis, myofibroblasts adopt an apoptotic-resistant, highly proliferative phenotype leading to persistent myofibroblast activation and perpetuation of the fibrotic disease process. Recently, this pathological adaptation has been linked to dysregulated expression of tumour suppressor gene p53. In this review, we discuss p53 dysregulation and apoptotic failure in myofibroblasts and demonstrate its consistent link to fibrotic disease development in all types of organ fibrosis. An enhanced understanding of the role of p53 dysregulation and myofibroblast apoptosis may aid in future novel therapeutic and/or diagnostic strategies in organ fibrosis.
Collapse
Affiliation(s)
- Kealan McElhinney
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Mustapha Irnaten
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Colm O’Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| |
Collapse
|
42
|
Senescent cardiac fibroblasts: A key role in cardiac fibrosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166642. [PMID: 36669578 DOI: 10.1016/j.bbadis.2023.166642] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Cardiac fibroblasts are a cell population that controls the homeostasis of the extracellular matrix and orchestrates a damage response to maintain cardiac architecture and performance. Due to these functions, fibroblasts play a central role in cardiac fibrosis development, and there are large differences in matrix protein secretion profiles between fibroblasts from aged versus young animals. Senescence is a multifactorial and complex process that has been associated with inflammatory and fibrotic responses. After damage, transient cellular senescence is usually beneficial, as these cells promote tissue repair. However, the persistent presence of senescent cells within a tissue is linked with fibrosis development and organ dysfunction, leading to aging-related diseases such as cardiovascular pathologies. In the heart, early cardiac fibroblast senescence after myocardial infarction seems to be protective to avoid excessive fibrosis; however, in non-infarcted models of cardiac fibrosis, cardiac fibroblast senescence has been shown to be deleterious. Today, two new classes of drugs, termed senolytics and senostatics, which eliminate senescent cells or modify senescence-associated secretory phenotype, respectively, arise as novel therapeutical strategies to treat aging-related pathologies. However, further studies will be needed to evaluate the extent of the utility of senotherapeutic drugs in cardiac diseases, in which pathological context and temporality of the intervention must be considered.
Collapse
|
43
|
Zhong Y, Tang K, Nattel S, Zhai M, Gong S, Yu Q, Zeng Y, E G, Maimaitiaili N, Wang J, Xu Y, Peng W, Li H. Myosin light-chain 4 gene-transfer attenuates atrial fibrosis while correcting autophagic flux dysregulation. Redox Biol 2023; 60:102606. [PMID: 36645977 PMCID: PMC9860351 DOI: 10.1016/j.redox.2023.102606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES To determine the role of MYL4 regulation of lysosomal function and its disturbance in fibrotic atrial cardiomyopathy. BACKGROUND We have previously demonstrated that the atrial-specific essential light chain protein MYL4 is required for atrial contractile, electrical, and structural integrity. MYL4 mutation/dysfunction leads to atrial fibrosis, standstill, and dysrhythmia. However, the underlying pathogenic mechanisms remain unclear. METHODS AND RESULTS Rats subjected to knock-in of a pathogenic MYL4 mutant (p.E11K) developed fibrotic atrial cardiomyopathy. Proteome analysis and single-cell RNA sequencing indicate enrichment of autophagy pathways in mutant-MYL4 atrial dysfunction. Immunofluorescence and electron microscopy revealed undegraded autophagic vesicles accumulated in MYL4p.E11K rat atrium. Next, we identified that dysfunctional MYL4 protein impairs autophagy flux in vitro and in vivo. Cardiac lysosome positioning and mobility were regulated by MYL4 in cardiomyocytes, which affected lysosomal acidification and maturation of lysosomal cathepsins. We then examined the effects of MYL4 overexpression via adenoviral gene-transfer on atrial cardiomyopathy induced by MYL4 mutation: MYL4 protein overexpression attenuated atrial structural remodeling and autophagy dysfunction. CONCLUSIONS MYL4 regulates autophagic flux in atrial cardiomyocytes via lysosomal mobility. MYL4 overexpression attenuates MYL4 p.E11K induced fibrotic atrial cardiomyopathy, while correcting autophagy and lysosomal function. These results provide a molecular basis for MYL4-mutant induced fibrotic atrial cardiomyopathy and identify a potential biological-therapy approach for the treatment of atrial fibrosis.
Collapse
Affiliation(s)
- Yuan Zhong
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute, Montreal, Quebec, Canada; Université de Montréal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany; HIU LYRIC and Fondation Bordeaux Université de Bordeaux, France
| | - Ming Zhai
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shiyu Gong
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanxi Zeng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangxi E
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Nuerbiyemu Maimaitiaili
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Xi T, Wang R, Pi D, Ouyang J, Yang J. The p53/miR-29a-3p axis mediates the antifibrotic effect of leonurine on angiotensin II-stimulated rat cardiac fibroblasts. Exp Cell Res 2023; 426:113556. [PMID: 36933858 DOI: 10.1016/j.yexcr.2023.113556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Overactivation of cardiac fibroblasts (CFs) is one of the main causes of myocardial fibrosis (MF), and inhibition of CF activation is a crucial strategy for MF therapy. A previous study by our group demonstrated that leonurine (LE) effectively inhibits collagen synthesis and myofibroblast generation originated from CFs, and eventually mitigates the progression of MF (where miR-29a-3p is likely to be a vital mediator). However, the underlying mechanisms involved in this process remain unknown. Thus, the present study aimed to investigate the precise role of miR-29a-3p in LE-treated CFs, and to elucidate the pharmacological effects of LE on MF. Neonatal rat CFs were isolated and stimulated by angiotensin II (Ang II) to mimic the pathological process of MF in vitro. The results show that LE distinctly inhibits collagen synthesis, as well as the proliferation, differentiation and migration of CFs, all of which could be induced by Ang II. In addition, LE promotes apoptosis in CFs under Ang II stimulation. During this process, the down-regulated expressions of miR-29a-3p and p53 are partly restored by LE. Either knockdown of miR-29a-3p or inhibition of p53 by PFT-α (a p53 inhibitor) blocks the antifibrotic effect of LE. Notably, PFT-α suppresses miR-29a-3p levels in CFs under both normal and Ang II-treated conditions. Furthermore, ChIP analysis confirmed that p53 is bound to the promoter region of miR-29a-3p, and directly regulates its expression. Overall, our study demonstrates that LE upregulates p53 and miR-29a-3p expression, and subsequently inhibits CF overactivation, suggesting that the p53/miR-29a-3p axis may play a crucial role in mediating the antifibrotic effect of LE against MF.
Collapse
Affiliation(s)
- Tianlan Xi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ruiyu Wang
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Damao Pi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
45
|
Moiseeva V, Cisneros A, Cobos AC, Tarrega AB, Oñate CS, Perdiguero E, Serrano AL, Muñoz-Cánoves P. Context-dependent roles of cellular senescence in normal, aged, and disease states. FEBS J 2023; 290:1161-1185. [PMID: 35811491 DOI: 10.1111/febs.16573] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that often emerges after tissue damage and in age-related diseases. Through the production of a multicomponent secretory phenotype (SASP), senescent cells can impact the regeneration and function of tissues. However, the effects of senescent cells and their SASP are very heterogeneous and depend on the tissue environment and type as well as the duration of injury, the degree of persistence of senescent cells and the organism's age. While the transient presence of senescent cells is widely believed to be beneficial, recent data suggest that it is detrimental for tissue regeneration after acute damage. Furthermore, although senescent cell persistence is typically associated with the progression of age-related chronic degenerative diseases, it now appears to be also necessary for correct tissue function in the elderly. Here, we discuss what is currently known about the roles of senescent cells and their SASP in tissue regeneration in ageing and age-related diseases, highlighting their (negative and/or positive) contributions. We provide insight for future research, including the possibility of senolytic-based therapies and cellular reprogramming, with aims ranging from enhancing tissue repair to extending a healthy lifespan.
Collapse
Affiliation(s)
- Victoria Moiseeva
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Andrés Cisneros
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Aina Calls Cobos
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Aida Beà Tarrega
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Claudia Santos Oñate
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Eusebio Perdiguero
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Antonio L Serrano
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,ICREA, Barcelona, Spain.,Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain
| |
Collapse
|
46
|
Sweeney M, Cook SA, Gil J. Therapeutic opportunities for senolysis in cardiovascular disease. FEBS J 2023; 290:1235-1255. [PMID: 35015342 PMCID: PMC10952275 DOI: 10.1111/febs.16351] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
Abstract
Cellular senescence within the cardiovascular system has, until recently, been understudied and unappreciated as a factor in the development of age-related cardiovascular diseases such as heart failure, myocardial infarction and atherosclerosis. This is in part due to challenges with defining senescence within post-mitotic cells such as cardiomyocytes. However, recent evidence has demonstrated senescent-like changes, including a senescence-associated secretory phenotype (SASP), in cardiomyocytes in response to ageing and cell stress. Other replicating cells, including fibroblasts and vascular smooth muscle cells, within the cardiovascular system have also been shown to undergo senescence and contribute to disease pathogenesis. These findings coupled with the emergence of senolytic therapies, to target and eliminate senescent cells, have provided fascinating new avenues for management of several age-related cardiovascular diseases with high prevalence. In this review, we discuss the role of senescent cells within the cardiovascular system and highlight the contribution of senescence cells to common cardiovascular diseases. We discuss the emerging role for senolytics in cardiovascular disease management while highlighting important aspects of senescence biology which must be clarified before the potential of senolytics can be fully realized.
Collapse
Affiliation(s)
- Mark Sweeney
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Institute of Clinical Sciences (ICS)Faculty of MedicineImperial College LondonUK
- Wellcome Trust / National Institute of Health Research 4i Clinical Research FellowLondonUK
| | - Stuart A. Cook
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Institute of Clinical Sciences (ICS)Faculty of MedicineImperial College LondonUK
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Institute of Clinical Sciences (ICS)Faculty of MedicineImperial College LondonUK
| |
Collapse
|
47
|
Kanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell-ECM adhesions. Nat Rev Mol Cell Biol 2023; 24:142-161. [PMID: 36168065 PMCID: PMC9892292 DOI: 10.1038/s41580-022-00531-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 02/04/2023]
Abstract
The ability of animal cells to sense, adhere to and remodel their local extracellular matrix (ECM) is central to control of cell shape, mechanical responsiveness, motility and signalling, and hence to development, tissue formation, wound healing and the immune response. Cell-ECM interactions occur at various specialized, multi-protein adhesion complexes that serve to physically link the ECM to the cytoskeleton and the intracellular signalling apparatus. This occurs predominantly via clustered transmembrane receptors of the integrin family. Here we review how the interplay of mechanical forces, biochemical signalling and molecular self-organization determines the composition, organization, mechanosensitivity and dynamics of these adhesions. Progress in the identification of core multi-protein modules within the adhesions and characterization of rearrangements of their components in response to force, together with advanced imaging approaches, has improved understanding of adhesion maturation and turnover and the relationships between adhesion structures and functions. Perturbations of adhesion contribute to a broad range of diseases and to age-related dysfunction, thus an improved understanding of their molecular nature may facilitate therapeutic intervention in these conditions.
Collapse
Affiliation(s)
- Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
48
|
Di Pietrantonio N, Di Tomo P, Mandatori D, Formoso G, Pandolfi A. Diabetes and Its Cardiovascular Complications: Potential Role of the Acetyltransferase p300. Cells 2023; 12:431. [PMID: 36766773 PMCID: PMC9914144 DOI: 10.3390/cells12030431] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes has been shown to accelerate vascular senescence, which is associated with chronic inflammation and oxidative stress, both implicated in the development of endothelial dysfunction. This condition represents the initial alteration linking diabetes to related cardiovascular (CV) complications. Recently, it has been hypothesised that the acetyltransferase, p300, may contribute to establishing an early vascular senescent phenotype, playing a relevant role in diabetes-associated inflammation and oxidative stress, which drive endothelial dysfunction. Specifically, p300 can modulate vascular inflammation through epigenetic mechanisms and transcription factors acetylation. Indeed, it regulates the inflammatory pathway by interacting with nuclear factor kappa-light-chain-enhancer of activated B cells p65 subunit (NF-κB p65) or by inducing its acetylation, suggesting a crucial role of p300 as a bridge between NF-κB p65 and the transcriptional machinery. Additionally, p300-mediated epigenetic modifications could be upstream of the activation of inflammatory cytokines, and they may induce oxidative stress by affecting the production of reactive oxygen species (ROS). Because several in vitro and in vivo studies shed light on the potential use of acetyltransferase inhibitors, a better understanding of the mechanisms underlying the role of p300 in diabetic vascular dysfunction could help in finding new strategies for the clinical management of CV diseases related to diabetes.
Collapse
Affiliation(s)
- Nadia Di Pietrantonio
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Pamela Di Tomo
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Gloria Formoso
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
49
|
Seara FAC, Maciel L, Kasai-Brunswick TH, Nascimento JHM, Campos-de-Carvalho AC. Extracellular Vesicles and Cardiac Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:33-56. [PMID: 37603271 DOI: 10.1007/978-981-99-1443-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Global population aging is a major challenge to health and socioeconomic policies. The prevalence of diseases progressively increases with aging, with cardiovascular disease being the major cause of mortality among elderly people. The allostatic overload imposed by the accumulation of cardiac senescent cells has been suggested to play a pivotal role in the aging-related deterioration of cardiovascular function. Senescent cells exhibit intrinsic disorders and release a senescence-associated secretory phenotype (SASP). Most of these SASP compounds and damaged molecules are released from senescent cells by extracellular vesicles (EVs). Once secreted, these EVs can be readily incorporated by recipient neighboring cells and elicit cellular damage or otherwise can promote extracellular matrix remodeling. This has been associated with the development of cardiac dysfunction, fibrosis, and vascular calcification, among others. The molecular signature of these EVs is highly variable and might provide important information for the development of aging-related biomarkers. Conversely, EVs released by the stem and progenitor cells can exert a rejuvenating effect, raising the possibility of future anti-aging therapies.
Collapse
Affiliation(s)
- Fernando A C Seara
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiological Sciences, Institute of Health and Biological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Leonardo Maciel
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Federal University of Rio de Janeiro, Campus Professor Geraldo, Duque de Caxias, Brazil
| | - Tais Hanae Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose H M Nascimento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Health Sciences Centre, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Antonio C Campos-de-Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
50
|
Bloom SI, Islam MT, Lesniewski LA, Donato AJ. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol 2023; 20:38-51. [PMID: 35853997 PMCID: PMC10026597 DOI: 10.1038/s41569-022-00739-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Endothelial cells are located at the crucial interface between circulating blood and semi-solid tissues and have many important roles in maintaining systemic physiological function. The vascular endothelium is particularly susceptible to pathogenic stimuli that activate tumour suppressor pathways leading to cellular senescence. We now understand that senescent endothelial cells are highly active, secretory and pro-inflammatory, and have an aberrant morphological phenotype. Moreover, endothelial senescence has been identified as an important contributor to various cardiovascular and metabolic diseases. In this Review, we discuss the consequences of endothelial cell exposure to damaging stimuli (haemodynamic forces and circulating and endothelial-derived factors) and the cellular and molecular mechanisms that induce endothelial cell senescence. We also discuss how endothelial cell senescence causes arterial dysfunction and contributes to clinical cardiovascular diseases and metabolic disorders. Finally, we summarize the latest evidence on the effect of eliminating senescent endothelial cells (senolysis) and identify important remaining questions to be addressed in future studies.
Collapse
Affiliation(s)
- Samuel I Bloom
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Md Torikul Islam
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Lisa A Lesniewski
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
- Veterans Affairs Medical Center-Salt Lake City, Geriatric Research Education and Clinical Center, Salt Lake City, UT, USA
| | - Anthony J Donato
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.
- Veterans Affairs Medical Center-Salt Lake City, Geriatric Research Education and Clinical Center, Salt Lake City, UT, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|