1
|
Schlegel M, Cyr Y, Newman AAC, Schreyer K, Barcia Durán JG, Sharma M, Bozal FK, Gourvest M, La Forest M, Afonso MS, van Solingen C, Fisher EA, Moore KJ. Targeting Unc5b in macrophages drives atherosclerosis regression and pro-resolving immune cell function. Proc Natl Acad Sci U S A 2024; 121:e2412690121. [PMID: 39436659 PMCID: PMC11536151 DOI: 10.1073/pnas.2412690121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Atherosclerosis results from lipid-driven inflammation of the arterial wall that fails to resolve. Imbalances in macrophage accumulation and function, including diminished migratory capacity and defective efferocytosis, fuel maladaptive inflammation and plaque progression. The neuroimmune guidance cue netrin-1 has dichotomous roles in inflammation partly due to its multiple receptors; in atherosclerosis, netrin-1 promotes macrophage survival and retention via its receptor Unc5b. To minimize the pleiotropic effects of targeting netrin-1, we tested the therapeutic potential of deleting Unc5b in mice with advanced atherosclerosis. We generated Unc5bfl/flCx3cr1creERT2/WT mice, which allowed conditional deletion of Un5b (∆Unc5bMØ) in monocytes and macrophages by tamoxifen injection. After inducing advanced atherosclerosis by hepatic PCSK9 overexpression and western diet feeding for 20 wk, Unc5b was deleted and hypercholesterolemia was normalized to simulate clinical lipid management. Deletion of myeloid Unc5b led to a 40% decrease in atherosclerotic plaque burden and reduced plaque complexity compared to Unc5bfl/flCx3cr1WT/WT littermate controls (CtrlMØ). Consistently, plaque macrophage content was reduced by 50% in ∆Unc5bMØ mice due to reduced plaque Ly6Chi monocyte recruitment and macrophage retention. Compared to CtrlMØ mice, plaques in ∆Unc5bMØ mice had reduced necrotic area and fewer apoptotic cells, which correlated with improved efferocytotic capacity by Unc5b-deficient macrophages in vivo and in vitro. Beneficial changes in macrophage dynamics in the plaque upon Unc5b deletion were accompanied by an increase in atheroprotective T cell populations, including T-regulatory and Th2 cells. Our data identify Unc5b in advanced atherosclerosis as a therapeutic target to induce pro-resolving restructuring of the plaque immune cells and to promote atherosclerosis regression.
Collapse
Affiliation(s)
- Martin Schlegel
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, Klinikum rechts der Isar, Technical University of Munich (TUM) School of Medicine and Health, Munich81675, Germany
| | - Yannick Cyr
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Alexandra A. C. Newman
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Korbinian Schreyer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, Klinikum rechts der Isar, Technical University of Munich (TUM) School of Medicine and Health, Munich81675, Germany
| | - José Gabriel Barcia Durán
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Monika Sharma
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Fazli K. Bozal
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Morgane Gourvest
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Maxwell La Forest
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Milessa S. Afonso
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Coen van Solingen
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Edward A. Fisher
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
- Department of Cell Biology, New York University Langone Health, New York, NY10016
| | - Kathryn J. Moore
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
- Department of Cell Biology, New York University Langone Health, New York, NY10016
| |
Collapse
|
2
|
McGarvey M, Lam LT, Razak MA, Barraclough J, O'Gallagher K, Webb I, Melikian N, Kalra S, MacCarthy P, Shah AM, Hill JM, Johnson TW, Byrne J, Dworakowski R, Pareek N. Impact of lesion morphology on stent elongation during bifurcation PCI: an in vivo OCT study. EUROINTERVENTION 2024; 20:e1184-e1194. [PMID: 39279513 PMCID: PMC11384226 DOI: 10.4244/eij-d-23-00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
BACKGROUND Recent observations in silico and in vivo reported that, during proximal optimisation technique, drug-eluting stents (DES) elongate, challenging conventional wisdom. The interaction between plaque morphology and radial expansion is well established, but little is known about the impact of plaque morphology on elongation. AIMS We aimed to assess the longitudinal mechanical behaviour of contemporary DES in vivo and evaluate the relationship between post-percutaneous coronary intervention (PCI) stent elongation and lesion morphology, as assessed with optical coherence tomography (OCT). METHODS Patients treated with OCT-guided PCI to left main or left anterior descending artery bifurcations, between July 2017 and March 2022, from the King's Optical coherence Database Analysis Compendium were included. Patients were excluded if there were overlapping stents, if they had undergone prior PCI, or if there was inadequate image quality. Lesions were characterised as fibrocalcific, fibrous or lipid-rich by pre-PCI OCT. Following stent post-dilatation, stent expansion and final stent length were assessed. The primary outcome was the percentage change in stent length from baseline. RESULTS Of 501 eligible consecutive patients from this period, 116 were included. The median age was 66 years (interquartile range [IQR] 57-76), 31% were female, and 53.4% were treated for an acute coronary syndrome. A total of 50.0% of lesions were classified as fibrocalcific, 6.9% were fibrous, and 43.1% were lipid-rich. The change in relative stent length was 4.4% (IQR 1.0-8.9), with an increase of 3.1% (IQR 0.5-6.3) in fibrocalcific lesions, 3.3% (IQR 0.5-5.9) in fibrous lesions, and 6.4% (IQR 3.1-11.1) in lipid-rich plaque (p=0.006). In multivariate regression modelling, lipid-rich plaque was an independent predictor of stent elongation (odds ratio 3.689, 95% confidence interval: 1.604-8.484). CONCLUSIONS Contemporary DES elongate following implantation and post-dilatation, and this is significantly mediated by plaque morphology. This is an important consideration when planning a strategy for DES implantation.
Collapse
Affiliation(s)
- Michael McGarvey
- Department of Cardiology, King's College Hospital NHS Foundation Trust, London, United Kingdom
- School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London, United Kingdom
| | - Lap-Tin Lam
- Department of Cardiology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Muhamad Abd Razak
- Department of Cardiology, King's College Hospital NHS Foundation Trust, London, United Kingdom
- School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London, United Kingdom
| | - Jennifer Barraclough
- Bristol Heart Institute, University Hospitals Bristol NHSFT & University of Bristol, Bristol, United Kingdom
| | - Kevin O'Gallagher
- Department of Cardiology, King's College Hospital NHS Foundation Trust, London, United Kingdom
- School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London, United Kingdom
| | - Ian Webb
- Department of Cardiology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Narbeh Melikian
- Department of Cardiology, King's College Hospital NHS Foundation Trust, London, United Kingdom
- School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London, United Kingdom
| | - Sundeep Kalra
- Royal Free NHS Foundation Trust, London, United Kingdom
| | - Philip MacCarthy
- Department of Cardiology, King's College Hospital NHS Foundation Trust, London, United Kingdom
- School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London, United Kingdom
| | - Ajay M Shah
- Department of Cardiology, King's College Hospital NHS Foundation Trust, London, United Kingdom
- School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London, United Kingdom
| | - Jonathan M Hill
- Department of Cardiology, Royal Brompton & Harefield Hospitals, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Thomas W Johnson
- Bristol Heart Institute, University Hospitals Bristol NHSFT & University of Bristol, Bristol, United Kingdom
| | - Jonathan Byrne
- Department of Cardiology, King's College Hospital NHS Foundation Trust, London, United Kingdom
- School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London, United Kingdom
| | - Rafal Dworakowski
- Department of Cardiology, King's College Hospital NHS Foundation Trust, London, United Kingdom
- School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London, United Kingdom
| | - Nilesh Pareek
- Department of Cardiology, King's College Hospital NHS Foundation Trust, London, United Kingdom
- School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Tufaro V, Jaffer FA, Serruys PW, Onuma Y, van der Steen AFW, Stone GW, Muller JE, Marcu L, Van Soest G, Courtney BK, Tearney GJ, Bourantas CV. Emerging Hybrid Intracoronary Imaging Technologies and Their Applications in Clinical Practice and Research. JACC Cardiovasc Interv 2024; 17:1963-1979. [PMID: 39260958 DOI: 10.1016/j.jcin.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 09/13/2024]
Abstract
Intravascular ultrasound and optical coherence tomography are used with increasing frequency for the care of coronary patients and in research studies. These imaging tools can identify culprit lesions in acute coronary syndromes, assess coronary stenosis severity, guide percutaneous coronary intervention (PCI), and detect vulnerable plaques and patients. However, they have significant limitations that have stimulated the development of multimodality intracoronary imaging catheters, which provide improvements in assessing vessel wall pathology and guiding PCI. Prototypes combining 2 or even 3 imaging probes with complementary attributes have been developed, and several multimodality systems have already been used in patients, with near-infrared spectroscopy intravascular ultrasound-based studies showing promising results for the identification of high-risk plaques. Moreover, postmortem histology studies have documented that hybrid imaging catheters can enable more accurate characterization of plaque morphology than standalone imaging. This review describes the evolution in the field of hybrid intracoronary imaging; presents the available multimodality catheters; and discusses their potential role in PCI guidance, vulnerable plaque detection, and the assessment of endovascular devices and emerging pharmacotherapies targeting atherosclerosis.
Collapse
Affiliation(s)
- Vincenzo Tufaro
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
| | - Farouc A Jaffer
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, Galway, Ireland
| | | | - Gregg W Stone
- Department of Cardiology, The Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai, New York, New York, USA
| | - James E Muller
- Brigham and Women's Hospital, Division of Cardiovascular Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Marcu
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Gijs Van Soest
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Brian K Courtney
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Conavi Medical Inc, Toronto, Ontario, Canada
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Institute of Cardiovascular Sciences, University College London, London, United Kingdom.
| |
Collapse
|
4
|
Susekov AV. [Rationale for Increasing Doses of Statins in Everyday Clinical Practice]. KARDIOLOGIIA 2024; 64:79-88. [PMID: 39262357 DOI: 10.18087/cardio.2024.8.n2709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/04/2024] [Indexed: 09/13/2024]
Abstract
HMG-CoA reductase inhibitors (statins) were discovered in the early 1970s in Japan and were originally used to treat patients with hereditary hyperlipidemia. In the late 1990s and early 2000s, clinical trials using statins for primary and secondary prevention showed the possibility of reducing cardiovascular (CV) and, in some cases, all-cause mortality. Intensive statin therapy (atorvastatin 80 mg/day and rosuvastatin 40 mg/day) compared to initial doses provides an additional 16% reduction in CV complications. Regression studies with the original rosuvastatin using intracoronary ultrasound and other modern methods have shown the possibility of stabilization and regression of atherosclerosis in the carotid and coronary arteries. High-dose statin therapy is generally well tolerated; the incidence of clinically significant adverse liver reactions does not exceed 2-3 per 100,000 people, and the incidence of myopathies with increased creatine kinase over 10 upper limits of normal is not higher than 1 per 10,000 people per year. Long-term statin treatment does not increase the risk of dementia and, in some studies, reduced the risk of Alzheimer's disease. Achieving target levels of low-density lipoprotein cholesterol (LDL-C) in routine practice does not exceed 5-11%; one of the main reasons for that is the rare (2-3%) prescription of high doses of statins. Increasing statin doses in routine clinical practice will optimize the treatment of patients with high CV risk and will contribute to further reduction of mortality in our country.
Collapse
Affiliation(s)
- A V Susekov
- Russian Medical Academy of Continuous Professional Education
| |
Collapse
|
5
|
Fu X, Wang Z. DHCR24 in Tumor Diagnosis and Treatment: A Comprehensive Review. Technol Cancer Res Treat 2024; 23:15330338241259780. [PMID: 38847653 PMCID: PMC11162140 DOI: 10.1177/15330338241259780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
As an important nutrient in the human body, cholesterol can not only provide structural components for the body's cells, but also can be transformed into a variety of active substances to regulate cell signaling pathways. As an important cholesterol synthase, DHCR24 participates in important regulatory processes in the body. The application of DHCR24 in tumor clinical diagnosis and treatment also attracts much attention. This article reviews the structure and regulatory characteristics of DHCR24, and the research of DHCR24 on tumor progression. We summarize the possible mechanisms of DHCR24 promoting tumor progression through reactive oxygen species (ROS), p53, Ras and PI3K-AKT pathways. Through our review, we hope to provide more research ideas and reference value for the application of DHCR24 in tumor prevention and treatment.
Collapse
Affiliation(s)
- Xin Fu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhaosong Wang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
6
|
Signoretti C, Gupte SA. G6PD Orchestrates Genome-Wide DNA Methylation and Gene Expression in the Vascular Wall. Int J Mol Sci 2023; 24:16727. [PMID: 38069050 PMCID: PMC10706803 DOI: 10.3390/ijms242316727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and the de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of epigenetic writers and erasers, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. In the aorta of CRISPR-edited rats with the Mediterranean G6PD variant, we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Here, we documented higher expression of Dnmt1, Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aortas from G6PDS188F as compared to wild-type rats. Our results demonstrated that nitric oxide, which is generated in a G6PD-derived NADPH-dependent manner, increases TET and decreases DNMT activity. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveal that the G6PDS188F variant contributes to reducing large artery stiffness.
Collapse
Affiliation(s)
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
7
|
Takata K, Imaizumi S, Iwata A, Zhang B, Kawachi E, Miura SI, Ogawa M. Associations of High-Density Lipoprotein Functionality with Coronary Plaque Characteristics in Diabetic Patients with Coronary Artery Disease: Integrated Backscatter Intravascular Ultrasound Analysis. Biomolecules 2023; 13:1278. [PMID: 37759677 PMCID: PMC10526738 DOI: 10.3390/biom13091278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
High-density lipoprotein (HDL) functionality has been reported to be associated with coronary artery disease (CAD). However, little is known about the impact of HDL functionality on coronary atherosclerosis. Thirty-eight type 2 diabetic patients with CAD who underwent percutaneous coronary intervention were examined. Coronary atheroma burden and plaque composition of the culprit lesions were assessed using conventional gray-scale and integrated backscatter intravascular ultrasound. HDL-mediated cholesterol efflux capacity (HDL-CEC) and HDL antioxidant capacity, estimated as HDL inflammatory index (HII), were examined. The associations between HDL functionality and coronary plaques were analyzed using multivariate data analysis, including principal components analysis and orthogonal partial least squares (OPLS) models. Percent atheroma volume was correlated with HDL-CEC (r = 0.34, p = 0.04) but not with HII (p = 0.65). The OPLS model demonstrated that the percentage lipid volume was significantly associated with HDL functionality [coefficient (95% confidence interval); HDL-CEC: -0.26 (-0.49, -0.04); HII: 0.34 (0.08, 2.60), respectively]. HII exhibited the highest variable importance in projection score, indicating the greatest contribution. HDL functionality was associated with coronary plaque composition, a key component of plaque vulnerability. Our findings highlight the potential importance of HDL functionality for coronary plaque stabilization.
Collapse
Affiliation(s)
- Kohei Takata
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan; (K.T.); (S.-i.M.); (M.O.)
- Department of Clinical Laboratory and Transfusion, Fukuoka University Hospital, Fukuoka 814-0180, Japan
| | - Satoshi Imaizumi
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan; (K.T.); (S.-i.M.); (M.O.)
- Department of Bioethics and Medical Ethics, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Atsushi Iwata
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan; (K.T.); (S.-i.M.); (M.O.)
- Fukuoka University Health Care Center, Fukuoka 814-0180, Japan
| | - Bo Zhang
- Information Technology Center, Fukuoka University, Fukuoka 814-0180, Japan
- Department of Biochemistry, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Emi Kawachi
- Department of Bioethics and Medical Ethics, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Shin-ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan; (K.T.); (S.-i.M.); (M.O.)
| | - Masahiro Ogawa
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan; (K.T.); (S.-i.M.); (M.O.)
- Department of Clinical Laboratory and Transfusion, Fukuoka University Hospital, Fukuoka 814-0180, Japan
| |
Collapse
|
8
|
Noflatscher M, Hunjadi M, Schreinlechner M, Sommer P, Lener D, Theurl M, Kirchmair R, Bauer A, Ritsch A, Marschang P. Inverse Correlation of Cholesterol Efflux Capacity with Peripheral Plaque Volume Measured by 3D Ultrasound. Biomedicines 2023; 11:1918. [PMID: 37509557 PMCID: PMC10376979 DOI: 10.3390/biomedicines11071918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Cardiovascular disease (CVD) is a systemic multifocal illness called atherosclerosis that causes artery constriction and blockage. By causing cholesterol to build up in the artery wall, hypercholesterolemia is a major factor in the pathophysiology of atherosclerotic plaque development. Reverse cholesterol transport is the process of transporting cholesterol from the periphery back to the liver through cholesterol efflux mediated by high-density lipoprotein (HDL). It was suggested that the cholesterol efflux capacity (CEC), which is inversely linked with cardiovascular risk, can serve as a stand-in measure for reverse cholesterol transport. In this work, we sought to investigate a potential link between the peripheral plaque volume (PV) and CEC. METHODS Since lipid-lowering therapy interferes with CEC, we performed a cross-sectional study of 176 patients (48.9% females) with one cardiovascular risk factor or known CVD that did not currently take lipid-lowering medication. CEC was determined using cAMP-treated 3H-cholesterol-labeled J774 cells. Cholesterol ester transfer protein (CETP)-mediated cholesterol ester transfer was measured by quantifying the transfer of cholesterol ester from radiolabeled exogenous HDL cholesterol to Apolipoprotein B-containing lipoproteins. PV in the carotid and the femoral artery, defined as the total PV, was measured using a 3D ultrasound system equipped with semi-automatic software. RESULTS In our patients, we discovered an inverse relationship between high total PV and CEC (p = 0.027). However, there was no connection between total PV and low-density lipoprotein cholesterol, lipoprotein (a), or CETP-mediated cholesterol ester transfer. CONCLUSION In patients not receiving lipid-lowering treatment, CEC inversely correlates with peripheral atherosclerosis, supporting its role in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Maria Noflatscher
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Monika Hunjadi
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Michael Schreinlechner
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Philip Sommer
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Daniela Lener
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Markus Theurl
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Axel Bauer
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Andreas Ritsch
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Peter Marschang
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
- Department of Internal Medicine, Central Hospital of Bolzano (SABES-ASDAA), Via Lorenz Boehler 5, I-39100 Bolzano, Italy
| |
Collapse
|
9
|
Karpouzas GA, Papotti B, Ormseth SR, Palumbo M, Hernandez E, Adorni MP, Zimetti F, Budoff MJ, Ronda N. ATP-binding cassette G1 membrane transporter-mediated cholesterol efflux capacity influences coronary atherosclerosis and cardiovascular risk in Rheumatoid Arthritis. J Autoimmun 2023; 136:103029. [PMID: 36996698 DOI: 10.1016/j.jaut.2023.103029] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVES Cholesterol efflux capacity (CEC) measures the ability of high-density lipoprotein (HDL) to remove cholesterol from macrophages and reduce the lipid content of atherosclerotic plaques. CEC inversely associated with cardiovascular risk beyond HDL-cholesterol levels. CEC through the ATP-binding-cassette G1 (ABCG1) membrane transporter is impaired in rheumatoid arthritis (RA). We evaluated associations of ABCG1-CEC with coronary atherosclerosis, plaque progression and cardiovascular risk in RA. METHODS Coronary atherosclerosis (noncalcified, partially, fully-calcified, low-attenuation plaque) was assessed with computed tomography angiography in 140 patients and reevaluated in 99 after 6.9 ± 0.3 years. Cardiovascular events including acute coronary syndromes, stroke, cardiovascular death, claudication, revascularization and hospitalized heart failure were recorded. ABCG1-CEC was measured in Chinese hamster ovary cells as percentage of effluxed over total intracellular cholesterol. RESULTS ABCG1-CEC inversely associated with extensive atherosclerosis (≥5 plaques) (adjusted odds ratio 0.50 [95% CI 0.28-0.88]), numbers of partially-calcified (rate ratio [RR] 0.71 [0.53-0.94]) and low-attenuation plaques (RR 0.63 [0.43-0.91] per standard deviation increment). Higher ABCG1-CEC predicted fewer new partially-calcified plaques in patients with lower baseline and time-averaged CRP and fewer new noncalcified and calcified plaques in those receiving higher mean prednisone dose. ABCG1-CEC inversely associated with events in patients with but not without noncalcified plaques, with <median but not higher CRP and in prednisone users but not nonusers (p-for-interaction = 0.021, 0.033 and 0.008 respectively). CONCLUSION ABCG1-CEC inversely associated with plaque burden and vulnerability, and plaque progression conditionally on cumulative inflammation and corticosteroid dose. ABCG1-CEC inversely associated with events specifically in patients with noncalcified plaques, lower inflammation and in prednisone users.
Collapse
Affiliation(s)
- George A Karpouzas
- Division of Rheumatology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA.
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Sarah R Ormseth
- Division of Rheumatology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Marcella Palumbo
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Elizabeth Hernandez
- Division of Rheumatology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Maria Pia Adorni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Matthew J Budoff
- Division of Cardiology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
10
|
Tufaro V, Serruys PW, Räber L, Bennett MR, Torii R, Gu SZ, Onuma Y, Mathur A, Baumbach A, Bourantas CV. Intravascular imaging assessment of pharmacotherapies targeting atherosclerosis: advantages and limitations in predicting their prognostic implications. Cardiovasc Res 2023; 119:121-135. [PMID: 35394014 DOI: 10.1093/cvr/cvac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Intravascular imaging has been often used over the recent years to examine the efficacy of emerging therapies targeting plaque evolution. Serial intravascular ultrasound, optical coherence tomography, or near-infrared spectroscopy-intravascular ultrasound studies have allowed us to evaluate the effects of different therapies on plaque burden and morphology, providing unique mechanistic insights about the mode of action of these treatments. Plaque burden reduction, a decrease in necrotic core component or macrophage accumulation-which has been associated with inflammation-and an increase in fibrous cap thickness over fibroatheromas have been used as surrogate endpoints to assess the value of several drugs in inhibiting plaque evolution and improving clinical outcomes. However, some reports have demonstrated weak associations between the effects of novel treatments on coronary atheroma and composition and their prognostic implications. This review examines the value of invasive imaging in assessing pharmacotherapies targeting atherosclerosis. It summarizes the findings of serial intravascular imaging studies assessing the effects of different drugs on atheroma burden and morphology and compares them with the results of large-scale trials evaluating their impact on clinical outcome. Furthermore, it highlights the limited efficacy of established intravascular imaging surrogate endpoints in predicting the prognostic value of these pharmacotherapies and introduces alternative imaging endpoints based on multimodality/hybrid intravascular imaging that may enable more accurate assessment of the athero-protective and prognostic effects of emerging therapies.
Collapse
Affiliation(s)
- Vincenzo Tufaro
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Sophie Zhaotao Gu
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway, Ireland
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
- Yale University School of Medicine, New Haven, CT, USA
| | - Christos Vasileios Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
- Institute of Cardiovascular Sciences, University College London, London, UK
| |
Collapse
|
11
|
Signoretti C, Gupte SA. Studies in CRISPR-generated Mediterranean G6PD variant rats reveal G6PD orchestrates genome-wide DNA methylation and gene expression in vascular wall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531429. [PMID: 36945640 PMCID: PMC10028921 DOI: 10.1101/2023.03.06.531429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Background Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of DNMTs and TETs, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. Methods In aorta of CRISPR-edited rats with the Mediterranean G6PD variant we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Results Here, we documented higher expression of Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5,787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aorta from G6PDS188F as compared to wild-type rats. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. Conclusions These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveals G6PDS188F variant contributes to reduce large artery stiffness.
Collapse
Affiliation(s)
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA, 10595
| |
Collapse
|
12
|
Zhang X, Chen J, Brott BC, Anderson PG, Hwang P, Sherwood J, Huskin G, Yoon YS, Virmani R, Jun HW. Pro-Healing Nanomatrix-Coated Stent Analysis in an In Vitro Vascular Double-Layer System and in a Rabbit Model. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51728-51743. [PMID: 36346768 PMCID: PMC10860673 DOI: 10.1021/acsami.2c15554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cardiovascular stent technologies have significantly improved over time. However, their optimal performance remains limited by restenosis, thrombosis, inflammation, and delayed re-endothelialization. Current stent designs primarily target inhibition of neointimal proliferation but do not promote functional arterial healing (pro-healing) in order to restore normal vascular reactivity. The endothelial lining that does develop with current stents appears to have loose intracellular junctions. We have developed a pro-healing nanomatrix coating for stents that enhances healing while limiting neointimal proliferation. This builds on our prior work evaluating the effects of the pro-healing nanomatrix coating on cultures of vascular endothelial cells (ECs), smooth muscle cells (SMCs), monocytes, and platelets. However, when a stent is deployed in an artery, multiple vascular cell types interact, and their interactions affect stent performance. Thus, in our current study, an in vitro vascular double-layer (VDL) system was used to observe stent effects on communication between different vascular cell types. Additionally, we assessed the pro-healing ability and vascular cell interactions after stent deployment in the VDL system and in a rabbit model, evaluating the nanomatrix-coated stent compared to a commercial bare metal stent (BMS) and a drug eluting stent (DES). In vitro results indicated that, in a layered vascular structure, the pro-healing nanomatrix-coated stent could (1) improve endothelialization and endothelial functions, (2) regulate SMC phenotype to reduce SMC proliferation and migration, (3) suppress inflammation through a multifactorial manner, and (4) reduce foam cell formation, extracellular matrix remodeling, and calcification. Consistent with this, in vivo results demonstrated that, compared with commercial BMS and DES, this pro-healing nanomatrix-coated stent enhanced re-endothelialization with negligible restenosis, inflammation, or thrombosis. Thus, these findings indicate the unique pro-healing features of this nanomatrix stent coating with superior efficacy over commercial BMS and DES.
Collapse
Affiliation(s)
- Xixi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Jun Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Brigitta C. Brott
- Department of Medicine and Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, 35233, United States
- Endomimetics, LLC, Birmingham, AL, 35242, United States
| | - Peter G. Anderson
- Department of Medicine, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Patrick Hwang
- Endomimetics, LLC, Birmingham, AL, 35242, United States
| | | | - Gillian Huskin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Young-sup Yoon
- School of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, United States
| | - Renu Virmani
- CVPath Institute, Inc., Gaithersburg, MD, 20878, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
- Endomimetics, LLC, Birmingham, AL, 35242, United States
| |
Collapse
|
13
|
Parry R, Majeed K, Pixley F, Hillis GS, Francis RJ, Schultz CJ. Unravelling the role of macrophages in cardiovascular inflammation through imaging: a state-of-the-art review. Eur Heart J Cardiovasc Imaging 2022; 23:e504-e525. [PMID: 35993316 PMCID: PMC9671294 DOI: 10.1093/ehjci/jeac167] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death and disability for patients across the world. Our understanding of atherosclerosis as a primary cholesterol issue has diversified, with a significant dysregulated inflammatory component that largely remains untreated and continues to drive persistent cardiovascular risk. Macrophages are central to atherosclerotic inflammation, and they exist along a functional spectrum between pro-inflammatory and anti-inflammatory extremes. Recent clinical trials have demonstrated a reduction in major cardiovascular events with some, but not all, anti-inflammatory therapies. The recent addition of colchicine to societal guidelines for the prevention of recurrent cardiovascular events in high-risk patients with chronic coronary syndromes highlights the real-world utility of this class of therapies. A highly targeted approach to modification of interleukin-1-dependent pathways shows promise with several novel agents in development, although excessive immunosuppression and resulting serious infection have proven a barrier to implementation into clinical practice. Current risk stratification tools to identify high-risk patients for secondary prevention are either inadequately robust or prohibitively expensive and invasive. A non-invasive and relatively inexpensive method to identify patients who will benefit most from novel anti-inflammatory therapies is required, a role likely to be fulfilled by functional imaging methods. This review article outlines our current understanding of the inflammatory biology of atherosclerosis, upcoming therapies and recent landmark clinical trials, imaging modalities (both invasive and non-invasive) and the current landscape surrounding functional imaging including through targeted nuclear and nanobody tracer development and their application.
Collapse
Affiliation(s)
- Reece Parry
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| | - Kamran Majeed
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Waikato District Health Board, Hamilton 3204, New Zealand
| | - Fiona Pixley
- School of Biomedical Sciences, Pharmacology and Toxicology, University of Western Australia, Perth 6009, Australia
| | - Graham Scott Hillis
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| | - Roslyn Jane Francis
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth 6009, Australia
| | - Carl Johann Schultz
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| |
Collapse
|
14
|
Zheng L, Lin G, Li R, Gan H, Huang X, Yao N, Cai D, Zhao Z, Hu Z, Li M, Xu H, Li L, Peng S, Zhao X, Lai Y, Chen Y, Huang D. Isochlorogenic Acid C Alleviates High-Fat Diet-Induced Hyperlipemia by Promoting Cholesterol Reverse Transport. Front Pharmacol 2022; 13:881078. [PMID: 35959429 PMCID: PMC9358028 DOI: 10.3389/fphar.2022.881078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Promoting cholesterol reverse transport (RCT) has been proven to be a promising hyperlipidemia therapy since it is more effective for the treatment of atherosclerosis (AS) caused by hyperlipidemia. Liver X receptor (LXR) agonists can accelerate RCT, but most of them trigger undesirable liver steatosis due to the activation of liver LXRα. Aim: We aim to figure out whether isochlorogenic acid C (ICAC) facilitates RCT without causing hepatic steatosis. Methods:In vitro study, we established foam macrophages and macrophages with loaded NBD-cholesterol models to investigate the competence of RCT promoting ICAC. RT-qPCR and Western blot were used to verify ICAC’s regulation of RCT and NF-κB inflammatory pathways. In this in vivo study, male 6-week-old C57BL/6 mice were fed a high-fat diet (HFD) to investigate ICAC’s anti-hyperlipidemic effect and its functions in regulating RCT. The anti-hyperlipidemic effect of ICAC was evaluated by blood and liver lipid levels, liver hematoxylin, oil red o staining, and liver coefficient. Finally, mRNA levels of genes involved in RCT and inflammation pathways in the liver and intestine were detected by RT-qPCR. Results: ICAC prevented macrophages from foaming by up-regulating the LXRα mediated RCT pathway and down-regulating expression of the cholesterol absorption genes LDLR and CD36, as well as suppressing iNOS, COX2, and IL-1β inflammatory factors. In HFD-fed mice, ICAC significantly lowered the lipid level both in the serum and the liver. Mechanistic studies showed that ICAC strengthened the RCT pathway in the liver and intestine but didn’t affect liver LXRα. Furthermore, ICAC impeded both adipogenesis and the inflammatory response in the liver. Conclusion: ICAC accelerated RCT without affecting liver LXRα, thus resulting in a lipid-lowering effect without increasing liver adipogenesis. Our results indicated that ICAC could be a new RCT promoter for hyperlipidemia treatment without causing liver steatosis.
Collapse
Affiliation(s)
- Liuyi Zheng
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Guangyao Lin
- School of Marxism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruyue Li
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
- Department of Pharmacy, Zhengzhou People’s Hospital, Zhengzhou, China
| | - Haining Gan
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Xuejun Huang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Nan Yao
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Dake Cai
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Ziming Zhao
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Zixuan Hu
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Minyi Li
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Huazhen Xu
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Leyi Li
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Sha Peng
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Xinxin Zhao
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Yijing Lai
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Yuxing Chen
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
- *Correspondence: Yuxing Chen, ; Dane Huang,
| | - Dane Huang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
- *Correspondence: Yuxing Chen, ; Dane Huang,
| |
Collapse
|
15
|
Kalayci A, Gibson CM, Ridker PM, Wright SD, Kingwell BA, Korjian S, Chi G, Lee JJ, Tricoci P, Kazmi SH, Fitzgerald C, Shaunik A, Berman G, Duffy D, Libby P. ApoA-I Infusion Therapies Following Acute Coronary Syndrome: Past, Present, and Future. Curr Atheroscler Rep 2022; 24:585-597. [PMID: 35524914 PMCID: PMC9236992 DOI: 10.1007/s11883-022-01025-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW The elevated adverse cardiovascular event rate among patients with low high-density lipoprotein cholesterol (HDL-C) formed the basis for the hypothesis that elevating HDL-C would reduce those events. Attempts to raise endogenous HDL-C levels, however, have consistently failed to show improvements in cardiovascular outcomes. However, steady-state HDL-C concentration does not reflect the function of this complex family of particles. Indeed, HDL functions correlate only weakly with serum HDL-C concentration. Thus, the field has pivoted from simply raising the quantity of HDL-C to a focus on improving the putative anti-atherosclerotic functions of HDL particles. Such functions include the ability of HDL to promote the efflux of cholesterol from cholesterol-laden macrophages. Apolipoprotein A-I (apoA-I), the signature apoprotein of HDL, may facilitate the removal of cholesterol from atherosclerotic plaque, reduce the lesional lipid content and might thus stabilize vulnerable plaques, thereby reducing the risk of cardiac events. Infusion of preparations of apoA-I may improve cholesterol efflux capacity (CEC). This review summarizes the development of apoA-I therapies, compares their structural and functional properties and discusses the findings of previous studies including their limitations, and how CSL112, currently being tested in a phase III trial, may overcome these challenges. RECENT FINDINGS Three major ApoA-I-based approaches (MDCO-216, CER-001, and CSL111/CSL112) have aimed to enhance reverse cholesterol transport. These three therapies differ considerably in both lipid and protein composition. MDCO-216 contains recombinant ApoA-I Milano, CER-001 contains recombinant wild-type human ApoA-I, and CSL111/CSL112 contains native ApoA-I isolated from human plasma. Two of the three agents studied to date (apoA-1 Milano and CER-001) have undergone evaluation by intravascular ultrasound imaging, a technique that gauges lesion volume well but does not assess other important variables that may relate to clinical outcomes. ApoA-1 Milano and CER-001 reduce lecithin-cholesterol acyltransferase (LCAT) activity, potentially impairing the function of HDL in reverse cholesterol transport. Furthermore, apoA-I Milano can compete with and alter the function of the recipient's endogenous apoA-I. In contrast to these agents, CSL112, a particle formulated using human plasma apoA-I and phosphatidylcholine, increases LCAT activity and does not lead to the malfunction of endogenous apoA-I. CSL112 robustly increases cholesterol efflux, promotes reverse cholesterol transport, and now is being tested in a phase III clinical trial. Phase II-b studies of MDCO-216 and CER-001 failed to produce a significant reduction in coronary plaque volume as assessed by IVUS. However, the investigation to determine whether the direct infusion of a reconstituted apoA-I reduces post-myocardial infarction coronary events is being tested using CSL112, which is dosed at a higher level than MDCO-216 and CER-001 and has more favorable pharmacodynamics.
Collapse
Affiliation(s)
- Arzu Kalayci
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C Michael Gibson
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Baim Institute for Clinical Research, Boston, MA, USA
| | - Paul M Ridker
- Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Serge Korjian
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gerald Chi
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jane J Lee
- Baim Institute for Clinical Research, Boston, MA, USA
| | | | - S Hassan Kazmi
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Clara Fitzgerald
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Gail Berman
- Paratek Pharmaceuticals, King of Prussia, PA, USA
| | | | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Ying Q, Ronca A, Chan DC, Pang J, Favari E, Watts GF. Effect of a PCSK9 inhibitor and a statin on cholesterol efflux capacity: A limitation of current cholesterol-lowering treatments? Eur J Clin Invest 2022; 52:e13766. [PMID: 35294778 PMCID: PMC9541635 DOI: 10.1111/eci.13766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/06/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cellular cholesterol efflux is a key step in reverse cholesterol transport that may impact on atherosclerotic cardiovascular risk. The process may be reliant on the availability of apolipoprotein (apo) B-100-containing lipoproteins to accept cholesterol from high-density lipoprotein. Evolocumab and atorvastatin are known to lower plasma apoB-100-containing lipoproteins that could impact on cholesterol efflux capacity (CEC). METHODS We conducted a 2-by-2 factorial trial of the effects of subcutaneous evolocumab (420 mg every 2 weeks) and atorvastatin (80 mg daily) for 8 weeks on CEC in 81 healthy, normolipidaemic men. The capacity of whole plasma and apoB-depleted plasma, including ATP-binding cassette transporter A1 (ABCA1)-mediated and passive diffusion, to efflux cholesterol, was measured. RESULTS Evolocumab and atorvastatin independently decreased whole plasma CEC (main effect p < .01 for both). However, there were no significant effects of evolocumab and atorvastatin on apoB-depleted plasma, ABCA1-mediated and passive diffusion-mediated CEC (p > .05 in all). In the three intervention groups combined, the reduction in whole plasma CEC was significantly correlated with the corresponding reduction in plasma apoB-100 concentration (r = .339, p < .01). In the evolocumab monotherapy group, the reduction in whole plasma CEC was also significantly correlated with the corresponding reduction in plasma lipoprotein(a) concentration (r = .487, p < .05). CONCLUSIONS In normolipidaemic men, evolocumab and atorvastatin decrease the capacity of whole plasma to efflux cellular cholesterol. These effects may be chiefly owing to a fall in the availability of apoB-100-containing lipoproteins. Reduction in circulating lipoprotein(a) may also contribute to the decrease in whole plasma cholesterol efflux with evolocumab monotherapy.
Collapse
Affiliation(s)
- Qidi Ying
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Annalisa Ronca
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Dick C Chan
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jing Pang
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Gerald F Watts
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Lipid Disorders Clinic, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
17
|
Chamaria S, Ueyama H, Yasumura K, Johnson KW, Vengrenyuk Y, Okamoto N, Barman N, Bhatheja S, Kapur V, Hasan C, Sweeney J, Baber U, Sharma SK, Narula J, Kini AS. Coronary plaque vulnerability in statin-treated patients with elevated LDL-C and hs-CRP: optical coherence tomography study. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2022; 38:1157-1167. [PMID: 38819727 DOI: 10.1007/s10554-021-02238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/03/2021] [Indexed: 11/30/2022]
Abstract
There have been no previous attempts to assess coronary plaque morphology in statin-treated patients with combined residual cholesterol and inflammatory risk. The aim of this study was to characterize the morphology using optical coherence tomography (OCT) and to investigate the underlying molecular mechanisms. Two hundred seventy statin-treated patients with stable coronary artery disease who underwent OCT imaging prior to elective percutaneous coronary intervention were included in this single-center retrospective analysis. Subjects were stratified into four groups based on low-density lipoprotein cholesterol (LDL-C) and high-sensitivity C-reactive protein (hs-CRP) levels using 70 mg/dl and 2 mg/L as cut-offs, respectively. OCT images of the target lesions were assessed. For a subset of patients, peripheral blood mononuclear cells (PBMC) were isolated, and gene expression was characterized using microarray analysis. Patients with high LDL-C and high hs-CRP demonstrated a higher frequency of lipid-rich plaques (LRP) (91%, P = 0.03) by OCT. LRPs in these patients had a greater maximal lipid arc (186.6 ± 92.5°, P = 0.047). In addition, plaques from patients who did not achieve dual-target were less frequently calcified (P = 0.003). If calcification was present, it was characterized by a lower maximal arc (P = 0.016) and shorter length (P = 0.025). PBMC gene expression analysis demonstrated functional enrichment of toll-like receptors (TLRs) 1-9 to be associated with high LDL-C and hs-CRP. Obstructive coronary lesions in patients on statin therapy with combined residual cholesterol and inflammatory risk demonstrated a higher prevalence of LRP with greater maximal lipid arcs and more frequent spotty calcifications. PBMC from these patients revealed functional enrichment of TLR 1-9.
Collapse
Affiliation(s)
- Surbhi Chamaria
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine At Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Hiroki Ueyama
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine At Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
- Department of Medicine, Icahn School of Medicine At Mount Sinai, Mount Sinai Beth Israel, New York, NY, USA
| | - Keisuke Yasumura
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine At Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Kipp W Johnson
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine At Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Yuliya Vengrenyuk
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine At Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Naotaka Okamoto
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine At Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Nitin Barman
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine At Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Samit Bhatheja
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine At Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Vishal Kapur
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine At Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Choudhury Hasan
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine At Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Joseph Sweeney
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine At Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Usman Baber
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine At Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Samin K Sharma
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine At Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Jagat Narula
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine At Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Annapoorna S Kini
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine At Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA.
| |
Collapse
|
18
|
Zhang Y, Zhao X, Ding X, Chen H, Li H, Li W. Association of Prior Statin Therapy With Cardiovascular Outcomes in Patients With Initial Diagnosis of OCAD and LDL-C Below 1.8 mmol/L. Angiology 2022; 73:936-945. [PMID: 35191328 DOI: 10.1177/00033197221075861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study investigated the effect of prior statin therapy on cardiovascular outcomes in patients with a diagnosis of obstructive coronary artery disease (OCAD) and low-density lipoprotein cholesterol (LDL-C) <1.8 mmol/L. A total of 1330 patients with baseline LDL-C <1.8 mmol/L were included; 548 had received prior statin therapy [prior statin (+)] and 782 had no prior statin [prior statin (-)]. Major adverse cardiac and cerebral event (MACCE) during hospitalization and a median follow-up of 25 months were analyzed. Compared with the prior statin (-) group, who displayed similar atherosclerotic cardiovascular disease risk burden including 71.6% with hypertension, 39.1% with diabetes, and 76.1% with ≥3 risk factors, the prior statin (+) group had significantly lower incidence of composite MACCE, all-cause death and cardiovascular death. After multivariable adjustment, non-prior statin therapy was independently associated with all-cause death [hazard ratio (HR) 2.09, 95% confidence interval (CI), 1.13-3.87, P = .019] and cardiovascular death (HR 2.28, 95% CI, 1.04-5.00, P = .040), particularly in the subgroups aged ≥65 years and with hypertension. Overall, compared with "naturally" LDL-C <1.8 mmol/L without statin, prior statin therapy to achieve an LDL-C <1.8 mmol/L independently predicted a lower risk of all-cause and cardiovascular mortality in patients with a diagnosis of OCAD.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, 26455Capital Medical University, Beijing, China
| | - Xueqiao Zhao
- Clinical Atherosclerosis Research Lab, Division of Cardiology, 7284University of Washington, Seattle, WA, USA
| | - Xiaosong Ding
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, 26455Capital Medical University, Beijing, China
| | - Hui Chen
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, 26455Capital Medical University, Beijing, China
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, 26455Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, China.,Department of Internal Medicine, Medical Health Center, Beijing Friendship Hospital, 26455Capital Medical University, Beijing, China
| | - Weiping Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, 26455Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, China
| |
Collapse
|
19
|
Gao F, Wang ZJ, Ma XT, Shen H, Yang LX, Zhou YJ. Effect of alirocumab on coronary plaque in patients with coronary artery disease assessed by optical coherence tomography. Lipids Health Dis 2021; 20:106. [PMID: 34511134 PMCID: PMC8436513 DOI: 10.1186/s12944-021-01528-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors have been demonstrated to produce significantly greater reduction in LDL cholesterol levels and cardiovascular events than standard statin therapy. However, evidence on the impact of PCSK9 inhibitors on coronary plaque composition and morphology is limited. METHODS In this open-label randomized study, eligible patients with intermediate coronary lesions and elevated LDL cholesterol values were randomized to either alirocumab 75 mg Q2W plus statin (atorvastatin 20 mg/day or rosuvastatin 10 mg/day) therapy or standard care. Optical coherence tomography (OCT) assessments for target lesions were obtained at baseline and at 36 weeks of follow-up. RESULTS LDL cholesterol levels were significantly decreased in both the alirocumab and standard care arms, whereas the absolute reduction in LDL cholesterol was significantly greater in patients treated with alirocumab (1.72 ± 0.51 vs. 0.96 ± 0.59, P < 0.0001). Compared with standard care, the addition of alirocumab to statins was associated with significantly greater increases in minimum fibrous cap thickness (18.0 [10.8-29.2] μm vs 13.2 [7.4-18.6] μm; P = 0.029), greater increases in minimum lumen area (0.20[0.10-0.33] mm2 vs 0.13 [0.12-0.24] mm2; P = 0.006) and a greater diminution in maximum lipid arc (15.1̊ [7.8-24.5] vs. 8.4̊ [2.0-10.5]; P = 0.008). CONCLUSIONS The addition of alirocumab to statins can not only provide additional LDL cholesterol lowering effects but also have a potential role in promoting a more stable plaque phenotype. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04851769 . Registered 2 Mar 2019.
Collapse
MESH Headings
- Aged
- Antibodies, Monoclonal, Humanized/therapeutic use
- Anticholesteremic Agents/therapeutic use
- Atorvastatin/therapeutic use
- Cholesterol, LDL/antagonists & inhibitors
- Cholesterol, LDL/blood
- Coronary Artery Disease/blood
- Coronary Artery Disease/diagnostic imaging
- Coronary Artery Disease/drug therapy
- Coronary Artery Disease/pathology
- Drug Synergism
- Drug Therapy, Combination
- Female
- Follow-Up Studies
- Gene Expression
- Humans
- Male
- Middle Aged
- PCSK9 Inhibitors/therapeutic use
- Plaque, Atherosclerotic/blood
- Plaque, Atherosclerotic/diagnostic imaging
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/pathology
- Proprotein Convertase 9/blood
- Proprotein Convertase 9/genetics
- Rosuvastatin Calcium/therapeutic use
- Tomography, Optical Coherence
Collapse
Affiliation(s)
- Fei Gao
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Anzhenli avenue, Chao Yang district, Beijing, 100029, China.
| | - Zhi Jian Wang
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Anzhenli avenue, Chao Yang district, Beijing, 100029, China
| | - Xiao Teng Ma
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Anzhenli avenue, Chao Yang district, Beijing, 100029, China
| | - Hua Shen
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Anzhenli avenue, Chao Yang district, Beijing, 100029, China
| | - Li Xia Yang
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Anzhenli avenue, Chao Yang district, Beijing, 100029, China
| | - Yu Jie Zhou
- Department of Cardiology, An Zhen Hospital, Capital Medical University, Anzhenli avenue, Chao Yang district, Beijing, 100029, China.
| |
Collapse
|
20
|
Le Lay JE, Du Q, Mehta MB, Bhagroo N, Hummer BT, Falloon J, Carlson G, Rosenbaum AI, Jin C, Kimko H, Tsai LF, Novick S, Cook B, Han D, Han CY, Vaisar T, Chait A, Karathanasis SK, Rhodes CJ, Hirshberg B, Damschroder MM, Hsia J, Grimsby JS. Blocking endothelial lipase with monoclonal antibody MEDI5884 durably increases high density lipoprotein in nonhuman primates and in a phase 1 trial. Sci Transl Med 2021; 13:13/590/eabb0602. [PMID: 33883272 DOI: 10.1126/scitranslmed.abb0602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) is the leading global cause of death, and treatments that further reduce CV risk remain an unmet medical need. Epidemiological studies have consistently identified low high-density lipoprotein cholesterol (HDL-C) as an independent risk factor for CVD, making HDL elevation a potential clinical target for improved CVD resolution. Endothelial lipase (EL) is a circulating enzyme that regulates HDL turnover by hydrolyzing HDL phospholipids and driving HDL particle clearance. Using MEDI5884, a first-in-class, EL-neutralizing, monoclonal antibody, we tested the hypothesis that pharmacological inhibition of EL would increase HDL-C by enhancing HDL stability. In nonhuman primates, MEDI5884 treatment resulted in lasting, dose-dependent elevations in HDL-C and circulating phospholipids, confirming the mechanism of EL action. We then showed that a favorable lipoprotein profile of elevated HDL-C and reduced low-density lipoprotein cholesterol (LDL-C) could be achieved by combining MEDI5884 with a PCSK9 inhibitor. Last, when tested in healthy human volunteers, MEDI5884 not only raised HDL-C but also increased HDL particle numbers and average HDL size while enhancing HDL functionality, reinforcing EL neutralization as a viable clinical approach aimed at reducing CV risk.
Collapse
Affiliation(s)
- John E Le Lay
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Qun Du
- Biologic Therapeutics, Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Minal B Mehta
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Nicholas Bhagroo
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - B Timothy Hummer
- CVRM Safety, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Judith Falloon
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Glenn Carlson
- Clinical CV, Late Stage Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - ChaoYu Jin
- Clinical Immunology and Bioanalysis, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - Holly Kimko
- Clinical Pharmacology and DMPK, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Lan-Feng Tsai
- CVRM Biometrics, Data Sciences and AI, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Steven Novick
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Bill Cook
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - David Han
- Parexel International, Glendale, CA 91206, USA
| | - Chang Yeop Han
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98915, USA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98915, USA
| | - Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98915, USA
| | - Sotirios K Karathanasis
- Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Boaz Hirshberg
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Melissa M Damschroder
- Biologic Therapeutics, Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Judith Hsia
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Joseph S Grimsby
- Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
| |
Collapse
|
21
|
Rohatgi A, Westerterp M, von Eckardstein A, Remaley A, Rye KA. HDL in the 21st Century: A Multifunctional Roadmap for Future HDL Research. Circulation 2021; 143:2293-2309. [PMID: 34097448 PMCID: PMC8189312 DOI: 10.1161/circulationaha.120.044221] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Low high-density lipoprotein cholesterol (HDL-C) characterizes an atherogenic dyslipidemia that reflects adverse lifestyle choices, impaired metabolism, and increased cardiovascular risk. Low HDL-C is also associated with increased risk of inflammatory disorders, malignancy, diabetes, and other diseases. This epidemiologic evidence has not translated to raising HDL-C as a viable therapeutic target, partly because HDL-C does not reflect high-density lipoprotein (HDL) function. Mendelian randomization analyses that have found no evidence of a causal relationship between HDL-C levels and cardiovascular risk have decreased interest in increasing HDL-C levels as a therapeutic target. HDLs comprise distinct subpopulations of particles of varying size, charge, and composition that have several dynamic and context-dependent functions, especially with respect to acute and chronic inflammatory states. These functions include reverse cholesterol transport, inhibition of inflammation and oxidation, and antidiabetic properties. HDLs can be anti-inflammatory (which may protect against atherosclerosis and diabetes) and proinflammatory (which may help clear pathogens in sepsis). The molecular regulation of HDLs is complex, as evidenced by their association with multiple proteins, as well as bioactive lipids and noncoding RNAs. Clinical investigations of HDL biomarkers (HDL-C, HDL particle number, and apolipoprotein A through I) have revealed nonlinear relationships with cardiovascular outcomes, differential relationships by sex and ethnicity, and differential patterns with coronary versus noncoronary events. Novel HDL markers may also have relevance for heart failure, cancer, and diabetes. HDL function markers (namely, cholesterol efflux capacity) are associated with coronary disease, but they remain research tools. Therapeutics that manipulate aspects of HDL metabolism remain the holy grail. None has proven to be successful, but most have targeted HDL-C, not metrics of HDL function. Future therapeutic strategies should focus on optimizing HDL function in the right patients at the optimal time in their disease course. We provide a framework to help the research and clinical communities, as well as funding agencies and stakeholders, obtain insights into current thinking on these topics, and what we predict will be an exciting future for research and development on HDLs.
Collapse
Affiliation(s)
- Anand Rohatgi
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Marit Westerterp
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Alan Remaley
- Section Chief of Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch; National Heart, Lung and Blood Institute, National Institutes of Health; Bethesda, MD
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Australia, 2052
| |
Collapse
|
22
|
Intensive statin versus low-dose statin + ezetimibe treatment for fibrous cap thickness of coronary vulnerable plaques. Chin Med J (Engl) 2021; 133:2415-2421. [PMID: 32889912 PMCID: PMC7575174 DOI: 10.1097/cm9.0000000000001067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Acute coronary syndromes mainly result from abrupt thrombotic occlusion caused by atherosclerotic vulnerable plaques (VPs) that suddenly rupture or erosion. Fibrous cap thickness (FCT) is a major determinant of the propensity of a VP to rupture and is recognized as a key factor. The intensive use of statins is known to have the ability to increase FCT; however, there is a risk of additional adverse effects. However, lower dose statin with ezetimibe is known to be tolerable by patients. The present study aimed to investigate the effect of intensive statin vs. low-dose stain + ezetimibe therapy on FCT, as evaluated using optical coherence tomography. METHOD Patients who had VPs (minimum FCT <65 μm and lipid core >90°) and deferred from intervention in our single center from January 2014 to December 2018 were included in the trial. They were divided into the following two groups: intensive statin group (rosuvastatin 15-20 mg or atorvastatin 30-40 mg) and combination therapy group (rosuvastatin 5-10 mg or atorvastatin 10-20 mg + ezetimibe 10 mg). At the 12-month follow-up, we compared the change in the FCT (ΔFCT%) between the two groups and analyzed the association of ΔFCT% with risk factors. Fisher exact test was used for all categorical variables. Student's t test or Mann-Whitney U-test was used for analyzing the continuous data. The relationship between ΔFCT% and risk factors was analyzed using linear regression analysis. RESULT Total 53 patients were finally enrolled, including 26 patients who were in the intensive statin group and 27 who were in the combination therapy group. At the 12-month follow-up, the serum levels of total cholesterol (TC), total triglyceride, low-density lipoprotein (LDL-C), hypersensitive C-reactive protein (hs-CRP), and lipoprotein-associated phospholipase A2 (Lp-PLA2) levels were reduced in both the groups. The ΔTC%, ΔLDL-C%, and ΔLp-PLA2% were decreased further in the combination therapy group. FCT was increased in both the groups (combination treatment group vs. intensive statin group: 128.89 ± 7.64 vs. 110.19 ± 7.00 μm, t = -9.282, P < 0.001) at the 12-month follow-up. The increase in ΔFCT% was more in the combination therapy group (123.46% ± 14.05% vs. 91.14% ± 11.68%, t = -9.085, P < 0.001). Based on the multivariate linear regression analysis, only the serum Lp-PLA2 at the 12-month follow-up (B = -0.203, t = -2.701, P = 0.010), ΔTC% (B = -0.573, t = -2.048, P = 0.046), and Δhs-CRP% (B = -0.302, t = -2.963, P = 0.005) showed an independent association with ΔFCT%. CONCLUSIONS Low-dose statin combined with ezetimibe therapy maybe provide a profound and significant increase in FCT as compared to intensive statin monotherapy. The reductions in Lp-PLA2, ΔTC%, and Δhs-CRP% are independently associated with an increase in FCT.
Collapse
|
23
|
Narula J, Chandrashekhar Y, Ahmadi A, Abbara S, Berman DS, Blankstein R, Leipsic J, Newby D, Nicol ED, Nieman K, Shaw L, Villines TC, Williams M, Hecht HS. SCCT 2021 Expert Consensus Document on Coronary Computed Tomographic Angiography: A Report of the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr 2021; 15:192-217. [PMID: 33303384 PMCID: PMC8713482 DOI: 10.1016/j.jcct.2020.11.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Y Chandrashekhar
- University of Minnesota and VA Medical Center, Minneapolis, MN, USA
| | - Amir Ahmadi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Suhny Abbara
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Ron Blankstein
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | | | - David Newby
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Edinburgh, United Kingdom
| | - Edward D Nicol
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Leslee Shaw
- New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Todd C Villines
- University of Virginia Health System, Charlottesville, VA, USA
| | - Michelle Williams
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Edinburgh, United Kingdom
| | - Harvey S Hecht
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
24
|
Bajaj R, Garcia-Garcia HM, Courtney BK, Ramasamy A, Tufaro V, Erdogan E, Khan AH, Alves N, Rathod KS, Onuma Y, Serruys PW, Mathur A, Baumbach A, Bourantas C. Multi-modality intravascular imaging for guiding coronary intervention and assessing coronary atheroma: the Novasight Hybrid IVUS-OCT system. Minerva Cardiol Angiol 2021; 69:655-670. [PMID: 33703857 DOI: 10.23736/s2724-5683.21.05532-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intravascular imaging has evolved alongside interventional cardiology as an adjunctive tool for assessing plaque pathology and for guiding and optimising percutaneous coronary intervention (PCI) in challenging lesions. The two modalities which have dominated the field are intravascular ultrasound (IVUS), which relies on sound waves and optical coherence tomography (OCT), relying on light waves. These approaches however have limited efficacy in assessing plaque morphology and vulnerability that are essential for guiding PCI in complex lesions and identifying patient at risk that will benefit from emerging therapies targeting plaque evolution. These limitations are complementary and, in this context, it has been recognised and demonstrated in multi-modality studies that the concurrent use of IVUS and OCT can help overcome these deficits enabling a more complete and accurate plaque assessment. The Conavi Novasight Hybrid IVUS-OCT catheter is the first commercially available device that is capable of invasive clinical coronary assessment with simultaneously acquired and co-registered IVUS and OCT imaging. It represents a significant evolution in the field and is expected to have broad application in clinical practice and research. In this review article we present the limitations of standalone intravascular imaging techniques, summarise the data supporting the value of multimodality imaging in clinical practice and research, describe the Novasight Hybrid IVUS-OCT system and highlight the potential utility of this technology in coronary intervention and in the study of atherosclerosis.
Collapse
Affiliation(s)
- Retesh Bajaj
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Brian K Courtney
- Sunnybrook Research Institute, Schulich Heart Program, University of Toronto, Toronto, ON, Canada.,Conavi Medical, North York, ON, Canada
| | - Anantharaman Ramasamy
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Vincenzo Tufaro
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Emrah Erdogan
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Ameer H Khan
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Natasha Alves
- Sunnybrook Research Institute, Schulich Heart Program, University of Toronto, Toronto, ON, Canada
| | - Krishnaraj S Rathod
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Yoshinobu Onuma
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Patrick W Serruys
- School of Medicine, National University of Ireland Galway, Galway, Ireland.,National Heart & Lung Institute, Imperial College London, London, UK
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Christos Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK - .,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
25
|
Cariello M, Salvia R, Härdfeldt J, Piglionica M, Rutigliano D, Caldarola P, Ossoli A, Vacca M, Graziano G, Battaglia S, Zerlotin R, Arconzo M, Crudele L, Sabbà C, Calabresi L, Moschetta A. Intracoronary monocyte expression pattern and HDL subfractions after non-ST elevation myocardial infarction. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166116. [PMID: 33667626 DOI: 10.1016/j.bbadis.2021.166116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
AIMS Coronary artery disease (CAD) is described as a range of clinical conditions including myocardial infarction (MI) and unstable angina. Lipid and apolipoprotein profiles together with the study of cholesterol deposit and efflux serve to identify novel pre and post infarct scenarios for the treatment of these patients. In (non-ST elevation myocardial infarction) NSTEMI patients, we analysed both systemic and intracoronary serum ability to accept cholesterol as well as cholesterol efflux capacity (CEC) of monocytes in terms of expression of genes involved in the reverse cholesterol transport (RCT). METHODS AND RESULTS While HDL-C quantity was similar between systemic and coronary arterial blood, in 21 NSTEMI patients we observed a significant reduction of the preβ-HDL fraction and the levels of Apolipoproteins AI, AII, B and E in coronary versus systemic serum. These data are complemented with the observed reduction of CEC. On the contrary, compared to systemic arterial monocytes, in coronary microenvironment of NSTEMI patients after myocardial infarction, the monocytes exhibited a higher mRNA expression of nuclear receptor LXRα and its targets ABCA1 and APOE, which drive cholesterol efflux capacity. CONCLUSION In this cross-sectional study we observe that in the immediate post infarction period, there is a spontaneous bona fide ligand-induced activation of the LXR driven cholesterol efflux capacity of intracoronary monocytes to overcome the reduced serum ability to accept cholesterol and to inhibit the post-infarction pro-inflammatory local microenvironment.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy
| | - Roberto Salvia
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy
| | - Jennifer Härdfeldt
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
| | - Marilidia Piglionica
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy
| | | | | | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Michele Vacca
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Giusi Graziano
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
| | - Stefano Battaglia
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy; Department of Tissues and Organs Transplantation and Cellular Therapies, "Aldo Moro" University of Bari, Bari, Italy
| | - Roberta Zerlotin
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
| | - Maria Arconzo
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
| | - Lucilla Crudele
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy; INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy.
| |
Collapse
|
26
|
Rimondi E, Marcuzzi A, Casciano F, Tornese G, Pellati A, Toffoli B, Secchiero P, Melloni E. Role of vitamin D in the pathogenesis of atheromatosis. Nutr Metab Cardiovasc Dis 2021; 31:344-353. [PMID: 33500110 PMCID: PMC7486169 DOI: 10.1016/j.numecd.2020.08.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Cardiovascular disease is the main cause of death worldwide, but the collective efforts to prevent this pathological condition are directed exclusively to individuals at higher risk due to hypercholesterolemia, hypertension, obesity, diabetes. Recently, vitamin D deficiency was identified as a risk factor for cardiovascular disease in healthy people, as it predisposes to different vascular dysfunctions that can result in plaque development and fragility. In this scenario, the fundamental aim of the study was to reproduce a disease model inducing vitamin D deficiency and atheromatosis in ApoE-/- mice and then to evaluate the impact of this vitamin D status on the onset/progression of atheromatosis, focusing on plaque formation and instability. METHODS AND RESULTS In our murine disease model, vitamin D deficiency was achieved by 3 weeks of vitamin D deficient diet along with intraperitoneal paricalcitol injections, while atheromatosis by western-type diet administration. Under these experimental conditions, vitamin D deficient mice developed more unstable atheromatous plaques with reduced or absent fibrotic cap. Since calcium and phosphorus metabolism and also cholesterol and triglycerides systemic concentration were not affected by vitamin D level, our results highlighted the role of vitamin D deficiency in the formation/instability of atheromatous plaque and, although further studies are needed, suggested a possible intervention with vitamin D to prevent or delay the atheromatous disease. CONCLUSIONS The data obtained open the question about the potential role of the vitamins in the pharmacological treatments of cardiovascular disorders as coadjutant of the primary drugs used for these pathologies.
Collapse
Affiliation(s)
- Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Annalisa Marcuzzi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Gianluca Tornese
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo'', Trieste, Italy
| | - Agnese Pellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Barbara Toffoli
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo'', Trieste, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Elisabetta Melloni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
27
|
Li Z, Zhao P, Zhang Y, Wang J, Wang C, Liu Y, Yang G, Yuan L. Exosome-based Ldlr gene therapy for familial hypercholesterolemia in a mouse model. Am J Cancer Res 2021; 11:2953-2965. [PMID: 33456582 PMCID: PMC7806494 DOI: 10.7150/thno.49874] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
Familial hypercholesterolemia (FH), with high LDL (low-density lipoprotein) cholesterol levels, is due to inherited mutations in genes, such as low-density lipoprotein receptor (LDLR). Development of therapeutic strategies for FH, which causes atherosclerosis and cardiovascular disease, is urgently needed. Methods: Mice with low-density lipoprotein receptor (Ldlr) deletion (Ldlr-/- mice) were used as an FH model. Ldlr mRNA was encapsulated into exosomes by forced expression of Ldlr in the donor AML12 (alpha mouse liver) cells, and the resultant exosomes were denoted as ExoLdlr. In vivo distribution of exosomes was analyzed by fluorescence labeling and imaging. The delivery efficiency of Ldlr mRNA was analyzed by qPCR and Western blotting. Therapeutic effects of ExoLdlr were examined in Ldlr-/- mice by blood lipids and Oil Red O staining. Results: The encapsulated mRNA was stable and could be translated into functional protein in the recipient cells. Following tail vein injection, exosomes were mainly delivered into the liver, producing abundant LDLR protein, resembling the endogenous expression profile in the wild-type mouse. Compared with control exosomes, ExoLdlr treatment significantly decreased lipid deposition in the liver and lowered the serum LDL-cholesterol level. Significantly, the number and size of atherosclerotic plaques and inflammation were reduced in the ExoLdlr-treated mice. Conclusions: We have shown that exosome-mediated Ldlr mRNA delivery effectively restored receptor expression, treating the disorders in the Ldlr-/- mouse. Our study provided a new therapeutic approach for the treatment of FH patients and managing atherosclerosis.
Collapse
|
28
|
Okamoto N, Vengrenyuk Y, Fuster V, Samady H, Yasumura K, Baber U, Barman N, Suleman J, Sweeny J, Krishnan P, Mehran R, Sharma SK, Narula J, Kini AS. Relationship between high shear stress and OCT-verified thin-cap fibroatheroma in patients with coronary artery disease. PLoS One 2020; 15:e0244015. [PMID: 33332434 PMCID: PMC7746187 DOI: 10.1371/journal.pone.0244015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
High-risk coronary plaques have been considered predictive of adverse cardiac events. Both wall shear stress (WSS) in patients with hemodynamically significant lesions and optical coherence tomography (OCT) -verified thin-cap fibroatheroma (TCFA) are associated with plaque rupture, the most common underlying mechanism of acute coronary syndrome. The aim of the study was to test the hypothesis that invasive coronary angiography-based high WSS is associated with the presence of TCFA detected by OCT in obstructive lesions. From a prospective study of patients who underwent OCT examination for angiographically obstructive lesions (Yellow II), we selected patients who had two angiographic projections to create a 3-dimensional reconstruction model to allow assessment of WSS. The patients were divided into 2 groups according to the presence and absence of TCFA. Mean WSS was assessed in the whole lesion and in the proximal, middle and distal segments. Of 70 patients, TCFA was observed in 13 (19%) patients. WSS in the proximal segment (WSSproximal) (10.20 [5.01, 16.93Pa]) and the whole lesion (WSSlesion) (12.37 [6.36, 14.55Pa]) were significantly higher in lesions with TCFA compared to WSSproximal (5.84 [3.74, 8.29Pa], p = 0.02) and WSSlesion (6.95 [4.41, 11.60], p = 0.04) in lesions without TCFA. After multivariate analysis, WSSproximal was independently associated with the presence of TCFA (Odds ratio 1.105; 95%CI 1.007-1.213, p = 0.04). The optimal cutoff value of WSSproximal to predict TCFA was 6.79 Pa (AUC: 0.71; sensitivity: 0.77; specificity: 0.63 p = 0.02). Our results demonstrate that high WSS in the proximal segments of obstructive lesions is an independent predictor of OCT-verified TCFA.
Collapse
Affiliation(s)
- Naotaka Okamoto
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Yuliya Vengrenyuk
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Valentin Fuster
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Habib Samady
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Keisuke Yasumura
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Usman Baber
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Nitin Barman
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Javed Suleman
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Joseph Sweeny
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Prakash Krishnan
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Roxana Mehran
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Samin K. Sharma
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jagat Narula
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Annapoorna S. Kini
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
29
|
Montarello NJ, Nelson AJ, Verjans J, Nicholls SJ, Psaltis PJ. The role of intracoronary imaging in translational research. Cardiovasc Diagn Ther 2020; 10:1480-1507. [PMID: 33224769 DOI: 10.21037/cdt-20-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atherosclerotic cardiovascular disease is a key public health concern worldwide and leading cause of morbidity, mortality and health economic costs. Understanding atherosclerotic plaque microstructure in relation to molecular mechanisms that underpin its initiation and progression is needed to provide the best chance of combating this disease. Evolving vessel wall-based, endovascular coronary imaging modalities, including intravascular ultrasound (IVUS), optical coherence tomography (OCT) and near-infrared spectroscopy (NIRS), used in isolation or as hybrid modalities, have been advanced to allow comprehensive visualization of the pathological substrate of coronary atherosclerosis and accurately measure temporal changes in both the vessel wall and plaque characteristics. This has helped further our appreciation of the natural history of coronary artery disease (CAD) and the risk for major adverse cardiovascular events (MACE), evaluate the responsiveness to conventional and experimental therapeutic interventions, and assist in guiding percutaneous coronary intervention (PCI). Here we review the use of different imaging modalities for these purposes and the lessons they have provided thus far.
Collapse
Affiliation(s)
- Nicholas J Montarello
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia
| | - Adam J Nelson
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Duke Clinical Research Institute, Durham, NC, USA
| | - Johan Verjans
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Clayton, Australia
| | - Peter J Psaltis
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
30
|
Zheng KH, Kaiser Y, van Olden CC, Santos RD, Dasseux JL, Genest J, Gaudet D, Westerink J, Keyserling C, Verberne HJ, Leitersdorf E, Hegele RA, Descamps OS, Hopkins P, Nederveen AJ, Stroes ES. No benefit of HDL mimetic CER-001 on carotid atherosclerosis in patients with genetically determined very low HDL levels. Atherosclerosis 2020; 311:13-19. [DOI: 10.1016/j.atherosclerosis.2020.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/27/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
|
31
|
Chua NK, Coates HW, Brown AJ. Squalene monooxygenase: a journey to the heart of cholesterol synthesis. Prog Lipid Res 2020; 79:101033. [DOI: 10.1016/j.plipres.2020.101033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
|
32
|
Kuku KO, Singh M, Ozaki Y, Dan K, Chezar-Azerrad C, Waksman R, Garcia-Garcia HM. Near-Infrared Spectroscopy Intravascular Ultrasound Imaging: State of the Art. Front Cardiovasc Med 2020; 7:107. [PMID: 32695796 PMCID: PMC7338425 DOI: 10.3389/fcvm.2020.00107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Acute coronary syndromes (ACS) secondary to coronary vessel plaques represent a major cause of cardiovascular morbidity and mortality worldwide. Advancements in imaging technology over the last 3 decades have continuously enabled the study of coronary plaques via invasive imaging methods like intravascular ultrasound (IVUS) and optical coherence tomography (OCT). The introduction of near-infrared spectroscopy (NIRS) as a modality that could detect the lipid (cholesterol) content of atherosclerotic plaques in the early nineties, opened the potential of studying “vulnerable” or rupture-prone, lipid-rich coronary plaques in ACS patients. Most recently, the ability of NIRS-IVUS to identify patients at risk of future adverse events was shown in a prospective multicenter trial, the Lipid-Rich-plaque Study. Intracoronary NIRS-IVUS imaging offers a unique method of coronary lipid-plaque characterization and could become a valuable clinical diagnostic and treatment monitoring tool.
Collapse
Affiliation(s)
- Kayode O Kuku
- MedStar Cardiovascular Research Network, MedStar Washington Hospital Center, MedStar Health Research Institute, Washington, DC, United States.,Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Manavotam Singh
- Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Yuichi Ozaki
- Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Kazuhiro Dan
- Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Chava Chezar-Azerrad
- Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Ron Waksman
- MedStar Cardiovascular Research Network, MedStar Washington Hospital Center, MedStar Health Research Institute, Washington, DC, United States.,Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Hector M Garcia-Garcia
- MedStar Cardiovascular Research Network, MedStar Washington Hospital Center, MedStar Health Research Institute, Washington, DC, United States.,Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| |
Collapse
|
33
|
Abstract
OBJECTIVE To quantitatively analyze the association between cholesterol efflux capacity (CEC) and the risk and prognosis of coronary artery disease (CAD). METHODS A systematic search of electronic databases for studies published until September 2019 was performed. Cohorts, case-control studies, and randomized controlled trials that examined the effect of CEC on the risk and prognosis of CAD were included. RESULTS Eighteen studies with 12 685 subjects met our inclusion criteria. Among them, 14 studies reported the CEC in non-CAD and CAD groups, and eight studies reported the association between CEC and risk of CAD. Four studies reported the prognosis of stable CAD or acute coronary syndrome (ACS). In the pooled analyses, significantly decreased CEC was found in patients with stable CAD as compared with those without CAD. Decreased CEC was also present in subgroup in patients with ACS. High CEC was significantly associated with decreased risk of CAD [odds ratio (OR) = 0.65, 95% confidence interval (CI): 0.55-0.75, P < 0.001]. High CEC predicted lower all-cause mortality (OR = 0.39, 95% CI: 0.20-0.77, P = 0.007) and cardiovascular mortality (OR = 0.34, 95% CI: 0.13-0.90, P = 0.03) in patients with CAD. However, CEC failed to predict the occurrence of stroke and myocardial infraction in patients with CAD. CONCLUSIONS Decreased CEC is an independent risk factor for CAD, and it predicts all-cause and cardiovascular mortality in patients with CAD.
Collapse
|
34
|
Garg PK, Jorgensen NW, McClelland RL, Allison M, Stein JH, Yvan-Chavret L, Tall AR, Shea S. Cholesterol mass efflux capacity and risk of peripheral artery disease: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 2020; 297:81-86. [PMID: 32097805 DOI: 10.1016/j.atherosclerosis.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS We aimed to assess the relationship of HDL (high-density lipoprotein)-mediated cholesterol mass efflux capacity (CMEC) with risk of incident peripheral artery disease (PAD). METHODS CMEC was measured in 1458 Multi-Ethnic Study of Atherosclerosis participants between 2000 and 2002 as part of a case-control study matched for incident cardiovascular disease and progression of carotid plaque by ultrasound. Incident clinical PAD, adjudicated on the basis of a positive history for the presence of disease-related symptoms or treatment, was ascertained through 2015 in 1419 individuals without clinical PAD at baseline. Subclinical PAD, defined as an ankle-brachial index (ABI) ≤1.0, was assessed among 1255 individuals with a baseline ABI >1.0 and at least one follow-up ABI measurement 3-10 years later. Cox proportional hazards and relative risk regression modeling per SD increment of CMEC were used to determine the association of CMEC with clinical and subclinical PAD, respectively. RESULTS There were 38 clinical PAD and 213 subclinical PAD events that occurred over a mean follow-up of 6.0 and 6.5 years respectively. After adjustment for age, gender, and race, higher CMEC levels were not associated with clinical PAD (hazard ratio 1.25; 95% CI 0.89, 1.75) or subclinical PAD (risk ratio 1.02; 95% CI, 0.94, 1.11). CONCLUSIONS These findings suggest that HDL-mediated cholesterol efflux is not significantly associated with incident clinical and subclinical PAD.
Collapse
Affiliation(s)
- Parveen K Garg
- Division of Cardiology, University of Southern California, Los Angeles, CA, USA.
| | - Neal W Jorgensen
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Matthew Allison
- Division of Preventive Medicine, University of California, San Diego School of Medicine, San Diego, CA, USA
| | - James H Stein
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laurent Yvan-Chavret
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; University of Nice, France
| | - Alan R Tall
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Steven Shea
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
35
|
Oshita T, Toh R, Nagano Y, Kuroda K, Nagasawa Y, Harada A, Murakami K, Kiriyama M, Yoshikawa K, Miwa K, Kubo T, Iino T, Nagao M, Irino Y, Hara T, Shinohara M, Otake H, Shinke T, Nakajima K, Ishida T, Hirata KI. Association of cholesterol uptake capacity, a novel indicator for HDL functionality, and coronary plaque properties: An optical coherence tomography-based observational study. Clin Chim Acta 2020; 503:136-144. [PMID: 31972150 DOI: 10.1016/j.cca.2020.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cholesterol efflux from atherosclerotic lesion is a key function of high-density lipoprotein (HDL). Recently, we established a simple, high-throughput, cell-free assay to evaluate the capacity of HDL to accept additional cholesterol, which is herein referred to as "cholesterol uptake capacity (CUC)". OBJECTIVE To clarify the cross-sectional relationship between CUC and coronary plaque properties. METHODS We enrolled 135 patients to measure CUC and assess the morphological features of angiographic stenosis by optical coherence tomography (OCT). We estimated the extent of the lipid-rich plaque by multiplying the mean lipid arc by lipid length (lipid index). The extent of the OCT-detected macrophage accumulation in the target plaque was semi-quantitatively estimated using a grading system. RESULTS Lipid-rich plaque lesions were identified in 125 patients (92.6%). CUC was inversely associated with the lipid index (R = -0.348, P < 0.0001). In addition, CUC was also inversely associated with macrophage score (R = -0.327, P < 0.0001). Conversely, neither circulating levels of HDL cholesterol nor apoA1 showed a similar relationship. CONCLUSIONS We demonstrated that CUC was inversely related to lipid-rich plaque burden and the extent of macrophage accumulation, suggesting that CUC could be useful for cardiovascular risk stratification.
Collapse
Affiliation(s)
- Toshihiko Oshita
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryuji Toh
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Yuichiro Nagano
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Kuroda
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshinori Nagasawa
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Amane Harada
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | | | - Maria Kiriyama
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Keiko Yoshikawa
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Keiko Miwa
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Takuya Kubo
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Takuya Iino
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Manabu Nagao
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiro Irino
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tetsuya Hara
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiro Shinke
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
36
|
PR3 levels are impaired in plasma and PBMCs from Arabs with cardiovascular diseases. PLoS One 2020; 15:e0227606. [PMID: 31935243 PMCID: PMC6959567 DOI: 10.1371/journal.pone.0227606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/23/2019] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease (CVD) risks persist in patients despite treatment. CVD susceptibility also varies with sex and ethnicity and is not entirely explained by conventional CVD risk factors. The aim of the present study was to identify novel CVD candidate markers in circulating Peripheral blood mononuclear cells (PBMCs) and plasma from Arab obese subjects with and without CVD using proteomic approaches. Human adults with confirmed CVD (n = 208) and matched non-CVD controls (n = 152) living in Kuwait were examined in the present cross-sectional study. Anthropometric and classical biochemical parameters were determined. We employed a shotgun proteomic profiling approach on PBMCs isolated from a subset of the groups (n = 4, each), and differentially expressed proteins selected between the two groups were validated at the mRNA level using RT-PCR (n = 6, each). Plasma levels of selected proteins from the proteomics profiling: Proteinase-3 (PR3), Annexin-A3 (ANX3), Defensin (DEFA1), and Matrix Metalloproteinase-9 (MMP9), were measured in the entire cohort using human enzyme-linked immunosorbent assay kits and were subsequently correlated with various clinical parameters. Out of the 1407 we identified and quantified from the proteomics profiling, 47 proteins were dysregulated with at least twofold change between the two subject groups. Among the differentially expressed proteins, 11 were confirmed at the mRNA levels. CVD influenced the levels of the shortlisted proteins (MMP9, PR3, ANX3, and DEFA1) in the PBMCs and plasma differentially. Despite the decreased levels of both protein and mRNA in PBMCs, PR3 circulating levels increased significantly in patients with CVD and were influenced by neither diabetes nor statin treatment. No significant changes were; however, observed in the DEFA1, MMP9, and ANX3 levels in plasma. Multivariate logistic regression analysis revealed that only PR3 was independently associated with CVD. Our results suggest that the dysregulation of PR3 levels in plasma and PBMCs reflects underlying residual CVD risks even in the treated population. More prospective and larger studies are required to establish the role of PR3 in CVD progression.
Collapse
|
37
|
Affiliation(s)
- Anand Rohatgi
- From the Division of Cardiology, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
38
|
Rader DJ. Apolipoprotein A-I Infusion Therapies for Coronary Disease: Two Outs in the Ninth Inning and Swinging for the Fences. JAMA Cardiol 2019; 3:799-801. [PMID: 30046821 DOI: 10.1001/jamacardio.2018.2168] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Daniel J Rader
- Department of Genetics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at University of Pennsylvania, Philadelphia
| |
Collapse
|
39
|
Changes in Coronary Plaque Composition in Patients With Acute Myocardial Infarction Treated With High-Intensity Statin Therapy (IBIS-4). JACC Cardiovasc Imaging 2019; 12:1518-1528. [DOI: 10.1016/j.jcmg.2018.08.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 02/01/2023]
|
40
|
Takata K, Honda S, Sidharta SL, Duong M, Shishikura D, Kim SW, Andrews J, Di Bartolo BA, Psaltis PJ, Bursill CA, Worthley MI, Nicholls SJ. Associations of ABCG1-mediated cholesterol efflux capacity with coronary artery lipid content assessed by near-infrared spectroscopy. Cardiovasc Diagn Ther 2019; 9:310-318. [PMID: 31555535 DOI: 10.21037/cdt.2018.11.04] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Although high-density lipoprotein (HDL) has atheroprotective properties, the association of HDL functionality with coronary plaques remains unclear. Methods We investigated the association between HDL-mediated cholesterol efflux capacity (CEC) and coronary lipid burden in 74 patients who underwent near-infrared spectroscopy (NIRS) imaging for acute coronary syndrome (ACS) or stable ischemic symptoms. We measured baseline HDL-mediated CEC, distinguishing the specific pathways, and stratified patients according to their median CEC values. Coronary lipid burden was assessed as lipid core burden index (LCBI) using NIRS at baseline (n=74) and on serial imaging (n=47). Results Patients with baseline ATP-binding cassette transporter G1 (ABCG1)-mediated CEC > median had a greater baseline LCBI {74 [20, 128] vs. 32 [5, 66]; P=0.04} or change in LCBI {-30 [-89, 0] vs. -3 [-16, 0]; P=0.048}. In addition to a negative association between baseline LCBI and change in LCBI (standardized β=-0.31; P=0.02), multivariable analysis demonstrated a significant interaction effect between clinical presentation of coronary artery disease (CAD) and baseline ABCG1-mediated CEC on change in LCBI (P=0.003), indicating that baseline ABCG1-mediated CEC was inversely associated with change in LCBI in patients with ACS (standardized β=-0.79, P=0.003), but not in those with stable ischemic symptoms (P=0.52). Conclusions In this study, ABCG1-mediated CEC, but not ATP-binding cassette transporter A1 and scavenger receptor B type I, was associated with regression of coronary artery lipid content, especially in patients with high-risk phenotype. Further studies are required to determine the roles of ABCG1 pathway in the development coronary plaques.
Collapse
Affiliation(s)
- Kohei Takata
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Satoshi Honda
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Samuel L Sidharta
- Cardiovascular Investigation Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - MyNgan Duong
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Daisuke Shishikura
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Susan W Kim
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Jordan Andrews
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | | | - Peter J Psaltis
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Cardiovascular Investigation Unit, Royal Adelaide Hospital, Adelaide, Australia.,University of Adelaide, Adelaide, Australia
| | - Christina A Bursill
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Cardiovascular Investigation Unit, Royal Adelaide Hospital, Adelaide, Australia.,University of Adelaide, Adelaide, Australia
| | - Matthew I Worthley
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Cardiovascular Investigation Unit, Royal Adelaide Hospital, Adelaide, Australia.,University of Adelaide, Adelaide, Australia
| | - Stephen J Nicholls
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Cardiovascular Investigation Unit, Royal Adelaide Hospital, Adelaide, Australia.,University of Adelaide, Adelaide, Australia
| |
Collapse
|
41
|
Role of Near-Infrared Spectroscopy (NIRS) in Intracoronary Imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9510-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
42
|
Johnson KW, Glicksberg BS, Shameer K, Vengrenyuk Y, Krittanawong C, Russak AJ, Sharma SK, Narula JN, Dudley JT, Kini AS. A transcriptomic model to predict increase in fibrous cap thickness in response to high-dose statin treatment: Validation by serial intracoronary OCT imaging. EBioMedicine 2019; 44:41-49. [PMID: 31126891 PMCID: PMC6607084 DOI: 10.1016/j.ebiom.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/15/2019] [Accepted: 05/03/2019] [Indexed: 02/04/2023] Open
Abstract
Background Fibrous cap thickness (FCT), best measured by intravascular optical coherence tomography (OCT), is the most important determinant of plaque rupture in the coronary arteries. Statin treatment increases FCT and thus reduces the likelihood of acute coronary events. However, substantial statin-related FCT increase occurs in only a subset of patients. Currently, there are no methods to predict which patients will benefit. We use transcriptomic data from a clinical trial of rosuvastatin to predict if a patient's FCT will increase in response to statin therapy. Methods FCT was measured using OCT in 69 patients at (1) baseline and (2) after 8–10 weeks of 40 mg rosuvastatin. Peripheral blood mononuclear cells were assayed via microarray. We constructed machine learning models with baseline gene expression data to predict change in FCT. Finally, we ascertained the biological functions of the most predictive transcriptomic markers. Findings Machine learning models were able to predict FCT responders using baseline gene expression with high fidelity (Classification AUC = 0.969 and 0.972). The first model (elastic net) using 73 genes had an accuracy of 92.8%, sensitivity of 94.1%, and specificity of 91.4%. The second model (KTSP) using 18 genes has an accuracy of 95.7%, sensitivity of 94.3%, and specificity of 97.1%. We found 58 enriched gene ontology terms, including many involved with immune cell function and cholesterol biometabolism. Interpretation In this pilot study, transcriptomic models could predict if FCT increased following 8–10 weeks of rosuvastatin. These findings may have significance for therapy selection and could supplement invasive imaging modalities.
Collapse
Affiliation(s)
- Kipp W Johnson
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, United States of America; Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Benjamin S Glicksberg
- Bakar Computational Health Sciences Institute, The University of California, San Francisco, San Francisco, CA, United States of America
| | - Khader Shameer
- Advanced Analytics Center, AstraZeneca, Gaithersburg, MD, United States of America
| | - Yuliya Vengrenyuk
- Mount Sinai Heart, Mount Sinai Health System, New York, NY, United States of America
| | - Chayakrit Krittanawong
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Adam J Russak
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, United States of America; Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Samin K Sharma
- Mount Sinai Heart, Mount Sinai Health System, New York, NY, United States of America
| | - Jagat N Narula
- Mount Sinai Heart, Mount Sinai Health System, New York, NY, United States of America
| | - Joel T Dudley
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, United States of America; Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Annapoorna S Kini
- Mount Sinai Heart, Mount Sinai Health System, New York, NY, United States of America.
| |
Collapse
|
43
|
Han F, Chen Q, Su J, Zheng A, Chen K, Sun S, Wu H, Jiang L, Xu X, Yang M, Yang F, Zhu J, Zhang L. MicroRNA-124 regulates cardiomyocyte apoptosis and myocardial infarction through targeting Dhcr24. J Mol Cell Cardiol 2019; 132:178-188. [PMID: 31100313 DOI: 10.1016/j.yjmcc.2019.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/14/2019] [Accepted: 05/09/2019] [Indexed: 01/30/2023]
Abstract
AIMS microRNA-124(miR-124) has recently been reported to be elevated in cardiovascular disease. In this study, we aimed to investigate the exact role of miR-124 in cardiomyocytes and myocardial infarction, identifying the functional target and its regulatory mechanisms. METHODS AND RESULTS Cultured cardiomyocytes, myocardial-infarction mouse model, and clinical data were used to study the effects of miR-124 on myocardial ischemia. Expression of miR-124 was up-regulated in H2O2 and hypoxia induced cardiomyocyte injury. miR-124 over-expression significantly increased cardiomyocyte apoptosis, whereas miR-124 inhibition attenuated cell death. 3β-hydroxysteroid-Delta24 reductase (Dhcr24), a multi-functional enzyme implicated in cholesterol synthesis and various diseases, was identified as a novel functional target of miR-124 in cardiac myocytes. The miR-124-Dhcr24 axis was responsible for cardiomyocyte apoptosis regulation. Furthermore, myocardial infarction induced miR-124 activation and Dhcr24 reduction in vivo. Modulation of miR-124 by intra-myocardial injection of agomiR or antagomiR was capable of manipulating cardiomyocyte apoptosis and myocardial infarction in mice. More importantly, circulating miR-124 was also observed to be elevated in acute myocardial infarction (AMI) patients and was correlated with myocardial injury and cardiac function. CONCLUSION Our findings strongly demonstrated that miR-124 targeting Dhcr24 regulates oxidative stress and hypoxia induced cardiomyocyte apoptosis and myocardial infarction. The miR-124-Dhcr24 axis could be a potential biomarker as well as the therapeutic target for AMI.
Collapse
Affiliation(s)
- Fei Han
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qishan Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jia Su
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ancheng Zheng
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kai Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shasha Sun
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Wu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liujun Jiang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaolei Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mei Yang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Yang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhua Zhu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
44
|
Chhatriwalla AK, Rader DJ. Intracoronary Imaging, Reverse Cholesterol Transport, and Transcriptomics: Precision Medicine in CAD? J Am Coll Cardiol 2019; 69:641-643. [PMID: 28183507 DOI: 10.1016/j.jacc.2016.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/06/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Adnan K Chhatriwalla
- Division of Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri; Department of Medicine, University of Missouri-Kansas City, Kansas City, Missouri.
| | - Daniel J Rader
- Departments of Genetics, Medicine, and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Wang X, Liu X, Xie Z, Tian J, Huang X, Zhang R, Chen S, Hou J, Yu B. Small HDL subclass is associated with coronary plaque stability: An optical coherence tomography study in patients with coronary artery disease. J Clin Lipidol 2018; 13:326-334.e2. [PMID: 30665770 DOI: 10.1016/j.jacl.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND The role of high-density lipoprotein (HDL) subclasses in atherosclerotic diseases remains an open question. Previous clinical trials have attempted to explore the predictive effect of HDL subspecies on cardiovascular risk. However, no studies have assessed the connections between these subclasses and characteristics of plaque microstructure. OBJECTIVE To investigate the relationship of HDL subclasses and coronary plaque stability assessed by optical coherence tomography (OCT). METHODS Morphological characteristics of 160 nontarget lesions from 85 patients with coronary artery disease were assessed by OCT. HDL subclass profiles were analyzed using nondenaturing polyacrylamide gel electrophoresis. RESULTS The plasma levels of small HDL subclass (percentage or concentration) were found to be positively associated with fibrous cap thickness (r = 0.232, P = .007; r = 0.243, P = .005) and negatively with maximum lipid arc (r = -0.240, P = .005; r = -0.252, P = .003) and lipid core length (r = -0.350, P < .001; r = -0.367, P < .001). Multivariate logistic regression analysis showed the small HDL subclass (percentage or concentration) (odds ratio [OR]: 0.457, 95% confidence interval [CI]: 0.214-0.974, P = .043; OR: 0.438, 95% CI: 0.204-0.938, P = .034) to be an independent factor in predicting OCT-detected thin-cap fibroatheroma of nontarget lesions. CONCLUSION High levels of small HDL are associated with coronary nontarget plaque stability. Our findings suggest that the small HDL subtype might represent the atheroprotective activity of HDL.
Collapse
Affiliation(s)
- Xuedong Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xinxin Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Zulong Xie
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xingtao Huang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Ruoxi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Shuyuan Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Jingbo Hou
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.
| |
Collapse
|
46
|
Feng C, Zhang P, Han B, Li X, Liu Y, Niu D, Shi Y. Optical coherence tomographic analysis of drug-eluting in-stent restenosis at different times: A STROBE compliant study. Medicine (Baltimore) 2018; 97:e12117. [PMID: 30142870 PMCID: PMC6372013 DOI: 10.1097/md.0000000000012117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The imaging characteristics of drug-eluting in-stent restenosis (ISR) at different times varied; however, the mechanism had not yet been elucidated.To analyze the imaging characteristics of drug-eluting ISR at different time points by optical coherence tomography (OCT) and investigate the cause of the stent treatment failure.A total of 70 patients with drug-eluting ISR undergoing OCT were enrolled (intimal hyperplasia ≥50% of stent area) and implanted with drug-eluting stents. According to stent implantation time, the patients were divided into 2 groups: early in-stent restenosis group (E-ISR group) (group A, n = 35, stent age ≤12 months) and late in-stent restenosis group (L-ISR group) (group B, n = 35, stent age ≥24 months). A qualitative analysis of the restenosis tissue included the nature of restenosis tissue (homogeneous and heterogeneous), neoatherosclerosis, thin-cap fibroatheroma (TCFA), and microvessels.The ratio of ≥75% cross-sectional area stenosis between the L-ISR and E-ISR groups was (60.00% vs 34.28%, P < .05). The heterogeneous intima, neoatherosclerosis, TCFA, and microvessels were more prevalent in the L-ISR group as compared to the E-ISR group (71.43% vs 45.71%, P < .05; 48.57% vs 22.86%, P < .05; 25.71% vs 5.71%, P < .05; 22.86% vs 2.86%, P < .05, respectively).The morphological characteristics of L-ISR were significantly different from those in the E-ISR; the former was closer to the atherosclerotic plaque, which provided a new approach for the treatment of drug-eluting ISR.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yibing Shi
- Department of Imaging, Xuzhou Central Hospital in Jiangsu,
Institute of Cardiovascular Disease, Xuzhou, China
| |
Collapse
|
47
|
Quantitative baseline CT plaque characterization of unrevascularized non-culprit intermediate coronary stenosis predicts lesion volume progression and long-term prognosis: A serial CT follow-up study. Int J Cardiol 2018; 264:181-186. [PMID: 29548539 DOI: 10.1016/j.ijcard.2018.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 11/21/2022]
Abstract
AIMS To investigate the quantitative baseline CT plaque characterization of unrevascularized non-culprit intermediate coronary stenosis and its association with lesion volume progression and long-term prognosis. METHODS Patients with baseline coronary CT angiography (CCTA) and invasive coronary angiography (ICA) and at least one unrevascularized non-culprit intermediate coronary stenosis were prospectively enrolled for this study. All patients were followed up by a second CCTA at 1-year to 1.5-year interval. High-risk plaque features as well as other quantitative plaque measurements were recorded. RESULTS 140 patients with 165 unrevascularized non-culprit intermediate lesions were selected. Lesion volume progression was identified in 18 lesions (10.9%, 18/165) at follow-up CCTA and 15 patients experienced major adverse cardiac events (MACE) during a mean follow-up period of 51.5 months. Low attenuation plaque (LAP) was more frequently present in the lesion-progression subgroup and MACE subgroup (lesion-progression VS. non-lesion progression: 55.6% VS. 8.8% and MACE VS. MACE free: 40% VS. 12.8%, both p < 0.05), while other parameters showed no significant differences. Based on stepwise multivariable logistic regression analysis, LAP was an independent predictor (OR = 16.74, 95%CI = 5.02 to 55.84, p < 0.001) for lesion volume progression and MACE (OR = 4.25, 95%CI = 1.03 to 17.53, p = 0.046). CONCLUSIONS The presence of LAP of unrevascularized non-culprit intermediate stenosis is associated with lesion volume progression and an independent predictor for MACE occurrence.
Collapse
|
48
|
Scolaro B, Nogueira MS, Paiva A, Bertolami A, Barroso LP, Vaisar T, Heffron SP, Fisher EA, Castro IA. Statin dose reduction with complementary diet therapy: A pilot study of personalized medicine. Mol Metab 2018; 11:137-144. [PMID: 29503145 PMCID: PMC6001350 DOI: 10.1016/j.molmet.2018.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Statin intolerance, whether real or perceived, is a growing issue in clinical practice. Our aim was to evaluate the effects of reduced-dose statin therapy complemented with nutraceuticals. METHODS First phase: Initially, 53 type 2 diabetic statin-treated patients received a supplementation with fish oil (1.7 g EPA + DHA/day), chocolate containing plant sterols (2.2 g/day), and green tea (two sachets/day) for 6 weeks. Second phase: "Good responders" to supplementation were identified after multivariate analysis (n = 10), and recruited for a pilot protocol of statin dose reduction. "Good responders" were then provided with supplementation for 12 weeks: standard statin therapy was kept during the first 6 weeks and reduced by 50% from weeks 6-12. RESULTS First phase: After 6 weeks of supplementation, plasma LDL-C (-13.7% ± 3.7, P = .002) and C-reactive protein (-35.5% ± 5.9, P = .03) were reduced. Analysis of lathosterol and campesterol in plasma suggested that intensity of LDL-C reduction was influenced by cholesterol absorption rate rather than its synthesis. Second phase: no difference was observed for plasma lipids, inflammation, cholesterol efflux capacity, or HDL particles after statin dose reduction when compared to standard therapy. CONCLUSIONS Although limited by the small sample size, our study demonstrates the potential for a new therapeutic approach combining lower statin dose and specific dietary compounds. Further studies should elucidate "good responders" profile as a tool for personalized medicine. This may be particularly helpful in the many patients with or at risk for CVD who cannot tolerate high dose statin therapy. TRIAL REGISTRATION ClinicalTrials.gov, NCT02732223.
Collapse
Affiliation(s)
- Bianca Scolaro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14 - 05508-900, São Paulo, Brazil
| | - Marina S Nogueira
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14 - 05508-900, São Paulo, Brazil
| | - Aline Paiva
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14 - 05508-900, São Paulo, Brazil
| | - Adriana Bertolami
- Dyslipidemia Medical Section, Dante Pazzanese Institute of Cardiology, Av. Dr. Dante Pazzanese, 500, 04012-909, São Paulo, Brazil
| | - Lucia P Barroso
- Department of Statistics, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010, 05508-090, São Paulo, Brazil
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sean P Heffron
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Edward A Fisher
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Inar A Castro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14 - 05508-900, São Paulo, Brazil.
| |
Collapse
|
49
|
Yu M, Lu Z, Li W, Wei M, Yan J, Zhang J. Coronary plaque characteristics on baseline CT predict the need for late revascularization in symptomatic patients after percutaneous intervention. Eur Radiol 2018; 28:3441-3453. [PMID: 29450719 DOI: 10.1007/s00330-018-5320-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To assess pre-procedural plaque characteristics as determined by coronary CT angiography (CCTA) and their associations with late revascularization in symptomatic post-procedural patients. METHODS Symptomatic patients with pre-procedural CCTA were prospectively enrolled and referred for invasive coronary angiography (ICA). Plaque characterization was performed on the basis of baseline CCTA data. Multivariate logistic regression analysis with a stepwise selection method was performed to identify independent predictors of late revascularization. RESULTS Seventy-eight patients with 134 lesions were included. Late revascularization was performed to treat 15 ISRs and 22 de novo lesions. Lesions with late revascularization showed higher prevalence rates of low-attenuation plaque (LAP) and positive remodelling (PR) (70.3% vs. 23.7% and 86.5% vs. 30.9%; both p < 0.001) at baseline CCTA. However, the incidence of spotty calcification or napkin-ring sign (NRS) was not significantly different between the subgroups. According to ROC curve analysis, PR and LAP showed the largest AUC values for diagnosing lesions with late revascularization (AUC = 0.78 and 0.73, both p < 0.001). In multivariate analysis, LAP and PR (odds ratio = 6.30 and 13.94; both p < 0.05) were revealed to be independent predictors for late revascularization. CONCLUSIONS LAP and PR observed by baseline CCTA independently predict late revascularization caused by ISR or progression of de novo lesions. KEY POINTS • LAP and PR observed by baseline CT are predictors of late revascularization. • NRS and spotty calcification are not associated with late revascularization. • CT plaque characterization is useful in identifying lesions at high risk of late revascularization.
Collapse
Affiliation(s)
- Mengmeng Yu
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, 200233, China
| | - Zhigang Lu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, China
| | - Wenbin Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, 200233, China
| | - Meng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, China
| | - Jing Yan
- Siemens Healthcare Ltd, #278, Zhouzhugong Rd, Shanghai, China
| | - Jiayin Zhang
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, 200233, China.
| |
Collapse
|
50
|
Fuster V. Editor-in-Chief's Top Picks From 2017. J Am Coll Cardiol 2018; 71:890-934. [PMID: 29471941 DOI: 10.1016/j.jacc.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Each week, I record audio summaries for every article in JACC, as well as an issue summary. While this process has been time-consuming, I have become quite familiar with every paper that we publish. Thus, I personally select papers (both original investigations and review articles) from 15 distinct specialties each year for your review. In addition to my personal choices, I have included manuscripts that have been the most accessed or downloaded on our websites, as well as those selected by the JACC Editorial Board members. In order to present the full breadth of this important research in a consumable fashion, we will present these manuscripts in this issue of JACC. The highlights comprise the following sections: Basic & Translational Research, Cardiac Failure, Cardiomyopathies/Myocardial & Pericardial Diseases, Cardio-oncology, Congenital Heart Disease, Coronary Disease & Interventions, CVD Prevention & Health Promotion, Hypertension, Imaging, Metabolic & Lipid Disorders, Rhythm Disorders, Valvular Heart Disease, and Vascular Medicine (1-110).
Collapse
|