1
|
Chen YJ, Chen IC, Chen YM, Hsiao TH, Wei CY, Chuang HN, Lin WW, Lin CH. Prevalence of genetically defined familial hypercholesterolemia and the impact on acute myocardial infarction in Taiwanese population: A hospital-based study. Front Cardiovasc Med 2022; 9:994662. [PMID: 36172582 PMCID: PMC9510706 DOI: 10.3389/fcvm.2022.994662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
Background Familial hypercholesterolemia (FH) is a common genetic disorder with markedly increased risk of coronary artery diseases (CAD), especially acute myocardial infarction (AMI). However, genetic tests for FH are not always necessary in the current diagnostic criteria of FH, which might lead to underestimation of the prevalence of FH and a lack of awareness of FH-associated CAD and AMI. We aimed to explore the prevalence of genetically defined FH in the hospital-based population and to determine the impact of FH risk variants on CAD and AMI. Methods The study participants were recruited between June 24, 2019 and May 12, 2021, at a medical center in Taiwan, in cooperation with the Taiwan Precision Medicine Initiative (TPMI) project. The prevalence of FH was calculated and the effects of FH pathogenic variants on CAD and AMI were analyzed by logistic regression models and shown as ORs and 95% CI. Results The prevalence of genetically defined FH was 1.13% in the hospital-based population in Taiwan. Highest LDL and total cholesterol levels were observed in patients with LDLR rs28942084 (LDL 219.4±55.2; total cholesterol 295.8±55.4). There was an approximately 4-fold increased risk of hyperlipidemia in subjects with the LDLR rs769446356 polymorphism (OR, 4.42; 95% CI, 1.92-10.19) and AMI in individuals with the LDLR rs730882109 polymorphism (OR, 3.79; 95% CI, 2.26-6.35), and a 2-fold increased risk of CAD in those with the LDLR rs749038326 polymorphism (OR, 2.14; 95% CI, 1.31-3.50), compared with the groups without pathogenic variants of FH. Conclusions The prevalence of genetically defined FH was 1.13% in the hospital-based population in Taiwan, which was higher than the rate observed in individuals with clinically defined FH. The risk of CAD and AMI was increased to varying degrees in subjects with different FH risk alleles. Close monitoring and risk stratification strategy are essential in high-risk patients with FH risk alleles to facilitate early detection and treatments.
Collapse
Affiliation(s)
- Yen-Ju Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Yi Wei
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Han-Ni Chuang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wei-Wen Lin
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taichung Veterans General Hospital, Puli Branch, Nantou, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Wei-Wen Lin
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
- Institute of Public Health and Community Medicine Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Ching-Heng Lin
| |
Collapse
|
2
|
Monogenic Versus Polygenic Forms of Hypercholesterolemia and Cardiovascular Risk: Are There Any Differences? Curr Atheroscler Rep 2022; 24:419-426. [PMID: 35386091 DOI: 10.1007/s11883-022-01018-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Common DNA variants with small effects work together to create susceptibility to polygenic hypercholesterolemia. Some clinicians wonder whether patients with polygenic hypercholesterolemia have less severe clinical features compared to patients with monogenic familial hypercholesterolemia (FH) caused by rare deleterious variants. RECENT FINDINGS Studies performed in cohorts of patients with both monogenic and polygenic hypercholesterolemia have assessed lipid levels, non-invasive markers of atherosclerosis, and clinical end points, including major adverse cardiovascular events. The totality of data suggests a gradient across genotypes. Specifically, individuals with polygenic hypercholesterolemia have deleterious phenotypes that are intermediate in severity between those in patients with monogenic hypercholesterolemia and in control subjects. Although clinical variables in patients with polygenic hypercholesterolemia are less severe than in those with monogenic hypercholesterolemia, cardiovascular risk is still very high in these patients compared to controls. Patients with polygenic hypercholesterolemia must be treated assertively.
Collapse
|
3
|
Lucero D, Dikilitas O, Mendelson MM, Aligabi Z, Islam P, Neufeld EB, Bansal AT, Freeman LA, Vaisman B, Tang J, Combs CA, Li Y, Voros S, Kullo IJ, Remaley AT. Transgelin: a new gene involved in LDL endocytosis identified by a genome-wide CRISPR-Cas9 screen. J Lipid Res 2022; 63:100160. [PMID: 34902367 PMCID: PMC8953622 DOI: 10.1016/j.jlr.2021.100160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022] Open
Abstract
A significant proportion of patients with elevated LDL and a clinical presentation of familial hypercholesterolemia do not carry known genetic mutations associated with hypercholesterolemia, such as defects in the LDL receptor. To identify new genes involved in the cellular uptake of LDL, we developed a novel whole-genome clustered regularly interspaced short palindromic repeat-Cas9 KO screen in HepG2 cells. We identified transgelin (TAGLN), an actin-binding protein, as a potentially new gene involved in LDL endocytosis. In silico validation demonstrated that genetically predicted differences in expression of TAGLN in human populations were significantly associated with elevated plasma lipids (triglycerides, total cholesterol, and LDL-C) in the Global Lipids Genetics Consortium and lipid-related phenotypes in the UK Biobank. In biochemical studies, TAGLN-KO HepG2 cells showed a reduction in cellular LDL uptake, as measured by flow cytometry. In confocal microscopy imaging, TAGLN-KO cells had disrupted actin filaments as well as an accumulation of LDL receptor on their surface because of decreased receptor internalization. Furthermore, TAGLN-KO cells exhibited a reduction in total and free cholesterol content, activation of SREBP2, and a compensatory increase in cholesterol biosynthesis. TAGLN deficiency also disrupted the uptake of VLDL and transferrin, other known cargoes for receptors that depend upon clathrin-mediated endocytosis. Our data suggest that TAGLN is a novel factor involved in the actin-dependent phase of clathrin-mediated endocytosis of LDL. The identification of novel genes involved in the endocytic uptake of LDL may improve the diagnosis of hypercholesterolemia and provide future therapeutic targets for the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Diego Lucero
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ozan Dikilitas
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Mayo Clinician-Investigator Training Program, Mayo Clinic, Rochester, MN, USA
| | - Michael M Mendelson
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zahra Aligabi
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Promotto Islam
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Edward B Neufeld
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aruna T Bansal
- Acclarogen Ltd, St John's Innovation Centre, Cambridge, United Kingdom
| | - Lita A Freeman
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Boris Vaisman
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jingrong Tang
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christian A Combs
- NHLBI Light Microscopy Facility, National Institutes of Health, Bethesda, MD, USA
| | - Yuesheng Li
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Vrablik M, Tichý L, Freiberger T, Blaha V, Satny M, Hubacek JA. Genetics of Familial Hypercholesterolemia: New Insights. Front Genet 2020; 11:574474. [PMID: 33133164 PMCID: PMC7575810 DOI: 10.3389/fgene.2020.574474] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Familial hypercholesterolemia (FH) is one of the most common monogenic diseases, leading to an increased risk of premature atherosclerosis and its cardiovascular complications due to its effect on plasma cholesterol levels. Variants of three genes (LDL-R, APOB and PCSK9) are the major causes of FH, but in some probands, the FH phenotype is associated with variants of other genes. Alternatively, the typical clinical picture of FH can result from the accumulation of common cholesterol-increasing alleles (polygenic FH). Although the Czech Republic is one of the most successful countries with respect to FH detection, approximately 80% of FH patients remain undiagnosed. The opportunities for international collaboration and experience sharing within international programs (e.g., EAS FHSC, ScreenPro FH, etc.) will improve the detection of FH patients in the future and enable even more accessible and accurate genetic diagnostics.
Collapse
Affiliation(s)
- Michal Vrablik
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Lukas Tichý
- Centre of Molecular Biology and Gene Therapy, University Hospital, Brno, Czechia
| | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Vladimir Blaha
- Internal Gerontometabolic Department, Charles University and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Martin Satny
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Jaroslav A Hubacek
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czechia.,Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|