1
|
Shan R, Gao Y, Wang W, Wang J, Li X, Yuan X, Wang X. Dark papillary muscles sign is a new prognostic indicator in patients with dilated cardiomyopathy: A multi-center study. Int J Cardiol 2024; 417:132583. [PMID: 39306289 DOI: 10.1016/j.ijcard.2024.132583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES The prognostic value of left ventricular (LV) papillary muscle anomalies in dilated cardiomyopathy (DCM) patients is unclear. The objective of this study was to evaluate the prognostic significance of LV papillary muscle anomalies in DCM patients using cardiac magnetic resonance (CMR). METHODS 369 DCM patients who underwent CMR at two Chinese medical facilities from January 2019 to June 2023 were retrospectively and consecutively included in total. The various features of the LV papillary muscles were taken into consideration: thickness, attachment, supernumerary papillary muscles, angles, and signal intensity. The end-systolic signal hypointensity of both papillary muscles in early post-contrast cine CMR images was identified as Dark-Paps. Major adverse cardiac events (MACEs) were assessed, and all patients were followed up. RESULTS 119 patients (32.2 %) had Dark-Paps and 141 patients (38.2 %) experienced MACE during a median follow-up of 22 months. According to Kaplan-Meier curve analysis, patients who had Dark-Paps had a lower survival rate free from MACE (log-rank, p < 0.001). Dark-Paps maintained an independent predictor of MACE in a multivariate model that included left ventricular ejection fraction (LVEF) and late gadolinium enhancement (LGE) extent (HR: 3.49; p < 0.001). Furthermore, adding Dark-Paps to the multivariate model greatly enhanced the prognostic role of endpoint events (C-statistic improvement: 0.652-0.777, Delong test: p < 0.001). CONCLUSION Dark-Paps is a potent independent indicator of major adverse cardiac events in dilated cardiomyopathy patients. In addition, Dark-Paps can provide additional prognostic value over the multivariable baseline clinical model.
Collapse
Affiliation(s)
- Rongxue Shan
- School of Medicine, Shandong First Medical University, Jinan, Shandong 271099, China; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yan Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Wenxian Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Yantai, Shandong 264003, PR China
| | - Jian Wang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiaofan Li
- Circle Cardiovascular Imaging Inc, Suite 1100, 800 5th Avenue SW, Calgary, AB T2P 3T6, Canada
| | - Xianshun Yuan
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China.
| |
Collapse
|
2
|
Zheng JY, Chen BH, Wu R, An DA, Shi RY, Wu CW, Xie JY, Jiang SS, Jia V, Zhao L, Wu LM. 3D Fractal Dimension Analysis: Prognostic Value of Right Ventricular Trabecular Complexity in Participants with Arrhythmogenic Cardiomyopathy. J Magn Reson Imaging 2024; 60:1964-1973. [PMID: 38258534 DOI: 10.1002/jmri.29237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) is characterized by progressive myocardial fibro-fatty infiltration accompanied by trabecular disarray. Traditionally, two-dimensional (2D) instead of 3D fractal dimension (FD) analysis has been used to evaluate trabecular disarray. However, the prognostic value of trabecular disorder assessed by 3D FD measurement remains unclear. PURPOSE To investigate the prognostic value of right ventricular trabecular complexity in ACM patients using 3D FD analysis based on cardiac MR cine images. STUDY TYPE Retrospective. POPULATION 85 ACM patients (mean age: 45 ± 17 years, 52 male). FIELD STRENGTH/SEQUENCE 3.0T/cine imaging, T2-short tau inversion recovery (T2-STIR), and late gadolinium enhancement (LGE). ASSESSMENT Using cine images, RV (right ventricular) volumetric and functional parameters were obtained. RV trabecular complexity was measured with 3D fractal analysis by box-counting method to calculate 3D-FD. Cox and logistic regression models were established to evaluate the prognostic value of 3D-FD for major adverse cardiac events (MACE). STATISTICAL TESTS Cox regression and logistic regression to explore the prognostic value of 3D-FD. C-index, time-dependent receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) to evaluate the incremental value of 3D-FD. Intraclass correlation coefficient for interobserver variability. P < 0.05 indicated statistical significance. RESULTS 26 MACE were recorded during the 60 month follow-up (interquartile range: 48-67 months). RV 3D-FD significantly differed between ACM patients with MACE (2.67, interquartile range: 2.51 ~ 2.81) and without (2.52, interquartile range: 2.40 ~ 2.67) and was a significant independent risk factor for MACE (hazard ratio, 1.02; 95% confidence interval: 1.01, 1.04). In addition, prognostic model fitness was significantly improved after adding 3D-FD to RV global longitudinal strain, LV involvement, and 5-year risk score separately. DATA CONCLUSION The myocardial trabecular complexity assessed through 3D FD analysis was found associated with MACE and provided incremental prognostic value beyond conventional ACM risk factors. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Jin-Yu Zheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing-Hua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Aolei An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruo-Yang Shi
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chong-Wen Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Victor Jia
- University of Michigan, Ann Arbor, Michigan, USA
| | - Lei Zhao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Lu G, Cao L, Ye W, Wei X, Xie J, Du Z, Zhang X, Luo X, Ou J, Zhang Q, Liu Y, Yang Y, Liu H. Incremental Prognostic Value of Cardiac MRI Feature Tracking and T1 Mapping in Arrhythmogenic Right Ventricular Cardiomyopathy. Radiol Cardiothorac Imaging 2024; 6:e230430. [PMID: 39446042 DOI: 10.1148/ryct.230430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Purpose To explore the role of cardiac MRI feature tracking (FT) and T1 mapping in predicting sustained ventricular arrhythmias (VA) in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) and to investigate their possible incremental value beyond ARVC risk score. Materials and Methods The retrospective study analyzed 91 patients with ARVC (median age, 36 years [IQR, 27-50 years]; 60 male, 31 female) who underwent cardiac MRI examinations between November 2010 and March 2022. The primary end point was the first occurrence of sustained VA after cardiac MRI to first VA, with censoring of patients who were alive without VA at last follow-up. Cox regression analysis was performed to assess the association between variables and time to sustained VA. Time-dependent receiver operating characteristic (ROC) analysis was performed to determine the incremental value of cardiac MRI FT and T1 mapping. Results During a median follow-up of 55.0 months (IQR, 37.0-76.0 months), 36 of 91 (40%) patients experienced sustained VA. A 1% worsening in left ventricular global longitudinal peak strain (GLS), 1% worsening in right ventricular GLS, and a 1% increase in extracellular volume fraction (ECV) were associated with increased risk of sustained VA, with hazard ratios of 1.14 (95% CI: 1.06, 1.23; P = .001), 1.09 (95% CI: 1.02, 1.16; P = .02), and 1.13 (95% CI: 1.08, 1.18; P < .001), respectively, after adjustment for ARVC risk score. Adding both biventricular GLS and ECV to ARVC risk score showed significant incremental value for predicting sustained VA (area under the ROC curve: 0.73 vs 0.65; P < .001). Conclusion Cardiac MRI-derived biventricular GLS and ECV provided independent and incremental value for predicting sustained VA beyond ARVC risk score alone in patients with ARVC. Keywords: Cardiovascular MRI, Feature Tracking, T1 Mapping, Arrhythmogenic Right Ventricular Cardiomyopathy, Sustained Ventricular Arrhythmias Supplemental material is available for this article Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Guanyu Lu
- From the Department of Radiology (G.L., L.C., W.Y., X.L., J.O., Y.Y., H.L.) and Guangdong Cardiovascular Institute (Q.Z., Y.L.), Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Interventional Diagnosis and Therapy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (G.L.); Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (X.W.); Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China (J.X.); Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China (Z.D.); Department of Pediatrics, The First Clinical College, Guangdong Medical University, Zhanjiang, China (X.Z.); and School of Medicine, South China University of Technology, Guangzhou, China (X.L., H.L.)
| | - Liqi Cao
- From the Department of Radiology (G.L., L.C., W.Y., X.L., J.O., Y.Y., H.L.) and Guangdong Cardiovascular Institute (Q.Z., Y.L.), Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Interventional Diagnosis and Therapy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (G.L.); Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (X.W.); Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China (J.X.); Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China (Z.D.); Department of Pediatrics, The First Clinical College, Guangdong Medical University, Zhanjiang, China (X.Z.); and School of Medicine, South China University of Technology, Guangzhou, China (X.L., H.L.)
| | - Weitao Ye
- From the Department of Radiology (G.L., L.C., W.Y., X.L., J.O., Y.Y., H.L.) and Guangdong Cardiovascular Institute (Q.Z., Y.L.), Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Interventional Diagnosis and Therapy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (G.L.); Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (X.W.); Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China (J.X.); Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China (Z.D.); Department of Pediatrics, The First Clinical College, Guangdong Medical University, Zhanjiang, China (X.Z.); and School of Medicine, South China University of Technology, Guangzhou, China (X.L., H.L.)
| | - Xiaoyu Wei
- From the Department of Radiology (G.L., L.C., W.Y., X.L., J.O., Y.Y., H.L.) and Guangdong Cardiovascular Institute (Q.Z., Y.L.), Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Interventional Diagnosis and Therapy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (G.L.); Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (X.W.); Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China (J.X.); Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China (Z.D.); Department of Pediatrics, The First Clinical College, Guangdong Medical University, Zhanjiang, China (X.Z.); and School of Medicine, South China University of Technology, Guangzhou, China (X.L., H.L.)
| | - Jiajun Xie
- From the Department of Radiology (G.L., L.C., W.Y., X.L., J.O., Y.Y., H.L.) and Guangdong Cardiovascular Institute (Q.Z., Y.L.), Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Interventional Diagnosis and Therapy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (G.L.); Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (X.W.); Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China (J.X.); Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China (Z.D.); Department of Pediatrics, The First Clinical College, Guangdong Medical University, Zhanjiang, China (X.Z.); and School of Medicine, South China University of Technology, Guangzhou, China (X.L., H.L.)
| | - Zhicheng Du
- From the Department of Radiology (G.L., L.C., W.Y., X.L., J.O., Y.Y., H.L.) and Guangdong Cardiovascular Institute (Q.Z., Y.L.), Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Interventional Diagnosis and Therapy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (G.L.); Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (X.W.); Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China (J.X.); Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China (Z.D.); Department of Pediatrics, The First Clinical College, Guangdong Medical University, Zhanjiang, China (X.Z.); and School of Medicine, South China University of Technology, Guangzhou, China (X.L., H.L.)
| | - Xinyue Zhang
- From the Department of Radiology (G.L., L.C., W.Y., X.L., J.O., Y.Y., H.L.) and Guangdong Cardiovascular Institute (Q.Z., Y.L.), Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Interventional Diagnosis and Therapy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (G.L.); Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (X.W.); Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China (J.X.); Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China (Z.D.); Department of Pediatrics, The First Clinical College, Guangdong Medical University, Zhanjiang, China (X.Z.); and School of Medicine, South China University of Technology, Guangzhou, China (X.L., H.L.)
| | - Xinyi Luo
- From the Department of Radiology (G.L., L.C., W.Y., X.L., J.O., Y.Y., H.L.) and Guangdong Cardiovascular Institute (Q.Z., Y.L.), Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Interventional Diagnosis and Therapy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (G.L.); Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (X.W.); Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China (J.X.); Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China (Z.D.); Department of Pediatrics, The First Clinical College, Guangdong Medical University, Zhanjiang, China (X.Z.); and School of Medicine, South China University of Technology, Guangzhou, China (X.L., H.L.)
| | - Jiehao Ou
- From the Department of Radiology (G.L., L.C., W.Y., X.L., J.O., Y.Y., H.L.) and Guangdong Cardiovascular Institute (Q.Z., Y.L.), Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Interventional Diagnosis and Therapy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (G.L.); Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (X.W.); Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China (J.X.); Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China (Z.D.); Department of Pediatrics, The First Clinical College, Guangdong Medical University, Zhanjiang, China (X.Z.); and School of Medicine, South China University of Technology, Guangzhou, China (X.L., H.L.)
| | - Qianhuan Zhang
- From the Department of Radiology (G.L., L.C., W.Y., X.L., J.O., Y.Y., H.L.) and Guangdong Cardiovascular Institute (Q.Z., Y.L.), Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Interventional Diagnosis and Therapy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (G.L.); Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (X.W.); Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China (J.X.); Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China (Z.D.); Department of Pediatrics, The First Clinical College, Guangdong Medical University, Zhanjiang, China (X.Z.); and School of Medicine, South China University of Technology, Guangzhou, China (X.L., H.L.)
| | - Yang Liu
- From the Department of Radiology (G.L., L.C., W.Y., X.L., J.O., Y.Y., H.L.) and Guangdong Cardiovascular Institute (Q.Z., Y.L.), Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Interventional Diagnosis and Therapy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (G.L.); Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (X.W.); Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China (J.X.); Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China (Z.D.); Department of Pediatrics, The First Clinical College, Guangdong Medical University, Zhanjiang, China (X.Z.); and School of Medicine, South China University of Technology, Guangzhou, China (X.L., H.L.)
| | - Yuelong Yang
- From the Department of Radiology (G.L., L.C., W.Y., X.L., J.O., Y.Y., H.L.) and Guangdong Cardiovascular Institute (Q.Z., Y.L.), Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Interventional Diagnosis and Therapy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (G.L.); Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (X.W.); Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China (J.X.); Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China (Z.D.); Department of Pediatrics, The First Clinical College, Guangdong Medical University, Zhanjiang, China (X.Z.); and School of Medicine, South China University of Technology, Guangzhou, China (X.L., H.L.)
| | - Hui Liu
- From the Department of Radiology (G.L., L.C., W.Y., X.L., J.O., Y.Y., H.L.) and Guangdong Cardiovascular Institute (Q.Z., Y.L.), Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Interventional Diagnosis and Therapy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (G.L.); Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (X.W.); Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China (J.X.); Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China (Z.D.); Department of Pediatrics, The First Clinical College, Guangdong Medical University, Zhanjiang, China (X.Z.); and School of Medicine, South China University of Technology, Guangzhou, China (X.L., H.L.)
| |
Collapse
|
4
|
Yu LY, Xiang JY, Chen BH, An DA, Wu R, Shi RY, Zheng JY, Zhao L, Wu LM. Prognostic value of magnetic resonance imaging (MRI)-based cardiac adipose tissue in arrhythmogenic right ventricular cardiomyopathy. Clin Radiol 2024:S0009-9260(24)00556-7. [PMID: 39438200 DOI: 10.1016/j.crad.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
AIM The aim of this study was to explore the relationship between epicardial adipose tissue (EAT), paracardial adipose tissue (PaAT), pericardial adipose tissue (PeAT), and fat ratio with left ventricular (LV) involvement, assessing the prognostic significance of cardiac fat in arrhythmogenic right ventricular cardiomyopathy (ARVC). MATERIALS AND METHODS Ninety-two ARVC patients (mean age: 45.74 years; 63% male) were included and followed up for 92 months. Measured in cardiac magnetic resonance imaging (MRI) cine views, EAT, PaAT, PeAT, and fat ratio (EAT/PaAT) were analyzed to identify the association with major adverse cardiac events (MACEs) (sudden cardiovascular death, aborted cardiac arrest, heart failure hospitalization, and sustained documented ventricular tachycardia). RESULTS Among the 92 participants, 28 (30.43%) MACEs occurred during the follow-up. Significantly higher EAT, PaAT, PeAT, and fat ratio were observed in patients with LV involvement than in those without (p = 0.001, p = 0.002, p = 0.001, p = 0.003, respectively) in violin plots. A worse prognosis in ARVC patients was associated with a higher volume of EAT (log rank p = 0.0031). In multivariate Cox regression analysis, EAT (Hazard Ratio [HR]: 1.056, 95% confidence interval [CI]: 1.011-1.103, p = 0.013) and 5-year risk score (HR: 1.018, 95% CI: 1.002-1.034, p = 0.030) were identified as independent prognostic predictors for MACEs. Additional prognostic information over conventional outcome predictors was provided by EAT (Uno C-statistics: 0.645 vs. 0.665, p = 0.007). CONCLUSION higher cardiac fat volume was found to be correlated with LV involvement. Independent risk factors for MACEs in ARVC were identified as EAT and 5-year risk score, and the incremental prognostic value to established predictors in ARVC was provided by EAT.
Collapse
Affiliation(s)
- L-Y Yu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - J-Y Xiang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - B-H Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - D-A An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - R Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - R-Y Shi
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - J-Y Zheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| | - L Zhao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| | - L-M Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| |
Collapse
|
5
|
Zheng H, Yang L, Huang H, Lin Y, Chen L. Morroniside improves AngII-induced cardiac fibroblast proliferation, migration, and extracellular matrix deposition by blocking p38/JNK signaling pathway through the downregulation of KLF5. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6611-6621. [PMID: 38472369 PMCID: PMC11422283 DOI: 10.1007/s00210-024-03039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Myocardial fibrosis (MF), which is an inevitable pathological manifestation of many cardiovascular diseases in the terminal stage, often contributes to severe cardiac dysfunction and sudden death. Morroniside (MOR) is the main active component of Cornus officinalis with a variety of biological activities. This study was designed to explore the efficacy of MOR in MF and to investigate its pharmacological mechanism. The viability of MOR-treated human cardiac fibroblast (HCF) cells with or without Angiotensin II (AngII) induction was assessed with Cell Counting Kit-8 (CCK-8). The migration of AngII-induced HCF cells was appraised with a transwell assay. Gelatin zymography analysis was adopted to evaluate the activities of MMP2 and MMP9, while immunofluorescence assay was applied for the estimation of Collagen I and Collagen III. By means of western blot, the expressions of migration-, fibrosis-, and p38/c-Jun N-terminal kinase (JNK) signal pathway-related proteins were resolved. The transfection efficacy of oe-Kruppel-like factor 5 (KLF5) was examined with reverse transcription-quantitative PCR (RT-qPCR) and western blot. In this study, it was found that MOR treatment inhibited AngII-induced hyperproliferation, migration, and fibrosis of HCF cells, accompanied with decreased activities of matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), connective tissue growth factor (CTGF), Fibronectin, and α-SMA, which were all reversed by KLF5 overexpression. Collectively, MOR exerted protective effects on MF by blocking p38/JNK signal pathway through the downregulation of KLF5.
Collapse
Affiliation(s)
- Haotian Zheng
- The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, People's Republic of China
- Department of Cardiology, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, Fujian, 350001, People's Republic of China
| | - Linxin Yang
- The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, People's Republic of China
- Department of Ultraphonic Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Huashang Huang
- The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, People's Republic of China
- Department of Cardiology, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, Fujian, 350001, People's Republic of China
| | - Yazhou Lin
- The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, People's Republic of China.
- Department of Cardiology, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, Fujian, 350001, People's Republic of China.
| | - Lin Chen
- The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, People's Republic of China.
- Department of Cardiology, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, Fujian, 350001, People's Republic of China.
| |
Collapse
|
6
|
Takase B, Ikeda T, Shimizu W, Abe H, Aiba T, Chinushi M, Koba S, Kusano K, Niwano S, Takahashi N, Takatsuki S, Tanno K, Watanabe E, Yoshioka K, Amino M, Fujino T, Iwasaki YK, Kohno R, Kinoshita T, Kurita Y, Masaki N, Murata H, Shinohara T, Yada H, Yodogawa K, Kimura T, Kurita T, Nogami A, Sumitomo N. JCS/JHRS 2022 Guideline on Diagnosis and Risk Assessment of Arrhythmia. Circ J 2024; 88:1509-1595. [PMID: 37690816 DOI: 10.1253/circj.cj-22-0827] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Haruhiko Abe
- Department of Heart Rhythm Management, University of Occupational and Environmental Health, Japan
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center
| | - Masaomi Chinushi
- School of Health Sciences, Niigata University School of Medicine
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Shinichi Niwano
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Seiji Takatsuki
- Department of Cardiology, Keio University School of Medicine
| | - Kaoru Tanno
- Cardiology Division, Cardiovascular Center, Showa University Koto-Toyosu Hospital
| | - Eiichi Watanabe
- Division of Cardiology, Department of Internal Medicine, Fujita Health University Bantane Hospital
| | | | - Mari Amino
- Department of Cardiology, Tokai University School of Medicine
| | - Tadashi Fujino
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | - Yu-Ki Iwasaki
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Ritsuko Kohno
- Department of Heart Rhythm Management, University of Occupational and Environmental Health, Japan
| | - Toshio Kinoshita
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | - Yasuo Kurita
- Cardiovascular Center, International University of Health and Welfare, Mita Hospital
| | - Nobuyuki Masaki
- Department of Intensive Care Medicine, National Defense Medical College
| | | | - Tetsuji Shinohara
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Hirotaka Yada
- Department of Cardiology, International University of Health and Welfare, Mita Hospital
| | - Kenji Yodogawa
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Takeshi Kimura
- Cardiovascular Medicine, Kyoto University Graduate School of Medicine
| | | | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | - Naokata Sumitomo
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center
| |
Collapse
|
7
|
Carrick RT, Gasperetti A, Protonotarios A, Murray B, Laredo M, van der Schaaf I, Dooijes D, Syrris P, Cannie D, Tichnell C, Gilotra NA, Cappelletto C, Medo K, Saguner AM, Duru F, Hylind RJ, Abrams DJ, Lakdawala NK, Cadrin-Tourigny J, Targetti M, Olivotto I, Graziosi M, Cox M, Biagini E, Charron P, Compagnucci P, Casella M, Conte G, Tondo C, Yazdani M, Ware JS, Prasad SK, Calò L, Smith ED, Helms AS, Hespe S, Ingles J, Tandri H, Ader F, Peretto G, Peters S, Horton A, Yao J, Schulze-Bahr E, Dittman S, Carruth ED, Young K, Qureshi M, Haggerty C, Parikh VN, Taylor M, Mestroni L, Wilde A, Sinagra G, Merlo M, Gandjbakhch E, van Tintelen JP, te Riele ASJM, Elliott P, Calkins H, Wu KC, James CA. A novel tool for arrhythmic risk stratification in desmoplakin gene variant carriers. Eur Heart J 2024; 45:2968-2979. [PMID: 39011630 PMCID: PMC11335372 DOI: 10.1093/eurheartj/ehae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/16/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND AND AIMS Pathogenic desmoplakin (DSP) gene variants are associated with the development of a distinct form of arrhythmogenic cardiomyopathy known as DSP cardiomyopathy. Patients harbouring these variants are at high risk for sustained ventricular arrhythmia (VA), but existing tools for individualized arrhythmic risk assessment have proven unreliable in this population. METHODS Patients from the multi-national DSP-ERADOS (Desmoplakin SPecific Effort for a RAre Disease Outcome Study) Network patient registry who had pathogenic or likely pathogenic DSP variants and no sustained VA prior to enrolment were followed longitudinally for the development of first sustained VA event. Clinically guided, step-wise Cox regression analysis was used to develop a novel clinical tool predicting the development of incident VA. Model performance was assessed by c-statistic in both the model development cohort (n = 385) and in an external validation cohort (n = 86). RESULTS In total, 471 DSP patients [mean age 37.8 years, 65.6% women, 38.6% probands, 26% with left ventricular ejection fraction (LVEF) < 50%] were followed for a median of 4.0 (interquartile range: 1.6-7.3) years; 71 experienced first sustained VA events {2.6% [95% confidence interval (CI): 2.0, 3.5] events/year}. Within the development cohort, five readily available clinical parameters were identified as independent predictors of VA and included in a novel DSP risk score: female sex [hazard ratio (HR) 1.9 (95% CI: 1.1-3.4)], history of non-sustained ventricular tachycardia [HR 1.7 (95% CI: 1.1-2.8)], natural logarithm of 24-h premature ventricular contraction burden [HR 1.3 (95% CI: 1.1-1.4)], LVEF < 50% [HR 1.5 (95% CI: .95-2.5)], and presence of moderate to severe right ventricular systolic dysfunction [HR 6.0 (95% CI: 2.9-12.5)]. The model demonstrated good risk discrimination within both the development [c-statistic .782 (95% CI: .77-.80)] and external validation [c-statistic .791 (95% CI: .75-.83)] cohorts. The negative predictive value for DSP patients in the external validation cohort deemed to be at low risk for VA (<5% at 5 years; n = 26) was 100%. CONCLUSIONS The DSP risk score is a novel model that leverages readily available clinical parameters to provide individualized VA risk assessment for DSP patients. This tool may help guide decision-making for primary prevention implantable cardioverter-defibrillator placement in this high-risk population and supports a gene-first risk stratification approach.
Collapse
Affiliation(s)
- Richard T Carrick
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| | - Alessio Gasperetti
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alexandros Protonotarios
- Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, UCL Institute of Cardiovascular Science, London, UK
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| | - Mikael Laredo
- Institut de Cardiologie, Sorbonne Université, AP-HP, IHU-ICAN, Groupe Hospitalier Pitié-Salpêtrière, Institut de Cardiologie, Paris, France
| | - Iris van der Schaaf
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Petros Syrris
- Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, UCL Institute of Cardiovascular Science, London, UK
| | - Douglas Cannie
- Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, UCL Institute of Cardiovascular Science, London, UK
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| | - Nisha A Gilotra
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| | - Chiara Cappelletto
- Division of Cardiology, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | - Kristen Medo
- Department of Medicine, Division of Cardiology, University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ardan M Saguner
- Department of Cardiology, Arrhythmia Unit, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Firat Duru
- Department of Cardiology, Arrhythmia Unit, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Robyn J Hylind
- Center for Cardiovascular Genetics, Boston Children’s Hospital, Boston, MA, USA
| | - Dominic J Abrams
- Center for Cardiovascular Genetics, Boston Children’s Hospital, Boston, MA, USA
| | - Neal K Lakdawala
- Center for Advanced Heart Disease, Brigham and Women's Hospital Cardiovascular Medicine, Boston, MA, USA
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Mattia Targetti
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children Hospital, Careggi University Hospital, Florence, Italy
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children Hospital, Careggi University Hospital, Florence, Italy
| | - Maddalena Graziosi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Moniek Cox
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Elena Biagini
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Philippe Charron
- Institut de Cardiologie, Sorbonne Université, AP-HP, IHU-ICAN, Groupe Hospitalier Pitié-Salpêtrière, Institut de Cardiologie, Paris, France
| | - Paolo Compagnucci
- Cardiology and Arrhythmology Clinic, University Hospital ‘Ospedali Riuniti’, Ancona, Italy
| | - Michela Casella
- Cardiology and Arrhythmology Clinic, University Hospital ‘Ospedali Riuniti’, Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Giulio Conte
- Department of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, Cen, IRCCS, University of Milan, Milan, Italy
- Department of Biochemical, Surgical and Dentist Sciences, University of Milan, Milan, Italy
| | - Momina Yazdani
- Department of Cardiology, National Heart and Lung Institute and and MRC London Institute of Medical Sciences, London, United Kingdom
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - James S Ware
- Department of Cardiology, National Heart and Lung Institute and and MRC London Institute of Medical Sciences, London, United Kingdom
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Sanjay K Prasad
- Department of Cardiology, National Heart and Lung Institute and and MRC London Institute of Medical Sciences, London, United Kingdom
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Leonardo Calò
- Department of Cardiology, Policlinico Casilino, Rome, Italy
| | - Eric D Smith
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, USA
| | - Adam S Helms
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, USA
| | - Sophie Hespe
- Centre for Population Genomics, Garvan Institute of Medical Research, UNSW Sydney, Sydney, Australia
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research, UNSW Sydney, Sydney, Australia
| | - Harikrishna Tandri
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| | - Flavie Ader
- UF de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, APHP Sorbonne Université, DMU BioGem, 75013 Paris, France
- Université Paris Cité, UFR de Pharmacie, UP Biochimie, 75006 Paris, France
| | - Giovanni Peretto
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Stacey Peters
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Ari Horton
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Jessica Yao
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Eric Schulze-Bahr
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Sven Dittman
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Eric D Carruth
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA
| | - Katelyn Young
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA
| | - Maria Qureshi
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA
| | - Chris Haggerty
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA
- The Heart Institute, Geisinger, Danville, PA, USA
| | - Victoria N Parikh
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Taylor
- Department of Medicine, Division of Cardiology, University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luisa Mestroni
- Department of Medicine, Division of Cardiology, University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Arthur Wilde
- Department of Cardiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Gianfranco Sinagra
- Division of Cardiology, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | - Marco Merlo
- Division of Cardiology, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | - Estelle Gandjbakhch
- Institut de Cardiologie, Sorbonne Université, AP-HP, IHU-ICAN, Groupe Hospitalier Pitié-Salpêtrière, Institut de Cardiologie, Paris, France
| | - J Peter van Tintelen
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Anneline S J M te Riele
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Perry Elliott
- Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, UCL Institute of Cardiovascular Science, London, UK
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| | - Katherine C Wu
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Takase B, Ikeda T, Shimizu W, Abe H, Aiba T, Chinushi M, Koba S, Kusano K, Niwano S, Takahashi N, Takatsuki S, Tanno K, Watanabe E, Yoshioka K, Amino M, Fujino T, Iwasaki Y, Kohno R, Kinoshita T, Kurita Y, Masaki N, Murata H, Shinohara T, Yada H, Yodogawa K, Kimura T, Kurita T, Nogami A, Sumitomo N. JCS/JHRS 2022 Guideline on Diagnosis and Risk Assessment of Arrhythmia. J Arrhythm 2024; 40:655-752. [PMID: 39139890 PMCID: PMC11317726 DOI: 10.1002/joa3.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
| | - Takanori Ikeda
- Department of Cardiovascular MedicineToho University Faculty of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular MedicineNippon Medical School
| | - Haruhiko Abe
- Department of Heart Rhythm ManagementUniversity of Occupational and Environmental HealthJapan
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and GeneticsNational Cerebral and Cardiovascular Center
| | | | - Shinji Koba
- Division of Cardiology, Department of MedicineShowa University School of Medicine
| | - Kengo Kusano
- Department of Cardiovascular MedicineNational Cerebral and Cardiovascular Center
| | - Shinichi Niwano
- Department of Cardiovascular MedicineKitasato University School of Medicine
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of MedicineOita University
| | | | - Kaoru Tanno
- Cardiovascular Center, Cardiology DivisionShowa University Koto‐Toyosu Hospital
| | - Eiichi Watanabe
- Division of Cardiology, Department of Internal MedicineFujita Health University Bantane Hospital
| | | | - Mari Amino
- Department of CardiologyTokai University School of Medicine
| | - Tadashi Fujino
- Department of Cardiovascular MedicineToho University Faculty of Medicine
| | - Yu‐ki Iwasaki
- Department of Cardiovascular MedicineNippon Medical School
| | - Ritsuko Kohno
- Department of Heart Rhythm ManagementUniversity of Occupational and Environmental HealthJapan
| | - Toshio Kinoshita
- Department of Cardiovascular MedicineToho University Faculty of Medicine
| | - Yasuo Kurita
- Cardiovascular Center, Mita HospitalInternational University of Health and Welfare
| | - Nobuyuki Masaki
- Department of Intensive Care MedicineNational Defense Medical College
| | | | - Tetsuji Shinohara
- Department of Cardiology and Clinical Examination, Faculty of MedicineOita University
| | - Hirotaka Yada
- Department of CardiologyInternational University of Health and Welfare Mita Hospital
| | - Kenji Yodogawa
- Department of Cardiovascular MedicineNippon Medical School
| | - Takeshi Kimura
- Cardiovascular MedicineKyoto University Graduate School of Medicine
| | | | - Akihiko Nogami
- Department of Cardiology, Faculty of MedicineUniversity of Tsukuba
| | - Naokata Sumitomo
- Department of Pediatric CardiologySaitama Medical University International Medical Center
| | | |
Collapse
|
9
|
Chen BH, Jiang WY, Zheng JY, Dai YS, Shi RY, Wu R, An DA, Tang LL, Xu JR, Zhao L, Wu LM. Prognostic value of right ventricular trabecular complexity in patients with arrhythmogenic cardiomyopathy. Eur Radiol 2024; 34:4883-4896. [PMID: 38189980 DOI: 10.1007/s00330-023-10561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVES The present study aimed to investigate the incremental prognostic value of the right ventricular fractal dimension (FD), a novel marker of myocardial trabecular complexity by cardiac magnetic resonance (CMR) in patients with arrhythmogenic cardiomyopathy (ACM). METHODS Consecutive patients with ACM undergoing CMR were followed up for major cardiac events, including sudden cardiac death, aborted cardiac arrest, and appropriate implantable cardioverter defibrillator intervention. Prognosis prediction was compared by Cox regression analysis. We established a multivariable model supplemented with RV FD and evaluated its discrimination by Harrell's C-statistic. We compared the category-free, continuous net reclassification improvement (cNRI) and integrated discrimination index (IDI) before and after the addition of FD. RESULTS A total of 105 patients were prospectively included from three centers and followed up for a median of 60 (48, 66) months; experienced 36 major cardiac events were recorded. Trabecular FD displayed a strong unadjusted association with major cardiac events (p < 0.05). In the multivariable Cox regression analysis, RV maximal apical FD maintained an independent association with major cardiac events (hazard ratio, 1.31 (1.11-1.55), p < 0.002). The Hosmer-Lemeshow goodness of fit test displayed good fit (X2 = 0.68, p = 0.99). Diagnostic performance was significantly improved after the addition of RV maximal apical FD to the multivariable baseline model, and the continuous net reclassification improvement increased 21% (p = 0.001), and the integrated discrimination index improved 16% (p = 0.045). CONCLUSIONS In patients with ACM, CMR-assessed myocardial trabecular complexity was independently correlated with adverse cardiovascular events and provided incremental prognostic value. CLINICAL RELEVANCE STATEMENT The application of FD values for assessing RV myocardial trabeculae may become an accessible and promising parameter in monitoring and early diagnosis of risk factors for adverse cardiovascular events in patients with ACM. KEY POINTS • Ventricular trabecular morphology, a novel quantitative marker by CMR, has been explored for the first time to determine the severity of ACM. • Patients with higher maximal apical fractal dimension of RV displayed significantly higher cumulative incidence of major cardiac events. • RV maximal apical FD was independently associated with major cardiac events and provided incremental prognostic value in patients with ACM.
Collapse
Affiliation(s)
- Bing-Hua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Wen-Yi Jiang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Jin-Yu Zheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Yi-Si Dai
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Ruo-Yang Shi
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Rui Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Dong-Aolei An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Lang-Lang Tang
- Department of Radiology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, People's Republic of China
| | - Jian-Rong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Lei Zhao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
10
|
Mistrulli R, Ferrera A, Salerno L, Vannini F, Guida L, Corradetti S, Addeo L, Valcher S, Di Gioia G, Spera FR, Tocci G, Barbato E. Cardiomyopathy and Sudden Cardiac Death: Bridging Clinical Practice with Cutting-Edge Research. Biomedicines 2024; 12:1602. [PMID: 39062175 PMCID: PMC11275154 DOI: 10.3390/biomedicines12071602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Sudden cardiac death (SCD) prevention in cardiomyopathies such as hypertrophic (HCM), dilated (DCM), non-dilated left ventricular (NDLCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) remains a crucial but complex clinical challenge, especially among younger populations. Accurate risk stratification is hampered by the variability in phenotypic expression and genetic heterogeneity inherent in these conditions. This article explores the multifaceted strategies for preventing SCD across a spectrum of cardiomyopathies and emphasizes the integration of clinical evaluations, genetic insights, and advanced imaging techniques such as cardiac magnetic resonance (CMR) in assessing SCD risks. Advanced imaging, particularly CMR, not only enhances our understanding of myocardial architecture but also serves as a cornerstone for identifying at-risk patients. The integration of new research findings with current practices is essential for advancing patient care and improving survival rates among those at the highest risk of SCD. This review calls for ongoing research to refine risk stratification models and enhance the predictive accuracy of both clinical and imaging techniques in the management of cardiomyopathies.
Collapse
Affiliation(s)
- Raffaella Mistrulli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
- OLV Hospital Aalst, 9300 Aalst, Belgium; (L.A.); (S.V.)
| | - Armando Ferrera
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Luigi Salerno
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Federico Vannini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Leonardo Guida
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Sara Corradetti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
- OLV Hospital Aalst, 9300 Aalst, Belgium; (L.A.); (S.V.)
| | - Lucio Addeo
- OLV Hospital Aalst, 9300 Aalst, Belgium; (L.A.); (S.V.)
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Corso Umberto I, 40, 80138 Naples, Italy
| | - Stefano Valcher
- OLV Hospital Aalst, 9300 Aalst, Belgium; (L.A.); (S.V.)
- Cardiovascular Department, Humanitas University, Via Alessandro Manzoni, 56, 20089 Rozzano, Italy
| | - Giuseppe Di Gioia
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197 Rome, Italy;
| | - Francesco Raffaele Spera
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Giuliano Tocci
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Emanuele Barbato
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| |
Collapse
|
11
|
Mattesi G, Pergola V, Bariani R, Martini M, Motta R, Perazzolo Marra M, Rigato I, Bauce B. Multimodality imaging in arrhythmogenic cardiomyopathy - From diagnosis to management. Int J Cardiol 2024; 407:132023. [PMID: 38583594 DOI: 10.1016/j.ijcard.2024.132023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Arrhythmogenic Cardiomyopathy (AC), an inherited cardiac disorder characterized by myocardial fibrofatty replacement, carries a significant risk of sudden cardiac death (SCD) due to ventricular arrhythmias. A comprehensive multimodality imaging approach, including echocardiography, cardiac magnetic resonance imaging (CMR), and cardiac computed tomography (CCT), allows for accurate diagnosis, effective risk stratification, vigilant monitoring, and appropriate intervention, leading to improved patient outcomes and the prevention of SCD. Echocardiography is primary tool ventricular morphology and function assessment, CMR provides detailed visualization, CCT is essential in early stages for excluding congenital anomalies and coronary artery disease. Echocardiography is preferred for follow-up, with CMR capturing changes over time. The strategic use of these imaging methods aids in confirming AC, differentiating it from other conditions, tracking its progression, managing complications, and addressing end-stage scenarios.
Collapse
Affiliation(s)
| | | | - Riccardo Bariani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | - Marika Martini
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | | | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | | | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| |
Collapse
|
12
|
Castrichini M, De Luca A, De Angelis G, Neves R, Paldino A, Dal Ferro M, Barbati G, Medo K, Barison A, Grigoratos C, Gigli M, Stolfo D, Brun F, Groves DW, Quaife R, Eldemire R, Graw S, Addison J, Todiere G, Gueli IA, Botto N, Emdin M, Aquaro GD, Garmany R, Pereira NL, Taylor MRG, Ackerman MJ, Sinagra G, Mestroni L, Giudicessi JR, Merlo M. Magnetic Resonance Imaging Characterization and Clinical Outcomes of Dilated and Arrhythmogenic Left Ventricular Cardiomyopathies. J Am Coll Cardiol 2024; 83:1841-1851. [PMID: 38719365 DOI: 10.1016/j.jacc.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Nondilated left ventricular cardiomyopathy (NDLVC) has been recently differentiated from dilated cardiomyopathy (DCM). A comprehensive characterization of these 2 entities using cardiac magnetic resonance (CMR) and genetic testing has never been performed. OBJECTIVES This study sought to provide a thorough characterization and assess clinical outcomes in a large multicenter cohort of patients with DCM and NDLVC. METHODS A total of 462 patients with DCM (227) or NDLVC (235) with CMR data from 4 different referral centers were retrospectively analyzed. The study endpoint was a composite of sudden cardiac death or major ventricular arrhythmias. RESULTS In comparison to DCM, NDLVC had a higher prevalence of pathogenic or likely pathogenic variants of arrhythmogenic genes (40% vs 23%; P < 0.001), higher left ventricular (LV) systolic function (LV ejection fraction: 51% ± 12% vs 36% ± 15%; P < 0.001) and higher prevalence of free-wall late gadolinium enhancement (LGE) (27% vs 14%; P < 0.001). Conversely, DCM showed higher prevalence of pathogenic or likely pathogenic variants of nonarrhythmogenic genes (23% vs 12%; P = 0.002) and septal LGE (45% vs 32%; P = 0.004). Over a median follow-up of 81 months (Q1-Q3: 40-132 months), the study outcome occurred in 98 (21%) patients. LGE with septal location (HR: 1.929; 95% CI: 1.033-3.601; P = 0.039) was independently associated with the risk of sudden cardiac death or major ventricular arrhythmias together with LV dilatation, older age, advanced NYHA functional class, frequent ventricular ectopic activity, and nonsustained ventricular tachycardia. CONCLUSIONS In a multicenter cohort of patients with DCM and NDLVC, septal LGE together with LV dilatation, age, advanced disease, and frequent and repetitive ventricular arrhythmias were powerful predictors of major arrhythmic events.
Collapse
Affiliation(s)
- Matteo Castrichini
- Cardiothoracovascular Department, Division of Cardiology, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy, member of European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA; University of Colorado Cardiovascular Institute, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Antonio De Luca
- Cardiothoracovascular Department, Division of Cardiology, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy, member of European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Giulia De Angelis
- Cardiothoracovascular Department, Division of Cardiology, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy, member of European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Raquel Neves
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alessia Paldino
- Cardiothoracovascular Department, Division of Cardiology, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy, member of European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Matteo Dal Ferro
- Cardiothoracovascular Department, Division of Cardiology, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy, member of European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Giulia Barbati
- Biostatistics Unit, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Kristen Medo
- University of Colorado Cardiovascular Institute, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrea Barison
- Fondazione CNR-Regione Toscana G. Monasterio, Pisa, Italy
| | | | - Marta Gigli
- Cardiothoracovascular Department, Division of Cardiology, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy, member of European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Davide Stolfo
- Cardiothoracovascular Department, Division of Cardiology, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy, member of European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart); Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Brun
- Cardiothoracovascular Department, Division of Cardiology, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy, member of European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Daniel W Groves
- University of Colorado Cardiovascular Institute, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Robert Quaife
- University of Colorado Cardiovascular Institute, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ramone Eldemire
- University of Colorado Cardiovascular Institute, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sharon Graw
- University of Colorado Cardiovascular Institute, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeffrey Addison
- University of Colorado Cardiovascular Institute, Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | | | - Michele Emdin
- Fondazione CNR-Regione Toscana G. Monasterio, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giovanni Donato Aquaro
- Academic Radiology Unit, Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Ramin Garmany
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew R G Taylor
- University of Colorado Cardiovascular Institute, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael J Ackerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Division of Cardiology, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy, member of European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, Anschutz Medical Campus, Aurora, Colorado, USA
| | - John R Giudicessi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Marco Merlo
- Cardiothoracovascular Department, Division of Cardiology, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy, member of European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart).
| |
Collapse
|
13
|
Huang KY, Chung FP, Guo CY, Chiu JH, Kuo L, Lee YC, Weng CY, Chang YY, Lin YJ, Chen CK. Right ventricular scalloping index as cardiac magnetic resonance-derived marker for diagnosis of arrhythmogenic right ventricular cardiomyopathy. J Chin Med Assoc 2024; 87:531-537. [PMID: 38529961 DOI: 10.1097/jcma.0000000000001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The cardiac magnetic resonance (CMR) evaluation of right ventricular (RV) morphologic abnormalities in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) is subjective. Here, we aimed to use a quantitative index, the right ventricular scalloping index (RVSI), to standardize the measurement of RV free wall scalloping and aid in the imaging diagnosis. METHODS We retrospectively included 15 patients with definite ARVC and 45 age- and sex-matched patients with idiopathic right ventricular outflow tract ventricular arrhythmia (RVOT-VA) as controls. The RVSI was measured from cine images on four-chamber view to evaluate its ability to distinguish between ARVC and RVOT-VA patients. Other cardiac functional parameters including strain analysis were also performed. RESULTS The RVSI was significantly higher in the ARVC than RVOT-VA group (1.56 ± 0.23 vs 1.30 ± 0.08, p < 0.001). The diagnostic performance of the RVSI was superior to the RV global longitudinal, circumferential, and radial strains, RV ejection fraction, and RV end-diastolic volume index. The RVSI demonstrated high intraobserver and interobserver reliability (intraclass correlation coefficient, 0.94 and 0.96, respectively). RVSI was a strong discriminator between ARVC and RVOT-VA patients (area under curve [AUC], 0.91; 95% CI, 0.82-0.99). A cutoff value of RVSI ≥1.49 provided an accuracy of 90.0%, specificity of 97.8%, sensitivity of 66.7%, positive predictive value (PPV) of 90.9%, and a negative predictive value (NPV) of 89.8%. In a multivariable analysis, a family history of ARVC or sudden cardiac death (odds ratio, 38.71; 95% CI, 1.48-1011.05; p = 0.028) and an RVSI ≥1.49 (odds ratio, 64.72; 95% CI, 4.58-914.63; p = 0.002) remained predictive of definite ARVC. CONCLUSION RVSI is a quantitative method with good performance for the diagnosis of definite ARVC.
Collapse
Affiliation(s)
- Ko-Ying Huang
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fa-Po Chung
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Cardiovascular Research Center, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chao-Yu Guo
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei Taiwan, ROC
| | - Jui-Han Chiu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ling Kuo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Cardiovascular Research Center, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ying-Chi Lee
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ching-Yao Weng
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ying-Yueh Chang
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yenn-Jiang Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Cardiovascular Research Center, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chun-Ku Chen
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
14
|
Popa OA, Amzulescu M, Bugeac C, Tomescu L, Slavu IM, Gheorghita V, Andrei R, Tulin A. Cardiovascular Magnetic Resonance Imaging in Myocardial Disease. Cureus 2024; 16:e58688. [PMID: 38774162 PMCID: PMC11107957 DOI: 10.7759/cureus.58688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 05/24/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) is the central non-invasive imaging investigation for the evaluation of myocardial disease. It is the well-established gold standard for measuring cardiac chamber volumes, systolic function, and left ventricular mass, and it brings unique information for therapeutic decisions. In addition, its tissue characterization capability, through T1, T2, and T2* mapping, as well as early and late gadolinium enhancement (LGE) sequences, allows to differentiate in many cases among ischemic, inflammatory, and infiltrative heart disease and permits the quantification of myocardial fibrosis, providing valuable diagnostic and prognostic information. This review aims to highlight the main CMR features of different cardiomyopathies.
Collapse
Affiliation(s)
- Oana-Andreea Popa
- Cardiology, Agrippa Ionescu Emergency Clinical Hospital, Bucharest, ROU
| | - Mihaela Amzulescu
- Cardiology, Centre Hospitalier Universitaire (CHU) Saint Pierre, Bruxelles, BEL
| | - Claudia Bugeac
- Radiology, Agrippa Ionescu Emergency Clinical Hospital, Bucharest, ROU
| | - Luminita Tomescu
- Radiology, Agrippa Ionescu Emergency Clinical Hospital, Bucharest, ROU
| | - Iulian M Slavu
- Anatomy, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | - Valeriu Gheorghita
- Infectious Disease, Agrippa Ionescu Emergency Clinical Hospital, Bucharest, ROU
| | - Rosu Andrei
- Cardiology, Agrippa Ionescu Emergency Clinical Hospital, Bucharest, ROU
| | - Adrian Tulin
- Clinic of General Surgery, Agrippa Ionescu Emergency Clinical Hospital, Bucharest, ROU
| |
Collapse
|
15
|
Mauriello A, Roma AS, Ascrizzi A, Molinari R, Loffredo FS, D’Andrea A, Russo V. Arrhythmogenic Left Ventricular Cardiomyopathy: From Diagnosis to Risk Management. J Clin Med 2024; 13:1835. [PMID: 38610600 PMCID: PMC11012337 DOI: 10.3390/jcm13071835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024] Open
Abstract
PURPOSE OF REVIEW Left ventricular arrhythmogenic cardiomyopathy (ALVC) is a rare and poorly characterized cardiomyopathy that has recently been reclassified in the group of non-dilated left ventricular cardiomyopathies. This review aims to summarize the background, diagnosis, and sudden cardiac death risk in patients presenting this cardiomyopathy. RECENT FINDINGS Although there is currently a lack of data on this condition, arrhythmogenic left ventricular dysplasia can be considered a specific disease of the left ventricle (LV). We have collected the latest evidence about the management and the risks associated with this cardiomyopathy. SUMMARY Left ventricular arrhythmogenic cardiomyopathy is still poorly characterized. ALVC is characterized by fibrofatty replacement in the left ventricular myocardium, with variable phenotypic expression. Diagnosis is based on a multiparametric approach, including cardiac magnetic resonance (CMR) and genetic testing, and is important for sudden cardiac death (SCD) risk stratification and management. Recent guidelines have improved the management of left ventricular arrhythmogenic cardiomyopathy. Further studies are necessary to improve knowledge of this cardiomyopathy.
Collapse
Affiliation(s)
- Alfredo Mauriello
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—“V. Monaldi” Hospital, 80126 Naples, Italy; (A.S.R.); (A.A.); (R.M.); (F.S.L.); (A.D.); (V.R.)
- Unit of Cardiology, “Umberto I” Hospital, 84014 Nocera Inferiore, Italy
| | - Anna Selvaggia Roma
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—“V. Monaldi” Hospital, 80126 Naples, Italy; (A.S.R.); (A.A.); (R.M.); (F.S.L.); (A.D.); (V.R.)
| | - Antonia Ascrizzi
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—“V. Monaldi” Hospital, 80126 Naples, Italy; (A.S.R.); (A.A.); (R.M.); (F.S.L.); (A.D.); (V.R.)
| | - Riccardo Molinari
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—“V. Monaldi” Hospital, 80126 Naples, Italy; (A.S.R.); (A.A.); (R.M.); (F.S.L.); (A.D.); (V.R.)
| | - Francesco S. Loffredo
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—“V. Monaldi” Hospital, 80126 Naples, Italy; (A.S.R.); (A.A.); (R.M.); (F.S.L.); (A.D.); (V.R.)
| | - Antonello D’Andrea
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—“V. Monaldi” Hospital, 80126 Naples, Italy; (A.S.R.); (A.A.); (R.M.); (F.S.L.); (A.D.); (V.R.)
- Unit of Cardiology, “Umberto I” Hospital, 84014 Nocera Inferiore, Italy
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—“V. Monaldi” Hospital, 80126 Naples, Italy; (A.S.R.); (A.A.); (R.M.); (F.S.L.); (A.D.); (V.R.)
| |
Collapse
|
16
|
Gasperetti A, Carrick R, Protonotarios A, Laredo M, van der Schaaf I, Syrris P, Murray B, Tichnell C, Cappelletto C, Gigli M, Medo K, Crabtree P, Saguner AM, Duru F, Hylind R, Abrams D, Lakdawala NK, Massie C, Cadrin-Tourigny J, Targetti M, Olivotto I, Graziosi M, Cox M, Biagini E, Charron P, Casella M, Tondo C, Yazdani M, Ware JS, Prasad S, Calò L, Smith E, Helms A, Hespe S, Ingles J, Tandri H, Ader F, Mestroni L, Wilde A, Merlo M, Gandjbakhch E, Calkins H, te Riele AS, Peter van Tintelen J, Elliot P, James CA. Long-Term Arrhythmic Follow-Up and Risk Stratification of Patients With Desmoplakin-Associated Arrhythmogenic Right Ventricular Cardiomyopathy. JACC. ADVANCES 2024; 3:100832. [PMID: 38938828 PMCID: PMC11198598 DOI: 10.1016/j.jacadv.2024.100832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Accepted: 11/09/2023] [Indexed: 06/29/2024]
Abstract
Background Patients with likely pathogenic/pathogenic desmoplakin (DSP) variants are poorly characterized. Some of them meet diagnostic criteria for arrhythmogenic right ventricular cardiomyopathy (ARVC), but it is unclear how risk stratification strategies for ARVC perform in this setting. Objectives The purpose of this study was to characterize arrhythmic outcomes and to test the performance of the recently validated ARVC risk calculator in patients with DSP likely pathogenic/pathogenic variants fulfilling definite 2010 ARVC Task Force Criteria (DSP-TFC+). Methods DSP-TFC+ patients were enrolled from 20 institutions across 3 continents. Ventricular arrhythmias (VA), defined as a composite of sustained ventricular tachycardia (VT), appropriate implantable cardioverter defibrillator therapies, and ventricular fibrillation/sudden cardiac death events in follow-up, were reported as the primary outcome. We tested the performance of the ARVC risk calculator for VA prediction, reporting c-statistics. Results Among 252 DSP-TFC+ patients (age 39.6 ± 16.9 years, 35.3% male), 94 (37.3%) experienced VA over 44.5 [IQR: 19.6-78.3] months. Patients with left ventricle involvement (n = 194) were at higher VA risk (log-rank P = 0.0239). History of nonsustained VT (aHR 2.097; P = 0.004) showed the strongest association with VA occurrence during the first 5-year follow-up. Neither age (P = 0.723) nor male sex (P = 0.200) was associated with VAs at follow-up. In 204 patients without VA at diagnosis, incident VA rate was high (32.8%; 7.37%/y). The ARVC risk calculator performed poorly overall (c-statistic 0.604 [0.594-0.614]) and very poorly in patients with left ventricular disease (c-statistic 0.558 [0.556-0.560]). Conclusions DSP-TFC+ patients are at substantial risk for VAs. The ARVC risk calculator performs poorly in DSP-TFC+ patients suggesting need for a gene-specific risk algorithm. Meanwhile, DSP-TFC+ patients with nonsustained VT should be considered as high-risk.
Collapse
Affiliation(s)
- Alessio Gasperetti
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
- Division of Cardiology, Department of Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Richard Carrick
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Mikael Laredo
- AP-HP, IHU-ICAN, Groupe Hospitalier Pitié-Salpêtrière, Institut de Cardiologie, Sorbonne Université, Paris, France
| | - Iris van der Schaaf
- Division of Cardiology, Department of Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Petros Syrris
- Department of Cardiology, UCL Institute of Cardiovascular Science, London, United Kingdom
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chiara Cappelletto
- Division of Cardiology, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Marta Gigli
- Division of Cardiology, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Kristen Medo
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Peter Crabtree
- Department of Cardiology, UCL Institute of Cardiovascular Science, London, United Kingdom
| | - Ardan M. Saguner
- Arrhythmia Unit, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Firat Duru
- Arrhythmia Unit, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Robyn Hylind
- Center for Cardiovascular Genetics, Boston Children’s Hospital and Harvard Medical School, Boston Children's Hospital Inherited Cardiac Arrhythmia Program, Boston, Massachusetts, USA
| | - Dominic Abrams
- Center for Cardiovascular Genetics, Boston Children’s Hospital and Harvard Medical School, Boston Children's Hospital Inherited Cardiac Arrhythmia Program, Boston, Massachusetts, USA
| | - Neal K. Lakdawala
- Department of Cardiology, Brigham and Women's Hospital Cardiovascular Medicine, Boston, Massachusetts, USA
| | - Charles Massie
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mattia Targetti
- Department of Experimental and Clinical Medicine, Meyer Children Hospital and Careggi University Hospital, University of Florence, Florence, Italy
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, Meyer Children Hospital and Careggi University Hospital, University of Florence, Florence, Italy
| | - Maddalena Graziosi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - Moniek Cox
- Department of Cardiology, University Medical Centre Groningen, Groningen, the Netherlands
| | - Elena Biagini
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - Philippe Charron
- AP-HP, IHU-ICAN, Groupe Hospitalier Pitié-Salpêtrière, Institut de Cardiologie, Sorbonne Université, Paris, France
| | - Michela Casella
- Department of Clinical, Special and Dental Sciences, Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti”, Marche Polytechnic University, Ancona, Italy
| | - Claudio Tondo
- Department of Clinical Electro-physiology & Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biochemical, Surgical and Dentist Sciences, University of Milan, Milan, Italy
| | - Momina Yazdani
- Department of Cardiology, National Heart and Lung Institute and and MRC London Institute of Medical Sciences, London, United Kingdom
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - James S. Ware
- Department of Cardiology, National Heart and Lung Institute and and MRC London Institute of Medical Sciences, London, United Kingdom
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Sanjay Prasad
- Department of Cardiology, National Heart and Lung Institute and and MRC London Institute of Medical Sciences, London, United Kingdom
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Leonardo Calò
- Department of Cardiology, Policlinico Casilino, Rome, Italy
| | - Eric Smith
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam Helms
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sophie Hespe
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
| | - Harikrishna Tandri
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Flavie Ader
- APHP Sorbonne Université, DMU BioGem, UF de cardiogénétique et myogénétique moléculaire et cellulaire, Paris, France
- UFR de Pharmacie, UP Biochimie, Université Paris Cité, Paris, France
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Arthur Wilde
- Department of Cardiology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Marco Merlo
- Division of Cardiology, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Estelle Gandjbakhch
- AP-HP, IHU-ICAN, Groupe Hospitalier Pitié-Salpêtrière, Institut de Cardiologie, Sorbonne Université, Paris, France
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Anneline S.J.M. te Riele
- Division of Cardiology, Department of Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - J. Peter van Tintelen
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Perry Elliot
- Department of Cardiology, UCL Institute of Cardiovascular Science, London, United Kingdom
| | - Cynthia A. James
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Zheng JY, Chen BH, Wu R, An DA, Shi RY, Wu CW, Tang LL, Zhao L, Wu LM. Prognostic value of right atrial strains in arrhythmogenic right ventricular cardiomyopathy. Insights Imaging 2024; 15:58. [PMID: 38411736 PMCID: PMC10899550 DOI: 10.1186/s13244-024-01630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVES Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy characterized by progressive fibrofatty infiltration of atrial and ventricular myocardium resulting in adverse cardiac events. Atrial function has been increasingly recognized as prognostically important for cardiovascular disease. As the right atrial (RA) strain is a sensitive parameter to describe RA function, we aimed to analyze the prognostic value of the RA strain in ARVC. METHODS RA strain parameters were derived from cardiac magnetic resonance (CMR) images of 105 participants with definite ARVC. The endpoint was defined as a combination of sudden cardiac death, survival cardiac arrest, and appropriate implantable cardioverter-defibrillator intervention. Cox regression and Kaplan-Meier survival analyses were performed to evaluate the association between RA strain parameters and endpoint. Concordance index (C index), net reclassification index (NRI), and integrated discrimination improvement (IDI) were calculated to assess the incremental value of RA strain in predicting the endpoint. RESULTS After a median follow-up of 5 years, 36 (34.3%) reaching the endpoint displayed significantly reduced RA strain parameters. At Kaplan-Meier analysis, impaired RA reservoir (RARS) and booster strains (RABS) were associated with an increased risk of the endpoint. After adjusting for conventional risk factors, RARS (hazard ratio [HR], 0.956; p = 0.005) and RABS (HR, 0.906; p = 0.002) resulted as independent predictors for endpoint at Cox regression analyses. In addition, RARS and RABS improved prognostic value to clinical risk factors and CMR morphological and functional predictors (all p < 0.05). CONCLUSION RARS and RABS were independent predictors for adverse cardiac events, which could provide incremental prognostic value for conventional predictors in ARVC. CRITICAL RELEVANCE STATEMENT We evaluated the prognostic value of right atrial strain in ARVC patients and suggested cardiologists consider RA strain as a predictive parameter when evaluating the long-term outcome of ARVC patients in order to formulate better clinical therapy. KEY POINTS • Patients with ARVC had significantly reduced RA strain and strain rates compared with healthy participants. • Participants with lower RA reservoir and booster stains were associated with a significantly higher risk of adverse cardiac events. • RA booster and reservoir strain provide incremental value to conventional parameters.
Collapse
Affiliation(s)
- Jin-Yu Zheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Bing-Hua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Rui Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Dong-Aolei An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Ruo-Yang Shi
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Chong-Wen Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Lang-Lang Tang
- Department of Radiology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, People's Republic of China
| | - Lei Zhao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, People's Republic of China.
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
18
|
Varrenti M, Preda A, Frontera A, Baroni M, Gigli L, Vargiu S, Colombo G, Carbonaro M, Paolucci M, Giordano F, Guarracini F, Mazzone P. Arrhythmogenic Cardiomyopathy: Definition, Classification and Arrhythmic Risk Stratification. J Clin Med 2024; 13:456. [PMID: 38256590 PMCID: PMC10816644 DOI: 10.3390/jcm13020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a heart disease characterized by a fibrotic replacement of myocardial tissue and a consequent predisposition to ventricular arrhythmic events, especially in the young. Post-mortem studies and the subsequent diffusion of cardiac MRI have shown that left ventricular involvement in arrhythmogenic cardiomyopathy is common and often develops early. Regarding the arrhythmic risk stratification, the current scores underestimate the arrhythmic risk of patients with arrhythmogenic cardiomyopathy with left involvement. Indeed, the data on arrhythmic risk stratification in this group of patients are contradictory and not exhaustive, with the consequence of not correctly identifying patients at a high arrhythmic risk who deserve protection from arrhythmic death. We propose a literature review on arrhythmic risk stratification in patients with ACM and left involvement to identify the main features associated with an increased arrhythmic risk in this group of patients.
Collapse
Affiliation(s)
- Marisa Varrenti
- Electrophysiology Unit, De Gasperis Cardio Center, Niguarda Hospital, 20162 Milan, Italy (M.C.); (F.G.); (P.M.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cicenia M, Silvetti MS, Cantarutti N, Battipaglia I, Adorisio R, Saputo FA, Tamburri I, Campisi M, Baban A, Drago F. ICD outcome in pediatric arrhythmogenic cardiomyopathy. Int J Cardiol 2024; 394:131381. [PMID: 37739045 DOI: 10.1016/j.ijcard.2023.131381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) is a very rare condition among pediatric patients. Sudden cardiac death (SCD) is the main complication and often requires ICD implantation. Aim of the study is the evaluation of the outcomes of ICD implanted ACM pediatric patients in terms of safety, efficacy and complications. METHODS All pediatric patients (<18 y.o.) diagnosed with ACM and who were implanted with ICD since 2009 in Our Institution were collected. Implantation was decided according to current recommendations/ guidelines, and outcome was recorded during follow-up. RESULTS Nineteen consecutive ACM patients were implanted with ICD. Subcutaneous ICDs (S-ICD) were implanted in 15 patients (79%) while transvenous ICDs (TV-ICD) in 4 patients (21%). Mean age at implantation was 14.3 ± 2.1 y.o. ICDs were implanted for secondary prevention in 4 (21%) patients, and for primary prevention in 15 (79%). During the follow-up (5.59 ± 3.4 years), appropriate ICD interventions were delivered in 4 (21%) patients for sustained VTs, [2 implanted in primary prevention (13%) and 2 in secondary prevention (50%)]. No defibrillation failures occurred. Inappropriate shocks occurred in 2 cases (10.5%). Device-related complications requiring device revision occurred in 3 (16%): lead dislodgement, surgical skin erosion and sensing defect. CONCLUSIONS In a pediatric ACM cohort, appropriate ICD therapies occurred in a minority of primary prevention patients and frequently in secondary prevention patients. The rate of inappropriate shocks and device-related complications were even more rare and mostly wound related. Therefore, ICD therapy in pediatric ACM is effective and safe.
Collapse
Affiliation(s)
- Marianna Cicenia
- Pediatric Cardiology and Arrhythmia/Syncope Complex Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Massimo Stefano Silvetti
- Pediatric Cardiology and Arrhythmia/Syncope Complex Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicoletta Cantarutti
- Pediatric Cardiology and Arrhythmia/Syncope Complex Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Irma Battipaglia
- Pediatric Cardiology and Arrhythmia/Syncope Complex Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rachele Adorisio
- Heart Failure and Transplant, Mechanical Circulatory Support Complex Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fabio Anselmo Saputo
- Pediatric Cardiology and Arrhythmia/Syncope Complex Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ilaria Tamburri
- Pediatric Cardiology and Arrhythmia/Syncope Complex Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marta Campisi
- Pediatric Cardiology and Arrhythmia/Syncope Complex Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anwar Baban
- Pediatric Cardiology and Arrhythmia/Syncope Complex Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fabrizio Drago
- Pediatric Cardiology and Arrhythmia/Syncope Complex Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
20
|
Polovina M, Tschöpe C, Rosano G, Metra M, Crea F, Mullens W, Bauersachs J, Sliwa K, de Boer RA, Farmakis D, Thum T, Corrado D, Bayes-Genis A, Bozkurt B, Filippatos G, Keren A, Skouri H, Moura B, Volterrani M, Abdelhamid M, Ašanin M, Krljanac G, Tomić M, Savarese G, Adamo M, Lopatin Y, Chioncel O, Coats AJS, Seferović PM. Incidence, risk assessment and prevention of sudden cardiac death in cardiomyopathies. Eur J Heart Fail 2023; 25:2144-2163. [PMID: 37905371 DOI: 10.1002/ejhf.3076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023] Open
Abstract
Cardiomyopathies are a significant contributor to cardiovascular morbidity and mortality, mainly due to the development of heart failure and increased risk of sudden cardiac death (SCD). Despite improvement in survival with contemporary treatment, SCD remains an important cause of mortality in cardiomyopathies. It occurs at a rate ranging between 0.15% and 0.7% per year (depending on the cardiomyopathy), which significantly surpasses SCD incidence in the age- and sex-matched general population. The risk of SCD is affected by multiple factors including the aetiology, genetic basis, age, sex, physical exertion, the extent of myocardial disease severity, conduction system abnormalities, and electrical instability, as measured by various metrics. Over the past decades, the knowledge on the mechanisms and risk factors for SCD has substantially improved, allowing for a better-informed risk stratification. However, unresolved issues still challenge the guidance of SCD prevention in patients with cardiomyopathies. In this review, we aim to provide an in-depth discussion of the contemporary concepts pertinent to understanding the burden, risk assessment and prevention of SCD in cardiomyopathies (dilated, non-dilated left ventricular, hypertrophic, arrhythmogenic right ventricular, and restrictive). The review first focuses on SCD incidence in cardiomyopathies and then summarizes established and emerging risk factors for life-threatening arrhythmias/SCD. Finally, it discusses validated approaches to the risk assessment and evidence-based measures for SCD prevention in cardiomyopathies, pointing to the gaps in evidence and areas of uncertainties that merit future clarification.
Collapse
Affiliation(s)
- Marija Polovina
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Cardiovascular Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Marco Metra
- Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Filippo Crea
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Wilfried Mullens
- Hasselt University, Hasselt, Belgium
- Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Karen Sliwa
- Cape Heart Institute. Division of Cardiology, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rudolf A de Boer
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Antoni Bayes-Genis
- Servicio de Cardiología, Hospital Universitari Germans Trias i Pujol, CIBERCV, Universidad Autónoma de Barcelona, Badalona, Spain
| | - Biykem Bozkurt
- Section of Cardiology, Winters Center for Heart Failure, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - Andre Keren
- Hadassah-Hebrew University Medical Center Jerusalem, Clalit Services District of Jerusalem, Jerusalem, Israel
| | - Hadi Skouri
- Division of Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Brenda Moura
- Armed Forces Hospital, Porto, & Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maurizio Volterrani
- IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
| | - Magdy Abdelhamid
- Department of Cardiovascular Medicine, Faculty of Medicine, Kasr Al Ainy, Cairo University, Giza, Egypt
| | - Milika Ašanin
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Gordana Krljanac
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Milenko Tomić
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Gianluigi Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Marianna Adamo
- Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Yuri Lopatin
- Volgograd Medical University, Cardiology Centre, Volgograd, Russian Federation
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. Dr. C.C. Iliescu', Bucharest, Romania
- University for Medicine and Pharmacy 'Carol Davila', Bucharest, Romania
| | | | - Petar M Seferović
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
21
|
Calò L, Crescenzi C, Martino A, Casella M, Romeo F, Cappelletto C, Bressi E, Panattoni G, Stolfo D, Targetti M, Toso E, Musumeci MB, Tini G, Ciabatti M, Stefanini M, Silvetti E, Stazi A, Danza ML, Rebecchi M, Canestrelli S, Fedele E, Lanzillo C, Fusco A, Sangiuolo FC, Oliviero G, Radesich C, Perotto M, Pieroni M, Golia P, Mango R, Gasperetti A, Autore C, Merlo M, de Ruvo E, Russo AD, Olivotto I, Sinagra G, Gaita F. The Diagnostic Value of the 12-Lead ECG in Arrhythmogenic Left Ventricular Cardiomyopathy: Novel ECG Signs. JACC Clin Electrophysiol 2023; 9:2615-2627. [PMID: 37768253 DOI: 10.1016/j.jacep.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Electrocardiographic (ECG) findings in arrhythmogenic left ventricular cardiomyopathy (ALVC) are limited to small case series. OBJECTIVES This study aimed to analyze the ECG characteristics of ALVC patients and to correlate ECG with cardiac magnetic resonance and genotype data. METHODS We reviewed data of 54 consecutive ALVC patients (32 men, age 39 ± 15 years) and compared them with 84 healthy controls with normal cardiac magnetic resonance. RESULTS T-wave inversion was often noted (57.4%), particularly in the inferior and lateral leads. Low QRS voltages in limb leads were observed in 22.2% of patients. The following novel ECG findings were identified: left posterior fascicular block (LPFB) (20.4%), pathological Q waves (33.3%), and a prominent R-wave in V1 with a R/S ratio ≥0.5 (24.1%). The QRS voltages were lower in ALVC compared with controls, particularly in lead I and II. At receiver-operating characteristic analysis, the sum of the R-wave in I to II ≤8 mm (AUC: 0.909; P < 0.0001) and S-wave in V1 plus R-wave in V6 ≤12 mm (AUC: 0.784; P < 0.0001) effectively discriminated ALVC patients from controls. It is noteworthy that 4 of the 8 patients with an apparently normal ECG were recognized by these new signs. Transmural late gadolinium enhancement was associated to LPFB, a R/S ratio ≥0.5 in V1, and inferolateral T-wave inversion, and a ringlike pattern correlated to fragmented QRS, SV1+RV6 ≤12 mm, low QRS voltage, and desmoplakin alterations. CONCLUSIONS Pathological Q waves, LPFB, and a prominent R-wave in V1 were common ECG signs in ALVC. An R-wave sum in I to II ≤8 mm and SV1+RV6 ≤12 mm were specific findings for ALVC phenotypes compared with controls.
Collapse
Affiliation(s)
- Leonardo Calò
- Division of Cardiology, Policlinico Casilino, Rome, Italy.
| | | | | | - Michela Casella
- Cardiology and Arrhythmology Clinic, University Cardiology Hospital Ospedali Riuniti, Ancona, Italy
| | - Fabiana Romeo
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | - Chiara Cappelletto
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | - Edoardo Bressi
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | | | - Davide Stolfo
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | - Mattia Targetti
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Elisabetta Toso
- Division of Cardiology, Department of Medical Sciences, AOU Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| | - Maria Beatrice Musumeci
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Giacomo Tini
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | | | | | - Elisa Silvetti
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | | | | | - Marco Rebecchi
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | | | - Elisa Fedele
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | | | - Armando Fusco
- Division of Radiology, Policlinico Casilino, Rome, Italy
| | | | - Giada Oliviero
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | - Cinzia Radesich
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | - Maria Perotto
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | | | - Paolo Golia
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | - Ruggiero Mango
- Cardiology Unit, Department of Emergency and Critical Care, Policlinico Tor Vergata, Rome, Italy
| | | | - Camillo Autore
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Marco Merlo
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | | | - Antonio Dello Russo
- Cardiology and Arrhythmology Clinic, University Cardiology Hospital Ospedali Riuniti, Ancona, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy; Cardiology Unit, Meyer University Children Hospital IRCCS, University of Florence, Florence, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | - Fiorenzo Gaita
- Division of Cardiology, Department of Medical Sciences, AOU Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| |
Collapse
|
22
|
Yang Y, Wei X, Lu G, Xie J, Tan Z, Du Z, Ye W, Xu H, Li X, Liu E, Zhang Q, Liu Y, Li J, Liu H. Ringlike late gadolinium enhancement provides incremental prognostic value in non-classical arrhythmogenic cardiomyopathy. J Cardiovasc Magn Reson 2023; 25:72. [PMID: 38031154 PMCID: PMC10687920 DOI: 10.1186/s12968-023-00986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The 2019 arrhythmogenic right ventricular cardiomyopathy (ARVC) risk model has proved insufficient in the capability of predicting ventricular arrhythmia (VA) risk in non-classical arrhythmogenic cardiomyopathy (ACM). Furthermore, the prognostic value of ringlike late gadolinium enhancement (LGE) of the left ventricle in non-classical ACM remains unknown. We aimed to assess the incremental value of ringlike LGE over the 2019 ARVC risk model in predicting sustained VA in patients with non-classical ACM. METHODS In this retrospective study, consecutive patients with non-classical ACM who underwent CMR from January 2011 to January 2022 were included. The pattern of LGE was categorized as no, non-ringlike, and ringlike LGE. The primary outcome was defined as the occurrence of sustained VA. Univariable and multivariable Cox regression analysis was used to evaluate the impact of LGE patterns on sustained VA and area under curve (AUC) was calculated for the incremental value of ringlike LGE. RESULTS A total of 73 patients were collected in the final cohort (mean age, 39.3 ± 14.4 years, 51 male), of whom 10 (13.7%) had no LGE, 33 (45.2%) had non-ringlike LGE, and 30 (41.1%) had ringlike LGE. There was no statistically significant difference in the 5-year risk score among the three groups (P = 0.190). During a median follow-up of 34 (13-56) months, 34 (46.6%) patients experienced sustained VA, including 1 (10.0%), 13 (39.4%) and 20 (66.7%) of patients with no, non-ringlike and ringlike LGE, respectively. After multivariable adjustment, ringlike LGE remained independently associated with the presence of sustained VA (adjusted hazard ratio: 6.91, 95% confidence intervals: 1.89-54.60; P = 0.036). Adding ringlike LGE to the 2019 ARVC risk model showed significantly incremental prognostic value for sustained VA (AUC: 0.80 vs. 0.67; P = 0.024). CONCLUSION Ringlike LGE provides independent and incremental prognostic value over the 2019 ARVC risk model in patients with non-classical ACM.
Collapse
Affiliation(s)
- Yuelong Yang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiaoyu Wei
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Guanyu Lu
- Department of Interventional Diagnosis and Therapy, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jiajun Xie
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510080, China
| | - Zekun Tan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhicheng Du
- Department of Medical Statistics, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Weitao Ye
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Huanwen Xu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiaodan Li
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Entao Liu
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qianhuan Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yang Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jinglei Li
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Hui Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
23
|
Kirkels FP, Rootwelt-Norberg C, Bosman LP, Aabel EW, Muller SA, Castrini AI, Taha K, van Osta N, Lie ØH, Asselbergs FW, Lumens J, te Riele ASJM, Hasselberg NE, Cramer MJ, Haugaa KH, Teske AJ. The added value of abnormal regional myocardial function for risk prediction in arrhythmogenic right ventricular cardiomyopathy. Eur Heart J Cardiovasc Imaging 2023; 24:1710-1718. [PMID: 37474315 PMCID: PMC10667035 DOI: 10.1093/ehjci/jead174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
AIMS A risk calculator for individualized prediction of first-time sustained ventricular arrhythmia (VA) in arrhythmogenic right ventricular cardiomyopathy (ARVC) patients has recently been developed and validated (www.ARVCrisk.com). This study aimed to investigate whether regional functional abnormalities, measured by echocardiographic deformation imaging, can provide additional prognostic value. METHODS AND RESULTS From two referral centres, 150 consecutive patients with a definite ARVC diagnosis, no prior sustained VA, and an echocardiogram suitable for deformation analysis were included (aged 41 ± 17 years, 50% female). During a median follow-up of 6.3 (interquartile range 3.1-9.8) years, 37 (25%) experienced a first-time sustained VA. All tested left and right ventricular (LV and RV) deformation parameters were univariate predictors for first-time VA. While LV function did not add predictive value in multivariate analysis, two RV deformation parameters did; RV free wall longitudinal strain and regional RV deformation patterns remained independent predictors after adjusting for the calculator-predicted risk [hazard ratio 1.07 (95% CI 1.02-1.11); P = 0.004 and 4.45 (95% CI 1.07-18.57); P = 0.040, respectively] and improved its discriminative value (from C-statistic 0.78 to 0.82 in both; Akaike information criterion change > 2). Importantly, all patients who experienced VA within 5 years from the echocardiographic assessment had abnormal regional RV deformation patterns at baseline. CONCLUSIONS This study showed that regional functional abnormalities measured by echocardiographic deformation imaging can further refine personalized arrhythmic risk prediction when added to the ARVC risk calculator. The excellent negative predictive value of normal RV deformation could support clinicians considering the timing of implantable cardioverter defibrillator implantation in patients with intermediate arrhythmic risk.
Collapse
Affiliation(s)
- Feddo P Kirkels
- Division of Heart and Lungs, Department of Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3582 CX, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- ProCardio Centre for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Christine Rootwelt-Norberg
- ProCardio Centre for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Laurens P Bosman
- Division of Heart and Lungs, Department of Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3582 CX, The Netherlands
| | - Eivind W Aabel
- ProCardio Centre for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Steven A Muller
- Division of Heart and Lungs, Department of Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3582 CX, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Anna I Castrini
- ProCardio Centre for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karim Taha
- Division of Heart and Lungs, Department of Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3582 CX, The Netherlands
| | - Nick van Osta
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Øyvind H Lie
- ProCardio Centre for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Anneline S J M te Riele
- Division of Heart and Lungs, Department of Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3582 CX, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Nina E Hasselberg
- ProCardio Centre for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Maarten J Cramer
- Division of Heart and Lungs, Department of Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3582 CX, The Netherlands
| | - Kristina H Haugaa
- ProCardio Centre for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arco J Teske
- Division of Heart and Lungs, Department of Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3582 CX, The Netherlands
| |
Collapse
|
24
|
Gasperetti A, James CA, Carrick RT, Protonotarios A, te Riele ASJM, Cadrin-Tourigny J, Compagnucci P, Duru F, van Tintelen P, Elliot PM, Calkins H. Arrhythmic risk stratification in arrhythmogenic right ventricular cardiomyopathy. Europace 2023; 25:euad312. [PMID: 37935403 PMCID: PMC10674106 DOI: 10.1093/europace/euad312] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heritable cardiomyopathy characterized by a predominantly arrhythmic presentation. It represents the leading cause of sudden cardiac death (SCD) among athletes and poses a significant morbidity threat in the general population. As a causative treatment for ARVC is still not available, the placement of an implantable cardioverter defibrillator represents the current cornerstone for SCD prevention in this setting. Thanks to international ARVC-dedicated efforts, significant steps have been achieved in recent years towards an individualized, patient-centred risk stratification approach. A novel risk calculator algorithm estimating the 5-year risk of arrhythmias of patients with ARVC has been introduced in clinical practice and subsequently validated. The purpose of this article is to summarize the body of evidence that has allowed the development of this tool and to discuss the best way to implement its use in the care of an individual patient.
Collapse
MESH Headings
- Humans
- Risk Factors
- Arrhythmogenic Right Ventricular Dysplasia/complications
- Arrhythmogenic Right Ventricular Dysplasia/diagnosis
- Arrhythmogenic Right Ventricular Dysplasia/therapy
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Death, Sudden, Cardiac/epidemiology
- Arrhythmias, Cardiac/diagnosis
- Arrhythmias, Cardiac/therapy
- Arrhythmias, Cardiac/complications
- Defibrillators, Implantable/adverse effects
- Risk Assessment
Collapse
Affiliation(s)
- Alessio Gasperetti
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Blalock 545, 600 N. Wolfe St., Baltimore, MD 21287, USA
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
- Department of Medicine, Division of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, Utrecht, The Netherlands
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Blalock 545, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Richard T Carrick
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Blalock 545, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | | | - Anneline S J M te Riele
- Department of Medicine, Division of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, Utrecht, The Netherlands
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Paolo Compagnucci
- Cardiology and Arrhythmology Clinic, Marche University Hospital, Ancona, Italy
| | - Firat Duru
- Department of Cardiology, Arrhythmia Unit, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Peter van Tintelen
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | - Perry M Elliot
- Department of Cardiology, UCL Institute of Cardiovascular Science, London, UK
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Blalock 545, 600 N. Wolfe St., Baltimore, MD 21287, USA
| |
Collapse
|
25
|
Tadros HJ, Miyake CY, Kearney DL, Kim JJ, Denfield SW. The Many Faces of Arrhythmogenic Cardiomyopathy: An Overview. Appl Clin Genet 2023; 16:181-203. [PMID: 37933265 PMCID: PMC10625769 DOI: 10.2147/tacg.s383446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a disease that involves electromechanical uncoupling of cardiomyocytes. This leads to characteristic histologic changes that ultimately lead to the arrhythmogenic clinical features of the disease. Initially thought to affect the right ventricle predominantly, more recent data show that it can affect both the ventricles or the left ventricle alone. Throughout the recent era, diagnostic modalities and criteria for AC have continued to evolve and our understanding of its clinical features in different age groups as well as the genotype to the phenotype correlations have improved. In this review, we set out to detail the epidemiology, etiologies, presentations, evaluation, and management of AC across the age continuum.
Collapse
Affiliation(s)
- Hanna J Tadros
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Christina Y Miyake
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Debra L Kearney
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey J Kim
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Susan W Denfield
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Vidal-Perez R, Brandão M, Zaher W, Casado-Arroyo R, Bouzas-Mosquera A, Fontes-Carvalho R, Vazquez-Rodriguez JM. Value of cardiac magnetic resonance on the risk stratification of cardiomyopathies. World J Cardiol 2023; 15:487-499. [PMID: 37900906 PMCID: PMC10600791 DOI: 10.4330/wjc.v15.i10.487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Cardiomyopathies represent a diverse group of heart muscle diseases with varying etiologies, presenting a diagnostic challenge due to their heterogeneous manifestations. Regular evaluation using cardiac imaging techniques is imperative as symptoms can evolve over time. These imaging approaches are pivotal for accurate diagnosis, treatment planning, and optimizing prognostic outcomes. Among these, cardiovascular magnetic resonance (CMR) stands out for its ability to provide precise anatomical and functional assessments. This manuscript explores the significant contributions of CMR in the diagnosis and management of patients with cardiomyopathies, with special attention to risk stratification. CMR's high spatial resolution and tissue characterization capabilities enable early detection and differentiation of various cardiomyopathy subtypes. Additionally, it offers valuable insights into myocardial fibrosis, tissue viability, and left ventricular function, crucial parameters for risk stratification and predicting adverse cardiac events. By integrating CMR into clinical practice, clinicians can tailor patient-specific treatment plans, implement timely interventions, and optimize long-term prognosis. The non-invasive nature of CMR reduces the need for invasive procedures, minimizing patient discomfort. This review highlights the vital role of CMR in monitoring disease progression, guiding treatment decisions, and identifying potential complications in patients with cardiomyopathies. The utilization of CMR has significantly advanced our understanding and management of these complex cardiac conditions, leading to improved patient outcomes and a more personalized approach to care.
Collapse
Affiliation(s)
- Rafael Vidal-Perez
- Servicio de Cardiología, Unidad de Imagen y Función Cardíaca, Complexo Hospitalario Universitario A Coruña Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), A Coruña 15006, Galicia, Spain.
| | - Mariana Brandão
- Department of Cardiology, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia 4434-502, Portugal
| | - Wael Zaher
- Department of Cardiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels 1070, Brussels, Belgium
| | - Ruben Casado-Arroyo
- Department of Cardiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels 1070, Brussels, Belgium
| | - Alberto Bouzas-Mosquera
- Servicio de Cardiología, Unidad de Imagen y Función Cardíaca, Complexo Hospitalario Universitario A Coruña Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), A Coruña 15006, Galicia, Spain
| | - Ricardo Fontes-Carvalho
- Department of Cardiology, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia 4434-502, Portugal
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto 4200-319, Portugal
| | | |
Collapse
|
27
|
Arbelo E, Protonotarios A, Gimeno JR, Arbustini E, Barriales-Villa R, Basso C, Bezzina CR, Biagini E, Blom NA, de Boer RA, De Winter T, Elliott PM, Flather M, Garcia-Pavia P, Haugaa KH, Ingles J, Jurcut RO, Klaassen S, Limongelli G, Loeys B, Mogensen J, Olivotto I, Pantazis A, Sharma S, Van Tintelen JP, Ware JS, Kaski JP. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J 2023; 44:3503-3626. [PMID: 37622657 DOI: 10.1093/eurheartj/ehad194] [Citation(s) in RCA: 440] [Impact Index Per Article: 440.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
|
28
|
Tini G, Graziosi M, Musumeci B, Targetti M, Russo D, Parisi V, Argirò A, Ditaranto R, Leone O, Autore C, Olivotto I, Biagini E. Diagnostic delay in arrhythmogenic cardiomyopathy. Eur J Prev Cardiol 2023; 30:1315-1322. [PMID: 36848329 DOI: 10.1093/eurjpc/zwad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
AIMS Diagnosis of arrhythmogenic cardiomyopathy (ACM) may be challenging, as it comprises diverse phenotypes (right dominant, biventricular, and left dominant), and each may overlap with other clinical entities. The issue of differential diagnosis with conditions mimicking ACM has been previously highlighted; however, a systematic analysis of ACM diagnostic delay, and of its clinical implications, is lacking. METHODS AND RESULTS Data of all ACM patients from three Italian Cardiomyopathy Referral Centres were reviewed to assess the time from first medical contact to definitive ACM diagnosis; a significant diagnostic delay was defined as a time to ACM diagnosis ≥2 years. Baseline characteristics and clinical course of patients with and without diagnostic delay were compared. Of 174 ACM patients, 31% experienced diagnostic delay, with a median time to diagnosis of 8 years (20% in right-dominant ACM, 33% in left-dominant ACM, and 39% in biventricular). Patients with diagnostic delay, when compared with those without, more frequently exhibited an ACM phenotype with left ventricular (LV) involvement (74 vs. 57%, P = 0.04) and a specific genetic background (none had plakophilin-2 variants). The most common initial (mis)diagnoses were dilated cardiomyopathy (51%), myocarditis (21%), and idiopathic ventricular arrhythmia (9%). At follow-up, all-cause mortality was greater in those with diagnostic delay (P = 0.03). CONCLUSION Diagnostic delay is common in patients with ACM, particularly in the presence of LV involvement, and is associated with greater mortality at follow-up. Clinical suspicion and increasing use of tissue characterization by cardiac magnetic resonance in specific clinical settings are of key importance for the timely identification of ACM.
Collapse
Affiliation(s)
- Giacomo Tini
- Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Maddalena Graziosi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti 9, 40138, Bologna, Italy
| | - Beatrice Musumeci
- Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Mattia Targetti
- Cardiomyopathy Unit, Careggi University Hospital, Largo Giovanni Alessandro Brambilla 3, 50134, Florence, Italy
| | - Domitilla Russo
- Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Vanda Parisi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti 9, 40138, Bologna, Italy
| | - Alessia Argirò
- Cardiomyopathy Unit, Careggi University Hospital, Largo Giovanni Alessandro Brambilla 3, 50134, Florence, Italy
| | - Raffaello Ditaranto
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti 9, 40138, Bologna, Italy
| | - Ornella Leone
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti 9, 40138, Bologna, Italy
| | - Camillo Autore
- San Raffaele Cassino (FR), Via Gaetano di Biasio 1, 03043 Cassino, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Largo Giovanni Alessandro Brambilla 3, 50134, Florence, Italy
| | - Elena Biagini
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti 9, 40138, Bologna, Italy
| |
Collapse
|
29
|
Trancuccio A, Kukavica D, Sugamiele A, Mazzanti A, Priori SG. Prevention of Sudden Death and Management of Ventricular Arrhythmias in Arrhythmogenic Cardiomyopathy. Card Electrophysiol Clin 2023; 15:349-365. [PMID: 37558305 DOI: 10.1016/j.ccep.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Arrhythmogenic cardiomyopathy is an umbrella term for a group of inherited diseases of the cardiac muscle characterized by progressive fibro-fatty replacement of the myocardium. As suggested by the name, the disease confers electrical instability to the heart and increases the risk of the development of life-threatening arrhythmias, representing one of the leading causes of sudden cardiac death (SCD), especially in young athletes. In this review, the authors review the current knowledge of the disease, highlighting the state-of-the-art approaches to the prevention of the occurrence of SCD.
Collapse
Affiliation(s)
- Alessandro Trancuccio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Deni Kukavica
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Andrea Sugamiele
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Andrea Mazzanti
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Silvia G Priori
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy.
| |
Collapse
|
30
|
Aquaro GD, De Gori C, Grilli G, Licordari R, Barison A, Todiere G, Ianni U, Parollo M, Grigoratos C, Restivo L, De Luca A, Faggioni L, Cioni D, Sinagra G, Di Bella G, Neri E. Dark papillary muscles sign: a novel prognostic marker for cardiac magnetic resonance. Eur Radiol 2023; 33:4621-4636. [PMID: 36692598 PMCID: PMC10289986 DOI: 10.1007/s00330-023-09400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES The prognostic role of left ventricular (LV) papillary muscle abnormalities in patients with preserved LV systolic ejection fraction (LVEF) is unknown. We sought to evaluate the prognosis role of LV papillary muscle abnormalities by CMR in patients with ventricular arrhythmias, preserved LVEF with no cardiac disease. METHODS A total of 391 patients with > 500/24 h premature ventricular complexes and/or with non-sustained ventricular tachycardia (NSVT), preserved LVEF, and no cardiac disease were enrolled. Different features of LV papillary muscles were considered: supernumerary muscles, papillary thickness, the attachment, late gadolinium enhancement (LGE). Dark-Paps was defined as end-systolic signal hypointensity of both papillary muscles in early post-contrast cine CMR images. Mitral valve prolapse, mitral annular disjunction (MAD), and myocardial LGE were considered. RESULTS Dark-Paps was found in 79 (20%) patients and was more frequent in females. It was associated with higher prevalence of mitral valve prolapse and MAD. During a median follow-up of 2534 days, 22 hard cardiac events occurred. At Kaplan-Meier curve analysis, patients with Dark-Paps were at higher risk of events than those without (p < 0.0001). Dark-Paps was significantly associated with hard cardiac events in all the multivariate models. Dark-Paps improved prognostic estimation when added to NSVT (p = 0.0006), to LGE (p = 0.005) and to a model including NSVT+LGE (p = 0.014). Dark-Paps allowed a significant net reclassification when added to NSVT (NRI 0.30, p = 0.03), to LGE (NRI 0.25, p = 0.04), and to NSVT + LGE (NRI 0.32, p = 0.02). CONCLUSIONS In LV papillary muscles, Dark-Paps is a novel prognostic marker in patients with ventricular arrhythmias and preserved ejection fraction. KEY POINTS • Papillary muscle abnormalities are seen in patients with ventricular arrhythmias and preserved left ventricular ejection fraction. • Early post-contrast hypointensity of papillary muscles in end-systolic cine images (Dark-Paps) is a novel prognostic marker in patients with ventricular arrhythmias and preserved ejection fraction. • Dark-Paps had an additive prognostic role over late gadolinium enhancement and non-sustained ventricular tachycardia.
Collapse
Affiliation(s)
- Giovanni Donato Aquaro
- Academic Radiology Unit, Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Via Savi, 10, 56126, Pisa, Italy.
| | - Carmelo De Gori
- Academic Radiology Unit, Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Via Savi, 10, 56126, Pisa, Italy
| | | | - Roberto Licordari
- Clinical and Experimental Department of Medicine, University of Messina, Messina, Italy
| | | | | | | | - Matteo Parollo
- Academic Radiology Unit, Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Via Savi, 10, 56126, Pisa, Italy
| | | | | | | | - Lorenzo Faggioni
- Academic Radiology Unit, Department of Translational research and of new technology in medicine and Surgery, University of Pisa, Pisa, Italy
| | - Dania Cioni
- Academic Radiology Unit, Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Via Savi, 10, 56126, Pisa, Italy
| | | | - Gianluca Di Bella
- Clinical and Experimental Department of Medicine, University of Messina, Messina, Italy
| | - Emanuele Neri
- Academic Radiology Unit, Department of Translational research and of new technology in medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
31
|
Castiglione V, Aimo A, Todiere G, Barison A, Fabiani I, Panichella G, Genovesi D, Bonino L, Clemente A, Cademartiri F, Giannoni A, Passino C, Emdin M, Vergaro G. Role of Imaging in Cardiomyopathies. Card Fail Rev 2023; 9:e08. [PMID: 37427006 PMCID: PMC10326670 DOI: 10.15420/cfr.2022.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 07/11/2023] Open
Abstract
Imaging has a central role in the diagnosis, classification, and clinical management of cardiomyopathies. While echocardiography is the first-line technique, given its wide availability and safety, advanced imaging, including cardiovascular magnetic resonance (CMR), nuclear medicine and CT, is increasingly needed to refine the diagnosis or guide therapeutic decision-making. In selected cases, such as in transthyretin-related cardiac amyloidosis or in arrhythmogenic cardiomyopathy, the demonstration of histological features of the disease can be avoided when typical findings are observed at bone-tracer scintigraphy or CMR, respectively. Findings from imaging techniques should always be integrated with data from the clinical, electrocardiographic, biomarker, genetic and functional evaluation to pursue an individualised approach to patients with cardiomyopathy.
Collapse
Affiliation(s)
- Vincenzo Castiglione
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Alberto Aimo
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Giancarlo Todiere
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Andrea Barison
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Iacopo Fabiani
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Giorgia Panichella
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Dario Genovesi
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Lucrezia Bonino
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Alberto Clemente
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Filippo Cademartiri
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Alberto Giannoni
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Claudio Passino
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Michele Emdin
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Giuseppe Vergaro
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| |
Collapse
|
32
|
de la Guía-Galipienso F, Ugedo-Alzaga K, Grazioli G, Quesada-Ocete FJ, Feliu-Rey E, Perez MV, Quesada-Dorador A, Sanchis-Gomar F. Arrhythmogenic Cardiomyopathy and Athletes - A Dangerous Relationship. Curr Probl Cardiol 2023:101799. [PMID: 37172878 DOI: 10.1016/j.cpcardiol.2023.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a disease characterized by a progressive replacement of myocardium by fibro-adipose material, predisposing to ventricular arrhythmias (VA) and sudden cardiac death (SCD). Its prevalence is estimated at 1:2000 to 1:5000, with a higher incidence in males, and clinical onset is usually between the 2nd and 4th decade of life. The prevalence of ACM in SCD victims is relatively high, making it one of the most common etiologies in young patients with SCD, especially if they are athletes. Cardiac events occur more frequently in individuals with ACM who participate in competitive sports and/or high-intensity training. In effect, exercise activity can worsen RV function in cases of hereditary ACM. Estimating the incidence of SCD caused by ACM in athletes remains challenging, being reported frequency ranging from 3-20%. Here, we review the potential implications of exercising on the clinical course of the classical genetic form of ACM, as well as the diagnostic tools, risk stratification, and the different therapeutic tools available for managing ACM.
Collapse
Affiliation(s)
- Fernando de la Guía-Galipienso
- From the Glorieta Policlinic, Denia, Alicante, Spain; REMA-Sports Cardiology Clinic, Denia, Alicante, Spain; Cardiology Service, Hospital HCB Benidorm, Alicante, Spain; School of Medicine, Catholic University of Valencia San Vicente Mártir, Valencia, Spain.
| | | | | | - Francisco Javier Quesada-Ocete
- School of Medicine, Catholic University of Valencia San Vicente Mártir, Valencia, Spain; Arrhythmia Unit, Cardiology Service, General University Hospital Consortium of Valencia, Valencia, Spain
| | - Eloísa Feliu-Rey
- Magnetic Resonance Unit, Inscanner, General University Hospital of Alicante, Alicante, Spain
| | - Marco V Perez
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA
| | - Aurelio Quesada-Dorador
- School of Medicine, Catholic University of Valencia San Vicente Mártir, Valencia, Spain; Arrhythmia Unit, Cardiology Service, General University Hospital Consortium of Valencia, Valencia, Spain
| | - Fabian Sanchis-Gomar
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA..
| |
Collapse
|
33
|
Aquaro GD, De Gori C, Faggioni L, Parisella ML, Cioni D, Lencioni R, Neri E. Diagnostic and prognostic role of late gadolinium enhancement in cardiomyopathies. Eur Heart J Suppl 2023; 25:C130-C136. [PMID: 37125322 PMCID: PMC10132607 DOI: 10.1093/eurheartjsupp/suad015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Late gadolinium enhancement (LGE) is the most relevant tool of cardiac magnetic resonance for tissue characterization, and it plays a pivotal role for diagnostic and prognostic assessment of cardiomyopathies. The pattern of presentation of LGE allows differential diagnosis between ischaemic and non-ischaemic heart disease with high diagnostic accuracy, and among different cardiomyopathies, specific presentation of LGE may help to make a diagnosis. Late gadolinium enhancement may be caused by conditions that significantly increase the interstitial space or, less frequently, that slow down Gd exit, like myocardial fibrosis. In chronic myocardial infarction, hypertrophic cardiomyopathies (HCM), dilated cardiomyopathy, Fabry disease, and other conditions, LGE is a marker of myocardial fibrosis, but also in patients with acute myocarditis where LGE may be also explained by the increase of interstitial space caused by interstitial oedema or by tissue infiltration of inflammatory cells. In cardiac amyloidosis, LGE represents myocardial fibrosis but the interstitial overload of amyloid proteins should also be considered as a potential cause of LGE. The identification of the pattern of presentation of LGE is also very important. In the ischaemic pattern, LGE always involves the subendocardial layer with more or less transmural extent, it is confluent, and every single scar should be located in the territory of one coronary artery. In the non-ischaemic pattern, LGE does not fulfil the previous criteria, being midwall, subepicardial, or mixed, not necessarily confluent or confined to a territory of one coronary artery. For cardiomyopathies, the exact pattern of non-ischaemic LGE is important. Quantitative analysis of LGE is required in some specific conditions as in HCM. Magnetic resonance imaging with LGE technique should be performed in every patient with suspect of cardiomyopathy. The lack of standardization of pulse sequence and mostly of quantification methods is the main limitation of LGE technique.
Collapse
Affiliation(s)
| | - Carmelo De Gori
- Academic Radiology, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Lorenzo Faggioni
- Academic Radiology, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | | | - Dania Cioni
- Academic Radiology, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Riccardo Lencioni
- Academic Radiology, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Emanuele Neri
- Academic Radiology, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| |
Collapse
|
34
|
Tadros HJ, Choudhry S, Kearney DL, Hope K, Yesso A, Miyake CY, Price J, Spinner J, Tunuguntla H, Puri K, Dreyer W, Denfield SW. Arrhythmogenic cardiomyopathy is under-recognized in end-stage pediatric heart failure: A 36-year single-center experience. Pediatr Transplant 2023; 27:e14442. [PMID: 36451335 DOI: 10.1111/petr.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Although ventricular failure is a late finding in adults with AC, we hypothesize that this is a presenting symptom in pediatric heart failure patients who undergo HT and that their ventricular arrhythmia burden could differentiate AC from other cardiomyopathies. METHODS We performed a single-center retrospective cohort study reviewing 457 consecutive pediatric (≤18 years) HT recipients at our institution. Explanted hearts were examined to establish the primary diagnosis, based on pathologic findings. Demographic and clinical variables were compared between AC versus non-HCM cardiomyopathy cases. RESULTS Forty-five percent (n = 205/457) had non-HCM cardiomyopathies as the underlying primary diagnosis. Ten cases (10/205 = 4.9%) were diagnosed with AC. All 10 had biventricular disease. In 8/10 patients (80%), AC diagnosis was unrecognized pre-HT. Compared with non-AC cardiomyopathies, the AC group was older at diagnosis (9.3 years vs. 4.3 years, p = .012) and transplant (11.1 years vs. 6.5 years, p = .010), had more ventricular arrhythmias (80.0% vs 32.8%, p = .003), and required more anti-arrhythmic use (80.0% vs 32.3%, p = .001). Genetic testing yielded causative pathogenic variants in all tested individuals (n = 5/5, 100%). CONCLUSION AC is often an unrecognized cardiomyopathy pretransplant in children who undergo HT. Pediatric non-HCM phenotypes with heart failure who have a significant ventricular arrhythmia burden should be investigated for AC.
Collapse
Affiliation(s)
- Hanna J Tadros
- Department of Pediatrics, Lille Frank Abercrombie Division of Pediatric Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Swati Choudhry
- Department of Pediatrics, Lille Frank Abercrombie Division of Pediatric Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Debra L Kearney
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Kyle Hope
- Department of Pediatrics, Lille Frank Abercrombie Division of Pediatric Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Abigail Yesso
- Department of Pediatrics, Lille Frank Abercrombie Division of Pediatric Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Christina Y Miyake
- Department of Pediatrics, Lille Frank Abercrombie Division of Pediatric Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Jack Price
- Department of Pediatrics, Lille Frank Abercrombie Division of Pediatric Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph Spinner
- Department of Pediatrics, Lille Frank Abercrombie Division of Pediatric Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Hari Tunuguntla
- Department of Pediatrics, Lille Frank Abercrombie Division of Pediatric Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Kriti Puri
- Department of Pediatrics, Lille Frank Abercrombie Division of Pediatric Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Division of Pediatric Critical Care Medicine, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - William Dreyer
- Department of Pediatrics, Lille Frank Abercrombie Division of Pediatric Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Susan W Denfield
- Department of Pediatrics, Lille Frank Abercrombie Division of Pediatric Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
35
|
Monda E, Rubino M, Palmiero G, Verrillo F, Lioncino M, Diana G, Cirillo A, Fusco A, Dongiglio F, Caiazza M, Altobelli I, Mauriello A, Guarnaccia N, Scatteia A, Cesaro A, Pacileo G, Sarubbi B, Frisso G, Bauce B, D’Andrea A, Dellegrottaglie S, Russo MG, Calabrò P, Limongelli G. Multimodality Imaging in Arrhythmogenic Left Ventricular Cardiomyopathy. J Clin Med 2023; 12:jcm12041568. [PMID: 36836107 PMCID: PMC9966192 DOI: 10.3390/jcm12041568] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
The term arrhythmogenic cardiomyopathy (ACM) describes a large spectrum of myocardial diseases characterized by progressive fibrotic or fibrofatty replacement, which gives the substrate for the occurrence of ventricular tachyarrhythmias and the development of ventricular dysfunction. This condition may exclusively affect the left ventricle, leading to the introduction of the term arrhythmogenic left ventricular cardiomyopathy (ALVC). The clinical features of ALVC are progressive fibrotic replacement with the absence or mild dilation of the LV and the occurrence of ventricular arrhythmias within the left ventricle. In 2019, the diagnostic criteria for the diagnosis of ALVC, based on family history and clinical, electrocardiographic, and imaging features, have been proposed. However, since the significant clinical and imaging overlap with other cardiac diseases, genetic testing with the demonstration of a pathogenic variant in an ACM-related gene is required for diagnostic confirmation. In ALVC, the multimodality imaging approach comprises different imaging techniques, such as echocardiography, cardiac magnetic resonance, and cardiac nuclear imaging. It provides essential information for the diagnosis, differential diagnosis, sudden cardiac death risk stratification, and management purposes. This review aims to elucidate the current role of the different multimodality imaging techniques in patients with ALVC.
Collapse
Affiliation(s)
- Emanuele Monda
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
- Institute of Cardiovascular Sciences, University College of London and St. Bartholomew’s Hospital, London WC1E 6DD, UK
| | - Marta Rubino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Giuseppe Palmiero
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Federica Verrillo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Michele Lioncino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Gaetano Diana
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Annapaola Cirillo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Adelaide Fusco
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Francesca Dongiglio
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Ippolita Altobelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Alfredo Mauriello
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Natale Guarnaccia
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | | | - Arturo Cesaro
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Giuseppe Pacileo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Berardo Sarubbi
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II”, 80138 Naples, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Antonello D’Andrea
- Department of Cardiology and Intensive Coronary Care, Umberto I Hospital, 84014 Nocera Inferiore, Italy
| | | | - Maria Giovanna Russo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Paolo Calabrò
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
- Institute of Cardiovascular Sciences, University College of London and St. Bartholomew’s Hospital, London WC1E 6DD, UK
- Correspondence: ; Tel.: +39-0817062815
| |
Collapse
|
36
|
El Hadi H, Freund A, Desch S, Thiele H, Majunke N. Hypertrophic, Dilated, and Arrhythmogenic Cardiomyopathy: Where Are We? Biomedicines 2023; 11:biomedicines11020524. [PMID: 36831060 PMCID: PMC9953324 DOI: 10.3390/biomedicines11020524] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Cardiomyopathies are a heterogeneous group of structural, mechanical, and electrical heart muscle disorders which often correlate with life-threatening arrhythmias and progressive heart failure accounting for significant cardiovascular morbidity and mortality. Currently, cardiomyopathies still represent a leading reason for heart transplantation worldwide. The last years have brought remarkable advances in the field of cardiomyopathies especially in terms of understanding the molecular basis as well as the diagnostic evaluation and management. Although most cardiomyopathy treatments had long focused on symptom management, much of the current research efforts aim to identify and act on the disease-driving mechanisms. Regarding risk assessment and primary prevention of sudden cardiac death, additional data are still pending in order to pave the way for a more refined and early patient selection for defibrillator implantation. This review summarizes the current knowledge of hypertrophic, dilated and arrhythmogenic cardiomyopathy with a particular emphasis on their pathophysiology, clinical features, and diagnostic approach. Furthermore, the relevant ongoing studies investigating novel management approaches and main gaps in knowledge are highlighted.
Collapse
Affiliation(s)
- Hamza El Hadi
- Correspondence: (H.E.H.); (N.M.); Tel.: +49-341-865-142 (H.E.H. & N.M.); Fax: +49-341-865-1461 (N.M.)
| | | | | | | | - Nicolas Majunke
- Correspondence: (H.E.H.); (N.M.); Tel.: +49-341-865-142 (H.E.H. & N.M.); Fax: +49-341-865-1461 (N.M.)
| |
Collapse
|
37
|
DSP-Related Cardiomyopathy as a Distinct Clinical Entity? Emerging Evidence from an Italian Cohort. Int J Mol Sci 2023; 24:ijms24032490. [PMID: 36768812 PMCID: PMC9916412 DOI: 10.3390/ijms24032490] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Variants in desmoplakin gene (DSP MIM *125647) have been usually associated with Arrhythmogenic Cardiomyopathy (ACM), or Dilated Cardiomyopathy (DCM) inherited in an autosomal dominant manner. A cohort of 18 probands, characterized as heterozygotes for DSP variants by a target Next Generation Sequencing (NGS) cardiomyopathy panel, was analyzed. Cardiological, genetic data, and imaging features were retrospectively collected. A total of 16 DSP heterozygous pathogenic or likely pathogenic variants were identified, 75% (n = 12) truncating variants, n = 2 missense variants, n = 1 splicing variant, and n = 1 duplication variant. The mean age at diagnosis was 40.61 years (IQR 31-47.25), 61% of patients being asymptomatic (n = 11, New York Heart Association (NYHA) class I) and 39% mildly symptomatic (n = 7, NYHA class II). Notably, 39% of patients (n = 7) presented with a clinical history of presumed myocarditis episodes, characterized by chest pain, myocardial enzyme release, 12-lead electrocardiogram abnormalities with normal coronary arteries, which were recurrent in 57% of cases (n = 4). About half of the patients (55%, n = 10) presented with a varied degree of left ventricular enlargement (LVE), four showing biventricular involvement. Eleven patients (61%) underwent implantable cardioverter defibrillator (ICD) implantation, with a mean age of 46.81 years (IQR 36.00-64.00). Cardiac magnetic resonance imaging (CMRI) identified in all 18 patients a delayed enhancement (DE) area consistent with left ventricular (LV) myocardial fibrosis, with a larger localization and extent in patients presenting with recurrent episodes of myocardial injury. These clinical and genetic data confirm that DSP-related cardiomyopathy may represent a distinct clinical entity characterized by a high arrhythmic burden, variable degrees of LVE, Late Gadolinium Enhancement (LGE) with subepicardial distribution and episodes of myocarditis-like picture.
Collapse
|
38
|
Chen Z, Song Y, Chen L, Ma X, Dai Y, Zhao S, Chen K, Zhang S. Radial and Circumferential CMR-Based RV Strain Predicts Low R Wave Amplitude after ICD Implantation in Patients with Arrhythmogenic Cardiomyopathy. J Clin Med 2023; 12:886. [PMID: 36769534 PMCID: PMC9917584 DOI: 10.3390/jcm12030886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Inadequate R wave amplitude (RWA) after implantable cardiac defibrillator (ICD) implantation in patients with arrhythmogenic cardiomyopathy (ACM) was suspected to relate to right ventricle impairment. However, little data-based evidence was provided to quantify the association. We retrospectively enrolled ACM patients receiving CMR examinations before transvenous ICD implantation from Fuwai Hospital. The RWA was obtained within 24 h and at 2-6-month follow-up after the operation. Structural, functional, as well as tissue characterization of the left ventricle (LV) and right ventricle (RV), were analyzed in relation to RWA. Among the 87 ACM patients (median RWA: 8.0 mV), 19 (21.8%) patients were found with low initial RWA (<5 mV) despite attempts in multiple positions. RV end diastolic diameter (RVEDD), (r = -0.44), RV ejection fraction (RVEF, r = 0.43), RV end diastolic volume index (RVEDVi, r = -0.49), RV end systolic volume index (RVESVi, r = -0.53), RV global circumferential (RVGCS, r = -0.64), and radial strain (RVGRS, r = 0.61, all p < 0.001) rather than LV metrics correlated strongly with initial RWA. RVGCS, RVESVi, and RVGRS were decent predictors of low RWA (areas under the curve AUC: 0.814, 0.769, 0.757, respectively) early after implantation and during 2-6-month follow-up. To summarize, low RWA of ICD lead in ACM patients was associated with RV abnormalities. The RVGCS, RVGRS, and RVESVi can be valuable predictors for identifying low RWA prior to ICD implantation.
Collapse
Affiliation(s)
- Zhongli Chen
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Yanyan Song
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Xuan Ma
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Yan Dai
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Keping Chen
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Shu Zhang
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
39
|
Merlo M, Gagno G, Baritussio A, Bauce B, Biagini E, Canepa M, Cipriani A, Castelletti S, Dellegrottaglie S, Guaricci AI, Imazio M, Limongelli G, Musumeci MB, Parisi V, Pica S, Pontone G, Todiere G, Torlasco C, Basso C, Sinagra G, Filardi PP, Indolfi C, Autore C, Barison A. Clinical application of CMR in cardiomyopathies: evolving concepts and techniques : A position paper of myocardial and pericardial diseases and cardiac magnetic resonance working groups of Italian society of cardiology. Heart Fail Rev 2023; 28:77-95. [PMID: 35536402 PMCID: PMC9902331 DOI: 10.1007/s10741-022-10235-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Cardiac magnetic resonance (CMR) has become an essential tool for the evaluation of patients affected or at risk of developing cardiomyopathies (CMPs). In fact, CMR not only provides precise data on cardiac volumes, wall thickness, mass and systolic function but it also a non-invasive characterization of myocardial tissue, thus helping the early diagnosis and the precise phenotyping of the different CMPs, which is essential for early and individualized treatment of patients. Furthermore, several CMR characteristics, such as the presence of extensive LGE or abnormal mapping values, are emerging as prognostic markers, therefore helping to define patients' risk. Lastly new experimental CMR techniques are under investigation and might contribute to widen our knowledge in the field of CMPs. In this perspective, CMR appears an essential tool to be systematically applied in the diagnostic and prognostic work-up of CMPs in clinical practice. This review provides a deep overview of clinical applicability of standard and emerging CMR techniques in the management of CMPs.
Collapse
Affiliation(s)
- Marco Merlo
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Giulia Gagno
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Anna Baritussio
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Barbara Bauce
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elena Biagini
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy
| | - Marco Canepa
- Cardiologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Interna e Specialità Mediche, Università degli Studi di Genova, Genova, Italy
| | - Alberto Cipriani
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Silvia Castelletti
- Department of Cardiology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Santo Dellegrottaglie
- Division of Cardiology, Ospedale Accreditato Villa dei Fiori, 80011 Acerra, Naples, Italy
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Massimo Imazio
- Cardiothoracic Department, University Hospital “Santa Maria Della Misericordia”, Udine, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, AORN Dei Colli, Monaldi Hospital, Naples, Italy
| | - Maria Beatrice Musumeci
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Vanda Parisi
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy
| | - Silvia Pica
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Milan, Italy
| | - Gianluca Pontone
- Dipartimento di Cardiologia Perioperatoria e Imaging Cardiovascolare, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | - Camilla Torlasco
- Department of Cardiology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Cristina Basso
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Pasquale Perrone Filardi
- Dipartimento Scienze Biomediche Avanzate, Università degli Studi Federico II, Mediterranea CardioCentro, Naples, Italy
| | - Ciro Indolfi
- Dipartimento di Scienze Mediche e Chirurgiche, Cattedra di Cardiologia, Università Magna Graecia, Catanzaro, Mediterranea Cardiocentro, Napoli, Italy
| | - Camillo Autore
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | | |
Collapse
|
40
|
Staels F, Roosens W, Giovannozzi S, Moens L, Bogaert J, Iglesias-Herrero C, Gijsbers R, Bossuyt X, Frans G, Liston A, Humblet-Baron S, Meyts I, Van Aelst L, Schrijvers R. Case report: Myocarditis in congenital STAT1 gain-of function. Front Immunol 2023; 14:1095595. [PMID: 37020552 PMCID: PMC10067556 DOI: 10.3389/fimmu.2023.1095595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Autosomal dominant Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations result in an inborn error of immunity characterized by chronic mucocutaneous candidiasis, recurrent viral and bacterial infections, and diverse autoimmune manifestations. Current treatment consists of chronic antifungal therapy, antibiotics for concomitant infections, and immunosuppressive therapy in case of autoimmune diseases. More recently, treatment with Janus kinases 1 and 2 (JAK1/2) inhibitors have shown promising yet variable results. We describe a STAT1 GOF patient with an incidental finding of elevated cardiac troponins, leading to a diagnosis of a longstanding, slowly progressive idiopathic myocarditis, attributed to STAT1 GOF. Treatment with a JAK-inhibitor (baricitinib) mitigated cardiac inflammation on MRI but was unable to alter fibrosis, possibly due to the diagnostic and therapeutic delay, which finally led to fatal arrhythmia. Our case illustrates that myocarditis could be part of the heterogeneous disease spectrum of STAT1 GOF. Given the insidious presentation in our case, a low threshold for cardiac evaluation in STAT1 GOF patients seems warranted.
Collapse
Affiliation(s)
- Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Willem Roosens
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Simone Giovannozzi
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Leen Moens
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Jan Bogaert
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | - Cecilia Iglesias-Herrero
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Department of Microbiology, Immunology and Transplantation, Experimental Laboratory Immunology, KU Leuven, Leuven, Belgium
| | - Glynis Frans
- Department of Microbiology, Immunology and Transplantation, Experimental Laboratory Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Lucas Van Aelst
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- *Correspondence: Rik Schrijvers,
| |
Collapse
|
41
|
Gasperetti A, Carrick RT, Costa S, Compagnucci P, Bosman LP, Chivulescu M, Tichnell C, Murray B, Tandri H, Tadros R, Rivard L, van den Berg MP, Zeppenfeld K, Wilde AA, Pompilio G, Carbucicchio C, Dello Russo A, Casella M, Svensson A, Brunckhorst CB, van Tintelen JP, Platonov PG, Haugaa KH, Duru F, te Riele AS, Khairy P, Tondo C, Calkins H, James CA, Saguner AM, Cadrin-Tourigny J. Programmed Ventricular Stimulation as an Additional Primary Prevention Risk Stratification Tool in Arrhythmogenic Right Ventricular Cardiomyopathy: A Multinational Study. Circulation 2022; 146:1434-1443. [PMID: 36205131 PMCID: PMC9640278 DOI: 10.1161/circulationaha.122.060866] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND A novel risk calculator based on clinical characteristics and noninvasive tests that predicts the onset of clinical sustained ventricular arrhythmias (VA) in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) has been proposed and validated by recent studies. It remains unknown whether programmed ventricular stimulation (PVS) provides additional prognostic value. METHODS All patients with a definite ARVC diagnosis, no history of sustained VAs at diagnosis, and PVS performed at baseline were extracted from 6 international ARVC registries. The calculator-predicted risk for sustained VA (sustained or implantable cardioverter defibrillator treated ventricular tachycardia [VT] or fibrillation, [aborted] sudden cardiac arrest) was assessed in all patients. Independent and combined performance of the risk calculator and PVS on sustained VA were assessed during a 5-year follow-up period. RESULTS Two hundred eighty-eight patients (41.0±14.5 years, 55.9% male, right ventricular ejection fraction 42.5±11.1%) were enrolled. At PVS, 137 (47.6%) patients had inducible ventricular tachycardia. During a median of 5.31 [2.89-10.17] years of follow-up, 83 (60.6%) patients with a positive PVS and 37 (24.5%) with a negative PVS experienced sustained VA (P<0.001). Inducible ventricular tachycardia predicted clinical sustained VA during the 5-year follow-up and remained an independent predictor after accounting for the calculator-predicted risk (HR, 2.52 [1.58-4.02]; P<0.001). Compared with ARVC risk calculator predictions in isolation (C-statistic 0.72), addition of PVS inducibility showed improved prediction of VA events (C-statistic 0.75; log-likelihood ratio for nested models, P<0.001). PVS inducibility had a 76% [67-84] sensitivity and 68% [61-74] specificity, corresponding to log-likelihood ratios of 2.3 and 0.36 for inducible (likelihood ratio+) and noninducible (likelihood ratio-) patients, respectively. In patients with a ARVC risk calculator-predicted risk of clinical VA events <25% during 5 years (ie, low/intermediate subgroup), PVS had a 92.6% negative predictive value. CONCLUSIONS PVS significantly improved risk stratification above and beyond the calculator-predicted risk of VA in a primary prevention cohort of patients with ARVC, mainly for patients considered to be at low and intermediate risk by the clinical risk calculator.
Collapse
Affiliation(s)
- Alessio Gasperetti
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD (A.G., R.T.C., C. Tichnell, B.M., H.T., H.C., C.A.J.)
| | - Richard T. Carrick
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD (A.G., R.T.C., C. Tichnell, B.M., H.T., H.C., C.A.J.)
| | - Sarah Costa
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich‚ Switzerland (S.C., C.B.B., F.D., A.M.S.)
| | - Paolo Compagnucci
- Cardiology and Arrhythmology Clinic, University Hospital Umberto-I-Salesi-Lancisi, Ancona, Italy (P.C., A.D.R., M. Casella)
| | - Laurens P. Bosman
- Department of Cardiology (L.P.B., A.S.J.M.t.R.), University Medical Center Utrecht, University of Utrecht, The Netherlands
| | - Monica Chivulescu
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway and University of Oslo (M. Chivulescu, K.H.H.)
| | - Crystal Tichnell
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD (A.G., R.T.C., C. Tichnell, B.M., H.T., H.C., C.A.J.)
| | - Brittney Murray
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD (A.G., R.T.C., C. Tichnell, B.M., H.T., H.C., C.A.J.)
| | - Harikrishna Tandri
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD (A.G., R.T.C., C. Tichnell, B.M., H.T., H.C., C.A.J.)
| | - Rafik Tadros
- Cardiovascular Genetics Center and Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Canada (R.T., L.R., P.K., J.C.-T.)
| | - Lena Rivard
- Cardiovascular Genetics Center and Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Canada (R.T., L.R., P.K., J.C.-T.)
| | - Maarten P. van den Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen‚ The Netherlands (M.P.v.d.B.)
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center, The Netherlands (K.Z.)
| | - Arthur A.M. Wilde
- Amsterdam UMC location University of Amsterdam‚ Department of Cardiology‚ Amsterdam‚ The Netherlands (A.A.M.W.)
| | | | - Corrado Carbucicchio
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Department of Clinical Electrophisiology and Cardiac Pacing, Milan, Italy (C.C., C. Tondo)
| | - Antonio Dello Russo
- Cardiology and Arrhythmology Clinic, University Hospital Umberto-I-Salesi-Lancisi, Ancona, Italy (P.C., A.D.R., M. Casella)
| | - Michela Casella
- Cardiology and Arrhythmology Clinic, University Hospital Umberto-I-Salesi-Lancisi, Ancona, Italy (P.C., A.D.R., M. Casella)
| | - Anneli Svensson
- Department of Cardiology and Department of Health‚ Medicine and Caring Sciences‚ Linköping University‚ Sweden (A.S.)
| | - Corinna B. Brunckhorst
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich‚ Switzerland (S.C., C.B.B., F.D., A.M.S.)
| | - J. Peter van Tintelen
- Department of Genetics (J.P.v.T.), University Medical Center Utrecht, University of Utrecht, The Netherlands
| | - Pyotr G. Platonov
- Department of Cardiology, Clinical Sciences, Lund University, Sweden (P.G.P.)
| | - Kristina H. Haugaa
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway and University of Oslo (M. Chivulescu, K.H.H.)
| | - Firat Duru
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich‚ Switzerland (S.C., C.B.B., F.D., A.M.S.)
| | - Anneline S.J.M. te Riele
- Department of Cardiology (L.P.B., A.S.J.M.t.R.), University Medical Center Utrecht, University of Utrecht, The Netherlands
| | - Paul Khairy
- Cardiovascular Genetics Center and Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Canada (R.T., L.R., P.K., J.C.-T.)
| | - Claudio Tondo
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Department of Clinical Electrophisiology and Cardiac Pacing, Milan, Italy (C.C., C. Tondo).,Department Biomedical, Surgical and Dental Sciences, University of Milan, Italy (C. Tondo)
| | - Hugh Calkins
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD (A.G., R.T.C., C. Tichnell, B.M., H.T., H.C., C.A.J.)
| | - Cynthia A. James
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD (A.G., R.T.C., C. Tichnell, B.M., H.T., H.C., C.A.J.)
| | - Ardan M. Saguner
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich‚ Switzerland (S.C., C.B.B., F.D., A.M.S.)
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center and Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Canada (R.T., L.R., P.K., J.C.-T.)
| |
Collapse
|
42
|
Rizzello V. Selection of patients eligible for implantable cardioverter defibrillator: beyond left ventricular ejection fraction. Eur Heart J Suppl 2022; 24:I139-I142. [PMID: 36380775 PMCID: PMC9653128 DOI: 10.1093/eurheartjsupp/suac087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The selection of patients eligible for implantable cardioverter defibrillator (ICD), in primary prevention, is a critical moment in the management of the patients with cardiomyopathies as it needs a right balance of the patients' arrhythmic risk and the risks related to the implantation, as well as the device costs. Several data indicate that left ventricular ejection fraction alone is not a sufficient criterion for a proper identification of patients who could benefit most from ICD. Numerous findings show that genetic analysis and characterization of myocardial fibrosis with magnetic resonance imaging allow an important improvement of this process.
Collapse
Affiliation(s)
- Vittoria Rizzello
- Cardiovascular Department, Intensive Cardiology Unit, San Giovanni-Addolorata Hospital, Rome
| |
Collapse
|
43
|
Cardiac Magnetic Resonance in Fabry Disease: Morphological, Functional, and Tissue Features. Diagnostics (Basel) 2022; 12:diagnostics12112652. [DOI: 10.3390/diagnostics12112652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Fabry disease (FD) is an X-linked inheritable storage disease caused by a deficiency of alpha-galactosidase causing lysosomal overload of sphingolipids. FD cardiomyopathy is characterized by left ventricular (LV) hypertrophy and should be considered in differential diagnosis with all the other causes of LV hypertrophy. An early diagnosis of FD is very important because the enzyme replacement therapy (ERT) may change the fate of patients by blocking both cardiac and systemic involvement and improving prognosis. Diagnosis may be relatively easy in young patients with the typical signs and symptoms of FD, but in male patients with late onset of disease and in females, diagnosis may be very challenging. Morphological and functional aspects are not specific to FD, which cannot be diagnosed or excluded by echocardiography. Cardiac magnetic resonance (CMR) with tissue characterization capability is an accurate technique for the differential diagnosis of LV hypertrophy. The finding of decreased myocardial T1 value in LV hypertrophy is specific to FD. Late gadolinium enhancement (LGE) is found in the late stage of the disease, but it is useful to predict the cardiac response to ERT and to stratify the prognosis.
Collapse
|
44
|
Markousis-Mavrogenis G, Giannakopoulou A, Belegrinos A, Pons MR, Bonou M, Vartela V, Papavasiliou A, Christidi A, Kourtidou S, Kolovou G, Bacopoulou F, Chrousos GP, Mavrogeni SI. Cardiovascular Magnetic Resonance Imaging Patterns in Rare Cardiovascular Diseases. J Clin Med 2022; 11:6403. [PMID: 36362632 PMCID: PMC9657782 DOI: 10.3390/jcm11216403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Rare cardiovascular diseases (RCDs) have low incidence but major clinical impact. RCDs' classification includes Class I-systemic circulation, Class II-pulmonary circulation, Class III-cardiomyopathies, Class IV-congenital cardiovascular diseases (CVD), Class V-cardiac tumors and CVD in malignancy, Class VI-cardiac arrhythmogenic disorders, Class VII-CVD in pregnancy, Class VIII-unclassified rare CVD. Cardiovascular Magnetic Resonance (CMR) is useful in the diagnosis/management of RCDs, as it performs angiography, function, perfusion, and tissue characterization in the same examination. Edema expressed as a high signal in STIRT2 or increased T2 mapping is common in acute/active inflammatory states. Diffuse subendocardial fibrosis, expressed as diffuse late gadolinium enhancement (LGE), is characteristic of microvascular disease as in systemic sclerosis, small vessel vasculitis, cardiac amyloidosis, and metabolic disorders. Replacement fibrosis, expressed as LGE, in the inferolateral wall of the left ventricle (LV) is typical of neuromuscular disorders. Patchy LGE with concurrent edema is typical of myocarditis, irrespective of the cause. Cardiac hypertrophy is characteristic in hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA) and Anderson-Fabry Disease (AFD), but LGE is located in the IVS, subendocardium and lateral wall in HCM, CA and AFD, respectively. Native T1 mapping is increased in HCM and CA and reduced in AFD. Magnetic resonance angiography provides information on aortopathies, such as Marfan, Turner syndrome and Takayasu vasculitis. LGE in the right ventricle is the typical finding of ARVC, but it may involve LV, leading to the diagnosis of arrhythmogenic cardiomyopathy. Tissue changes in RCDs may be detected only through parametric imaging indices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Flora Bacopoulou
- University Research Institute for Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, “Agia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- University Research Institute for Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, “Agia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sophie I. Mavrogeni
- Onassis Cardiac Surgery Center, 17674 Athens, Greece
- University Research Institute for Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, “Agia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
45
|
Ghannam M, Chugh A, Thomas M, Liang JJ, Bogun F. Cryoablation for the treatment of ventricular tachycardia in close proximity to coronary arteries. HeartRhythm Case Rep 2022; 8:707-710. [PMID: 36310726 PMCID: PMC9596360 DOI: 10.1016/j.hrcr.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Michael Ghannam
- Address reprint requests and correspondence: Dr Michael Ghannam, Cardiovascular Center, SPC 5853, 1500 E. Medical Center Dr, Ann Arbor, MI 48109-5853.
| | | | | | | | | |
Collapse
|
46
|
Cardiac magnetic resonance imaging of arrhythmogenic cardiomyopathy: evolving diagnostic perspectives. Eur Radiol 2022; 33:270-282. [PMID: 35788758 DOI: 10.1007/s00330-022-08958-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/09/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetically determined heart muscle disease characterized by fibro-fatty myocardial replacement, clinically associated with malignant ventricular arrhythmias and sudden cardiac death. Originally described a disease with a prevalent right ventricular (RV) involvement, subsequently two other phenotypes have been recognized, such as the left dominant and the biventricular phenotypes, for which a recent International Expert consensus document provided upgrade diagnostic criteria (the 2020 "Padua Criteria"). In this novel workup for the diagnosis of the entire spectrum of phenotypic variants of ACM, including left ventricular (LV) variants, cardiac magnetic resonance (CMR) has emerged as the cardiac imaging technique of choice, due to its capability of detailed morpho-functional and tissue characterization evaluation of both RV and LV. In this review, the key role of CMR in the diagnosis of ACM is outlined, including the supplemental value for the characterization of the disease variants. An ACM-specific CMR study protocol, as well as strengths and weaknesses of each imaging technique, is also provided. KEY POINTS: • Arrhythmogenic cardiomyopathy includes three different phenotypes: dominant right, biventricular, and dominant left. • In 2020, diagnostic criteria have been updated and cardiac magnetic resonance has emerged as the cardiac imaging technique of choice. • This aim of this review is to provide an update of the current state of art regarding the use of CMR in ACM, with a particular focus on novel diagnostic criteria, CMR protocols, and prognostic significance of CMR findings in ACM.
Collapse
|
47
|
Jordà P, Bosman LP, Gasperetti A, Mazzanti A, Gourraud JB, Davies B, Frederiksen TC, Moreno Weidmann Z, Di Marco A, Roberts JD, MacIntyre C, Seifer C, Delinière A, Alqarawi W, Kukavica D, Minois D, Trancuccio A, Arnaud M, Targetti M, Martino A, Oliviero G, Pipilas DC, Carbucicchio C, Compagnucci P, Dello Russo A, Olivotto I, Calò L, Lubitz SA, Cutler MJ, Chevalier P, Arbelo E, Priori SG, Healey JS, Calkins H, Casella M, Jensen HK, Tondo C, Tadros R, James CA, Krahn AD, Cadrin-Tourigny J. Arrhythmic risk prediction in arrhythmogenic right ventricular cardiomyopathy: external validation of the arrhythmogenic right ventricular cardiomyopathy risk calculator. Eur Heart J 2022; 43:3041-3052. [PMID: 35766180 PMCID: PMC9392650 DOI: 10.1093/eurheartj/ehac289] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/16/2022] [Accepted: 05/18/2022] [Indexed: 12/17/2022] Open
Abstract
AIMS Arrhythmogenic right ventricular cardiomyopathy (ARVC) causes ventricular arrhythmias (VAs) and sudden cardiac death (SCD). In 2019, a risk prediction model that estimates the 5-year risk of incident VAs in ARVC was developed (ARVCrisk.com). This study aimed to externally validate this prediction model in a large international multicentre cohort and to compare its performance with the risk factor approach recommended for implantable cardioverter-defibrillator (ICD) use by published guidelines and expert consensus. METHODS AND RESULTS In a retrospective cohort of 429 individuals from 29 centres in North America and Europe, 103 (24%) experienced sustained VA during a median follow-up of 5.02 (2.05-7.90) years following diagnosis of ARVC. External validation yielded good discrimination [C-index of 0.70 (95% confidence interval-CI 0.65-0.75)] and calibration slope of 1.01 (95% CI 0.99-1.03). Compared with the three published consensus-based decision algorithms for ICD use in ARVC (Heart Rhythm Society consensus on arrhythmogenic cardiomyopathy, International Task Force consensus statement on the treatment of ARVC, and American Heart Association guidelines for VA and SCD), the risk calculator performed better with a superior net clinical benefit below risk threshold of 35%. CONCLUSION Using a large independent cohort of patients, this study shows that the ARVC risk model provides good prognostic information and outperforms other published decision algorithms for ICD use. These findings support the use of the model to facilitate shared decision making regarding ICD implantation in the primary prevention of SCD in ARVC.
Collapse
Affiliation(s)
- Paloma Jordà
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada.,Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laurens P Bosman
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alessio Gasperetti
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Andrea Mazzanti
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy.,Department of Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Brianna Davies
- Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - Tanja Charlotte Frederiksen
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Health, Aarhus University, Aarhus N, Denmark
| | - Zoraida Moreno Weidmann
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Universitat Autònoma de Barcelona, CIBERCV, Barcelona, Spain
| | - Andrea Di Marco
- Arrhythmia Unit, Department of Cardiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jason D Roberts
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada.,Division of Cardiology, Hamilton Health Sciences, Hamilton, ON, Canada.,Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | - Ciorsti MacIntyre
- Cardiac Electrophysiology Service, Quenn Elisabeth II Health Sciences Center, Dalhousie University, Halifax, NS, Canada
| | - Colette Seifer
- St-Boniface Hospital, University of Manitoba, Winnipeg, MB, Canada
| | - Antoine Delinière
- National Reference Center for Inherited Arrhythmias of Lyon, Louis Pradel Cardiovascular Hospital, Hospices Civils de Lyon, Lyon, France
| | - Wael Alqarawi
- Cardiac Electrophysiology Service, Ottawa Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - Deni Kukavica
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy.,Department of Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Damien Minois
- Department of Cardiology, Centre Hospitalier Universitaire Nantes, Nantes, France
| | - Alessandro Trancuccio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy.,Department of Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Marine Arnaud
- Department of Cardiology, Centre Hospitalier Universitaire Nantes, Nantes, France
| | - Mattia Targetti
- Cardiomyopathy Unit, Department of Cardiology, Careggi University Hospital, Florence, Italy
| | | | - Giada Oliviero
- Department of Cardiology, Policlinico Casilino, Rome, Italy
| | - Daniel C Pipilas
- Cardiovascular Research Center and Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| | - Corrado Carbucicchio
- Department of Clinical Electrophysiology and Cardiac Pacing Centro Cardiologico Monzino, IRCCSC, Milan, Italy
| | - Paolo Compagnucci
- Department of Biomedical Sciences and Public Health, Cardiology and Arrhythmology Clinic, University Hospital Umberto I-Salesi-Lancisi, Marche Polytechnic University, Ancona, Italy
| | - Antonio Dello Russo
- Department of Biomedical Sciences and Public Health, Cardiology and Arrhythmology Clinic, University Hospital Umberto I-Salesi-Lancisi, Marche Polytechnic University, Ancona, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Department of Cardiology, Careggi University Hospital, Florence, Italy
| | - Leonardo Calò
- Department of Cardiology, Policlinico Casilino, Rome, Italy
| | - Steven A Lubitz
- Cardiovascular Research Center and Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| | - Michael J Cutler
- Intermountain Medical Center Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - Philippe Chevalier
- National Reference Center for Inherited Arrhythmias of Lyon, Louis Pradel Cardiovascular Hospital, Hospices Civils de Lyon, Lyon, France
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,European Reference Network for rare, low prevalence and complex diseases of the heart - ERN GUARD-Heart
| | - Silvia Giuliana Priori
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy.,Department of Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jeffrey S Healey
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada.,Division of Cardiology, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Michela Casella
- Department of Clinical, Special and Dental Sciences, Cardiology and Arrhythmology Clinic, University Hospital Umberto I-Salesi-Lancisi, MarchePolytechnic University, Ancona, Italy
| | - Henrik Kjærulf Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Health, Aarhus University, Aarhus N, Denmark
| | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing Centro Cardiologico Monzino, IRCCSC, Milan, Italy.,Department of Biomedical, Surgical and Dentistry Sciences, University of Milan, Milan, Italy
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Andrew D Krahn
- Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
48
|
Graziosi M, Ditaranto R, Rapezzi C, Pasquale F, Lovato L, Leone O, Parisi V, Potena L, Ferrara V, Minnucci M, Caponetti AG, Chiti C, Ferlini A, Gualandi F, Rossi C, Berardini A, Tini G, Bertini M, Ziacchi M, Biffi M, Galie N, Olivotto I, Biagini E. Clinical presentations leading to arrhythmogenic left ventricular cardiomyopathy. Open Heart 2022; 9:openhrt-2021-001914. [PMID: 35444050 PMCID: PMC9021777 DOI: 10.1136/openhrt-2021-001914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES To describe a cohort of patients with arrhythmogenic left ventricular cardiomyopathy (ALVC), focusing on the spectrum of the clinical presentations. METHODS Patients were retrospectively evaluated between January 2012 and June 2020. Diagnosis was based on (1) ≥3 contiguous segments with subepicardial/midwall late gadolinium enhancement in the left ventricle (LV) at cardiac magnetic resonance plus a likely pathogenic/pathogenic arrhythmogenic cardiomyopathy (AC) associated genetic mutation and/or familial history of AC and/or red flags for ALVC (ie, negative T waves in V4-6/aVL, low voltages in limb leads, right bundle branch block like ventricular tachycardia) or (2) pathology examination of explanted hearts or autoptic cases suffering sudden cardiac death (SCD). Significant right ventricular involvement was an exclusion criterion. RESULTS Fifty-two patients (63% males, age 45 years (31-53)) composed the study cohort. Twenty-one (41%) had normal echocardiogram, 13 (25%) a hypokinetic non-dilated cardiomyopathy (HNDC) and 17 (33%) a dilated cardiomyopathy (DCM). Of 47 tested patients, 29 (62%) were carriers of a pathogenic/likely pathogenic DNA variant. Clinical contexts leading to diagnosis were SCD in 3 (6%), ventricular arrhythmias in 15 (29%), chest pain in 8 (15%), heart failure in 6 (12%) and familial screening in 20 (38%). Thirty patients (57%) had previously received a diagnosis other than ALVC with a diagnostic delay of 6 years (IQR 1-7). CONCLUSIONS ALVC is hidden in different clinical scenarios with a phenotypic spectrum ranging from normal LV to HNDC and DCM. Ventricular arrhythmias, chest pain, heart failure and SCD are the main clinical presentations, being familial screening essential for the affected relatives' identification.
Collapse
Affiliation(s)
- Maddalena Graziosi
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Raffaello Ditaranto
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Claudio Rapezzi
- Cardiological Center, University of Ferrara, Ferrara, Italy.,Cardiology Unit, Maria Cecilia Hospital SpA, Cotignola, Emilia-Romagna, Italy
| | - Ferdinando Pasquale
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luigi Lovato
- Cardio-Thoracic Radiology, IRCCS University Hospital of Bologna S Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Ornella Leone
- Department of Pathology, Cardiovascular and Cardiac Transplant Pathology Unit, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Vanda Parisi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Luciano Potena
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Valentina Ferrara
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Matteo Minnucci
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Angelo Giuseppe Caponetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Chiara Chiti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Alessandra Ferlini
- Department of Medical Sciences, Unit of Medical Genetics, Universita degli Studi di Ferrara, Ferrara, Italy
| | - Francesca Gualandi
- Department of Medical Sciences, Unit of Medical Genetics, Universita degli Studi di Ferrara, Ferrara, Italy
| | - Cesare Rossi
- Medical Genetics Unit, IRCCS University Hospital of Bologna S Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Alessandra Berardini
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giacomo Tini
- Department of Experimental and Clinical Medicine, Cardiomyopathy Unit, University Hospital Careggi, Firenze, Italy
| | - Matteo Bertini
- Cardiological Center, University of Ferrara, Ferrara, Italy
| | - Matteo Ziacchi
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mauro Biffi
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Nazzareno Galie
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University Hospital Careggi, Firenze, Italy
| | - Elena Biagini
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
49
|
Arrhythmogenic Right Ventricular Cardiomyopathy. JACC Clin Electrophysiol 2022; 8:533-553. [PMID: 35450611 DOI: 10.1016/j.jacep.2021.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/21/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) encompasses a group of conditions characterized by right ventricular fibrofatty infiltration, with a predominant arrhythmic presentation. First described in the late 1970s and early 1980s, it is now frequently recognized to have biventricular involvement. The prevalence is ∼1:2,000 to 1:5,000, depending on geographic location, and it has a slight male predominance. The diagnosis of ARVC is determined on the basis of fulfillment of task force criteria incorporating electrophysiological parameters, cardiac imaging findings, genetic factors, and histopathologic features. Risk stratification of patients with ARVC aims to identify those who are at increased risk of sudden cardiac death or sustained ventricular tachycardia. Factors including age, sex, electrophysiological features, and cardiac imaging investigations all contribute to risk stratification. The current management of ARVC includes exercise restriction, β-blocker therapy, consideration for implantable cardioverter-defibrillator insertion, and catheter ablation. This review summarizes our current understanding of ARVC and provides clinicians with a practical approach to diagnosis and management.
Collapse
|
50
|
Gasperetti A, Cappelletto C, Carrick R, Targetti M, Tichnell C, Martino A, Murray B, Compagnucci P, Stolfo D, Bisson J, Gilotra N, Carbucicchio C, Olivotto I, Tandri H, Dello Russo A, Cadrin-Tourigny J, Calò L, Tondo C, Sinagra G, James CA, Casella M, Calkins H. Association of Premature Ventricular Contraction Burden on Serial Holter Monitoring With Arrhythmic Risk in Patients With Arrhythmogenic Right Ventricular Cardiomyopathy. JAMA Cardiol 2022; 7:378-385. [PMID: 35195686 PMCID: PMC8867390 DOI: 10.1001/jamacardio.2021.6016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IMPORTANCE A high burden of premature ventricular contractions (PVCs) at disease diagnosis has been associated with an overall higher risk of ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy (ARVC). Data regarding dynamic modification of PVC burden at follow-up with Holter monitoring and its impact on arrhythmic risk in ARVC are scarce. OBJECTIVE To describe changes in the PVC burden and to assess whether serial Holter monitoring is dynamically associated with sustained ventricular arrhythmias during follow-up in patients with ARVC. DESIGN, SETTINGS, AND PARTICIPANTS In this cohort study, patients with a definite ARVC diagnosis, available Holter monitoring results at disease diagnosis, and at least 2 additional results of Holter monitoring during follow-up were enrolled from 6 ARVC registries in North America and Europe. Data were collected from June 1 to September 15, 2021. MAIN OUTCOMES AND MEASURES The association between prespecified variables retrieved at each Holter monitoring follow-up (ie, overall PVC burden; presence of sudden PVC spikes, defined as absolute increase in PVC burden ≥5000 per 24 hours or a relative ≥75% increase, with an absolute increase of ≥1000 PVCs; presence of nonsustained ventricular tachycardia [NSVT]; and use of β-blockers and class III antiarrhythmic drugs) and sustained ventricular arrhythmias occurring within 12 months after that Holter examination was assessed using a mixed logistical model. RESULTS In 169 enrolled patients with ARVC (mean [SD] age, 36.3 [15.0] years; 95 men [56.2%]), a total of 723 Holter examinations (median, 4 [IQR, 4-5] per patient) were performed during a median follow-up of 54 (IQR, 42-63) months and detected 75 PVC spikes and 67 sustained ventricular arrhythmias. The PVC burden decreased significantly from the first to the second Holter examination (mean, 2906 [95% CI, 1581-4231] PVCs per 24 hours; P < .001). A model including 24-hour PVC burden (odds ratio [OR] 1.50 [95% CI, 1.10-2.03]; P = .01), PVC spikes (OR, 6.20 [95 CI, 2.74-13.99]; P < .001), and NSVT (OR, 2.29 [95% CI, 1.10-4.51]; P = .03) at each follow-up Holter examination was associated with sustained ventricular arrhythmia occurrence in the following 12 months. CONCLUSIONS AND RELEVANCE These findings suggest that in patients with ARVC, changes in parameters derived from each Holter examination performed during follow-up are associated with the risk of sustained ventricular arrhythmias within 12 months of disease diagnosis.
Collapse
Affiliation(s)
- Alessio Gasperetti
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chiara Cappelletto
- Cardiothoracovascular Department, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Richard Carrick
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mattia Targetti
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paolo Compagnucci
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti Umberto I–Lancisi–Salesi,” Ancona, Italy
| | - Davide Stolfo
- Cardiothoracovascular Department, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Jasmine Bisson
- Cardiovascular Genetics Center, Montreal Heart Center, Montreal, Quebec, Canada
| | - Nisha Gilotra
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Corrado Carbucicchio
- Heart Rhythm Center, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Harikrishna Tandri
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Antonio Dello Russo
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti Umberto I–Lancisi–Salesi,” Ancona, Italy
| | | | - Leonardo Calò
- Department of Cardiology, Policlinico Casilino, Rome, Italy
| | - Claudio Tondo
- Heart Rhythm Center, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Cynthia A. James
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michela Casella
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti Umberto I–Lancisi–Salesi,” Ancona, Italy
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|