1
|
Liu Y, Li J, Chen R, Shi F, Xiong Y. Airway epithelial cells promote in vitro airway smooth muscle cell proliferation by activating the Wnt/β-catenin pathway. Respir Physiol Neurobiol 2024; 331:104368. [PMID: 39536926 DOI: 10.1016/j.resp.2024.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Asthma is a common chronic inflammatory airway disease, imposing a substantial health and economic burden on society and individuals. Current treatments primarily focus on symptom relief and lung function improvement, often failing to address the underlying pathology. Thus, exploring new therapeutic approaches is crucial. Airway smooth muscle cells (ASMCs) play a key role in regulating airway tone and airflow, while abnormal ASMCs proliferation contributes to airway remodeling in asthma. Airway epithelial cells (AECs), serving as the first barrier against pathogens and allergens, also have critical immune functions. This study focuses on the interaction between AECs and ASMCs, as AECs are more accessible for drug delivery due to their location at the airway surface. Investigating this relationship could facilitate novel interventions targeting AECs to inhibit pathological ASMCs activity. In our experiment, we isolated ASMCs and AECs from healthy mice and found that AECs significantly promoted ASMCs proliferation in co-culture. RNA sequencing revealed that this process might be linked to the activation of the canonical Wnt signaling pathway in ASMCs. By using Wnt pathway inhibitors (endo-IWR1) and siRNA to disrupt Wnt receptors, we reversed this phenotype. This finding suggests that AECs may promote ASMCs proliferation by activating the Wnt pathway in ASMCs. The Wnt/β-catenin pathway appears to play an important role in ASMCs proliferation, indicating that future pathological studies should consider the potential involvement of the Wnt pathway in airway remodeling.
Collapse
Affiliation(s)
- Yilun Liu
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518038, China
| | - Jiana Li
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518038, China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong Province 518109, China
| | - Fei Shi
- Emergency Department, Shenzhen People's Hospital, Shenzhen, Guangdong Province 518106, China.
| | - Yi Xiong
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518038, China.
| |
Collapse
|
2
|
Yang Q, Miao Q, Chen H, Li D, Luo Y, Chiu J, Wang HJ, Chuvanjyan M, Parmacek MS, Shi W. Myocd regulates airway smooth muscle cell remodeling in response to chronic asthmatic injury. J Pathol 2023; 259:331-341. [PMID: 36484734 PMCID: PMC10107741 DOI: 10.1002/path.6044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Abnormal growth of airway smooth muscle cells is one of the key features in asthmatic airway remodeling, which is associated with asthma severity. The mechanisms underlying inappropriate airway smooth muscle cell growth in asthma remain largely unknown. Myocd has been reported to act as a key transcriptional coactivator in promoting airway-specific smooth muscle development in fetal lungs. Whether Myocd controls airway smooth muscle remodeling in asthma has not been investigated. Mice with lung mesenchyme-specific deletion of Myocd after lung development were generated, and a chronic asthma model was established by sensitizing and challenging the mice with ovalbumin for a prolonged period. Comparison of the asthmatic pathology between the Myocd knockout mice and the wild-type controls revealed that abrogation of Myocd mitigated airway smooth muscle cell hypertrophy and hyperplasia, accompanied by reduced peri-airway inflammation, decreased fibrillar collagen deposition on airway walls, and attenuation of abnormal mucin production in airway epithelial cells. Our study indicates that Myocd is a key transcriptional coactivator involved in asthma airway remodeling. Inhibition of Myocd in asthmatic airways may be an effective approach to breaking the vicious cycle of asthmatic progression, providing a novel strategy in treating severe and persistent asthma. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Qin Yang
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, PR China
| | - Qing Miao
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hui Chen
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Duo Li
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yongfeng Luo
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joanne Chiu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hong-Jun Wang
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Chuvanjyan
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael S Parmacek
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
3
|
Abstract
G protein-coupled receptors (GPCRs) play a central role in regulating the functions of a diverse range of cell types in the airway. Taste 2 receptor (T2R) family of GPCRs is responsible for the transduction of bitter taste; however, recent studies have demonstrated that different subtypes of T2Rs and key components of T2R signaling are expressed in several extra-oral tissues including airways with many physiological roles. In the lung, expression of T2Rs has been confirmed in multiple airway cell types including airway smooth muscle (ASM) cells, various epithelial cell subtypes, and on both resident and migratory immune cells. Most importantly, activation of T2Rs with a variety of putative agonists elicits unique signaling in ASM and specialized airway epithelial cells resulting in the inhibition of ASM contraction and proliferation, promotion of ciliary motility, and innate immune response in chemosensory airway epithelial cells. Here we discuss the expression of T2Rs and the mechanistic basis of their function in the structural cells of the airways with some useful insights on immune cells in the context of allergic asthma and other upper airway inflammatory disorders. Emphasis on T2R biology and pharmacology in airway cells has an ulterior goal of exploiting T2Rs for therapeutic benefit in obstructive airway diseases.
Collapse
Affiliation(s)
- Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane and Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stanley Conaway
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane and Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Deepak Deshpande
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane and Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Wang H, Zhong B, Geng Y, Hao J, Jin Q, Zhang Y, Dong L, Gao D, Li J, Hou W. TIPE2 inhibits PDGF-BB-induced phenotype switching in airway smooth muscle cells through the PI3K/Akt signaling pathway. Respir Res 2021; 22:238. [PMID: 34446024 PMCID: PMC8393827 DOI: 10.1186/s12931-021-01826-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
Background Childhood asthma is a common respiratory disease characterized by airway inflammation. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) has been found to be involved in the progression of asthma. This study aimed to explore the role of TIPE2 in the regulation of airway smooth muscle cells (ASMCs), which are one of the main effector cells in the development of asthma. Materials and methods ASMCs were transfected with pcDNA3.0-TIPE2 or si-TIPE2 for 48 h and then treated with platelet-derived growth factor (PDGF)-BB. Cell proliferation of ASMCs was measured using the MTT assay. Cell migration of ASMCs was determined by a transwell assay. The mRNA expression levels of calponin and smooth muscle protein 22α (SM22α) were measured using qRT-PCR. The levels of TIPE2, calponin, SM22α, PI3K, p-PI3K, Akt, and p-Akt were detected by Western blotting. Results Our results showed that PDGF-BB treatment significantly reduced TIPE2 expression at both the mRNA and protein levels in ASMCs. Overexpression of TIPE2 inhibited PDGF-BB-induced ASMC proliferation and migration. In addition, overexpression of TIPE2 increased the expression of calponin and SM22α in PDGF-BB-stimulated ASMCs. However, an opposite effect was observed with TIPE2 knockdown. Furthermore, TIPE2 overexpression blocked PDGF-BB-induced phosphorylation of PI3K and Akt, whereas the expression of p-PI3K and p-Akt were aggravated by TIPE2 knockdown. Additionally, the effects of TIPE2 overexpression and TIPE2 knockdown were altered by IGF-1 and LY294002 treatments, respectively. Conclusions Our findings demonstrate that TIPE2 inhibits PDGF-BB-induced ASMC proliferation, migration, and phenotype switching via the PI3K/Akt signaling pathway. Thus, TIPE2 may be a potential therapeutic target for the treatment of asthma.
Collapse
Affiliation(s)
- Huiyuan Wang
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Bo Zhong
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Yan Geng
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Juanjuan Hao
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Qiaoyan Jin
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Yang Zhang
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Lijuan Dong
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Dan Gao
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Jing Li
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Wei Hou
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
5
|
Akkoc T, O'Mahony L, Ferstl R, Akdis C, Akkoc T. Mouse Models of Asthma: Characteristics, Limitations and Future Perspectives on Clinical Translation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:119-133. [PMID: 34398449 DOI: 10.1007/5584_2021_654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asthma is a complex and heterogeneous inflammatory airway disease primarily characterized by airway obstruction, which affects up to 15% of the population in Westernized countries with an increasing prevalence. Descriptive laboratory and clinical studies reveal that allergic asthma is due to an immunological inflammatory response and is significantly influenced by an individual's genetic background and environmental factors. Due to the limitations associated with human experiments and tissue isolation, direct mouse models of asthma provide important insights into the disease pathogenesis and in the discovery of novel therapeutics. A wide range of asthma models are currently available, and the correct model system for a given experimental question needs to be carefully chosen. Despite recent advances in the complexity of murine asthma models, for example humanized murine models and the use of clinically relevant allergens, the limitations of the murine system should always be acknowledged, and it remains to be seen if any single murine model can accurately replicate all the clinical features associated with human asthmatic disease.
Collapse
Affiliation(s)
- Tolga Akkoc
- Genetic Engineering and Biotechnology Institute, Tubitak Marmara Research Center, Kocaeli, Turkey.
| | - Liam O'Mahony
- Department of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ruth Ferstl
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Tunc Akkoc
- Department of Pediatric Allergy-Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
6
|
Chetty A, Nielsen HC. Targeting Airway Smooth Muscle Hypertrophy in Asthma: An Approach Whose Time Has Come. J Asthma Allergy 2021; 14:539-556. [PMID: 34079293 PMCID: PMC8164696 DOI: 10.2147/jaa.s280247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/20/2021] [Indexed: 01/13/2023] Open
Abstract
Airway smooth muscle (ASM) cell dysfunction is an important component of several obstructive pulmonary diseases, particularly asthma. External stimuli such as allergens, dust, air pollutants, and change in environmental temperatures provoke ASM cell hypertrophy, proliferation, and migration without adequate mechanistic controls. ASM cells can switch between quiescent, migratory, and proliferative phenotypes in response to extracellular matrix proteins, growth factors, and other soluble mediators. While some aspects of airway hypertrophy and remodeling could have beneficial effects, in many cases these contribute to a clinical phenotype of difficult to control asthma. In this review, we discuss the factors responsible for ASM hypertrophy and proliferation in asthma, focusing on cytokines, growth factors, and ion transporters, and discuss existing and potential approaches that specifically target ASM hypertrophy to reduce the ASM mass and improve asthma symptoms. The goal of this review is to highlight strategies that appear ready for translational investigations to improve asthma therapy.
Collapse
Affiliation(s)
- Anne Chetty
- Tufts Medical Center, Tufts University, Boston, MA, USA
| | | |
Collapse
|
7
|
Role of Airway Smooth Muscle in Inflammation Related to Asthma and COPD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:139-172. [PMID: 33788192 DOI: 10.1007/978-3-030-63046-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Airway smooth muscle contributes to both contractility and inflammation in the pathophysiology of asthma and COPD. Airway smooth muscle cells can change the degree of a variety of functions, including contraction, proliferation, migration, and the secretion of inflammatory mediators (phenotype plasticity). Airflow limitation, airway hyperresponsiveness, β2-adrenergic desensitization, and airway remodeling, which are fundamental characteristic features of these diseases, are caused by phenotype changes in airway smooth muscle cells. Alterations between contractile and hyper-contractile, synthetic/proliferative phenotypes result from Ca2+ dynamics and Ca2+ sensitization. Modulation of Ca2+ dynamics through the large-conductance Ca2+-activated K+ channel/L-type voltage-dependent Ca2+ channel linkage and of Ca2+ sensitization through the RhoA/Rho-kinase pathway contributes not only to alterations in the contractile phenotype involved in airflow limitation, airway hyperresponsiveness, and β2-adrenergic desensitization but also to alteration of the synthetic/proliferative phenotype involved in airway remodeling. These Ca2+ signal pathways are also associated with synergistic effects due to allosteric modulation between β2-adrenergic agonists and muscarinic antagonists. Therefore, airway smooth muscle may be a target tissue in the therapy for these diseases. Moreover, the phenotype changing in airway smooth muscle cells with focuses on Ca2+ signaling may provide novel strategies for research and development of effective remedies against both bronchoconstriction and inflammation.
Collapse
|
8
|
Sagar S, Kapoor H, Chaudhary N, Roy SS. Cellular and mitochondrial calcium communication in obstructive lung disorders. Mitochondrion 2021; 58:184-199. [PMID: 33766748 DOI: 10.1016/j.mito.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+) signalling is well known to dictate cellular functioning and fate. In recent years, the accumulation of Ca2+ in the mitochondria has emerged as an important factor in Chronic Respiratory Diseases (CRD) such as Asthma and Chronic Obstructive Pulmonary Disease (COPD). Various reports underline an aberrant increase in the intracellular Ca2+, leading to mitochondrial ROS generation, and further activation of the apoptotic pathway in these diseases. Mitochondria contribute to Ca2+ buffering which in turn regulates mitochondrial metabolism and ATP production. Disruption of this Ca2+ balance leads to impaired cellular processes like apoptosis or necrosis and thus contributes to the pathophysiology of airway diseases. This review highlights the key role of cytoplasmic and mitochondrial Ca2+ signalling in regulating CRD, such as asthma and COPD. A better understanding of the dysregulation of mitochondrial Ca2+ homeostasis in these diseases could provide cues for the development of advanced therapeutic interventions in these diseases.
Collapse
Affiliation(s)
- Shakti Sagar
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himanshi Kapoor
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Nisha Chaudhary
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Wang KCW, Donovan GM, James AL, Noble PB. Asthma: Pharmacological degradation of the airway smooth muscle layer. Int J Biochem Cell Biol 2020; 126:105818. [PMID: 32707120 DOI: 10.1016/j.biocel.2020.105818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Asthma: A disease characterised by excessive and variable airway narrowing, and pathologies of inflammation and remodelling, particularly thickening of the airway smooth muscle (ASM). Treatment approaches dilate narrowed airways and reduce inflammation; however, remodelling seems largely neglected. This review considers the evolution of remodelling in asthma and whether conventional hypotheses that inflammation causes ASM thickening has mislead the medical community into thinking that anti-inflammatories will remedy this ASM defect. There is instead reasonable evidence that ASM thickening occurs independently of inflammation, such that therapies should employ strategies to directly modify ASM growth. Lessons have been learned from the use of untargeted bronchial thermoplasty and there should also be consideration of pharmacological therapies to ablate ASM. We discuss several new approaches to target ASM remodelling in asthma. A major current obstacle is our inability to image the ASM layer and assess treatment response. In this regard, polarisation-sensitive optical coherence tomography offers future promise.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, 6009, Western Australia, Australia; Telethon Kids Institute, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, 1142, New Zealand
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, 6009, Western Australia, Australia; Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, 6009, Western Australia, Australia
| |
Collapse
|
10
|
Kong Y, Ding L, Xu Y, Wang Z, Sun L. YiQi GuBen Formula Inhibits PDGF-BB-Induced Proliferation and Migration of Airway Smooth Muscle Cells. Pharmacology 2020; 105:424-433. [PMID: 32454491 DOI: 10.1159/000504516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/01/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Increased proliferation and migration of airway smooth muscle cells (ASMCs) are key events in the development of asthma. YiQi GuBen is a traditional Chinese medicinal formula shown to effectively reduce the recurrence rate of asthma and induce anti-asthma effects through multiple pathways; however, its potential role in regulating ASMC proliferation and preventing bronchial asthma remains unexplored. METHODS This study investigated the effects of YiQi GuBen formula on platelet-derived growth factor (PDGF)-BB-induced ASMC proliferation and migration by methylthiazolyldiphenyl-tetrazolium bromide, wound healing, transwell, and cell cycle assays. The influence of YiQi GuBen formula on nuclear factor-κB (NF-κB) signaling-relevant proteins was measured by Western blotting, real-time quantitative PCR (RT-qPCR) assay, and ELISA. RESULTS We found that pretreatment with YiQi GuBen formula had a dose-dependent inhibitory effect on PDGF-BB-stimulated ASMC proliferation. It also suppressed PDGF-BB-induced ASMC migration and arrested PDGF-BB-induced cell cycle progression. Furthermore, YiQi GuBen formula suppressed PDGF-BB-induced expression of phosphorylated p65 and the release of inflammatory factors TNF-α, IL-1β, IL-6, and IL-8 in ASMCs. CONCLUSIONS In summary, our study shows that YiQi GuBen formula is able to significantly inhibit PDGF-BB-induced ASMC proliferation and migration by suppressing the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yibu Kong
- Changchun University of Chinese Medicine, Changchun, China
| | - Lizhong Ding
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yan Xu
- Changchun University of Chinese Medicine, Changchun, China
| | - Zhongtian Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Liping Sun
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China,
| |
Collapse
|
11
|
Defnet AE, Huang W, Polischak S, Yadav SK, Kane MA, Shapiro P, Deshpande DA. Effects of ATP-competitive and function-selective ERK inhibitors on airway smooth muscle cell proliferation. FASEB J 2019; 33:10833-10843. [PMID: 31266368 PMCID: PMC6766654 DOI: 10.1096/fj.201900680r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Increased airway smooth muscle (ASM) cell mass and secretory functions are characteristics of airway inflammatory diseases, such as asthma. To date, there are no effective therapies to combat ASM cell proliferation, which contributes to bronchoconstriction and airway obstruction. Growth factors such as platelet-derived growth factor (PDGF) and the activation of the ERK1/2 are major regulators of ASM cell proliferation and airway remodeling in asthma. However, given the ubiquitous expression and multiple functions of ERK1/2, complete inhibition of ERK1/2 using ATP-competitive inhibitors may lead to unwanted off-target effects. Alternatively, we have identified compounds that are designed to target substrate docking sites and act as function-selective inhibitors of ERK1/2 signaling. Here, we show that both function-selective and ATP-competitive ERK1/2 inhibitors are effective at inhibiting PDGF-mediated proliferation, collagen production, and IL-6 secretion in ASM cells. Proteomic analysis revealed that both types of inhibitors had similar effects on reducing proteins related to TGF-β and IL-6 signaling that are relevant to airway remodeling. However, function-selective ERK1/2 inhibitors caused fewer changes in protein expression compared with ATP-competitive inhibitors. These studies provide a molecular basis for the development of function-selective ERK1/2 inhibitors to mitigate airway remodeling in asthma with defined regulation of ERK1/2 signaling.-Defnet, A. E., Huang, W., Polischak, S., Yadav, S. K., Kane, M. A., Shapiro, P., Deshpande, D. A. Effects of ATP-competitive and function-selective ERK inhibitors on airway smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Amy E. Defnet
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Steven Polischak
- Department of Medicine, Jefferson University, Philadelphia, Pennsylvania, USA
| | - Santosh Kumar Yadav
- Department of Medicine, Jefferson University, Philadelphia, Pennsylvania, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Deepak A. Deshpande
- Department of Medicine, Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Jendzjowsky NG, Kelly MM. The Role of Airway Myofibroblasts in Asthma. Chest 2019; 156:1254-1267. [PMID: 31472157 DOI: 10.1016/j.chest.2019.08.1917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/14/2019] [Accepted: 08/11/2019] [Indexed: 12/17/2022] Open
Abstract
Airway remodeling is a characteristic feature of asthma and is thought to play an important role in the pathogenesis of airway hyperresponsiveness. Myofibroblasts are key structural cells involved in injury and repair, and there is evidence that dysregulation of their normal function contributes to airway remodeling. Despite the importance of myofibroblasts, a lack of specific cellular markers and inconsistent nomenclature have limited recognition of their key role in airway remodeling. Myofibroblasts are increased several-fold in the airways in asthma, in proportion to the severity of the disease. Myofibroblasts are postulated to be derived from both tissue-resident and bone marrow-derived cells, depending on the stage of injury and the tissue. A small number of studies have demonstrated attenuation of myofibroblast numbers and also reversal of established myofibroblast populations in asthma and other inflammatory processes. In this article, we review what is currently known about the biology of myofibroblasts in the airways in asthma and identify potential targets to reduce or reverse the remodeling process. However, further translational research is required to better understand the mechanistic role of the myofibroblast in asthma.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Margaret M Kelly
- Airway Inflammation Research Group, Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
13
|
Buchanan CM, Lee KL, Shepherd PR. For Better or Worse: The Potential for Dose Limiting the On-Target Toxicity of PI 3-Kinase Inhibitors. Biomolecules 2019; 9:biom9090402. [PMID: 31443495 PMCID: PMC6770514 DOI: 10.3390/biom9090402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
The hyper-activation of the phosphoinositide (PI) 3-kinase signaling pathway is a hallmark of many cancers and overgrowth syndromes, and as a result, there has been intense interest in the development of drugs that target the various isoforms of PI 3-kinase. Given the key role PI 3-kinases play in many normal cell functions, there is significant potential for the disruption of essential cellular functions by PI 3-kinase inhibitors in normal tissues; so-called on-target drug toxicity. It is, therefore, no surprise that progress within the clinical development of PI 3-kinase inhibitors as single-agent anti-cancer therapies has been slowed by the difficulty of identifying a therapeutic window. The aim of this review is to place the cellular, tissue and whole-body effects of PI 3-kinase inhibition in the context of understanding the potential for dose limiting on-target toxicities and to introduce possible strategies to overcome these.
Collapse
Affiliation(s)
- Christina M Buchanan
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kate L Lee
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
14
|
Mostaço-Guidolin LB, Osei ET, Ullah J, Hajimohammadi S, Fouadi M, Li X, Li V, Shaheen F, Yang CX, Chu F, Cole DJ, Brandsma CA, Heijink IH, Maksym GN, Walker D, Hackett TL. Defective Fibrillar Collagen Organization by Fibroblasts Contributes to Airway Remodeling in Asthma. Am J Respir Crit Care Med 2019; 200:431-443. [PMID: 30950644 DOI: 10.1164/rccm.201810-1855oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Histologic stains have been used as the gold standard to visualize extracellular matrix (ECM) changes associated with airway remodeling in asthma, yet they provide no information on the biochemical and structural characteristics of the ECM, which are vital to understanding alterations in tissue function.Objectives: To demonstrate the use of nonlinear optical microscopy (NLOM) and texture analysis algorithms to image fibrillar collagen (second harmonic generation) and elastin (two-photon excited autofluorescence), to obtain biochemical and structural information on the remodeled ECM environment in asthma.Methods: Nontransplantable donor lungs from donors with asthma (n = 13) and control (n = 12) donors were used for the assessment of airway collagen and elastin fibers by NLOM, and extraction of lung fibroblasts for in vitro experiments.Measurements and Main Results: Fibrillar collagen is not only increased but also highly disorganized and fragmented within large and small asthmatic airways compared with control subjects, using NLOM imaging. Furthermore, such structural alterations are present in pediatric and adult donors with asthma, irrespective of fatal disease. In vitro studies demonstrated that asthmatic airway fibroblasts are deficient in their packaging of fibrillar collagen-I and express less decorin, important for collagen fibril packaging. Packaging of collagen fibrils was found to be more disorganized in asthmatic airways compared with control subjects, using transmission electron microscopy.Conclusions: NLOM imaging enabled the structural assessment of the ECM, and the data suggest that airway remodeling in asthma involves the progressive accumulation of disorganized fibrillar collagen by airway fibroblasts. This study highlights the future potential clinical application of NLOM to assess airway remodeling in vivo.
Collapse
Affiliation(s)
- Leila B Mostaço-Guidolin
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
- 2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emmanuel T Osei
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
- 2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jari Ullah
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
- 2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Soheil Hajimohammadi
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
- 2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - May Fouadi
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
- 2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xian Li
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
- 2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vicky Li
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
- 2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Furquan Shaheen
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Chen Xi Yang
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Fanny Chu
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Darren J Cole
- 3School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; and
| | - Corry-Anke Brandsma
- 4Department of Pathology and Medical Biology
- 5Groningen Research Institute of Asthma and COPD, and
| | - Irene H Heijink
- 4Department of Pathology and Medical Biology
- 5Groningen Research Institute of Asthma and COPD, and
- 6Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Geoffrey N Maksym
- 3School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; and
| | - David Walker
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Tillie-Louise Hackett
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
- 2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Regulation of Airway Smooth Muscle Contraction in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:381-422. [PMID: 31183836 DOI: 10.1007/978-981-13-5895-1_16] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Airway smooth muscle (ASM) extends from the trachea throughout the bronchial tree to the terminal bronchioles. In utero, spontaneous phasic contraction of fetal ASM is critical for normal lung development by regulating intraluminal fluid movement, ASM differentiation, and release of key growth factors. In contrast, phasic contraction appears to be absent in the adult lung, and regulation of tonic contraction and airflow is under neuronal and humoral control. Accumulating evidence suggests that changes in ASM responsiveness contribute to the pathophysiology of lung diseases with lifelong health impacts.Functional assessments of fetal and adult ASM and airways have defined pharmacological responses and signaling pathways that drive airway contraction and relaxation. Studies using precision-cut lung slices, in which contraction of intrapulmonary airways and ASM calcium signaling can be assessed simultaneously in situ, have been particularly informative. These combined approaches have defined the relative importance of calcium entry into ASM and calcium release from intracellular stores as drivers of spontaneous phasic contraction in utero and excitation-contraction coupling.Increased contractility of ASM in asthma contributes to airway hyperresponsiveness. Studies using animal models and human ASM and airways have characterized inflammatory and other mechanisms underlying increased reactivity to contractile agonists and reduced bronchodilator efficacy of β2-adrenoceptor agonists in severe diseases. Novel bronchodilators and the application of bronchial thermoplasty to ablate increased ASM within asthmatic airways have the potential to overcome limitations of current therapies. These approaches may directly limit excessive airway contraction to improve outcomes for difficult-to-control asthma and other chronic lung diseases.
Collapse
|
16
|
Airway smooth muscle cells are insensitive to the anti-proliferative effects of corticosteroids: The novel role of insulin growth factor binding Protein-1 in asthma. Immunobiology 2019; 224:490-496. [PMID: 31133345 DOI: 10.1016/j.imbio.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
Airway remodeling in asthma manifests, in part, as enhanced airway smooth muscle (ASM) mass, due to myocyte proliferation. While the anti-proliferative effects of glucocorticoid (GC) were investigated in normal ASM cells (NASMC), little is known about such effects in ASM cells derived from asthma subjects (AASMC). We posit that GC differentially modulates mitogen-induced proliferation of AASMC and NASMC. Cells were cultured, starved, then treated with Epidermal growth factor (EGF) (10 ng/ml) and Platelet-derived growth factor (PDGF) (10 ng/ml) for 24 h and/or fluticasone propionate (FP) (100 nM) added 2 h before. Cell counts and flow cytometry analyses showed that FP failed to decrease the cell number of and DNA synthesis in AASMC irrespective of mitogens used. We also examine the ability of Insulin Growth Factor Binding Protein-1 (IGFBP-1), a steroid-inducible gene that deters cell growth in other cell types, to inhibit proliferation of AASMC where FP failed. We found that FP increased IGFBP1 mRNA and protein levels. Interestingly, the addition of IGFBP1 (1 μg/ml) to FP completely inhibited the proliferation of AASMC irrespective to the mitogens used. Further investigation of different signaling molecules involved in ASM growth and GC receptor functions (Protein kinase B (PKB/AKT), Mitogen-activated protein kinases (MAPKs), Focal Adhesion Kinase (FAK)) showed that IGFBP-1 selectively decreased mitogen-induced p38 phosphorylation in AASMC. Collectively, our results show the insensitivity of AASMC to the anti-proliferative effects of GC, and demonstrate the ability of IGFBP1 to modulate AASMC growth representing, hence, a promising strategy to control ASM growth in subjects with GC insensitive asthma.
Collapse
|
17
|
Finan A, Demion M, Sicard P, Guisiano M, Bideaux P, Monceaux K, Thireau J, Richard S. Prolonged elevated levels of c-kit+ progenitor cells after a myocardial infarction by beta 2 adrenergic receptor priming. J Cell Physiol 2019; 234:18283-18296. [PMID: 30912139 DOI: 10.1002/jcp.28461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/23/2022]
Abstract
Endogenous progenitor cells may participate in cardiac repair after a myocardial infarction (MI). The beta 2 adrenergic receptor (ß2-AR) pathway induces proliferation of c-kit+ cardiac progenitor cells (CPC) in vitro. We investigated if ß2-AR pharmacological stimulation could ameliorate endogenous CPC-mediated regeneration after a MI. C-kit+ CPC ß1-AR and ß2-AR expression was evaluated in vivo and in vitro. A significant increase in the percentage of CPCs expressing ß1-AR and ß2-AR was measured 7 days post-MI. Accordingly, 24 hrs of low serum and hypoxia in vitro significantly increased CPC ß2-AR expression. Cell viability and differentiation assays validated a functional role of CPC ß2-AR. The effect of pharmacological activation of ß2-AR was studied in C57 mice using fenoterol administered in the drinking water 1 week before MI or sham surgery or at the time of the surgery. MI induced a significant increase in the percentage of c-kit+ progenitor cells at 7 days, whereas pretreatment with fenoterol prolonged this response resulting in a significant elevated number of CPC up to 21 days post-MI. This increased number of CPC correlated with a decrease in infarct size. The immunofluorescence analysis of the heart tissue for proliferation, apoptosis, macrophage infiltration, cardiomyocytes surface area, and vessel density showed significant changes on the basis of surgery but no benefit due to fenoterol treatment. Cardiac function was not ameliorated by fenoterol administration when evaluated by echocardiography. Our results suggest that ß2-AR stimulation may improve the cardiac repair process by supporting an endogenous progenitor cell response but is not sufficient to improve the cardiac function.
Collapse
Affiliation(s)
- Amanda Finan
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Marie Demion
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Pierre Sicard
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Morgane Guisiano
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Patrice Bideaux
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Kevin Monceaux
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Jérôme Thireau
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Sylvain Richard
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| |
Collapse
|
18
|
Vasconcelos LHC, Silva MDCC, Costa AC, de Oliveira GA, de Souza ILL, Queiroga FR, Araujo LCDC, Cardoso GA, Righetti RF, Silva AS, da Silva PM, Carvalho CRDO, Vieira GC, Tibério IDFLC, Cavalcante FDA, da Silva BA. A Guinea Pig Model of Airway Smooth Muscle Hyperreactivity Induced by Chronic Allergic Lung Inflammation: Contribution of Epithelium and Oxidative Stress. Front Pharmacol 2019; 9:1547. [PMID: 30814952 PMCID: PMC6353839 DOI: 10.3389/fphar.2018.01547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 12/18/2018] [Indexed: 11/17/2022] Open
Abstract
Asthma is a heterogeneous disease of the airways characterized by chronic inflammation associated with bronchial and smooth muscle hyperresponsiveness. Currently, different murine models for the study of asthma show poor bronchial hyperresponsiveness due to a scarcity of smooth muscle and large airways, resulting in a failure to reproduce smooth muscle hyperreactivity. Thus, we aimed to standardize a guinea pig model of chronic allergic lung inflammation mimicking airway smooth muscle hyperreactivity observed in asthmatics (Asth). Animals were randomly divided into a control group (Ctrl), which received saline (0.9% NaCl), and the Asth group, subjected to in vivo sensitization with ovalbumin (OVA) nebulization. Morphological analysis was performed by hematoxylin-eosin staining. Bronchial hyperresponsiveness was evaluated by nebulization time in the fifth, sixth, and seventh inhalations (NT5-7) and tracheal isometric contractions were assessed by force transducer. Total antioxidant capacity was measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and protein expression by Western blot. Histologically, the Asth group developed peribronchial cellular infiltrate, epithelial hyperplasia and smooth muscle thickening. After the fourth nebulization, the Asth group developed bronchial hyperreactivity. The trachea from the Asth group contracted after in vitro stimulation with OVA, differing from the Ctrl group, which showed no response. Additionally, airway smooth muscle hyperreactivity to carbachol and histamine was observed in the Asth group only in intact epithelium preparations, but not to KCl, and this effect was associated with an augmented production of reactive oxygen species. Moreover, lung inflammation impaired the relaxant potency of isoproterenol only in intact epithelium preparations, without interfering with nifedipine, and it was found to be produced by transforming growth factor-β negative modulation of β adrenergic receptors and, furthermore, big-conductance Ca2+-sensitive K+ channels. These effects were also associated with increased levels of phosphatidylinositol 3-kinases but not extracellular signal-regulated kinases 1/2 or phosphorylation, and augmented α-actin content as well, explaining the increased smooth muscle mass. Furthermore, pulmonary antioxidant capacity was impaired in the Asth group. Therefore, we developed a standardized and easy-to-use, reproducible guinea pig model of lung inflammation that mimics airway smooth muscle hypercontractility, facilitating the investigation of the mechanisms of bronchial hyperresponsiveness in asthma and new therapeutic alternatives.
Collapse
Affiliation(s)
- Luiz Henrique César Vasconcelos
- Programa de Pós graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Maria da Conceição Correia Silva
- Programa de Pós graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Alana Cristina Costa
- Graduação em Farmácia, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Giuliana Amanda de Oliveira
- Graduação em Farmácia, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Iara Leão Luna de Souza
- Programa de Pós graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Fernando Ramos Queiroga
- Programa de Pós graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Layanne Cabral da Cunha Araujo
- Programa de Pós graduação em Ciências (Fisiologia Humana), Instituto de Ciências Biológicas, Universidade de São Paulo, São Paulo, Brazil
| | - Glêbia Alexa Cardoso
- Programa Associado de Pós graduação em Educação Física, Universidade Federal da Paraíba/Universidade do Pernambuco, João Pessoa, Brazil
| | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
- Hospital Sírio Libanês, São Paulo, Brazil
| | - Alexandre Sérgio Silva
- Programa Associado de Pós graduação em Educação Física, Universidade Federal da Paraíba/Universidade do Pernambuco, João Pessoa, Brazil
- Departamento de Educação Física, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Patrícia Mirella da Silva
- Programa de Pós graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
- Departamento de Biologia Molecular, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Carla Roberta de Oliveira Carvalho
- Programa de Pós graduação em Ciências (Fisiologia Humana), Instituto de Ciências Biológicas, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade de São Paulo, São Paulo, Brazil
| | - Giciane Carvalho Vieira
- Departamento de Morfologia/Centro de Ciências da Saúde/Universidade Federal da Paraíba, João Pessoa, Brazil
| | | | - Fabiana de Andrade Cavalcante
- Programa de Pós graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
- Departamento de Fisiologia e Patologia/Centro de Ciências da Saúde/Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Bagnólia Araújo da Silva
- Programa de Pós graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
- Departamento de Ciências Farmacêuticas/Centro de Ciências da Saúde/Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
19
|
The geranyl acetophenone tHGA attenuates human bronchial smooth muscle proliferation via inhibition of AKT phosphorylation. Sci Rep 2018; 8:16640. [PMID: 30413753 PMCID: PMC6226528 DOI: 10.1038/s41598-018-34847-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/17/2018] [Indexed: 12/27/2022] Open
Abstract
Increased airway smooth muscle (ASM) mass is a prominent hallmark of airway remodeling in asthma. Inhaled corticosteroids and long-acting beta2-agonists remain the mainstay of asthma therapy, however are not curative and ineffective in attenuating airway remodeling. The geranyl acetophenone 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA), an in-house synthetic non-steroidal compound, attenuates airway hyperresponsiveness and remodeling in murine models of asthma. The effect of tHGA upon human ASM proliferation, migration and survival in response to growth factors was assessed and its molecular target was determined. Following serum starvation and induction with growth factors, proliferation and migration of human bronchial smooth muscle cells (hBSMCs) treated with tHGA were significantly inhibited without any significant effects upon cell survival. tHGA caused arrest of hBSMC proliferation at the G1 phase of the cell cycle with downregulation of cell cycle proteins, cyclin D1 and diminished degradation of cyclin-dependent kinase inhibitor (CKI), p27Kip1. The inhibitory effect of tHGA was demonstrated to be related to its direct inhibition of AKT phosphorylation, as well as inhibition of JNK and STAT3 signal transduction. Our findings highlight the anti-remodeling potential of this drug lead in chronic airway disease.
Collapse
|
20
|
Pan LY, Han YQ, Wang YZ, Chen QQ, Wu Y, Sun Y. Mechanism of Yanghe Pingchuan granules treatment for airway remodeling in asthma. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1941-1951. [PMID: 29983548 PMCID: PMC6027695 DOI: 10.2147/dddt.s159428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose Yanghe Pingchuan granules (YPG), a hospital preparation developed by The First Affiliated Hospital, Anhui University of Chinese Medicine, has been used for the clinical treatment of bronchial asthma (BA) for several decades. This study aimed to explore the mechanism of action of YPG in the treatment of BA. Materials and methods Male Sprague Dawley rats (n=60) were randomly divided into six groups (n=10 per group): control, a BA model, positive drug control (Guilong Kechuanning capsules; a proven effective treatment for BA), and model rats treated with a high, medium, or low dose of YPG. H&E staining was used to detect pathological changes in the bronchial tubes. The mRNA expression levels of PI3K, PKB, PCNA, and AR were determined by real-time PCR, and the protein levels of phospho- (p-)PI3K, p-PKB, p-PCNA, and p-AR were detected by Western blotting. ELISAs were used to detect the expression of PIP2, PIP3 IL-6, IL-8, IL-1β, and epinephrine (EPI). Results H&E staining demonstrated that BA can be ameliorated using YPG. Real-time PCR, Western blotting, and ELISA indicated that use of YPG decreased expression of the phosphoinositide 3-kinase (PI3K) signaling pathway and PCNA, and can also ameliorate the condition kidney Yang deficiency, which is associated with BA in Chinese traditional medicine. Conclusion YPG can attenuate BA therapeutically in a dose-dependent manner. The mechanism underlying its therapeutic effect comprises influences on three features that contribute to BA: the PI3K signaling pathway, cell proliferation, and “kidney-Yang deficiency”.
Collapse
Affiliation(s)
- Ling Yu Pan
- Grade 3 Preparation Laboratory of State Administration of TCM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China,
| | - Yan Quan Han
- Grade 3 Preparation Laboratory of State Administration of TCM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China,
| | - Yong Zhong Wang
- Grade 3 Preparation Laboratory of State Administration of TCM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China,
| | - Qian Qian Chen
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | - Ying Wu
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | - Yuan Sun
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| |
Collapse
|
21
|
Zhang X, Zhao Z, Ma L, Guo Y, Li X, Zhao L, Tian C, Tang X, Cheng D, Chen Z, Zhang L. The effects of transient receptor potential channel (TRPC) on airway smooth muscle cell isolated from asthma model mice. J Cell Biochem 2018; 119:6033-6044. [PMID: 29574924 DOI: 10.1002/jcb.26801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/23/2018] [Indexed: 12/31/2022]
Abstract
This study aimed to validate whether transient receptor potential channel1 (TRPC1) and TRPC3 participate in the regulation the proliferation of airway smooth muscle cells (ASMCs) through modulating calcium ion (Ca2+ ) influx in vitro. Chronic model of murine asthma was induced and ASMCs isolated from asthmatic mice were used in this whole study. TRPC1 and TRPC3 were upregulated in asthmatic mouse ASMCs and selected for further investigation. Ca2+ concentration and the cell viability of asthmatic mouse ASMCs were significantly higher than that from non- asthma mice, however, TRPC channels blocker SKF96365 alleviated these effects. Furthermore, TRPC1 or TRPC3 overexpression markedly increased Ca2+ concentration and significantly induced the viability of ASMCs; whereas TRPC1 or TRPC3 knockdown exerted the completely conversed effects. Moreover, knockdown of TRPC1 and TRPC3 also exerted different effects on the protein expression of growth-related proteins p-p38, p-JNK, cleaved caspase-3 and Bcl-2, as well as on cell cycle. Finally, we found Ca2+ chelator EGTA or BAPTA-AM significantly diminished the effects of si-TRPC1 and si-TRPC3 on the cell viability, cell cycle, and the protein expression of p-p38, p-JNK, cleaved caspase-3, and Bcl-2 in asthmatic mouse ASMCs. Our findings demonstrated that the effects of TRPC1 and TRPC3 on the cell viability and cell cycle of ASMCs were, at least partially, through regulating Ca2+ influx.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Zhixin Zhao
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lijun Ma
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yali Guo
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaosu Li
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Limin Zhao
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Cuijie Tian
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xueyi Tang
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Dongjun Cheng
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Zhuochang Chen
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Luoxian Zhang
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
TRIM37 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells. Biomed Pharmacother 2018; 101:24-29. [PMID: 29477054 DOI: 10.1016/j.biopha.2018.02.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
Tripartite motif 37 (TRIM37) belongs to the TRIM family of proteins and has been reported to be involved in the progression of asthma. However, the effects of TRIM37 on airway smooth muscle cells (ASMCs) proliferation and migration are still unknown. This study aimed to investigate the effects of TRIM37 on cell proliferation and migration in platelet-derived growth factor BB (PDGF-BB)-stimulated ASMCs, and the potential molecular mechanisms was also explored. Our data demonstrated that the expression of TRIM37 was significantly decreased in ASMCs stimulated with PDGF-BB. In addition, overexpression of TRIM37 efficiently suppressed PDGF-BB-induced ASMCs proliferation and migration. Furthermore, overexpression of TRIM37 obviously inhibited the protein expression levels of β-catenin, c-Myc and cyclinD1 in PDGF-BB-stimulated ASMCs. The Wnt/β-catenin pathway activator LiCl significantly reversed the inhibitory effects of TRIM37 on cell proliferation and migration in PDGF-BB-stimulated ASMCs. Taken together, these results demonstrate that TRIM37 inhibits the proliferation and invasion of ASMCs cultured with PDGF-BB through suppressing the Wnt/β-catenin signaling pathway.
Collapse
|
23
|
Zhou H, Wu Q, Wei L, Peng S. Paeoniflorin inhibits PDGF‑BB‑induced human airway smooth muscle cell growth and migration. Mol Med Rep 2017; 17:2660-2664. [PMID: 29207148 DOI: 10.3892/mmr.2017.8180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 03/21/2017] [Indexed: 11/05/2022] Open
Abstract
Abnormal proliferation and migration of airway smooth muscle cells (ASMCs) is important in the progression of asthma. Paeoniflorin (PF), one of the major active ingredients of Paeonia lactiflora, has been reported to exhibit anti‑asthmatic effects. However, the effects of PF in the regulation of platelet‑derived growth factor (PDGF)‑BB‑induced ASMC proliferation and migration remain unknown. The present study was designed to investigate the effects of PF on human ASMCs and the underlying mechanism. The results demonstrated that PF treatment significantly reduced the numbers of live ASMC cells and their PDGF‑BB‑induced migration. PF treatment also suppressed PDGF‑BB‑induced α‑smooth muscle actin expression in ASMCs. Furthermore, pretreatment with PF reduced PDGF‑BB‑induced phosphorylation of phosphoinositide 3‑kinase (PI3K) and AKT serine/threonine kinase 1 (Akt) in ASMCs. In conclusion, the present study demonstrated for the first time that PF inhibited ASMC growth and migration induced by PDGF‑BB, and that this effect may be partly due to inhibition of the PI3K/Akt signaling pathway. The results provide novel information regarding the role of PF as a potential therapeutic agent for the treatment of asthma.
Collapse
Affiliation(s)
- Hong Zhou
- Graduate School of Tianjin Medical University, Tianjin 300070, P.R. China
| | - Qi Wu
- Department of Respiration, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Luqing Wei
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| | - Shouchun Peng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| |
Collapse
|
24
|
Hur J, Kang JY, Rhee CK, Kim YK, Lee SY. The leukotriene receptor antagonist pranlukast attenuates airway remodeling by suppressing TGF-β signaling. Pulm Pharmacol Ther 2017; 48:5-14. [PMID: 29031615 DOI: 10.1016/j.pupt.2017.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/27/2017] [Accepted: 10/12/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND/OBJECTIVE Asthma is a chronic airway disease characterized by airway eosinophilic inflammation and remodeling, which are associated with a loss in lung function. Although both contribute significantly to asthma pathogenesis, mechanistic studies and drug discovery have focused on inflammatory targets. In this study, we investigated the effect of the leukotriene receptor antagonist pranlukast on allergic airway inflammation and remodeling in vivo and in vitro. METHOD Four groups of female BALB/c mice (control; ovalbumin [OVA]-sensitized and -challenged; dimethyl sulfoxide [DMSO]-treated OVA; and pranlukast-treated OVA) were examined. Lung pathology, cytokine production, and airway hyperresponsiveness (AHR) measurements were compared among these groups. A human fetal lung fibroblast HFL-1 cell line was used in the peribranchial fibrosis analysis. RESULTS OVA-sensitized and -challenged mice exhibited allergic airway inflammation and significant increases in Th2 cytokines. Pranlukast-treated mice showed significant attenuation of allergic airway inflammation. The pranlukast treatment decreased AHR and attenuated airway remodeling to goblet cell hyperplasia, collagen deposition, α-smooth muscle actin expression, and pro-fibrotic gene expression. We further demonstrated that pranlukast not only inhibited transforming growth factor-beta 1 (TGF-β1)-induced Smad signaling in human fetal lung fibroblast cells but also simultaneously reduced collagen synthesis and pro-fibrotic gene expression. CONCLUSIONS The leukotriene receptor antagonist pranlukast can reduce airway inflammation and remodeling by inhibiting TGF-β/Smad signaling in an OVA-sensitized and -challenged asthma mouse model, thus suppressing AHR.
Collapse
Affiliation(s)
- Jung Hur
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Young Kang
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chin Kook Rhee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Kyoon Kim
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sook Young Lee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Komi DEA, Kazemi T, Bussink AP. New Insights Into the Relationship Between Chitinase-3-Like-1 and Asthma. Curr Allergy Asthma Rep 2017; 16:57. [PMID: 27438466 DOI: 10.1007/s11882-016-0637-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW CHI3L1 (also known as YKL-40), a member of "mammalian chitinase-like proteins," is a serum protein lacking enzymatic activity. Although the protein is highly conserved in mammals, a consensus regarding its role in human pathologies is currently lacking. In an attempt to shed light on the many physiological functions of the protein, specifically with regard to asthma, a comprehensive overview of recent studies is provided. RECENT FINDINGS In asthma, CHI3L1 is secreted from macrophages and airway epithelial cells through an IL-13 related mechanism. Th2-associated inflammatory responses due to allergen exposure, resulting in airway hyper-responsiveness and smooth muscle contraction, play a role in tissue remodeling. The importance of CHI3L1 in initiation and development of asthma is not limited to its involvement in highly orchestrated events of inflammatory cytokines but further research is needed for further elucidation. Levels of the protein are associated with severity for numerous pathologies, including asthma, suggesting limited specificity as a biomarker.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, International Branch of Aras, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
26
|
Prakash YS, Halayko AJ, Gosens R, Panettieri RA, Camoretti-Mercado B, Penn RB. An Official American Thoracic Society Research Statement: Current Challenges Facing Research and Therapeutic Advances in Airway Remodeling. Am J Respir Crit Care Med 2017; 195:e4-e19. [PMID: 28084822 DOI: 10.1164/rccm.201611-2248st] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Airway remodeling (AR) is a prominent feature of asthma and other obstructive lung diseases that is minimally affected by current treatments. The goals of this Official American Thoracic Society (ATS) Research Statement are to discuss the scientific, technological, economic, and regulatory issues that deter progress of AR research and development of therapeutics targeting AR and to propose approaches and solutions to these specific problems. This Statement is not intended to provide clinical practice recommendations on any disease in which AR is observed and/or plays a role. METHODS An international multidisciplinary group from within academia, industry, and the National Institutes of Health, with expertise in multimodal approaches to the study of airway structure and function, pulmonary research and clinical practice in obstructive lung disease, and drug discovery platforms was invited to participate in one internet-based and one face-to-face meeting to address the above-stated goals. Although the majority of the analysis related to AR was in asthma, AR in other diseases was also discussed and considered in the recommendations. A literature search of PubMed was performed to support conclusions. The search was not a systematic review of the evidence. RESULTS Multiple conceptual, logistical, economic, and regulatory deterrents were identified that limit the performance of AR research and impede accelerated, intensive development of AR-focused therapeutics. Complementary solutions that leverage expertise of academia and industry were proposed to address them. CONCLUSIONS To date, numerous factors related to the intrinsic difficulty in performing AR research, and economic forces that are disincentives for the pursuit of AR treatments, have thwarted the ability to understand AR pathology and mechanisms and to address it clinically. This ATS Research Statement identifies potential solutions for each of these factors and emphasizes the importance of educating the global research community as to the extent of the problem as a critical first step in developing effective strategies for: (1) increasing the extent and impact of AR research and (2) developing, testing, and ultimately improving drugs targeting AR.
Collapse
|
27
|
Deng Y, Zhang Y, Wu H, Shi Z, Sun X. Knockdown of FSTL1 inhibits PDGF‑BB‑induced human airway smooth muscle cell proliferation and migration. Mol Med Rep 2017; 15:3859-3864. [PMID: 28393245 DOI: 10.3892/mmr.2017.6439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/14/2016] [Indexed: 11/05/2022] Open
Abstract
Abnormal proliferation and migration of airway smooth muscle (ASM) cells serve roles in airway remodeling, and contribute to airway hyper‑responsiveness. Follistatin‑like protein 1 (FSTL1) is a secreted glycoprotein that belongs to the follistatin family of proteins. It was reported that in the lungs of patients suffering from severe asthma, FSTL1 is highly expressed by macrophages. However, the role of FSTL1 in ASM cell proliferation and migration remains unknown. The present study aimed to investigate the role of FSTL1 in cell proliferation and migration mediated by platelet‑derived growth factor subunit B (PDGF‑BB) in human ASM cells. The results of the present study demonstrated that PDGF‑BB stimulation upregulated FSTL1 expression levels in ASM cells in vitro. Knockdown of FSTL1 inhibited cell proliferation and arrested the cell cycle in the G2/M phase in PDGF‑BB‑stimulated ASM cells. Additionally, knockdown of FSTL1 inhibited PDGF‑BB‑induced ASM cell migration. Furthermore, FSTL1 knockdown caused the downregulation of phosphorylated (p)‑extracellular signal‑regulated kinase (ERK) and p‑protein kinase B (AKT) expression levels induced by PDGF‑BB in ASM cells. In conclusion, the present study demonstrated that knockdown of FSTL1 inhibited ASM cell proliferation and migration induced by PDGF‑BB, at least partially via inhibiting the activation of ERK and AKT. FSTL1 may therefore represent a novel therapeutic target for airway remodeling in childhood asthma.
Collapse
Affiliation(s)
- Yuelin Deng
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yao Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Huajie Wu
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhaoling Shi
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
28
|
Ijpma G, Panariti A, Lauzon AM, Martin JG. Directional preference of airway smooth muscle mass increase in human asthmatic airways. Am J Physiol Lung Cell Mol Physiol 2017; 312:L845-L854. [PMID: 28360113 DOI: 10.1152/ajplung.00353.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 11/22/2022] Open
Abstract
Airway smooth muscle (ASM) orientation and morphology determine the ability of the muscle to constrict the airway. In asthma, ASM mass is increased, but it is unknown whether ASM orientation and morphology are altered as well or whether the remodeling at the source of the mass increase is ongoing. We dissected human airway trees from asthmatic and control lungs. Stained, intact airway sections were imaged in axial projection to show ASM bundle orientation, whereas cross-sectional histological slides were used to assess ASM area, bundle thickness, and ASM bundle-to-basement membrane distance. We also used these slides to assess cell size, proliferation, and apoptosis. We showed that ASM mass increase in cartilaginous airways is primarily the result of an increase of ASM bundle thickness (as measured radially in an airway cross section) and coincides with an increased distance of the ASM bundles to the airway perimeter. ASM orientation was unchanged in all airways. Apoptosis markers and cell size did not show differences between asthmatics and controls. Our findings show that ASM mass increase likely contributes to the airway-constricting capacity of the muscle. Both the increased bundle thickness and increased thickness of the airway wall inwards of the ASM bundles could further enhance this capacity. Turnover of ASM appears to be the same in airways and biopsies, but the lack of correlation between different markers of proliferation casts doubt on the specificity of markers generally used to assess proliferation.
Collapse
Affiliation(s)
- Gijs Ijpma
- Department of Medicine, McGill University, Montreal, Quebec, Canada; and.,Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada
| | - Alice Panariti
- Department of Medicine, McGill University, Montreal, Quebec, Canada; and.,Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada
| | - Anne-Marie Lauzon
- Department of Medicine, McGill University, Montreal, Quebec, Canada; and.,Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada
| | - James G Martin
- Department of Medicine, McGill University, Montreal, Quebec, Canada; and .,Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Kim SH, Pei QM, Jiang P, Yang M, Qian XJ, Liu JB. Role of licochalcone A in VEGF-induced proliferation of human airway smooth muscle cells: implications for asthma. Growth Factors 2017. [PMID: 28635361 DOI: 10.1080/08977194.2017.1338694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodeling, which is associated with increased airway smooth muscle (ASM) mass. Licochalcone A is the predominant characteristic chalcone in licorice root. We found that licochalcone A inhibited vascular endothelial growth factor (VEGF)-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed via inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) activity, but not that of Akt. Furthermore, licochalcone A treatment inhibited VEGF-induced activation of VEGF receptor 2 (VEGFR2) and ERK and blocked the downregulation of caveolin-1 in a concentration-dependent manner. Collectively, our findings suggested that licochalcone A inhibited VEGF-induced ASM cell proliferation by suppressing VEGFR2 and ERK1/2 activation and downregulating caveolin-1. Further studies of these mechanisms are needed to facilitate the development of treatments for smooth muscle hyperplasia-associated diseases of the airway, such as asthma.
Collapse
Affiliation(s)
- Sung-Ho Kim
- a Department of Respiration , Tianjin First Central Hospital , Tianjin , P.R. China and
| | - Qing-Mei Pei
- b Department of Radiology , Tianjin Hospital of Integrated Traditional Chinese and Western Medicine , Tianjin , P.R. China
| | - Ping Jiang
- a Department of Respiration , Tianjin First Central Hospital , Tianjin , P.R. China and
| | - Min Yang
- a Department of Respiration , Tianjin First Central Hospital , Tianjin , P.R. China and
| | - Xue-Jiao Qian
- a Department of Respiration , Tianjin First Central Hospital , Tianjin , P.R. China and
| | - Jiang-Bo Liu
- a Department of Respiration , Tianjin First Central Hospital , Tianjin , P.R. China and
| |
Collapse
|
30
|
Pei QM, Jiang P, Yang M, Qian XJ, Liu JB, Kim SH. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma. Exp Cell Res 2016; 347:378-84. [PMID: 27587274 DOI: 10.1016/j.yexcr.2016.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/03/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
Abstract
Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma.
Collapse
Affiliation(s)
- Qing-Mei Pei
- Department of Radiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, China.
| | - Ping Jiang
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| | - Min Yang
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| | - Xue-Jiao Qian
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| | - Jiang-Bo Liu
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| | - Sung-Ho Kim
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
31
|
Pei QM, Jiang P, Yang M, Qian XJ, Liu JB, Zheng H, Zhao LH, Kim SH. Upregulation of a disintegrin and metalloproteinase-33 by VEGF in human airway smooth muscle cells: Implications for asthma. Cell Cycle 2016; 15:2819-26. [PMID: 27579513 PMCID: PMC5053581 DOI: 10.1080/15384101.2016.1220462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodeling. Features of airway remodeling include increased airway smooth muscle (ASM) mass. A disintegrin and metalloproteinase (ADAM)-33 has been identified as playing a role in the pathophysiology of asthma. ADAM-33 is expressed in ASM cells and is suggested to play a role in the function of these cells. However, the regulation of ADAM-33 is not fully understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthmatics. Although VEGF was initially thought of as an endothelial-specific growth factor, recent reports have found that VEGF can promote proliferation of other cell types, including ASM cells. To investigate the precise mechanism of VEGF's effect on ASM cell proliferation, we tested the expression of ADAM-33, phospho-extracellularsignal-regulated kinase 1/2 (ERK1/2), and phospho-Akt in VEGF-stimulated ASM cells. We found that VEGF up-regulates ADAM-33 mRNA and protein levels in a dose- and time-dependent manner as well as phosphorylation of ERK1/2 and Akt. We also found that VEGF-induced ASM cell proliferation is inhibited by both ADAM-33 knockdown and a selective VEGF receptor 2 (VEGFR2) inhibitor (SU1498). Furthermore, VEGF-induced ADAM-33 expression and ASM cell proliferation were suppressed by inhibiting ERK1/2 activity, but not by inhibiting Akt activity. Collectively, our findings suggest that VEGF enhances ADAM-33 expression and ASM cell proliferation by activating the VEGFR2/ERK1/2 signaling pathway, which might be involved in the pathogenesis of airway remodeling. Further elucidation of the mechanisms underlying these observations might help develop therapeutic strategies for airway diseases associated with smooth muscle hyperplasia such as asthma.
Collapse
Affiliation(s)
- Qing-Mei Pei
- a Department of Radiology , Tianjin Hospital of Integrated Traditional Chinese and Western Medicine , Tianjin , China
| | - Ping Jiang
- b Department of Respiration , Tianjin First Central Hospital , Tianjin , China
| | - Min Yang
- b Department of Respiration , Tianjin First Central Hospital , Tianjin , China
| | - Xue-Jiao Qian
- b Department of Respiration , Tianjin First Central Hospital , Tianjin , China
| | - Jiang-Bo Liu
- b Department of Respiration , Tianjin First Central Hospital , Tianjin , China
| | - Hong Zheng
- b Department of Respiration , Tianjin First Central Hospital , Tianjin , China
| | - Li-Hong Zhao
- b Department of Respiration , Tianjin First Central Hospital , Tianjin , China
| | - Sung-Ho Kim
- b Department of Respiration , Tianjin First Central Hospital , Tianjin , China
| |
Collapse
|
32
|
Martin N, Reid PT. The potential role of phosphodiesterase inhibitors in the management of asthma. ACTA ACUST UNITED AC 2016; 5:207-17. [PMID: 16696590 DOI: 10.2165/00151829-200605030-00006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Asthma is a chronic inflammatory condition characterised by reversible airflow obstruction and airway hyperreactivity. The course of the illness may be punctuated by exacerbations resulting in deterioration in quality of life and, in some cases, days lost from school or work. That asthma is common and increasingly prevalent magnifies the importance of any potential economic costs, and promoting asthma control represents an important public health agenda. While lifestyle changes represent a valuable contribution in some patients, the majority of asthmatic patients require therapeutic intervention. The recognition of the role of inflammation in the pathogenesis of asthma has led to an emphasis on regular anti-inflammatory therapy, of which inhaled corticosteroid treatment remains the most superior. In selected patients, further improvements in asthma control may be gained by the addition of regular inhaled long-acting beta(2)-adrenoceptor agonists or oral leukotriene receptor antagonists to inhaled corticosteroid therapy. However, a significant minority of patients with asthma remain poorly controlled despite appropriate treatment, suggesting that additional corticosteroid nonresponsive inflammatory pathways may be operative. Furthermore, some patients with asthma display an accelerated decline in lung function, suggesting that active airway re-modeling is occurring. Such observations have focused attention on the potential to develop new therapies which complement existing treatments by targeting additional inflammatory pathways. The central role of phosphodiesterase (PDE), and in particular the PDE4 enzyme, in the regulation of key inflammatory cells believed to be important in asthma - including eosinophils, lymphocytes, neutrophils and airway smooth muscle - suggests that drugs designed to target this enzyme will have the potential to deliver both bronchodilation and modulate the asthmatic inflammatory response. In vivo studies on individual inflammatory cells suggest that the effects are likely to be favorable in asthma, and animal study models have provided proof of concept; however, first-generation PDE inhibitors have been poorly tolerated due to adverse effects. The development of second-generation agents such as cilomilast and roflumilast heralds a further opportunity to test the potential of these agents, although to date only a limited amount of data from human studies has been published, making it difficult to draw firm conclusions.
Collapse
Affiliation(s)
- Neil Martin
- Respiratory Medicine Unit, Western General Hospital, Edinburgh, Scotland
| | | |
Collapse
|
33
|
Aubier M, Thabut G, Hamidi F, Guillou N, Brard J, Dombret MC, Borensztajn K, Aitilalne B, Poirier I, Roland-Nicaise P, Taillé C, Pretolani M. Airway smooth muscle enlargement is associated with protease-activated receptor 2/ligand overexpression in patients with difficult-to-control severe asthma. J Allergy Clin Immunol 2016; 138:729-739.e11. [PMID: 27001157 DOI: 10.1016/j.jaci.2015.12.1332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/06/2015] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Asthma is a complex disease with heterogeneous features of airway inflammation and remodeling. The increase in airway smooth muscle (ASM) mass is an essential component of airway remodeling in patients with severe asthma, yet the pathobiological mechanisms and clinical outcomes associated with ASM enlargement remain elusive. OBJECTIVE We sought to compare ASM area in control subjects and patients with mild-to-moderate or severe asthma and to identify specific clinical and pathobiological characteristics associated with ASM enlargement. METHODS Bronchial biopsy specimens from 12 control subjects, 24 patients with mild-to-moderate asthma, and 105 patients with severe asthma were analyzed for ASM area, basement membrane thickness, vessels, eosinophils, neutrophils, T lymphocytes, mast cells, and protease-activated receptor 2 (PAR-2). In parallel, the levels of several ASM mitogenic factors, including the PAR-2 ligands, mast cell tryptase, trypsin, tissue factor, and kallikrein (KLK) 5 and KLK14, were assessed in bronchoalveolar lavage fluid. Data were correlated with asthma severity and control both at inclusion and after 12 to 18 months of optimal management and therapy. RESULTS Analyses across ASM quartiles in patients with severe asthma demonstrated that patients with the highest ASM quartile (median value of ASM area, 26.3%) were younger (42.5 vs ≥50 years old in the other groups, P ≤ .04) and had lower asthma control after 1 year of optimal management (P ≤ .006). ASM enlargement occurred independently of features of airway inflammation and remodeling, whereas it was associated with PAR-2 overexpression and higher alveolar tryptase (P ≤ .02) and KLK14 (P ≤ .03) levels. CONCLUSION Increase in ASM mass, possibly involving aberrant expression and activation of PAR-2-mediated pathways, characterizes younger patients with severe asthma with poor asthma control.
Collapse
Affiliation(s)
- Michel Aubier
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Départment de Pneumologie A, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Départment de Hématologie-Immunologie, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Assistance Publique des Hopitaux de Paris, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Gabriel Thabut
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Départment de Pneumologie B, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Assistance Publique des Hopitaux de Paris, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Fatima Hamidi
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Noëlline Guillou
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Julien Brard
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Marie-Christine Dombret
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Départment de Pneumologie A, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Départment de Hématologie-Immunologie, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Assistance Publique des Hopitaux de Paris, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Keren Borensztajn
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Brahim Aitilalne
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Centre d'Investigation Clinique, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Isabelle Poirier
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Pascale Roland-Nicaise
- Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Départment de Pneumologie A, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Assistance Publique des Hopitaux de Paris, Paris, France
| | - Camille Taillé
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Départment de Pneumologie A, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Départment de Hématologie-Immunologie, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Assistance Publique des Hopitaux de Paris, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Marina Pretolani
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France.
| |
Collapse
|
34
|
P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate. PLoS One 2016; 11:e0153312. [PMID: 27071060 PMCID: PMC4829229 DOI: 10.1371/journal.pone.0153312] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
Prostate smooth muscle tone and hyperplastic growth are involved in the pathophysiology and treatment of male lower urinary tract symptoms (LUTS). Available drugs are characterized by limited efficacy. Patients' adherence is particularly low to combination therapies of 5α-reductase inhibitors and α1-adrenoceptor antagonists, which are supposed to target contraction and growth simultaneously. Consequently, molecular etiology of benign prostatic hyperplasia (BPH) and new compounds interfering with smooth muscle contraction or growth in the prostate are of high interest. Here, we studied effects of p21-activated kinase (PAK) inhibitors (FRAX486, IPA3) in hyperplastic human prostate tissues, and in stromal cells (WPMY-1). In hyperplastic prostate tissues, PAK1, -2, -4, and -6 may be constitutively expressed in catecholaminergic neurons, while PAK1 was detected in smooth muscle and WPMY-1 cells. Neurogenic contractions of prostate strips by electric field stimulation were significantly inhibited by high concentrations of FRAX486 (30 μM) or IPA3 (300 μM), while noradrenaline- and phenylephrine-induced contractions were not affected. FRAX486 (30 μM) inhibited endothelin-1- and -2-induced contractions. In WPMY-1 cells, FRAX486 or IPA3 (24 h) induced concentration-dependent (1-10 μM) degeneration of actin filaments. This was paralleled by attenuation of proliferation rate, being observed from 1 to 10 μM FRAX486 or IPA3. Cytotoxicity of FRAX486 and IPA3 in WPMY-1 cells was time- and concentration-dependent. Stimulation of WPMY-1 cells with endothelin-1 or dihydrotestosterone, but not noradrenaline induced PAK phosphorylation, indicating PAK activation by endothelin-1. Thus, PAK inhibitors may inhibit neurogenic and endothelin-induced smooth muscle contractions in the hyperplastic human prostate, and growth of stromal cells. Targeting prostate smooth muscle contraction and stromal growth at once by a single compound is principally possible, at least under experimental conditions.
Collapse
|
35
|
Dileepan M, Sarver AE, Rao SP, Panettieri RA, Subramanian S, Kannan MS. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells. PLoS One 2016; 11:e0150842. [PMID: 26998837 PMCID: PMC4801396 DOI: 10.1371/journal.pone.0150842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/19/2016] [Indexed: 01/25/2023] Open
Abstract
Airway smooth muscle (ASM) cells play a critical role in the pathophysiology of asthma due to their hypercontractility and their ability to proliferate and secrete inflammatory mediators. microRNAs (miRNAs) are gene regulators that control many signaling pathways and thus serve as potential therapeutic alternatives for many diseases. We have previously shown that miR-708 and miR-140-3p regulate the MAPK and PI3K signaling pathways in human ASM (HASM) cells following TNF-α exposure. In this study, we investigated the regulatory effect of these miRNAs on other asthma-related genes. Microarray analysis using the Illumina platform was performed with total RNA extracted from miR-708 (or control miR)-transfected HASM cells. Inhibition of candidate inflammation-associated gene expression was further validated by qPCR and ELISA. The most significant biologic functions for the differentially expressed gene set included decreased inflammatory response, cytokine expression and signaling. qPCR revealed inhibition of expression of CCL11, CXCL10, CCL2 and CXCL8, while the release of CCL11 was inhibited in miR-708-transfected cells. Transfection of cells with miR-140-3p resulted in inhibition of expression of CCL11, CXCL12, CXCL10, CCL5 and CXCL8 and of TNF-α-induced CXCL12 release. In addition, expression of RARRES2, CD44 and ADAM33, genes known to contribute to the pathophysiology of asthma, were found to be inhibited in miR-708-transfected cells. These results demonstrate that miR-708 and miR-140-3p exert distinct effects on inflammation-associated gene expression and biological function of ASM cells. Targeting these miRNA networks may provide a novel therapeutic mechanism to down-regulate airway inflammation and ASM proliferation in asthma.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Anne E. Sarver
- Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Savita P. Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Reynold A. Panettieri
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Subbaya Subramanian
- Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mathur S. Kannan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
36
|
Yang CH, Tsao CF, Ko WS, Chiou YL. The Oligo Fucoidan Inhibits Platelet-Derived Growth Factor-Stimulated Proliferation of Airway Smooth Muscle Cells. Mar Drugs 2016; 14:15. [PMID: 26761017 PMCID: PMC4728512 DOI: 10.3390/md14010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022] Open
Abstract
In the pathogenesis of asthma, the proliferation of airway smooth muscle cells (ASMCs) is a key factor in airway remodeling and causes airway narrowing. In addition, ASMCs are also the effector cells of airway inflammation. Fucoidan extracted from marine brown algae polysaccharides has antiviral, antioxidant, antimicrobial, anticlotting, and anticancer properties; however, its effectiveness for asthma has not been elucidated thus far. Platelet-derived growth factor (PDGF)-treated primary ASMCs were cultured with or without oligo-fucoidan (100, 500, or 1000 µg/mL) to evaluate its effects on cell proliferation, cell cycle, apoptosis, and Akt, ERK1/2 signaling pathway. We found that PDGF (40 ng/mL) increased the proliferation of ASMCs by 2.5-fold after 48 h (p < 0.05). Oligo-fucoidan reduced the proliferation of PDGF-stimulated ASMCs by 75%-99% after 48 h (p < 0.05) and induced G₁/G₀ cell cycle arrest, but did not induce apoptosis. Further, oligo-fucoidan supplementation reduced PDGF-stimulated extracellular signal-regulated kinase (ERK1/2), Akt, and nuclear factor (NF)-κB phosphorylation. Taken together, oligo-fucoidan supplementation might reduce proliferation of PDGF-treated ASMCs through the suppression of ERK1/2 and Akt phosphorylation and NF-κB activation. The results provide basis for future animal experiments and human trials.
Collapse
Affiliation(s)
- Chao-Huei Yang
- Department of Internal Medicine, Kuang-Tien General Hospital, No. 117, Shatian Road Shalu District, Taichung City 433, Taiwan.
| | - Chiung-Fang Tsao
- Department of Biotechnology, Hungkuang University, 34 Chung-Chie Rd, Sha Lu, Taichung 443, Taiwan.
| | - Wang-Sheng Ko
- Department of Internal Medicine, Kuang-Tien General Hospital, No. 117, Shatian Road Shalu District, Taichung City 433, Taiwan.
- Institute of BioMedical Nutrition, Hungkuang University, 34 Chung-Chie Rd, Sha Lu, Taichung 443, Taiwan.
| | - Ya-Ling Chiou
- Institute of BioMedical Nutrition, Hungkuang University, 34 Chung-Chie Rd, Sha Lu, Taichung 443, Taiwan.
- Department of Nursing, Hungkuang University, 34 Chung-Chie Rd, Sha Lu, Taichung 443, Taiwan.
| |
Collapse
|
37
|
Malykhin FТ, Kostornaya IV. [Morphological changes in the respiratory organs in chronic obstructive pulmonary disease]. Arkh Patol 2016; 78:42-50. [PMID: 27077144 DOI: 10.17116/patol201678142-50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The basis for airway remoldeling in patients with chronic obstructive pulmonary disease (COPD) is tissue changes contributing to thickening of the walls of the airway and its obstruction. As the disease becomes severer, there are increases in mucosal metaplasia, submucosal hypertrophy, peribronchial fibrosis, and airway smooth muscle mass. Drug therapy for COPD does not virtually lead to regression of airway obstruction, except when eosinophilia is present.
Collapse
Affiliation(s)
- F Т Malykhin
- Stavropol State Medical University Ministry of Health of Russia, Stavropol, Russia
| | - I V Kostornaya
- Stavropol State Medical University Ministry of Health of Russia, Stavropol, Russia
| |
Collapse
|
38
|
Israel E, Lasky-Su J, Markezich A, Damask A, Szefler SJ, Schuemann B, Klanderman B, Sylvia J, Kazani S, Wu R, Martinez F, Boushey HA, Chinchilli VM, Mauger D, Weiss ST, Tantisira KG. Genome-wide association study of short-acting β2-agonists. A novel genome-wide significant locus on chromosome 2 near ASB3. Am J Respir Crit Care Med 2015; 191:530-7. [PMID: 25562107 DOI: 10.1164/rccm.201408-1426oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE β2-Agonists are the most common form of treatment of asthma, but there is significant variability in response to these medications. A significant proportion of this responsiveness may be heritable. OBJECTIVES To investigate whether a genome-wide association study (GWAS) could identify novel pharmacogenetic loci in asthma. METHODS We performed a GWAS of acute bronchodilator response (BDR) to inhaled β2-agonists. A total of 444,088 single-nucleotide polymorphisms (SNPs) were examined in 724 individuals from the SNP Health Association Resource (SHARe) Asthma Resource Project (SHARP). The top 50 SNPs were carried forward to replication in a population of 444 individuals. MEASUREMENTS AND MAIN RESULTS The combined P value for four SNPs reached statistical genome-wide significance aftercorrecting for multiple comparisons. Combined P values for rs350729, rs1840321, rs1384918, and rs1319797 were 2.21 × 10(-10), 5.75 × 10(-8), 9.3 × 10(-8), and 3.95 × 10(-8), respectively. The significant variants all map to a novel genetic region on chromosome 2 near the ASB3 gene, a region associated with smooth muscle proliferation. As compared with the wild type, the presence of the minor alleles reduced the degree of BDR by 20% in the original population and by a similar percentage in the confirmatory population. CONCLUSIONS These GWAS findings for BDR in subjects with asthma suggest that a gene associated with smooth muscle proliferation may influence a proportion of the smooth muscle relaxation that occurs in asthma.
Collapse
Affiliation(s)
- Elliot Israel
- 1 Division of Pulmonary and Critical Care Medicine and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Wang WCH, Pauer SH, Smith DC, Dixon MA, Disimile DJ, Panebra A, An SS, Camoretti-Mercado B, Liggett SB. Targeted transgenesis identifies Gαs as the bottleneck in β2-adrenergic receptor cell signaling and physiological function in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2014; 307:L775-80. [PMID: 25260754 PMCID: PMC4233293 DOI: 10.1152/ajplung.00209.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors are the most pervasive signaling superfamily in the body and act as receptors to endogenous agonists and drugs. For β-agonist-mediated bronchodilation, the receptor-G protein-effector network consists of the β2-adrenergic receptor (β2AR), Gs, and adenylyl cyclase, expressed on airway smooth muscle (ASM). Using ASM-targeted transgenesis, we previously explored which of these three early signaling elements represents a limiting factor, or bottleneck, in transmission of the signal from agonist binding to ASM relaxation. Here we overexpressed Gαs in transgenic mice and found that agonist-promoted relaxation of airways was enhanced in direct proportion to the level of Gαs expression. Contraction of ASM from acetylcholine was not affected in Gαs transgenic mice, nor was relaxation by bitter taste receptors. Furthermore, agonist-promoted (but not basal) cAMP production in ASM cells from Gαs-transgenic mice was enhanced compared with ASM from nontransgenic littermates. Agonist-promoted inhibition of platelet-derived growth factor-stimulated ASM proliferation was also enhanced in Gαs mouse ASM. The enhanced maximal β-agonist response was of similar magnitude for relaxation, cAMP production, and growth inhibition. Taken together, it appears that a limiting factor in β-agonist responsiveness in ASM is the expression level of Gαs. Gene therapy or pharmacological means of increasing Gαs (or its coupling efficiency to β2AR) thus represent an interface for development of novel therapeutic agents for improvement of β-agonist therapy.
Collapse
Affiliation(s)
- Wayne C H Wang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Susan H Pauer
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida; Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Dan'elle C Smith
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida; Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Madison A Dixon
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida; Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - David J Disimile
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida; Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Alfredo Panebra
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Steven S An
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; and
| | - Blanca Camoretti-Mercado
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida; Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Stephen B Liggett
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida; Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, Tampa, Florida; Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
41
|
Boivin R, Vargas A, Lefebvre-Lavoie J, Lauzon AM, Lavoie JP. Inhaled corticosteroids modulate the (+)insert smooth muscle myosin heavy chain in the equine asthmatic airways. Thorax 2014; 69:1113-9. [PMID: 25205586 DOI: 10.1136/thoraxjnl-2014-205572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
RATIONALE Overexpression of the (+)insert smooth muscle myosin heavy chain (SMMHC) isoform could contribute to airway bronchospasm by increasing the velocity of contraction. Whether the (+)insert isoform is present in the small airways and its expression is reversible in asthma are unknown. OBJECTIVES To determine the anatomical location and the expression kinetics of the (+)insert SMMHC isoform in airways of horses with heaves and to evaluate its modulation in response to disease status. METHODS We evaluated the (+)insert SMMHC isoform in the airways of horses with heaves during disease exacerbation and remission, and in controls. The expression kinetics of the SMMHC (+)insert was then assessed at multiple time points in two studies: first, in horses with heaves treated for a 1-year period with antigen avoidance alone, inhaled corticosteroids alone or both; second, in horses with heaves before and after a 30-day natural antigen exposure. Gene expression analysis was assessed by quantitative PCR and protein expression was confirmed by targeted mass spectrometry. MEASUREMENTS AND MAIN RESULTS The (+)insert SMMHC isoform was significantly increased in central and peripheral airways, but not in the trachea of heaves-affected horses in clinical exacerbation when compared horses with heaves in remission and controls. Both corticosteroid administration and antigen avoidance led to a significant reduction of the (+)insert expression in the airways. The (+)insert SMMHC isoform was not significantly increased in airways after 1 month of antigenic re-exposure. CONCLUSIONS The (+)insert SMMHC expression is increased throughout the bronchial tree in horses with heaves and reversible by corticosteroids administration and antigen avoidance.
Collapse
Affiliation(s)
- Roxane Boivin
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Amandine Vargas
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Josiane Lefebvre-Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratory, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
42
|
Singh SR, Billington CK, Sayers I, Hall IP. Clonally expanded human airway smooth muscle cells exhibit morphological and functional heterogeneity. Respir Res 2014; 15:57. [PMID: 24886333 PMCID: PMC4014754 DOI: 10.1186/1465-9921-15-57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/22/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchyme-derived airway cell populations including airway smooth muscle (ASM) cells, fibroblasts and myofibroblasts play key roles in the pathogenesis of airway inflammation and remodeling. Phenotypic and functional characterisation of these cell populations are confounded by their heterogeneity in vitro. It is unclear which mechanisms underlie the creation of these different sub-populations.The study objectives were to investigate whether ASM cells are capable of clonal expansion and if so (i) what proportion possess this capability and (ii) do clonal populations exhibit variation in terms of morphology, phenotype, proliferation rates and pro-relaxant or pro-contractile signaling pathways. METHODS Early passage human ASM cells were subjected to single-cell cloning and their doubling time was recorded. Immunocytochemistry was performed to assess localization and levels of markers previously reported to be specifically associated with smooth muscle or fibroblasts. Finally functional assays were used to reveal differences between clonal populations specifically assessing mitogen-induced proliferation and pro-relaxant and pro-contractile signaling pathways. RESULTS Our studies provide evidence that a high proportion (58%) of single cells present within early passage human ASM cell cultures have the potential to create expanded cell populations. Despite being clonally-originated, morphological heterogeneity was still evident within these clonal populations as assessed by the range in expression of markers associated with smooth muscle cells. Functional diversity was observed between clonal populations with 10 μM isoproterenol-induced cyclic AMP responses ranging from 1.4 - 5.4 fold cf basal and bradykinin-induced inositol phosphate from 1.8 - 5.2 fold cf basal. CONCLUSION In summary we show for the first time that primary human ASM cells are capable of clonal expansion and that the resulting clonal populations themselves exhibit phenotypic plasticity.
Collapse
Affiliation(s)
- Shailendra R Singh
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, NG7 2UH Nottingham, United Kingdom
| | - Charlotte K Billington
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, NG7 2UH Nottingham, United Kingdom
| | - Ian Sayers
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, NG7 2UH Nottingham, United Kingdom
| | - Ian P Hall
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, NG7 2UH Nottingham, United Kingdom
| |
Collapse
|
43
|
Al Heialy S, Risse PA, Zeroual MA, Roman HN, Tsuchiya K, Siddiqui S, Laporte SA, Martin JG. T cell-induced airway smooth muscle cell proliferation via the epidermal growth factor receptor. Am J Respir Cell Mol Biol 2014; 49:563-70. [PMID: 23656597 DOI: 10.1165/rcmb.2012-0356oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Allergic asthma is a heterogeneous disease with no curative therapies. T cells infiltrate the airway smooth muscle (ASM) layer and may be implicated in airway remodeling and the increase of ASM mass, a cardinal feature of asthma. The mechanism by which CD4(+) T cells drive airway remodeling remains unknown. This study sought to determine the T cell-mediated mechanism of ASM cell proliferation. We hypothesized that CD4(+) T cells adhere to ASM cells via CD44, and induce ASM cell proliferation through the activation of the epidermal growth factor receptor (EGFR). A coculture model showed that the contact of antigen-stimulated CD4(+) T cells with ASM cells induced high levels of EGFR ligand expression in CD4(+) T cells and the activation of matrix metalloproteinase (MMP)-9, required for the shedding of EGFR ligands. The inhibition of EGFR and MMP-9 prevented the increase of ASM cell proliferation after coculture. The hyaluronan receptor CD44 is the dominant mediator of the tight adherence of T cells to ASM and is colocalized with MMP-9 on the cell surface. Moreover, the neutralization of CD44 prevents ASM cell hyperplasia. These data provide a novel mechanism by which antigen-stimulated CD4(+) T cells induce the remodeling indicative of a direct trophic role for CD4(+) T cells.
Collapse
|
44
|
The role of inflammation resolution speed in airway smooth muscle mass accumulation in asthma: insight from a theoretical model. PLoS One 2014; 9:e90162. [PMID: 24632688 PMCID: PMC3954558 DOI: 10.1371/journal.pone.0090162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/27/2014] [Indexed: 12/20/2022] Open
Abstract
Despite a large amount of in vitro data, the dynamics of airway smooth muscle (ASM) mass increase in the airways of patients with asthma is not well understood. Here, we present a novel mathematical model that describes qualitatively the growth dynamics of ASM cells over short and long terms in the normal and inflammatory environments typically observed in asthma. The degree of ASM accumulation can be explained by an increase in the rate at which ASM cells switch between non-proliferative and proliferative states, driven by episodic inflammatory events. Our model explores the idea that remodelling due to ASM hyperplasia increases with the frequency and magnitude of these inflammatory events, relative to certain sensitivity thresholds. It highlights the importance of inflammation resolution speed by showing that when resolution is slow, even a series of small exacerbation events can result in significant remodelling, which persists after the inflammatory episodes. In addition, we demonstrate how the uncertainty in long-term outcome may be quantified and used to design an optimal low-risk individual anti-proliferative treatment strategy. The model shows that the rate of clearance of ASM proliferation and recruitment factors after an acute inflammatory event is a potentially important, and hitherto unrecognised, target for anti-remodelling therapy in asthma. It also suggests new ways of quantifying inflammation severity that could improve prediction of the extent of ASM accumulation. This ASM growth model should prove useful for designing new experiments or as a building block of more detailed multi-cellular tissue-level models.
Collapse
|
45
|
Placeres-Uray FA, Febres-Aldana CA, Fernandez-Ruiz R, Gonzalez de Alfonzo R, Lippo de Becemberg IA, Alfonzo MJ. M2 Muscarinic acetylcholine receptor modulates rat airway smooth muscle cell proliferation. World Allergy Organ J 2013; 6:22. [PMID: 24377382 PMCID: PMC3898804 DOI: 10.1186/1939-4551-6-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/17/2013] [Indexed: 01/13/2023] Open
Abstract
Airways chronic inflammatory conditions in asthma and COPD are characterized by tissue remodeling, being smooth muscle hyperplasia, the most important feature. Non-neuronal and neuronal Acetylcholine acting on muscarinic receptors (MAChRs) has been postulated as determinant of tissue remodeling in asthma and COPD by promoting proliferation and phenotypic changes of airway smooth muscle cells (ASMC). The objective was to evaluate proliferative responses to muscarinic agonist as carbamylcholine (Cch) and to identify the MAchR subtype involved. ASMC were isolated from tracheal fragments of Sprague-Dawley rats by enzymatic digestion. Proliferation assays were performed by MTS-PMS method. Viability was confirmed by trypan blue exclusion method. Mitogens as, epidermal growth factor (EGF), Tumor necrosis factor-alpha (TNF-α) and fetal bovine serum (FBS) increased ASMC proliferation (p < 0.05, n = 5). Cch alone increased ASMC proliferation at 24 and 48 hrs. However, combination of Cch with other mitogens exhibited a dual effect, synergistic proliferation effect in the presence of EGF (5 ng/mL) and 5% FBS and inhibiting the proliferation induced by 10% FBS, EGF (10 ng/mL) and TNF-α (10 ng/mL). To determine the MAChR subtype involved in these biological responses, a titration curve of selective muscarinic antagonists were performed. The Cch stimulatory and inhibitory effects on ASCM proliferation was blocked by AF-DX-116 (M2AChR selective antagonist), in greater proportion than 4-DAMP (M3AChR selective antagonist), suggesting that the modulation of muscarinic agonist-induced proliferation is M2AChR mediated responses. Thus, M2AChR can activate multiple signal transduction systems and mediate both effects on ASMC proliferation depending on the plethora and variable airway microenvironments existing in asthma and COPD.
Collapse
Affiliation(s)
- Fabiola A Placeres-Uray
- Sección de Biomembranas, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela (U.C.V), Caracas, Venezuela
| | - Christopher A Febres-Aldana
- Sección de Biomembranas, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela (U.C.V), Caracas, Venezuela
| | - Ruth Fernandez-Ruiz
- Sección de Biomembranas, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela (U.C.V), Caracas, Venezuela
| | - Ramona Gonzalez de Alfonzo
- Sección de Biomembranas, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela (U.C.V), Caracas, Venezuela
| | - Itala A Lippo de Becemberg
- Sección de Biomembranas, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela (U.C.V), Caracas, Venezuela
| | - Marcelo J Alfonzo
- Sección de Biomembranas, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela (U.C.V), Caracas, Venezuela
| |
Collapse
|
46
|
Insulin and the lung: connecting asthma and metabolic syndrome. J Allergy (Cairo) 2013; 2013:627384. [PMID: 24204385 PMCID: PMC3800560 DOI: 10.1155/2013/627384] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/08/2013] [Accepted: 08/21/2013] [Indexed: 02/07/2023] Open
Abstract
Obesity, metabolic syndrome, and asthma are all rapidly increasing globally. Substantial emerging evidence suggests that these three conditions are epidemiologically and mechanistically linked. Since the link between obesity and asthma appears to extend beyond mechanical pulmonary disadvantage, molecular understanding is necessary. Insulin resistance is a strong, independent risk factor for asthma development, but it is unknown whether a direct effect of insulin on the lung is involved. This review summarizes current knowledge regarding the effect of insulin on cellular components of the lung and highlights the molecular consequences of insulin-related metabolic signaling cascades that could adversely affect lung structure and function. Examples include airway smooth muscle proliferation and contractility and regulatory signaling networks that are associated with asthma. These aspects of insulin signaling provide mechanistic insight into the clinical evidence for the links between obesity, metabolic syndrome, and airway diseases, setting the stage for novel therapeutic avenues targeting these conditions.
Collapse
|
47
|
Up-regulation of KCa3.1 promotes human airway smooth muscle cell phenotypic modulation. Pharmacol Res 2013; 77:30-8. [PMID: 24055799 DOI: 10.1016/j.phrs.2013.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/26/2013] [Accepted: 09/08/2013] [Indexed: 02/06/2023]
Abstract
Airway smooth muscle (ASM) cell phenotype modulation, characterized by reversible switching between contractile and proliferative phenotypes, is considered to contribute to proliferative diseases such as allergic asthma and chronic obstructive pulmonary disease (COPD). KCa3.1 has been suggested to be involved in regulating ASM cell activation, proliferation, and migration. However, little is known regarding the exact role of KCa3.1 in ASM cell phenotypic modulation. To elucidate the role of KCa3.1 in regulating ASM cell phenotypic modulation, we investigated the effects of KCa3.1 channels on ASM contractile marker protein expression, proliferation and migration of primary human bronchial smooth muscle (BSM) cells. We found that PDGF increased KCa3.1 channel expression in BSM cells with a concomitant marked decrease in the expression of contractile phenotypic marker proteins including smooth muscle myosin heavy chain (SMMHC), smooth muscle α-actin (α-SMA), myocardin and KCa1.1. These changes were significantly attenuated by the KCa3.1 blocker, TRAM-34, or gene silencing of KCa3.1. Pharmacological blockade or gene silencing of KCa3.1 also suppressed PDGF-induced human BSM cell migration and proliferation accompanied by a decrease in intracellular free Ca(2+) levels as a consequence of membrane depolarization, resulting in a reduction in cyclin D1 level and cell cycle arrest at G0-G1 phase. Additionally, PDGF-induced up-regulation of KCa3.1 and down-regulation of BSM contractile marker proteins were regulated by the ERK inhibitor U0126 and the AKT inhibitor LY294002. These findings highlight a novel role for the KCa3.1 channel in human BSM cell phenotypic modulation and provide a potential target for therapeutic intervention for proliferative airway diseases.
Collapse
|
48
|
Recombinant rat CC10 protein inhibits PDGF-induced airway smooth muscle cells proliferation and migration. BIOMED RESEARCH INTERNATIONAL 2013; 2013:690937. [PMID: 24106713 PMCID: PMC3784082 DOI: 10.1155/2013/690937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/24/2013] [Accepted: 08/11/2013] [Indexed: 11/18/2022]
Abstract
Abnormal migration and proliferation of airway smooth muscle cells (ASMCs) in the airway cause airway wall thickening, which is strongly related with the development of airway remodeling in asthma. Clara cell 10 kDa protein (CC10), which is secreted by the epithelial clara cells of the pulmonary airways, plays an important role in the regulation of immunological and inflammatory processes. Previous studies suggested that CC10 protein had great protective effects against inflammation in asthma. However, the effects of CC10 protein on ASMCs migration and proliferation in airway remodeling were poorly understood. In this study, we constructed the pET-22b-CC10 recombinant plasmid, induced expression and purified the recombinant rat CC10 protein from E. coli by Ni(2+) affinity chromatography and ion exchange chromatography purification. We investigated the effect of recombinant rat CC10 protein on platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation and migration. Our results demonstrated that the recombinant CC10 protein could inhibit PDGF-BB-induced cell viability, proliferation and migration. Western blot analysis showed that PDGF-BB-induced activation of cyclin D1 was inhibited by CC10. These findings implicated that CC10 could inhibit increased ASMCs proliferation, and migration induced by PDGF-BB, and this suppression effect might be associated with inhibition of cyclin D1 expression, which might offer hope for the future treatment of airway remodeling.
Collapse
|
49
|
Kashiwakura JI, Yanagisawa M, Lee H, Okamura Y, Sasaki-Sakamoto T, Saito S, Tokuhashi Y, Ra C, Okayama Y. Interleukin-33 synergistically enhances immune complex-induced tumor necrosis factor alpha and interleukin-8 production in cultured human synovium-derived mast cells. Int Arch Allergy Immunol 2013; 161 Suppl 2:32-6. [PMID: 23711851 DOI: 10.1159/000350424] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Substantial evidence suggests that human synovial mast cells (MCs) are involved in the pathogenesis of rheumatoid arthritis (RA). Interleukin (IL)-33 is believed to play an important role in the pathogenesis of RA. We recently reported that FcγRI is responsible for producing abundant tumor necrosis factor alpha (TNF-α) from cultured synovium-derived MCs (SyMCs) in response to aggregated immunoglobulin G (IgG). However, whether or not IL-33 affects immune complex (IC)-induced synovial MC activation remains unknown. This study sought to evaluate the effect of IL-33 on IC-induced synovial MC activation. METHODS Cultured SyMCs were generated by culturing synovial cells with stem cell factor. ST2 expression was analyzed using FACS and immunohistochemical techniques. Mediators released from the MCs were measured using EIAs or ELISAs. RESULTS SyMCs obtained from patients with RA or osteoarthritis (OA) expressed ST2 on their surfaces. We confirmed the expression of ST2 in MCs using immunofluorescence staining in joint tissue obtained from RA patients. IC-triggered histamine release was not enhanced by IL-33. However, IL-33 synergistically enhanced IC-induced IL-8 and TNF-α production in SyMCs. CONCLUSIONS ICs and IL-33 may exacerbate inflammation associated with RA by abundantly producing TNF-α and IL-8 from SyMCs.
Collapse
Affiliation(s)
- Jun-ichi Kashiwakura
- Department of Molecular Cell Immunology and Allergology, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wright DB, Trian T, Siddiqui S, Pascoe CD, Johnson JR, Dekkers BG, Dakshinamurti S, Bagchi R, Burgess JK, Kanabar V, Ojo OO. Phenotype modulation of airway smooth muscle in asthma. Pulm Pharmacol Ther 2013; 26:42-9. [DOI: 10.1016/j.pupt.2012.08.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/11/2012] [Accepted: 08/13/2012] [Indexed: 01/26/2023]
|