1
|
Shao H, Min F, Huang M, Wang Z, Bai T, Lin M, Li X, Chen H. Novel perspective on the regulation of food allergy by probiotic: The potential of its structural components. Crit Rev Food Sci Nutr 2022; 64:172-186. [PMID: 35912422 DOI: 10.1080/10408398.2022.2105304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food allergy (FA) is a global public health issue with growing prevalence. Increasing evidence supports the strong correlation between intestinal microbiota dysbiosis and food allergies. Probiotic intervention as a microbiota-based therapy could alleviate FA effectively. In addition to improving the intestinal microbiota disturbance and affecting microbial metabolites to regulate immune system, immune responses induced by the recognition of pattern recognition receptors to probiotic components may also be one of the mechanisms of probiotics protecting against FA. In this review, it is highlighted in detail about the regulatory effects on the immune system and anti-allergic potential of probiotic components including the flagellin, pili, peptidoglycan, lipoteichoic acid, exopolysaccharides, surface (S)-layer proteins and DNA. Probiotic components could enhance the function of intestinal epithelial barrier as well as regulate the balance of cytokines and T helper (Th) 1/Th2/regulatory T cell (Treg) responses. These evidences suggest that probiotic components could be used as nutritional or therapeutic agents for maintaining immune homeostasis to prevent FA, which will contribute to providing new insights into the resolution of FA and better guidance for the development of probiotic products.
Collapse
Affiliation(s)
- Huming Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Fangfang Min
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Meijia Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Tianliang Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Min Lin
- Department of Dermatology, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Lampiasi N. Interactions between Macrophages and Mast Cells in the Female Reproductive System. Int J Mol Sci 2022; 23:ijms23105414. [PMID: 35628223 PMCID: PMC9142086 DOI: 10.3390/ijms23105414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) and macrophages (Mϕs) are innate immune cells that differentiate from early common myeloid precursors and reside in all body tissues. MCs have a unique capacity to neutralize/degrade toxic proteins, and they are hypothesized as being able to adopt two alternative polarization profiles, similar to Mϕs, with distinct or even opposite roles. Mϕs are very plastic phagocytic cells that are devoted to the elimination of senescent/anomalous endogenous entities (to maintain tissue homeostasis), and to the recognition and elimination of exogenous threats. They can adopt several functional phenotypes in response to microenvironmental cues, whose extreme profiles are the inflammatory/killing phenotype (M1) and the anti-inflammatory/healing phenotype (M2). The concomitant and abundant presence of these two cell types and the partial overlap of their defensive and homeostatic functions leads to the hypothesis that their crosstalk is necessary for the optimal coordination of their functions, both under physiological and pathological conditions. This review will examine the relationship between MCs and Mϕs in some situations of homeostatic regulation (menstrual cycle, embryo implantation), and in some inflammatory conditions in the same organs (endometriosis, preeclampsia), in order to appreciate the importance of their cross-regulation.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
3
|
Ogawa Y, Kinoshita M, Kawamura T, Shimada S. Intracellular TLRs of Mast Cells in Innate and Acquired Immunity. Handb Exp Pharmacol 2022; 276:133-159. [PMID: 34505203 DOI: 10.1007/164_2021_540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mast cells (MCs) distribute to interface tissues with environment, such as skin, airway, and gut mucosa, thereby functioning as the sentinel against invading allergens and pathogens. To respond to and exclude these external substances promptly, MCs possess granules containing inflammatory mediators, including heparin, proteases, tumor necrosis factor, and histamine, and produce these mediators as a consequence of degranulation within minutes of activation. As a delayed response to external substances, MCs de novo synthesize inflammatory mediators, such as cytokines and chemokines, by sensing pathogen- and damage-associated molecular patterns through their pattern recognition receptors, including Toll-like receptors (TLRs). A substantial number of studies have reported immune responses by MCs through surface TLR signaling, particularly TLR2 and TLR4. However, less attention has been paid to immune responses through nucleic acid-recognizing intracellular TLRs. Among intracellular TLRs, human and rodent MCs express TLR3, TLR7, and TLR9, but not TLR8. Some virus infections modulate intracellular TLR expression in MCs. MC-derived mediators, such as histamine, cysteinyl leukotrienes, LL-37, and the granulocyte-macrophage colony-stimulating factor, have also been reported to modulate intracellular TLR expression in an autocrine and/or paracrine fashion. Synthetic ligands for intracellular TLRs and some viruses are sensed by intracellular TLRs of MCs, leading to the production of inflammatory cytokines and chemokines including type I interferons. These MC responses initiate and facilitate innate responses and the subsequent recruitment of additional innate effector cells. MCs also associate with the regulation of adaptive immunity. In this overview, the expression of intracellular TLRs in MCs and the recognition of pathogens, including viruses, by intracellular TLRs in MCs were critically evaluated.
Collapse
Affiliation(s)
- Youichi Ogawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Manao Kinoshita
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinji Shimada
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
4
|
Do Mast Cells Contribute to the Antifungal Host Defense? Cells 2021; 10:cells10102510. [PMID: 34685489 PMCID: PMC8534142 DOI: 10.3390/cells10102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
The fungal kingdom includes a group of microorganisms that are widely distributed in the environment, and therefore the exposure to them is almost constant. Furthermore, fungal components of the microbiome, i.e., mycobiome, could serve as a reservoir of potentially opportunistic pathogens. Despite close encounters with fungi, defense mechanisms that develop during fungal infections remain unexplored. The strategic location of mast cells (MCs) close to the external environment places them among the first cells to encounter pathogens along with the other innate immune cells. MCs are directly involved in the host defense through the ability to destroy pathogens or indirectly by activating other immune cells. Most available data present MCs’ involvement in antibacterial, antiviral, or antiparasitic defense mechanisms. However, less is known about their contribution in defense mechanisms against fungi. MCs may support immune responses to fungi or their specific molecules through initiated degranulation, synthesis and release of cytokines, chemokines, mediators, and generation of reactive oxygen species (ROS), as well as immune cells’ recruitment, phagocytosis, or provision of extracellular DNA traps. This review summarizes current knowledge on host defense mechanisms against fungi and MCs’ involvement in those processes. It also describes the effects of fungi or fungus-derived constituents on MCs’ activity.
Collapse
|
5
|
Fukatsu S, Horinouchi H, Nagata S, Kamei R, Tanaka D, Hong W, Kazami Y, Fujimori M, Itoh K, Momose Y, Kasakura K, Hosono A, Kaminogawa S, Hanazawa S, Nakanishi Y, Takahashi K. Post-translational suppression of the high affinity IgE receptor expression on mast cells by an intestinal bacterium. Immunobiology 2021; 226:152056. [PMID: 33535092 DOI: 10.1016/j.imbio.2021.152056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022]
Abstract
Mast cells, which express the high-affinity IgE receptor (FcεRI) on their surface, play a crucial role in inducing allergic inflammation. Since mast cells are activated by crosslinking of FcεRI with IgE and allergens, the cell surface expression level of FcεRI is an important factor in determining the sensitivity to allergens. Recently, the involvement of gut microbiota in the prevalence and regulation of allergy has attracted attention but the precise underlying mechanisms are not fully understood. In this study, the effect of intestinal bacteria on cell surface expression of FcεRI was examined. Bacteroides acidifaciens type A 43 specifically suppressed cell surface expression of FcεRI on mouse bone marrow-derived mast cells (BMMCs) without reduction in FcεRI α and β-chain mRNA and total protein expression. The suppressive effect required sustained exposure to this bacterium, with a corresponding reduction in Erk activation. Inhibition of Erk decreased cell surface distribution of FcεRI in BMMCs, at least in part, through facilitated endocytosis of FcεRI. These results indicate that B. acidifaciens type A 43 suppresses cell surface expression of FcεRI on mast cells in a post-translational manner via inhibition of Erk. The suppression of FcεRI expression on mast cells by specific bacteria might be the underlying mechanism involved in the regulation of allergy by gut microbiota.
Collapse
Affiliation(s)
- Sakino Fukatsu
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Hikari Horinouchi
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Shiho Nagata
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Risa Kamei
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Daichi Tanaka
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Wonki Hong
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Yui Kazami
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Minami Fujimori
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Kikuji Itoh
- Department of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Yoshika Momose
- Department of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Kazumi Kasakura
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Japan
| | - Akira Hosono
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Japan
| | - Shuichi Kaminogawa
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Japan
| | - Shigemasa Hanazawa
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Yusuke Nakanishi
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Kyoko Takahashi
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan.
| |
Collapse
|
6
|
Espinosa-Riquer ZP, Segura-Villalobos D, Ramírez-Moreno IG, Pérez Rodríguez MJ, Lamas M, Gonzalez-Espinosa C. Signal Transduction Pathways Activated by Innate Immunity in Mast Cells: Translating Sensing of Changes into Specific Responses. Cells 2020; 9:E2411. [PMID: 33158024 PMCID: PMC7693401 DOI: 10.3390/cells9112411] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mast cells (MCs) constitute an essential cell lineage that participates in innate and adaptive immune responses and whose phenotype and function are influenced by tissue-specific conditions. Their mechanisms of activation in type I hypersensitivity reactions have been the subject of multiple studies, but the signaling pathways behind their activation by innate immunity stimuli are not so well described. Here, we review the recent evidence regarding the main molecular elements and signaling pathways connecting the innate immune receptors and hypoxic microenvironment to cytokine synthesis and the secretion of soluble or exosome-contained mediators in this cell type. When known, the positive and negative control mechanisms of those pathways are presented, together with their possible implications for the understanding of mast cell-driven chronic inflammation. Finally, we discuss the relevance of the knowledge about signaling in this cell type in the recognition of MCs as central elements on innate immunity, whose remarkable plasticity converts them in sensors of micro-environmental discontinuities and controllers of tissue homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudia Gonzalez-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Mexico City 14330, Mexico; (Z.P.E.-R.); (D.S.-V.); (I.G.R.-M.); (M.J.P.R.); (M.L.)
| |
Collapse
|
7
|
Schmiedeke JK, Hartmann AK, Ruckenbrod T, Stassen M, Reddehase MJ, Lemmermann NA. The Anti-apoptotic Murine Cytomegalovirus Protein vMIA-m38.5 Induces Mast Cell Degranulation. Front Cell Infect Microbiol 2020; 10:439. [PMID: 32984069 PMCID: PMC7477074 DOI: 10.3389/fcimb.2020.00439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Mast cells (MC) represent “inbetweeners” of the immune system in that they are part of innate immunity by acting as first-line sentinels for environmental antigens but also provide a link to adaptive immunity by secretion of chemokines that recruit CD8 T cells to organ sites of infection. An interrelationship between MC and cytomegalovirus (CMV) has been a blank area in science until recently when the murine model revealed a role for MC in the resolution of pulmonary infection by murine CMV (mCMV). As to the mechanism, MC were identified as a target cell type of mCMV. Infected MC degranulate and synthesize the CC-chemokine ligand-5 (CCL-5), which is released to attract protective virus-specific CD8 T cells to infected host tissue for confining and eventually resolving the productive, cytopathogenic infection. In a step forward in our understanding of how mCMV infection of MC triggers their degranulation, we document here a critical role for the mCMV m38.5 gene product, a mitochondria-localized inhibitor of apoptosis (vMIA). We show an involvement of mCMV vMIA-m38.5 in MC degranulation by two reciprocal approaches: first, by enhanced degranulation after m38.5 gene transfection of bone marrow-derived cell culture-grown MC (BMMC) and, second, by reduced degranulation of MC in peritoneal exudate cell populations infected ex corpore or in corpore with mutant virus mCMV-Δm38.5. These studies thus reveal a so far unknown function of mCMV vMIA-m38.5 and offer a previously unconsidered but biologically relevant cell system for further analyzing functional analogies between vMIAs of different CMV species.
Collapse
Affiliation(s)
- Julia K Schmiedeke
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Ann-Kathrin Hartmann
- Institute for Immunology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Teresa Ruckenbrod
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Michael Stassen
- Institute for Immunology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Matthias J Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Niels A Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
8
|
Vo TS. Natural products targeting FcεRI receptor for anti-allergic therapeutics. J Food Biochem 2020; 44:e13335. [PMID: 32588463 DOI: 10.1111/jfbc.13335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/26/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022]
Abstract
Mast cells and basophils are important contributors for development of allergic reactions. The activation of these cells via cross-linking of IgE bound to FcεRI by allergen causes the generation of allergic mediators and the reaction of immediate hypersensitivity. Obviously, FcεRI is considered as a key trigger of acute allergic responses. Consequently, FcεRI is regarded as a potential target for downregulation of allergic diseases. So far, numerous synthetic agents have been reported for inhibition of FcεRI expression and FcεRI-IgE interaction. Meanwhile, natural products have received much attention due to their efficacy and safety. Recently, numerous anti-allergic agents from natural products have been revealed as promising inhibitors of allergic reactions via inhibiting the expression of FcεRI subunits as well as blocking FcεRI activation. Thus, the present contribution is mainly focused to describe natural products targeting FcεRI receptor and to emphasize their applicable potential as anti-allergic foods. PRACTICAL APPLICATIONS: Phlorotannins, epigallocatechin-3-gallate, peptides, chitooligosaccharides, and other natural products have been revealed as potential inhibitors of allergic responses. These bioactive agents target to FcεRI receptor by inhibiting expression of FcεRI and blocking interaction of FcεRI-IgE. Hence, these compounds could be applied as functional ingredients of anti-allergic foods.
Collapse
Affiliation(s)
- Thanh Sang Vo
- Faculty of Natural Sciences, Thu Dau Mot University, Thu Dau Mot City, Vietnam
| |
Collapse
|
9
|
The Response of Tissue Mast Cells to TLR3 Ligand Poly(I:C) Treatment. J Immunol Res 2020; 2020:2140694. [PMID: 32185237 PMCID: PMC7060451 DOI: 10.1155/2020/2140694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 12/18/2022] Open
Abstract
Mast cells (MCs) are found mainly at the anatomical sites exposed to the external environment; thus, they are localized close to blood vessels, lymphatic vessels, and a multitude of immune cells. Moreover, those cells can recognize invading pathogens through a range of surface molecules known as pathogen recognition receptors (PRRs), mainly Toll-like receptors (TLRs). MCs are extensively engaged in the control and clearance of bacterial infections, but much less is known about their contribution to antiviral host response as well as pathomechanisms of virus-induced diseases. In the study, we employed in vivo differentiated mature tissue mast cells freshly isolated from rat peritoneal cavity. Here, we demonstrated that rat peritoneal mast cells (rPMCs) express viral dsRNA-specific TLR3 molecule (intracellularly and on the cell surface) as well as other proteins associated with cellular antiviral response: IRF3, type I and II IFN receptors, and MHC I. We found that exposure of rPMCs to viral dsRNA mimic, i.e., poly(I:C), induced transient upregulation of surface TLR3 (while temporarily decreased TLR3 intracellular expression), type II IFN receptor, and MHC I. TLR3 ligand-stimulated rPMCs did not degranulate but generated and/or released type I IFNs (IFN-α and IFNβ) as well as proinflammatory lipid mediators (cysLTs), cytokines (TNF, IL-1β), and chemokines (CCL3, CXCL8). We documented that rPMC priming with poly(I:C) did not affect FcεRI-dependent degranulation. However, their costimulation with TLR3 agonist and anti-IgE led to a significant increase in cysLT and TNF secretion. Our findings confirm that MCs may serve as active participants in the antiviral immune response. Presented data on modulated FcεRI-mediated MC secretion of mediators upon poly(I:C) treatment suggests that dsRNA-type virus infection could influence the severity of allergic reactions.
Collapse
|
10
|
Shi L, Xu H, Min F, Li X, Shi X, Gao J, Chen H. Imidacloprid exposure suppresses cytokine production and neutrophil infiltration in TLR2-dependent activation of RBL-2H3 cells and skin inflammation of BALB/c mice. NEW J CHEM 2020. [DOI: 10.1039/d0nj01945c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imidacloprid suppressed TNF-α and IL-6 production and neutrophil infiltration, without altering mast cell degranulation.
Collapse
Affiliation(s)
- Linbo Shi
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- Department of Pathogen Biology and Immunology
| | - Huaping Xu
- Department of Rehabilitation
- The First Affiliated Hospital of Nanchang University
- Nanchang
- China
| | - Fangfang Min
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- Sino-German Joint Research Institute
| | - Xin Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University
- Nanchang 330006
- China
| | - Xiaoyun Shi
- School of Food Science
- Nanchang University
- Nanchang
- China
| | - Jinyan Gao
- School of Food Science
- Nanchang University
- Nanchang
- China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- Sino-German Joint Research Institute
| |
Collapse
|
11
|
Magrone T, Magrone M, Jirillo E. Mast Cells as a Double-Edged Sword in Immunity: Their Function in Health and Disease. First of Two Parts. Endocr Metab Immune Disord Drug Targets 2019; 20:654-669. [PMID: 31789135 DOI: 10.2174/1871530319666191202120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022]
Abstract
Mast cells (MCs) have recently been re-interpreted in the context of the immune scenario in the sense that their pro-allergic role is no longer exclusive. In fact, MCs even in steady state conditions maintain homeostatic functions, producing mediators and intensively cross-talking with other immune cells. Here, emphasis will be placed on the array of receptors expressed by MCs and the variety of cytokines they produce. Then, the bulk of data discussed will provide readers with a wealth of information on the dual ability of MCs not only to defend but also to offend the host. This double attitude of MCs relies on many variables, such as their subsets, tissues of residency and type of stimuli ranging from microbes to allergens and food antigens. Finally, the relationship between MCs with basophils and eosinophils will be discussed.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
12
|
Elieh Ali Komi D, Bjermer L. Mast Cell-Mediated Orchestration of the Immune Responses in Human Allergic Asthma: Current Insights. Clin Rev Allergy Immunol 2019; 56:234-247. [PMID: 30506113 DOI: 10.1007/s12016-018-8720-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Improving the lung function after experimental allergen challenge by blocking of mast cell (MC) mediators and the capability of MC mediators (including histamine, prostaglandin (PG) D2, and leukotriene (LT) C4) in induction of mucosal edema, bronchoconstriction, and mucus secretion provide evidence that MCs play a key role in pathophysiology of asthma. In asthma, the number of MCs increases in the airways and infiltration of MCs in a variety of anatomical sites including the epithelium, the submucosal glands, and the smooth muscle bundles occurs. MC localization within the ASM is accompanied with the hypertrophy and hyperplasia of the layer, and smooth muscle dysfunction that is mainly observed in forms of bronchial hyperresponsiveness, and variable airflow obstruction. Owing to the expression of a wide range of surface receptors and releasing various cytoplasmic mediators, MCs orchestrate the pathologic events of the disease. MC-released preformed mediators including chymase, tryptase, and histamine and de novo synthesized mediators such as PGD2, LTC4, and LTE4 in addition of cytokines mainly TGFβ1, TSLP, IL-33, IL-4, and IL-13 participate in pathogenesis of asthma. The release of MC mediators and MC/airway cell interactions during remodeling phase of asthma results in persistent cellular and structural changes in the airway wall mainly epithelial cell shedding, goblet cell hyperplasia, hypertrophy of ASM bundles, fibrosis in subepithelial region, abnormal deposition of extracellular matrix (ECM), increased tissue vascularity, and basement membrane thickening. We will review the current knowledge regarding the participation of MCs in each stage of asthma pathophysiology including the releasing mediators and their mechanism of action, expression of receptors by which they respond to stimuli, and finally the pharmaceutical products designed based on the strategy of blocking MC activation and mediator release.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leif Bjermer
- Department of Respiratory Medicine & Allergology, Inst for Clinical Science, Lund University, Lund, Sweden.
- Lung and Allergy Research, Skane University Hospital, Lasarettsgatan 7, 22185, Lund, Sweden.
| |
Collapse
|
13
|
Méndez-Enríquez E, Hallgren J. Mast Cells and Their Progenitors in Allergic Asthma. Front Immunol 2019; 10:821. [PMID: 31191511 PMCID: PMC6548814 DOI: 10.3389/fimmu.2019.00821] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
Mast cells and their mediators have been implicated in the pathogenesis of asthma and allergy for decades. Allergic asthma is a complex chronic lung disease in which several different immune cells, genetic factors and environmental exposures influence the pathology. Mast cells are key players in the asthmatic response through secretion of a multitude of mediators with pro-inflammatory and airway-constrictive effects. Well-known mast cell mediators, such as histamine and bioactive lipids are responsible for many of the physiological effects observed in the acute phase of allergic reactions. The accumulation of mast cells at particular sites of the allergic lung is likely relevant to the asthma phenotype, severity and progression. Mast cells located in different compartments in the lung and airways have different characteristics and express different mediators. According to in vivo experiments in mice, lung mast cells develop from mast cell progenitors induced by inflammatory stimuli to migrate to the airways. Human mast cell progenitors have been identified in the blood circulation. A high frequency of circulating human mast cell progenitors may reflect ongoing pathological changes in the allergic lung. In allergic asthma, mast cells become activated mainly via IgE-mediated crosslinking of the high affinity receptor for IgE (FcεRI) with allergens. However, mast cells can also be activated by numerous other stimuli e.g. toll-like receptors and MAS-related G protein-coupled receptor X2. In this review, we summarize research with implications on the role and development of mast cells and their progenitors in allergic asthma and cover selected activation pathways and mast cell mediators that have been implicated in the pathogenesis. The review places an emphasis on describing mechanisms identified using in vivo mouse models and data obtained by analysis of clinical samples.
Collapse
Affiliation(s)
- Erika Méndez-Enríquez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Halova I, Rönnberg E, Draberova L, Vliagoftis H, Nilsson GP, Draber P. Changing the threshold-Signals and mechanisms of mast cell priming. Immunol Rev 2019; 282:73-86. [PMID: 29431203 DOI: 10.1111/imr.12625] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Elin Rönnberg
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Harissios Vliagoftis
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Alberta Respiratory Center and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gunnar P Nilsson
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Zhang YF, Liu QM, Liu B, Shu ZD, Han J, Liu H, Cao MJ, Yang XW, Gu W, Liu GM. Dihydromyricetin inhibited ovalbumin-induced mice allergic responses by suppressing the activation of mast cells. Food Funct 2019; 10:7131-7141. [DOI: 10.1039/c9fo01557d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dihydromyricetin (DMY) is a natural flavonoid compound derived from Lysionotus pauciflorus Maxim and has been found to possess therapeutic potential for allergic disease induced by food allergens.
Collapse
|
16
|
Costantini C, Renga G, Oikonomou V, Paolicelli G, Borghi M, Pariano M, De Luca A, Puccetti M, Stincardini C, Mosci P, Bartoli A, Zelante T, Romani L. The Mast Cell-Aryl Hydrocarbon Receptor Interplay at the Host-Microbe Interface. Mediators Inflamm 2018; 2018:7396136. [PMID: 30510489 PMCID: PMC6230381 DOI: 10.1155/2018/7396136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/19/2018] [Accepted: 08/01/2018] [Indexed: 11/17/2022] Open
Abstract
Mast cells are increasingly being recognized as crucial cells in the response of the organism to environmental agents. Interestingly, the ability of mast cells to sense and respond to external cues is modulated by the microenvironment that surrounds mast cells and influences their differentiation. The scenario that is emerging unveils a delicate equilibrium that balances the effector functions of mast cells to guarantee host protection without compromising tissue homeostasis. Among the environmental components able to mold mast cells and fine-tune their effector functions, the microorganisms that colonize the human body, collectively known as microbiome, certainly play a key role. Indeed, microorganisms can regulate not only the survival, recruitment, and maturation of mast cells but also their activity by setting the threshold required for the exploitation of their different effector functions. Herein, we summarize the current knowledge about the mechanisms underlying the ability of the microorganisms to regulate mast cell physiology and discuss potential deviations that result in pathological consequences. We will discuss the pivotal role of the aryl hydrocarbon receptor in sensing the environment and shaping mast cell adaptation at the host-microbe interface.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Vasilis Oikonomou
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Giuseppe Paolicelli
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Monica Borghi
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Antonella De Luca
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, Perugia 06132, Italy
| | - Claudia Stincardini
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Paolo Mosci
- Department of Veterinary Medicine, University of Perugia, Perugia 06132, Italy
| | - Andrea Bartoli
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| |
Collapse
|
17
|
Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int Immunopharmacol 2018; 59:391-412. [PMID: 29730580 PMCID: PMC7106078 DOI: 10.1016/j.intimp.2018.03.002] [Citation(s) in RCA: 424] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
The immune system is a very diverse system of the host that evolved during evolution to cope with various pathogens present in the vicinity of environmental surroundings inhabited by multicellular organisms ranging from achordates to chordates (including humans). For example, cells of immune system express various pattern recognition receptors (PRRs) that detect danger via recognizing specific pathogen-associated molecular patterns (PAMPs) and mount a specific immune response. Toll-like receptors (TLRs) are one of these PRRs expressed by various immune cells. However, they were first discovered in the Drosophila melanogaster (common fruit fly) as genes/proteins important in embryonic development and dorso-ventral body patterning/polarity. Till date, 13 different types of TLRs (TLR1-TLR13) have been discovered and described in mammals since the first discovery of TLR4 in humans in late 1997. This discovery of TLR4 in humans revolutionized the field of innate immunity and thus the immunology and host-pathogen interaction. Since then TLRs are found to be expressed on various immune cells and have been targeted for therapeutic drug development for various infectious and inflammatory diseases including cancer. Even, Single nucleotide polymorphisms (SNPs) among various TLR genes have been identified among the different human population and their association with susceptibility/resistance to certain infections and other inflammatory diseases. Thus, in the present review the current and future importance of TLRs in immunity, their pattern of expression among various immune cells along with TLR based therapeutic approach is reviewed. TLRs are first described PRRs that revolutionized the biology of host-pathogen interaction and immune response The discovery of different TLRs in humans proved milestone in the field of innate immunity and inflammation The pattern of expression of all the TLRs expressed by human immune cells An association of various TLR SNPs with different inflammatory diseases Currently available drugs or vaccines based on TLRs and their future in drug targeting along with the role in reproduction, and regeneration
Collapse
|
18
|
Toll-like receptors-mediated pathways activate inflammatory responses in the esophageal mucosa of adult eosinophilic esophagitis. Clin Transl Gastroenterol 2018; 9:147. [PMID: 29691386 PMCID: PMC5915448 DOI: 10.1038/s41424-018-0017-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
Objectives Esophageal microbiota and regulation of adaptive immunity are increasingly being investigated in eosinophilic esophagitis (EoE). Toll-like receptors (TLRs) play a central role in the initiation and maintenance of innate immune activity. Our objective was to characterize the esophageal and duodenal innate immune response in EoE and its modulation by dietary therapy. Methods Esophageal and duodenal biopsy samples were collected from 10 adults with untreated EoE, before and after effective treatment with a six-food elimination diet (SFED), and 10 controls with normal esophagus. In all cases, bacterial load (by mRNA expression of 16S), TLRs, mucins, transcription factors, interleukins, components of the NKG2D system, and innate immunity effectors were assessed by qPCR. Protein expression of TLRs were also determined by immunofluorescence. Results Bacterial load and TLR1, TLR2, TLR4, and TLR9 were overexpressed on biopsies with active EoE compared with controls. Muc1 and Muc5B genes were downregulated while Muc4 was overexpressed. Upregulation of MyD88 and NFκB was found together with IL-1β, IL-6, IL-8, and IL-10 mediators and PER-1, iNOS, and GRZA effectors. NG-K2D components (KLRK1, IL-15, MICB) were also upregulated. In all cases, changes in active EoE were normalized following SFED and mucosal healing. Duodenal samples also showed increased expressions of TLR-1, TLR-2, and TLR-4, but not 16S or any other mediators nor effectors of inflammation. Conclusions Esophageal TLR-dependent signaling pathways in EoE support the potential implication of microbiota and the innate immune system in the pathogenesis of this disease.
Collapse
|
19
|
Redegeld FA, Yu Y, Kumari S, Charles N, Blank U. Non-IgE mediated mast cell activation. Immunol Rev 2018; 282:87-113. [DOI: 10.1111/imr.12629] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank A. Redegeld
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Yingxin Yu
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Sangeeta Kumari
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Nicolas Charles
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
| | - Ulrich Blank
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
- Inflamex Laboratory of Excellence; Paris France
| |
Collapse
|
20
|
Benedé S, Cody E, Agashe C, Berin MC. Immune Characterization of Bone Marrow-Derived Models of Mucosal and Connective Tissue Mast Cells. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:268-277. [PMID: 29676074 PMCID: PMC5911446 DOI: 10.4168/aair.2018.10.3.268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
Purpose It is well appreciated that mast cells (MCs) demonstrate tissue-specific imprinting, with different biochemical and functional properties between connective tissue MCs (CTMCs) and mucosal MCs (MMCs). Although in vitro systems have been developed to model these different subsets, there has been limited investigation into the functional characteristics of the 2 major MC subsets. Here, we report the immunologic characterization of 2 MCs subsets developed in vitro from bone marrow progenitors modeling MMCs and CTMCs. Methods We grew bone marrow for 4 weeks in the presence of transforming growth factor (TGF)-β, interleukin (IL)-9, IL-3, and stem cell factor (SCF) to generate MMCs, and IL-4, IL-3, and SCF to generate CTMCs. Results CTMCs and MMCs differed in growth rate and protease content, but their immune characteristics were remarkably similar. Both subsets responded to immunoglobulin E (IgE)-mediated activation with signaling, degranulation, and inflammatory cytokine release, although differences between subsets were noted in IL-10. CTMCs and MMCs showed a similar toll-like receptor (TLR) expression profile, dominated by expression of TLR4, TLR6, or both subsets were responsive to lipopolysaccharide (LPS), but not poly(I:C). CTMCs and MMCs express receptors for IL-33 and thymic stromal lymphopoietin (TSLP), and respond to these cytokines alone or with modified activation in response to IgE cross-linking. Conclusions The results of this paper show the immunologic characterization of bone marrow-derived MMCs and CTMCs, providing useful protocols for in vitro modeling of MC subsets.
Collapse
Affiliation(s)
- Sara Benedé
- Department of Pediatrics, Mindich Child Health and Development Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Evan Cody
- Department of Pediatrics, Mindich Child Health and Development Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charuta Agashe
- Department of Pediatrics, Mindich Child Health and Development Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Department of Pediatrics, Mindich Child Health and Development Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Wang N, McKell M, Dang A, Yamani A, Waggoner L, Vanoni S, Noah T, Wu D, Kordowski A, Köhl J, Hoebe K, Divanovic S, Hogan SP. Lipopolysaccharide suppresses IgE-mast cell-mediated reactions. Clin Exp Allergy 2017; 47:1574-1585. [PMID: 28833704 PMCID: PMC5865592 DOI: 10.1111/cea.13013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/11/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical and experimental analyses have identified a central role for IgE/FcεRI/mast cells in promoting IgE-mediated anaphylaxis. Recent data from human studies suggest that bacterial infections can alter susceptibility to anaphylaxis. OBJECTIVE We examined the effect of LPS exposure on the induction of IgE-mast cell (MC) mediated reactions in mice. METHODS C57BL/6 WT, tlr4-/- and IL10-/- mice were exposed to LPS, and serum cytokines (TNF and IL-10) were measured. Mice were subsequently treated with anti-IgE, and the symptoms of passive IgE-mediated anaphylaxis, MC activation, Ca2+ -mobilization and the expression of FcεRI on peritoneal MCs were quantitated. RESULTS We show that LPS exposure of C57BL/6 WT mice constraints IgE-MC-mediated reactions. LPS-induced suppression of IgE-MC-mediated responses was TLR-4-dependent and associated with increased systemic IL-10 levels, decreased surface expression of FcεRI on MCs and loss of sensitivity to IgE activation. Notably, LPS-induced desensitization of MCs was short term with MC sensitivity to IgE reconstituted within 48 hours, which was associated with recapitulation of FcεRI expression on the MCs. Mechanistic analyses revealed a requirement for IL-10 in LPS-mediated decrease in MC FcεRI surface expression. CONCLUSIONS & CLINICAL RELEVANCE Collectively, these studies suggest that LPS-induced IL-10 promotes the down-regulation of MC surface FcεRI expression and leads to desensitization of mice to IgE-mediated reactions. These studies indicate that targeting of the LPS-TLR-4-IL-10 pathway may be used as a therapeutic approach to prevent adverse IgE-mediated reactions.
Collapse
Affiliation(s)
- Nianrong Wang
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
- Chongqing Health Center for Women and Children, Yuzhong Qu, 400065 Chongqing Shi China
| | - Melanie McKell
- Immunobiology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Andrew Dang
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Amnah Yamani
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Lisa Waggoner
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Simone Vanoni
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Taeko Noah
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - David Wu
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Anna Kordowski
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Jörg Köhl
- Immunobiology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Kasper Hoebe
- Immunobiology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Senad Divanovic
- Immunobiology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Simon P. Hogan
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| |
Collapse
|
22
|
Expression of surface and intracellular Toll-like receptors by mature mast cells. Cent Eur J Immunol 2017; 41:333-338. [PMID: 28450795 PMCID: PMC5382879 DOI: 10.5114/ceji.2016.65131] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022] Open
Abstract
Nowadays, more and more data indicate that mast cells play an important role in host defense against pathogens. That is why it is essential to understand the expression of Toll-like receptors (TLRs) by mast cells, because these molecules play particularly significant role in initiation host defense against microorganisms as they recognize both wide range of microbial pathogen-associated molecular patterns (PAMPs) and various endogenous damage-associated molecular patterns (DAMPs) released in response to infection. Therefore, we examined the constitutive expression of both surface and endosomal TLRs in rat native fully mature tissue mast cells. By the use of qRT-PCR we found that these cells express mRNAs for TLR2, TLR3, TLR4, TLR5, TLR7, and TLR9. The expression of TLR3, TLR4, TLR5, TLR7, and TLR9 transcripts were low and comparable and only the expression of TLR2 transcript was significant. By the use of flow cytometry technique, we clearly documented that mast cells express TLR2, TLR4, and TLR5 on cell surface, while TLR3, TLR7, and TLR9 proteins are located both on the cell membrane and intracellularly. The highest expression was observed for TLR5 and the lowest for surface TLR7. These observations undoubtedly indicate that mature tissue mast cells have a broad set of TLR molecules, thus can recognize and bind bacterial, viral, and fungal PAMPs as well as various endogenous molecules generated in response to infection.
Collapse
|
23
|
Singh J, Shah R, Singh D. Targeting mast cells: Uncovering prolific therapeutic role in myriad diseases. Int Immunopharmacol 2016; 40:362-384. [PMID: 27694038 DOI: 10.1016/j.intimp.2016.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023]
Abstract
The mast cells are integral part of immune system and they have pleiotropic physiological functions in our body. Any type of abnormal stimuli causes the mast cells receptors to spur the otherwise innocuous mast cells to degranulate and release inflammatory mediators like histamine, cytokines, chemokines and prostaglandins. These mediators are involved in various diseases like allergy, asthma, mastocytosis, cardiovascular disorders, etc. Herein, we describe the receptors involved in degranulation of mast cells and are broadly divided into four categories: G-protein coupled receptors, ligand gated ion channels, immunoreceptors and pattern recognition receptors. Although, activation of pattern recognition receptors do not cause mast cell degranulation, but result in cytokines production. Degranulation itself is a complex process involving cascade of events like membrane fusion events and various proteins like VAMP, Syntaxins, DOCK5, SNAP-23, MARCKS. Furthermore, we described these mast cell receptors antagonists or agonists useful in treatment of myriad diseases. Like, omalizumab anti-IgE antibody is highly effective in asthma, allergic disorders treatment and recently mechanistic insight of IgE uncovered; matrix mettaloprotease inhibitor marimistat is under phase III trial for inflammation, muscular dystrophy diseases; ZPL-389 (H4 receptor antagonist) is in Phase 2a Clinical Trial for atopic dermatitis and psoriasis; JNJ3851868 an oral H4 receptor antagonist is in phase II clinical development for asthma, rheumatoid arthritis. Therefore, research is still in inchoate stage to uncover mast cell biology, mast cell receptors, their therapeutic role in myriad diseases.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
24
|
Bioley G, Lassus A, Terrettaz J, Tranquart F, Corthésy B. Prophylactic immunization of mice with phospholipase A2-loaded gas-filled microbubbles is protective against Th2-mediated honeybee venom allergy. Clin Exp Allergy 2015; 46:153-62. [DOI: 10.1111/cea.12555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/24/2015] [Accepted: 04/06/2015] [Indexed: 12/28/2022]
Affiliation(s)
- G. Bioley
- R&D Laboratory; Division of Immunology and Allergy; University State Hospital (CHUV); Epalinges Switzerland
| | - A. Lassus
- Bracco Suisse SA; Plan-Les-Ouates Switzerland
| | | | | | - B. Corthésy
- R&D Laboratory; Division of Immunology and Allergy; University State Hospital (CHUV); Epalinges Switzerland
| |
Collapse
|
25
|
Suurmond J, Dorjée AL, Knol EF, Huizinga TWJ, Toes REM. Differential TLR-induced cytokine production by human mast cells is amplified by FcɛRI triggering. Clin Exp Allergy 2015; 45:788-96. [PMID: 25665021 DOI: 10.1111/cea.12509] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/12/2015] [Accepted: 02/04/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mast cells are mainly present in strategic locations, where they may have a role in defence against parasites and bacteria. These pathogens can be recognized by mast cells via Toll-like receptors (TLR). Allergic symptoms are often increased in the presence of pathogens at the site of allergen exposure, but it is unknown which cytokines can mediate such an effect. OBJECTIVE To study whether an interaction between IgE- and TLR-mediated activation of human mast cells can contribute to exacerbated inflammatory responses. METHODS Peripheral blood-derived mast cells were stimulated with TLR ligands, in the presence or absence of anti-IgE triggering, after which degranulation was measured using flow cytometry and cytokine production was evaluated by multiplex assays, and ELISA. For evaluation of allergen-specific responses, mast cells were sensitized with serum of allergic individuals or controls, after which they were stimulated using allergens in combination with TLR ligands. RESULTS Simultaneous triggering of mast cells via IgE and TLR ligands greatly enhanced cytokine production but not IgE-induced degranulation. Different TLR ligands specifically enhanced the differential production of cytokines in conjunction with FcεRI triggering. Importantly, only TLR-4 and TLR-6 were able to induce robust production of IL-13, an important molecule in allergic reactions. CONCLUSIONS & CLINICAL RELEVANCE These results indicate that the simultaneous presence of pathogen- or danger-associated signals and FcεRI triggering via specific IgE can significantly modify mast cell-mediated allergic reactions via synergistic production of cytokines and inflammatory mediators and provide an explanation of augmented allergic symptoms during infection.
Collapse
Affiliation(s)
- J Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Song Z, Deng X, Chen W, Xu J, Chen S, Zhong H, Hao F. Toll-like receptor 2 agonist Pam3CSK4 up-regulates FcεRI receptor expression on monocytes from patients with severe extrinsic atopic dermatitis. J Eur Acad Dermatol Venereol 2015; 29:2169-76. [PMID: 25912722 DOI: 10.1111/jdv.13172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/29/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Both microbial antigens and allergens are important factors that can trigger atopic dermatitis (AD). Monocytes from patients with AD have been found to express increased and sustained levels of high-affinity IgE receptor (FcεRI) and Toll-like receptor 2 (TLR2). We hypothesized that putative interactions exist between TLR2 and FcεRI on monocytes in the pathogenesis of AD. OBJECTIVE This study aimed to understand whether activation of TLR2 by Pam3CSK4 would influence the expression of FcεRI, and whether mitogen-activated protein kinase (MAPK) signalling pathways were involved in such regulation. METHODS Peripheral blood monocytes from patients with severe extrinsic AD or healthy control patients were treated with the TLR2 agonist Pam3CSK4. The expression of FcεRI, intracellular TNF-α and MAPK family members were analysed by real-time quantitative PCR, flow cytometry and western blotting. RESULTS Monocytes from patients with severe extrinsic AD expressed higher levels of surface FcεRIα than were found in monocytes from healthy controls. Stimulation of human monocytes from patients with Pam3CSK4, but not lipopolysaccharide (LPS), resulted in the up-regulation of surface FcεRI expression by inducing p38 phosphorylation. Pretreatment with a specific inhibitor of p38 kinase inhibited the Pam3CSK4-induced up-regulation of FcεRIα, suggesting the involvement of the p38 pathway in the regulation of this process. CONCLUSION Our findings indicated interactions between TLR2 and FcεRI occurred via the activation of p38 in patients with severe extrinsic AD, which might indicate insights into understanding the mechanisms of how bacterial infection can exacerbate the clinical features of AD.
Collapse
Affiliation(s)
- Z Song
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - X Deng
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - W Chen
- Department of Dermatology and Allergy, Technische Universita et Muenchen, Munich, Germany
| | - J Xu
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - S Chen
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - H Zhong
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - F Hao
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
27
|
Suzuki R, Scheffel J, Rivera J. New insights on the signaling and function of the high-affinity receptor for IgE. Curr Top Microbiol Immunol 2015; 388:63-90. [PMID: 25553795 DOI: 10.1007/978-3-319-13725-4_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clustering of the high-affinity receptor for immunoglobulin E (FcεRI) through the interaction of receptor-bound immunoglobulin E (IgE) antibodies with their cognate antigen is required to couple IgE antibody production to cellular responses and physiological consequences. IgE-induced responses through FcεRI are well known to defend the host against certain infectious agents and to lead to unwanted allergic responses to normally innocuous substances. However, the cellular and/or physiological response of individuals that produce IgE antibodies may be markedly different and such antibodies (even to the same antigenic epitope) can differ in their antigen-binding affinity. How affinity variation in the interaction of FcεRI-bound IgE antibodies with antigen is interpreted into cellular responses and how the local environment may influence these responses is of interest. In this chapter, we focus on recent advances that begin to unravel how FcεRI distinguishes differences in the affinity of IgE-antigen interactions and how such discrimination along with surrounding environmental stimuli can shape the (patho) physiological response.
Collapse
Affiliation(s)
- Ryo Suzuki
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
28
|
Yu Y, Yip KH, Tam IYS, Sam SW, Ng CW, Zhang W, Lau HYA. Differential effects of the Toll-like receptor 2 agonists, PGN and Pam3CSK4 on anti-IgE induced human mast cell activation. PLoS One 2014; 9:e112989. [PMID: 25398056 PMCID: PMC4232580 DOI: 10.1371/journal.pone.0112989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 10/17/2014] [Indexed: 01/13/2023] Open
Abstract
Mast cells are pivotal in the pathogenesis of allergy and inflammation. In addition to the classical IgE-dependent mechanism involving crosslinking of the high-affinity receptor for IgE (FcεRI), mast cells are also activated by Toll-like receptors (TLRs) which are at the center of innate immunity. In this study, we demonstrated that the response of LAD2 cells (a human mast cell line) to anti-IgE was altered in the presence of the TLR2 agonists peptidoglycan (PGN) and tripalmitoyl-S-glycero-Cys-(Lys)4 (Pam3CSK4). Pretreatment of PGN and Pam3CSK4 inhibited anti-IgE induced calcium mobilization and degranulation without down-regulation of FcεRI expression. Pam3CSK4 but not PGN acted in synergy with anti-IgE for IL-8 release when the TLR2 agonist was added simultaneously with anti-IgE. Studies with inhibitors of key enzymes implicated in mast cell signaling revealed that the synergistic release of IL-8 induced by Pam3CSK4 and anti-IgE involved ERK and calcineurin signaling cascades. The differential modulations of anti-IgE induced mast cell activation by PGN and Pam3CSK4 suggest that dimerization of TLR2 with TLR1 or TLR6 produced different modulating actions on FcεRI mediated human mast cell activation.
Collapse
Affiliation(s)
- Yangyang Yu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Kwok Ho Yip
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Issan Yee San Tam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Sze Wing Sam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Chun Wai Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Wei Zhang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| | - Hang Yung Alaster Lau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
29
|
Kasakura K, Takahashi K, Itoh T, Hosono A, Momose Y, Itoh K, Nishiyama C, Kaminogawa S. Commensal bacteria directly suppress in vitro degranulation of mast cells in a MyD88-independent manner. Biosci Biotechnol Biochem 2014; 78:1669-76. [PMID: 25273132 DOI: 10.1080/09168451.2014.930327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intestine harbors a substantial number of commensal bacteria that provide considerable benefits to the host. Epidemiologic studies have identified associations between alterations in the composition of the intestinal microbiota and the development of allergic disease. However, the cellular and molecular mechanisms underlying these effects remain to be determined. Here, we show that heat-killed commensal bacteria suppressed degranulation of mast cells in vitro in a MyD88-independent manner. In particular, Enterococcus faecalis showed the strongest suppression of degranulation through partial inhibition of Ca(2+) signaling upon the high affinity IgE receptor (FcεRI) cross-linking.
Collapse
Affiliation(s)
- Kazumi Kasakura
- a College of Bioresource Sciences , Nihon University , Fujisawa , Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Suurmond J, Rivellese F, Dorjée AL, Bakker AM, Rombouts YJPC, Rispens T, Wolbink G, Zaldumbide A, Hoeben RC, Huizinga TWJ, Toes REM. Toll-like receptor triggering augments activation of human mast cells by anti-citrullinated protein antibodies. Ann Rheum Dis 2014; 74:1915-23. [PMID: 24818634 DOI: 10.1136/annrheumdis-2014-205562] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/17/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Mast cells may play a role in rheumatoid arthritis (RA), but activation of human mast cells in autoimmune settings has been little studied. Toll-like receptors (TLR) and Fcγ receptors (FcγR) are important receptors for cellular activation in the joint, but expression and stimulation of these receptors in human mast cells or the functional interplay between these pathways is poorly understood. Here, we analysed triggering of human mast cells via these receptors in the context of anti-citrullinated protein antibody-positive (ACPA+) RA. METHODS RNA and protein expression of TLRs and FcγR was quantified using PCR and flow cytometry, respectively. Mast cells were stimulated with TLR ligands (including HSP70) combined with IgG immune complexes and IgG-ACPA. RESULTS Human mast cells expressed TLRs and produced cytokines in response to TLR ligands. Both cultured and synovial mast cells expressed FcγRIIA, and triggering of this receptor by IgG immune complexes synergised with activation by TLR ligands, leading to two- to fivefold increased cytokine levels. Mast cells produced cytokines in response to ACPA immune complexes in a citrulline-specific manner, which synergised in the presence of HSP70. CONCLUSIONS Our data show that synovial mast cells express FcγRIIA and that mast cells can be activated by IgG-ACPA and TLR ligands. Importantly, combined stimulation via TLRs and immune complexes leads to synergy in cytokine production. These findings suggest mast cells are important targets for TLR ligands and immune complexes, and that combined activation of mast cells via these pathways greatly enhances inflammation in synovial tissue of RA patients.
Collapse
Affiliation(s)
- J Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - F Rivellese
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - A L Dorjée
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - A M Bakker
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Y J P C Rombouts
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - T Rispens
- Sanquin Research and Landsteiner Laboratorium, Academic Medical Center, Amsterdam, The Netherlands
| | - G Wolbink
- Sanquin Research and Landsteiner Laboratorium, Academic Medical Center, Amsterdam, The Netherlands
| | - A Zaldumbide
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - R C Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - T W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - R E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
31
|
Wesolowski J, Paumet F. Escherichia coli exposure inhibits exocytic SNARE-mediated membrane fusion in mast cells. Traffic 2014; 15:516-30. [PMID: 24494924 DOI: 10.1111/tra.12159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/24/2014] [Accepted: 02/04/2014] [Indexed: 12/11/2022]
Abstract
Mast cells orchestrate the allergic response through the release of proinflammatory mediators, which is driven by the fusion of cytoplasmic secretory granules with the plasma membrane. During this process, SNARE proteins including Syntaxin4, SNAP23 and VAMP8 play a key role. Following stimulation, the kinase IKKβ interacts with and phosphorylates the t-SNARE SNAP23. Phosphorylated SNAP23 then associates with Syntaxin4 and the v-SNARE VAMP8 to form a ternary SNARE complex, which drives membrane fusion and mediator release. Interestingly, mast cell degranulation is impaired following exposure to bacteria such as Escherichia coli. However, the molecular mechanism(s) by which this occurs is unknown. Here, we show that E. coli exposure rapidly and additively inhibits degranulation in the RBL-2H3 rat mast cell line. Following co-culture with E. coli, the interaction between IKKβ and SNAP23 is disrupted, resulting in the hypophosphorylation of SNAP23. Subsequent formation of the ternary SNARE complex between SNAP23, Syntaxin4 and VAMP8 is strongly reduced. Collectively, these results demonstrate that E. coli exposure inhibits the formation of VAMP8-containing exocytic SNARE complexes and thus the release of VAMP8-dependent granules by interfering with SNAP23 phosphorylation.
Collapse
Affiliation(s)
- Jordan Wesolowski
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
32
|
Trivedi NH, Guentzel MN, Rodriguez AR, Yu JJ, Forsthuber TG, Arulanandam BP. Mast cells: multitalented facilitators of protection against bacterial pathogens. Expert Rev Clin Immunol 2013; 9:129-38. [PMID: 23390944 DOI: 10.1586/eci.12.95] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mast cells are crucial effector cells evoking immune responses against bacterial pathogens. The positioning of mast cells at the host-environment interface, and the multitude of pathogen-recognition receptors and preformed mediator granules make these cells potentially the earliest to respond to an invading pathogen. In this review, the authors summarize the receptors used by mast cells to recognize invading bacteria and discuss the function of immune mediators released by mast cells in control of bacterial infection. The interaction of mast cells with other immune cells, including macrophages, dendritic cells and T cells, to induce protective immunity is highlighted. The authors also discuss mast cell-based vaccine strategies and the potential application in control of bacterial disease.
Collapse
Affiliation(s)
- Nikita H Trivedi
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
33
|
Possible involvement of TLRs and hemichannels in stress-induced CNS dysfunction via mastocytes, and glia activation. Mediators Inflamm 2013; 2013:893521. [PMID: 23935250 PMCID: PMC3713603 DOI: 10.1155/2013/893521] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/16/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022] Open
Abstract
In the central nervous system (CNS), mastocytes and glial cells (microglia, astrocytes and oligodendrocytes) function as sensors of neuroinflammatory conditions, responding to stress triggers or becoming sensitized to subsequent proinflammatory challenges. The corticotropin-releasing hormone and glucocorticoids are critical players in stress-induced mastocyte degranulation and potentiation of glial inflammatory responses, respectively. Mastocytes and glial cells express different toll-like receptor (TLR) family members, and their activation via proinflammatory molecules can increase the expression of connexin hemichannels and pannexin channels in glial cells. These membrane pores are oligohexamers of the corresponding protein subunits located in the cell surface. They allow ATP release and Ca2+ influx, which are two important elements of inflammation. Consequently, activated microglia and astrocytes release ATP and glutamate, affecting myelinization, neuronal development, and survival. Binding of ligands to TLRs induces a cascade of intracellular events leading to activation of several transcription factors that regulate the expression of many genes involved in inflammation. During pregnancy, the previous responses promoted by viral infections and other proinflammatory conditions are common and might predispose the offspring to develop psychiatric disorders and neurological diseases. Such disorders could eventually be potentiated by stress and might be part of the etiopathogenesis of CNS dysfunctions including autism spectrum disorders and schizophrenia.
Collapse
|
34
|
Fukuishi N, Igawa Y, Kunimi T, Hamano H, Toyota M, Takahashi H, Kenmoku H, Yagi Y, Matsui N, Akagi M. Generation of mast cells from mouse fetus: analysis of differentiation and functionality, and transcriptome profiling using next generation sequencer. PLoS One 2013; 8:e60837. [PMID: 23573287 PMCID: PMC3616098 DOI: 10.1371/journal.pone.0060837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/03/2013] [Indexed: 12/31/2022] Open
Abstract
While gene knockout technology can reveal the roles of proteins in cellular functions, including in mast cells, fetal death due to gene manipulation frequently interrupts experimental analysis. We generated mast cells from mouse fetal liver (FLMC), and compared the fundamental functions of FLMC with those of bone marrow-derived mouse mast cells (BMMC). Under electron microscopy, numerous small and electron-dense granules were observed in FLMC. In FLMC, the expression levels of a subunit of the FcεRI receptor and degranulation by IgE cross-linking were comparable with BMMC. By flow cytometry we observed surface expression of c-Kit prior to that of FcεRI on FLMC, although on BMMC the expression of c-Kit came after FcεRI. The surface expression levels of Sca-1 and c-Kit, a marker of putative mast cell precursors, were slightly different between bone marrow cells and fetal liver cells, suggesting that differentiation stage or cell type are not necessarily equivalent between both lineages. Moreover, this indicates that phenotypically similar mast cells may not have undergone an identical process of differentiation. By comprehensive analysis using the next generation sequencer, the same frequency of gene expression was observed for 98.6% of all transcripts in both cell types. These results indicate that FLMC could represent a new and useful tool for exploring mast cell differentiation, and may help to elucidate the roles of individual proteins in the function of mast cells where gene manipulation can induce embryonic lethality in the mid to late stages of pregnancy.
Collapse
Affiliation(s)
- Nobuyuki Fukuishi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Herrmann N, Koch S, Leib N, Bedorf J, Wilms H, Schnautz S, Fimmers R, Bieber T. TLR2 down-regulates FcεRI and its transcription factor PU.1 in human Langerhans cells. Allergy 2013; 68:621-8. [PMID: 23534406 DOI: 10.1111/all.12145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Epidermal Langerhans cells (LC) expressing the high-affinity receptor for IgE (FcεRI) play a key role in atopic dermatitis (AD). AD skin is highly colonized with Staphylococcus aureus (S.a.), which are sensed by Toll-like receptor 2 (TLR2). We hypothesized that TLR2 may impact on the expression of FcεRI on LC. OBJECTIVES To study a putative impact of TLR2 signaling on FcεRI, we analyzed FcεRI and known transcription factors of the receptor after ligand binding to TLR2. METHODS We generated LC from CD34(+) progenitors in vitro (CD34LC) expressing FcεRI and TLR2 as well as its partners TLR1 and TLR6. The expression of FcεRI and known transcription factors of the receptor was analyzed on the protein and RNA level by flow cytometry, Western blotting, and real-time PCR. RESULTS For CD34LC from 123 donors, we observed a high heterogeneity in FcεRI surface expression correlating with mRNA level of its α-chain. Stimulation of TLR1/2 or TLR2/6 dramatically down-regulated FcεRI on protein and mRNA level of both α- and γ-chain. Further analysis of putative transcription factors for FCER1A revealed the lack of GATA1 in CD34LC, weak expression of ELF1 and YY1, and high expression of PU.1. While ELF1 and YY1 appeared to be little affected by TLR2 engagement, PU.1 was significantly down-regulated. CONCLUSIONS Taken together, our findings show that in human, LC ligation of TLR2 by S.a.-derived products down-regulates FcεRI and its transcription factor PU.1, thus suggesting that FcεRI is controlled by PU.1 in these cells.
Collapse
Affiliation(s)
- N. Herrmann
- Department of Dermatology and Allergy; University of Bonn; Bonn; Germany
| | - S. Koch
- Department of Dermatology and Allergy; University of Bonn; Bonn; Germany
| | - N. Leib
- Department of Dermatology and Allergy; University of Bonn; Bonn; Germany
| | - J. Bedorf
- Department of Pathology; University of Bonn; Bonn; Germany
| | - H. Wilms
- Department of Dermatology and Allergy; University of Bonn; Bonn; Germany
| | - S. Schnautz
- Department of Dermatology and Allergy; University of Bonn; Bonn; Germany
| | - R. Fimmers
- Institute for Medical Biometry, Informatics and Epidemiology; University of Bonn; Bonn; Germany
| | - T. Bieber
- Department of Dermatology and Allergy; University of Bonn; Bonn; Germany
| |
Collapse
|
36
|
Mechanisms of ketamine-induced immunosuppression. ACTA ACUST UNITED AC 2012; 50:172-7. [DOI: 10.1016/j.aat.2012.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 07/17/2012] [Accepted: 08/20/2012] [Indexed: 01/01/2023]
|
37
|
Saluja R, Delin I, Nilsson GP, Adner M. FcεR1-mediated mast cell reactivity is amplified through prolonged Toll-like receptor-ligand treatment. PLoS One 2012; 7:e43547. [PMID: 22916277 PMCID: PMC3420882 DOI: 10.1371/journal.pone.0043547] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/23/2012] [Indexed: 12/18/2022] Open
Abstract
Background Mast cell-derived mediators mediate several of the pathological features of asthma. Microbial infections induce asthma exacerbations in which the contribution of mast cells remains incomprehensible. Principal Findings In this study we have investigated the characteristic expression pattern of Toll-like receptors (TLRs) 1–9 and the effect of TLR ligand treatment on IgE-receptor mediated mast cell reactivity. For the studies we employed in vitro differentiated connective tissue like mast cells (CTLMC) and mucosal like mast cells (MLMC) from mice. Both phenotypes were treated for 24 h or 96 h with ligands for TLR1/2, TLR2/6, TLR3 and TLR4, before activation with IgE and antigen. Prolonged exposure (96 h) with TLR-ligands promoted mast cell reactivity following IgE-receptor activation. TLR4 activation with LPS generated the most pronounced effect, with an enhanced degranulation and secretion of leukotrienes, cytokines and chemokines, in both CTLMC and MLMC. The effect of LPS was mediated through a Myd88-dependent pathway and the increased effect involved JNK-dependent pathway. Conclusion We find that prolonged exposure of mast cells to pathogens/TLR-ligands modulates their effector responses by priming them for increased release of several inflammatory mediators when subsequently activated by IgE-receptors. These data suggest that infections might exaggerate the severity of allergic reactions such as in asthma, by enhancing mediator release from mast cells.
Collapse
Affiliation(s)
- Rohit Saluja
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Delin
- Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar P. Nilsson
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- The Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Mikael Adner
- Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- The Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Sandig H, Bulfone-Paus S. TLR signaling in mast cells: common and unique features. Front Immunol 2012; 3:185. [PMID: 22783258 PMCID: PMC3389341 DOI: 10.3389/fimmu.2012.00185] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/14/2012] [Indexed: 11/13/2022] Open
Abstract
In addition to the well known role of mast cells in immunity to multi-cellular parasites and in the pathogenesis of allergy and asthma, the importance of mast cells in the immune defense against bacteria and viruses is increasingly being recognized. Their location in the skin, gut, and airways puts mast cells in an ideal location to encounter and respond to pathogens, and in order to perform this function, these cells express a variety of pattern recognition receptors, including Toll-like receptors (TLRs). Mast cells respond to TLR ligands by secreting cytokines, chemokines, and lipid mediators, and some studies have found that TLR ligands can also cause degranulation, although this finding is contentious. In addition, stimulation via TLR ligands can synergize with signaling via the FcεRI, potentially enhancing the response of the cells to antigen in vivo. A great deal is now known about TLR signaling pathways. Some features of these pathways are cell type-specific, however, and work is under way to fully elucidate the TLR signaling cascades in the mast cell. Already, some interesting differences have been identified. This review aims to address what is known about the responses of mast cells to TLR ligands and the signaling pathways involved. Given the location of mast cells at sites exposed to the environment, the response of these cells to TLR ligands must be carefully regulated. The known mechanisms behind this regulation are also reviewed here.
Collapse
Affiliation(s)
- Hilary Sandig
- Faculty of Human and Medical Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
39
|
Zhang B, Weng Z, Sismanopoulos N, Asadi S, Therianou A, Alysandratos KD, Angelidou A, Shirihai O, Theoharides TC. Mitochondria distinguish granule-stored from de novo synthesized tumor necrosis factor secretion in human mast cells. Int Arch Allergy Immunol 2012; 159:23-32. [PMID: 22555146 DOI: 10.1159/000335178] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/28/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mast cells are immune cells derived from hematopoietic precursors that mature in the tissue microenvironment. Mast cells are critical for allergic, immune and inflammatory processes, many of which involve tumor necrosis factor (TNF). These cells uniquely store TNF in their secretory granules. Upon stimulation, mast cells rapidly (30 min) secrete β-hexosaminidase and granule-stored TNF through degranulation, but also increase TNF mRNA and release de novo synthesized TNF 24 h later. The regulation of these two distinct pathways is poorly understood. METHODS Human LAD2 leukemic mast cells are stimulated by substance P. TNF secretion and gene expression were measured by ELISA and real-time PCR, and mitochondrial dynamics was observed in live cells under confocal microscopy. Cell energy consumption was measured in terms of oxygen consumption rate. RESULTS Here, we show that granule-stored TNF is preformed, and its secretion from LAD2 mast cells stimulated by substance P (1) exhibits higher energy consumption and is inhibited by the mitochondrial ATP pump blocker oligomycin, (2) shows rapid increase in intracellular calcium levels, and (3) exhibits reversible mitochondrial translocation, from a perinuclear distribution to the cell surface, as compared to de novo synthesized TNF release induced by lipopolysaccharide. This mitochondrial translocation is confirmed using primary human umbilical cord blood-derived mast cells stimulated by an allergic trigger (IgE/streptavidin). CONCLUSION Our findings indicate that unique mitochondrial functions distinguish granule-stored from newly synthesized TNF release from human mast cells, thus permitting the versatile involvement of mast cells in different biological processes.
Collapse
Affiliation(s)
- Bodi Zhang
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
In developed countries, the prevalence of allergy is on the rise. Although the causes are unknown, it seems that (1) the disappearance of microbiota may play a role in the increase of allergies and (2) exposure to bacterial infections during childhood decreases the incidence of allergies. Although several cell types are involved in the development of allergy, mast cells play a major role in orchestrating inflammation. Upon activation, mast cell secretory granules fuse with the plasma membrane, resulting in the release of a number of inflammatory mediators. In addition to allergy, mast cells contribute to the innate immune response against a variety of bacteria. This is accomplished through the secretion of cytokines and other soluble mediators. Interestingly, there is growing evidence that mast cells exposed to bacteria down-regulate degranulation in response to IgE/Allergen stimulation. This inhibitory effect seems to require direct contact between bacteria and mast cells, but the intracellular mechanism by which bacterial contact suppresses allergic responses is unknown. Here, we review different aspects of mast cell physiology and discuss hypotheses as to how bacteria may influence mast cell degranulation.
Collapse
Affiliation(s)
- Jordan Wesolowski
- Department of Microbiology and Immunology, Thomas Jefferson University, 223 South 10th Street, Bluemle Life Science Building Room 750, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
41
|
An overlapping syndrome of allergy and immune deficiency in children. J Allergy (Cairo) 2011; 2012:658279. [PMID: 21918651 PMCID: PMC3171763 DOI: 10.1155/2012/658279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 05/15/2011] [Accepted: 07/10/2011] [Indexed: 12/13/2022] Open
Abstract
Recurrent airway inflammations in children are an important clinical problem in pediatric practice. An essential challenge is differentiation between allergic background and immune deficiency, which is a difficult task taking into consideration individual predisposition to atopy, immune system maturation in the early childhood, as well as exposition to environmental allergens and microbial antigens. In this paper relationship between selected elements of innate and adaptive immunity, such as pattern-recognition receptors, complement components, dendritic cells, as well as immunoglobulins, and regulatory T lymph cells has been discussed. Particular attention has been paid to these mechanisms of the immune response which, depending on settings and timing of activation, predispose to allergy or contribute to tolerogenic phenotype. In the context of multifactorial conditioning of the innate and adaptive immunity governing the ultimate response and associations between allergy and immune deficiencies, these phenomena should be considered as pathogenetically not precluding, but as an overlapping syndrome.
Collapse
|
42
|
Mast cells in lung inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:235-69. [PMID: 21713660 DOI: 10.1007/978-1-4419-9533-9_13] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mast cells play an important role in the lung in both health and disease. Their primary role is to initiate an appropriate program of inflammation and repair in response to tissue damage initiated by a variety of diverse stimuli. They are important for host immunity against bacterial infection and potentially in the host immune response to non small cell lung cancer. In situations of ongoing tissue damage, the sustained release of numerous pro-inflammatory mediators, proteases and cytokines, contributes to the pathophysiology of lung diseases such as asthma and interstitial lung disease. A key goal is the development of treatments which attenuate adverse mast cell function when administered chronically to humans in vivo. Such therapies may offer a novel approach to the treatment of many life-threatening diseases.
Collapse
|
43
|
Surface TLR2 and TLR4 expression on mature rat mast cells can be affected by some bacterial components and proinflammatory cytokines. Mediators Inflamm 2011; 2011:427473. [PMID: 21765618 PMCID: PMC3134222 DOI: 10.1155/2011/427473] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 02/22/2011] [Indexed: 01/24/2023] Open
Abstract
The aim of our study was to determine whether some bacterial components as well as some proinflammatory cytokines can affect surface mast cell levels. By the use of flow cytometry technique, we documented that freshly isolated mature rat peritoneal mast cells do express surface TLR2 and TLR4 protein, but not CD14 molecules, and respond to stimulation with TLR2 and TLR4 ligands by cysteinyl leukotriene generation. The level of TLR2 protein is modulated by PGN and CCL5 treatment, but not by LPS, LAM, TNF, or IL-6. Surface mast cell TLR4 expression is affected by LPS, LAM, IL-6, and CCL5. Considering that TLR-mediated activation conditions not only engaged these cells in antibacterial defense and development of inflammation but also might influence allergic processes, our observations that surface TLR2 and TLR4 expression can be regulated both bacterial components and proinflammatory cytokines seem to be very intriguing and importance.
Collapse
|
44
|
Abstract
All animals live in symbiosis. Shaped by eons of co-evolution, host-bacterial associations have developed into prosperous relationships creating mechanisms for mutual benefits to both microbe and host. No better example exists in biology than the astounding numbers of bacteria harbored by the lower gastrointestinal tract of mammals. The mammalian gut represents a complex ecosystem consisting of an extraordinary number of resident commensal bacteria existing in homeostasis with the host's immune system. Most impressive about this relationship may be the concept that the host not only tolerates, but has evolved to require colonization by beneficial microorganisms, known as commensals, for various aspects of immune development and function. The microbiota provides critical signals that promote maturation of immune cells and tissues, leading to protection from infections by pathogens. Gut bacteria also appear to contribute to non-infectious immune disorders such as inflammatory bowel disease and autoimmunity. How the microbiota influences host immune responses is an active area of research with important implications for human health. This review synthesizes emerging findings and concepts that describe the mutualism between the microbiota and mammals, specifically emphasizing the role of gut bacteria in shaping an immune response that mediates the balance between health and disease. Unlocking how beneficial bacteria affect the development of the immune system may lead to novel and natural therapies based on harnessing the immunomodulatory properties of the microbiota.
Collapse
Affiliation(s)
- Janet Chow
- Division of Biology, California Institute of Technology, Pasadena, California, USA
| | | | | | | | | |
Collapse
|
45
|
McAlpine SM, Enoksson M, Lunderius-Andersson C, Nilsson G. The effect of bacterial, viral and fungal infection on mast cell reactivity in the allergic setting. J Innate Immun 2011; 3:120-30. [PMID: 21242671 DOI: 10.1159/000323350] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/06/2010] [Indexed: 12/11/2022] Open
Abstract
Mast cells are well known for their role in allergic inflammation where, upon aggregation of the high-affinity immunoglobulin E receptor, they release mediators such as histamine that cause classical allergic symptoms. Mast cells are located in almost all tissues and are especially numerous in organs that interface with the environment. Given this strategic location and the more recent notion that they are endowed with receptors that recognize endogenous and exogenous danger signals such as pathogens, it is not surprising that they function as important cells in immune surveillance. When mast cells are activated by pathogens they modulate innate and adaptive immune responses. In allergy, infections might cause exacerbation of the allergic reaction by affecting the reactivity of mast cells. With new developments within the field of mast cell biology, we will better understand how mast cells execute their effector functions. This knowledge will also help to improve the management of allergic diseases.
Collapse
Affiliation(s)
- Sarah M McAlpine
- Clinical Immunology and Allergy Unit, Department of Medicine, and Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
46
|
Kunii J, Takahashi K, Kasakura K, Tsuda M, Nakano K, Hosono A, Kaminogawa S. Commensal bacteria promote migration of mast cells into the intestine. Immunobiology 2010; 216:692-7. [PMID: 21281976 DOI: 10.1016/j.imbio.2010.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 10/29/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
Mast cells differentiate from hematopoietic stem cells in the bone marrow and migrate via the circulation to peripheral tissues, where they play a pivotal role in induction of both innate and adaptive immune responses. In this study, the effect of intestinal commensal bacteria on the migration of mast cells into the intestine was investigated. Histochemical analyses showed that germ-free (GF) mice had lower mast cell densities in the small intestine than normal mice. It was also shown that GF mice had lower mast cell proportion out of lamina propria leukocytes in the small intestine and higher mast cell percentages in the blood than normal mice by flow cytometry. These results indicate that migration of mast cells from the blood to the intestine is promoted by intestinal commensal bacteria. In addition, MyD88⁻/⁻ mice had lower densities of intestinal mast cells than CV mice, suggesting that the promotive effect of commensals is, at least in part, TLR-dependent. The ligands of CXC chemokine receptor 2 (CXCR2), which is critical for homing of mast cells to the intestine, were expressed higher in intestinal tissues and in intestinal epithelial cells (IECs) of normal mice than in those of GF or MyD88⁻/⁻ mice. Collectively, it is suggested that commensals promote migration of mast cells into the intestine through the induction of CXCR2 ligands from IECs in a TLR-dependent manner.
Collapse
Affiliation(s)
- Junichi Kunii
- Food and Physiological Functions Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Kawahara T. Inhibitory effect of heat-killed Lactobacillus strain on immunoglobulin E-mediated degranulation and late-phase immune reactions of mouse bone marrow-derived mast cells. Anim Sci J 2010; 81:714-21. [PMID: 21108693 DOI: 10.1111/j.1740-0929.2010.00788.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study investigated the in vitro effect of Lactobacillus strains, a major group of probiotic lactic acid bacteria, on immunoglobulin E (IgE)- and antigen-induced mast cell degranulation and subsequent gene expression. Bone marrow-derived mast cells (BMMCs) from DBA/2 mice were cultured with heat-killed Lactobacillus strains for 24 h. Some strains significantly inhibited IgE- and antigen-induced β-hexosaminidase release from BMMCs. Furthermore, Lactobacillus reuteri NBRC 15892, which exhibited the strongest inhibitory activity, significantly reduced the elevated interleukin (IL)-4, IL-13, tumor necrosis factor-α, and cyclooxygenase-2 expression levels that was induced by 1-2 h of stimulation with IgE and antigens. The suppressive effect of NBRC 15892 strain on BMMC degranulation was significantly reduced in the presence of a toll-like receptor (TLR)2-neutralizing antibody. In addition, downregulation of cell surface FcεRIα expression was observed after 6 h of NBRC 15892 treatment. These results suggest that some Lactobacillus strains inhibited IgE-mediated mast cell degranulation and subsequent late-phase reactions involving mast cells via a TLR2-dependent mechanism with FcεRIα downregulation.
Collapse
|
48
|
Chang HC, Lin KH, Tai YT, Chen JT, Chen RM. Lipoteichoic acid-induced TNF-α and IL-6 gene expressions and oxidative stress production in macrophages are suppressed by ketamine through downregulating Toll-like receptor 2-mediated activation oF ERK1/2 and NFκB. Shock 2010; 33:485-92. [PMID: 19823118 DOI: 10.1097/shk.0b013e3181c3cea5] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipoteichoic acid (LTA), a gram-positive bacterial outer membrane component, can cause septic shock. Our previous studies showed that ketamine has anti-inflammatory and antioxidant effects on gram-negative LPS-induced macrophage activation. In this study, we further evaluated the effects of ketamine on the regulation of LTA-induced TNF-alpha and IL-6 gene expressions and oxidative stress production in macrophages and its possible mechanisms. Exposure of macrophages to a therapeutic concentration of ketamine (100 microM) inhibited LTA-induced TNF-alpha and IL-6 expressions at protein or mRNA levels. In parallel, ketamine at 100 microM reduced LTA-stimulated phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). Sequentially, ketamine reduced the LTA-triggered translocation of nuclear factor-kappaB (NFkappaB) from the cytoplasm to nuclei and its transactivation activity. Pretreatment with PD98059, an inhibitor of ERK, decreased LTA-enhanced NFkappaB activation and TNF-alpha and IL-6 mRNA syntheses. Cotreatment with ketamine and PD98059 synergistically suppressed the LTA-induced translocation and transactivation of NFkappaB and biosyntheses of TNF-alpha and IL-6 mRNA. Application of Toll-like receptor 2 (TLR2) small interfering RNA (si)RNA into macrophages decreased the levels of this receptor, and simultaneously ameliorated LTA-augmented NFkappaB transactivation and consequent production of TNF-alpha and IL-6 mRNA. Cotreatment with ketamine and TLR2 siRNA synergistically lowered TNF-alpha and IL-6 mRNA syntheses in LTA-activated macrophages. Ketamine and TLR2 siRNA could reduce the LTA-induced increases in production of nitrite and intracellular reactive oxygen species in macrophages, and their combination had better effects than a single exposure. Thus, this study shows that one possible mechanism involved in ketamine-induced inhibition of LTA-induced TNF-alpha and IL-6 gene expressions and oxidative stress production is through downregulating TLR2-mediated phosphorylation of ERK1/2 and the subsequent translocation and transactivation of NFkappaB.
Collapse
Affiliation(s)
- Huai-Chia Chang
- Graduate Institute of Medical Sciences, Taipei Medical University, 250 Wu-Xing Street, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
49
|
Saturnino SF, Prado RO, Cunha-Melo JR, Andrade MV. Endotoxin tolerance and cross-tolerance in mast cells involves TLR4, TLR2 and FcepsilonR1 interactions and SOCS expression: perspectives on immunomodulation in infectious and allergic diseases. BMC Infect Dis 2010; 10:240. [PMID: 20707930 PMCID: PMC2930646 DOI: 10.1186/1471-2334-10-240] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/14/2010] [Indexed: 12/22/2022] Open
Abstract
Background The study of the endotoxin tolerance phenomenon in light of the recently defined roles of mast cells and toll-like receptors as essential components of the innate immune response and as orchestrators of acquired immunity may reveal potentially useful mechanisms of immunomodulation of infectious and allergic inflammatory responses, such as sepsis or asthma. Here we evaluated the phenomenon of direct tolerance of endotoxins, as well as the induction of cross-tolerance and synergism by stimulation with toll-like receptor-2 (TLR2) and FcεR1 agonists, in murine mast cells prestimulated with lipopolysaccharide (LPS). Additionally, we evaluated some stimulatory and inhibitory signaling molecules potentially involved in these phenomena. Methods MC/9 cells and primary bone marrow-derived mast cells obtained from C57BL/6 and TLR4-/- knock-out mice were sensitized to DNP-HSA (antigen) by incubation with DNP-IgE and were prestimulated with LPS for 18 hr prior to stimulation. Cultures were stimulated with LPS or Pam3Cys-Ser-(Lys)4 3HCl (P3C), a TLR2 agonist, individually or in combination with antigen. The production of IL-6 and TNFα, the phosphorylation of NFκB and p38 MAPK, and the expression of TLR4 and SOCS-1 and -3 were analyzed. Results We found that production of TNFα and IL-6 in murine mast cells that have been pretreated with LPS and challenged with TLR4 (LPS) or -2 (P3C) agonists was reduced, phenomena described as endotoxin tolerance (LPS) and cross-tolerance (P3C), respectively. The expression of TLR4 was not affected by LPS pretreatment. Our results show that the FcεR1 agonist DNP-HSA (antigen) interacts synergistically with LPS or P3C to markedly enhance production of cytokines (TNFα and IL-6). This synergistic effect with LPS and P3C was also attenuated by LPS pretreatment and was mediated by TLR4. These results may be attributed to the reduction in phosphorylation of the mitogen-activated protein kinase (MAPK), p38, and the transcription factor NFκB, as well as to an increase in the expression of the suppressors of cytokine signaling (SOCS)-1 and -3 proteins in LPS-pretreated mast cells. Conclusions These findings can be explored with respect to the modulation of inflammatory responses associated with infectious and allergic processes in future studies.
Collapse
Affiliation(s)
- Saulo F Saturnino
- Department of Internal Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130100, Brazil
| | | | | | | |
Collapse
|
50
|
Wierzbicki M, Brzezińska-Błaszczyk E. Diverse effects of bacterial cell wall components on mast cell degranulation, cysteinyl leukotriene generation and migration. Microbiol Immunol 2010; 53:694-703. [PMID: 19954457 DOI: 10.1111/j.1348-0421.2009.00174.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nowadays there is more and more evidence that mast cells take part in antibacterial defence. Mast cells have the ability to kill bacteria via phagocytose-dependent or phagocytose-independent ways and express antimicrobial peptides that can directly kill pathogens at their site of entry. What is more, mast cells are capable of processing bacterial antigens for presentation through class I and II MHC molecules. Some data indicate that these cells can release various proinflammatory mediators in response to activation with bacteria and/or their products, however this information is still far from complete. Therefore, in this study we examined the ability of PGN from Staphylococcus aureus, LPS from Eschericha coli and LAM from Mycobacterium smegmatis to stimulate mature rat mast cell degranulation as well as cysteinyl LT generation. We also studied the influence of these bacterial components on mast cell migration. We found that PGN, LPS and LAM all failed to induce mast cell degranulation and histamine release. At the same time, activation of mast cells with these bacterial antigens resulted in generation and release of significant amounts of LT. Moreover, we documented that, even in the presence of laminin, none of the bacterial antigens used stimulated mast cell migration. However, PGN did induce migration of RANTES-primed mast cells, and LPS did stimulate mast cell migratory response after priming with IL-6. Our results show that PGN, LPS and LAM might be among the important bacterial antigens involved in mast cell activation during bacterial infection.
Collapse
Affiliation(s)
- Maciej Wierzbicki
- Department of Experimental Immunology, Medical University of Łódź, Łódź, Poland
| | | |
Collapse
|