1
|
Graesser C, Nord R, Flaswinkel H, Kremmer E, Meese E, Caban KM, Fröhlich T, Grässer FA, Hart M. Use of antibodies against Epstein-Barr virus nuclear antigen 1 for detection of cellular proteins with monomethylated arginine residues that are potentially involved in viral transformation. Arch Virol 2024; 169:241. [PMID: 39514105 PMCID: PMC11549202 DOI: 10.1007/s00705-024-06172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Epstein-Barr virus nuclear antigen 1 (EBNA1) contains two arginine-glycine (RG) repeats that contain symmetric/asymmetric dimethylarginine (SDMA/ADMA) and monomethylarginine (MMA) residues. We generated mouse monoclonal antibodies directed against a monomethylated GRGRGG-containing repeat located between amino acids 328 and 377 of EBNA1. In addition to detecting MMA-modified EBNA1, we also had the goal of identifying cellular proteins that bind to MMA-modified EBNA1 in EBV-positive Raji cells. Furthermore, we hypothesized that antibodies against MMA-modified EBNA1 might also recognize cell factors that use an MMA-modified surface structure similar to that of EBNA1 to bind to their common targets. Using a combination of immunoprecipitation and mass spectrometry, we identified a number of such cellular proteins, including SNRPD1-3, ALY/REF, RPS15, DIDO1, LSM12, LSM14A, DAP3, and CPSF1. An NACA complex protein that was shown previously to bind to the glycine-alanine repeat of EBNA1 was also identified. The proteins identified in this study are involved in splicing, tumorigenesis, transcriptional activation, DNA stability, and RNA processing or export.
Collapse
Affiliation(s)
- Christian Graesser
- Institute of Virology, Saarland University Medical School, Kirrbergerstraße, Haus 47, D-66421, Homburg/Saar, Germany
| | - Ruth Nord
- Institute of Virology, Saarland University Medical School, Kirrbergerstraße, Haus 47, D-66421, Homburg/Saar, Germany
| | - Heinrich Flaswinkel
- Department of Biology II, Ludwigs-Maximilians-Unversität (LMU) Munich, Butenandtstraße 1, 81377, Munich, Germany
| | - Elisabeth Kremmer
- Department of Biology II, Ludwigs-Maximilians-Unversität (LMU) Munich, Butenandtstraße 1, 81377, Munich, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University (USAAR), Kirrbergerstraße, Haus 60, 66421, Homburg/Saar, Germany
| | - Karolina Magdalena Caban
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Straße 25, 81377, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Straße 25, 81377, Munich, Germany
| | - Friedrich A Grässer
- Institute of Virology, Saarland University Medical School, Kirrbergerstraße, Haus 47, D-66421, Homburg/Saar, Germany
| | - Martin Hart
- Center of Human and Molecular Biology (ZHMB), Institute of Human Genetics, Saarland University (USAAR), Kirrbergerstraße, Haus 60, Building 60, D-66421, Homburg/Saar, Germany.
| |
Collapse
|
2
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
3
|
Abstract
Primary atopic disorders describes a series of monogenic diseases that have allergy- or atopic effector–related symptoms as a substantial feature. The underlying pathogenic genetic lesions help illustrate fundamental pathways in atopy, opening up diagnostic and therapeutic options for further study in those patients, but ultimately for common allergic diseases as well. Key pathways affected in these disorders include T cell receptor and B cell receptor signaling, cytokine signaling, skin barrier function, and mast cell function, as well as pathways that have not yet been elucidated. While comorbidities such as classically syndromic presentation or immune deficiency are often present, in some cases allergy alone is the presenting symptom, suggesting that commonly encountered allergic diseases exist on a spectrum of monogenic and complex genetic etiologies that are impacted by environmental risk factors.
Collapse
Affiliation(s)
- Joshua D. Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
4
|
Affiliation(s)
- Byron B. Au-Yeung
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Lin Shen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
- Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
5
|
Milner JD. TCR Signaling Abnormalities in Human Th2-Associated Atopic Disease. Front Immunol 2018; 9:719. [PMID: 29713322 PMCID: PMC5911486 DOI: 10.3389/fimmu.2018.00719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/22/2018] [Indexed: 11/15/2022] Open
Abstract
Stimulation of naïve CD4 T cells with weak T cell receptor agonists even in the absence of T helper-skewing cytokines can result in IL-4 production which can drive a Th2 response. Evidence for the in vivo consequences of such a phenomenon can be found in a number of mouse models and, importantly, a series of monogenic human diseases associated with significant atopy which are caused by mutations in the T cell receptor signaling cascade. Such diseases can help understand how Th2 responses evolve in humans, and potentially provide insight into therapeutic interventions.
Collapse
Affiliation(s)
- Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
6
|
Lyons JJ, Milner JD. Primary atopic disorders. J Exp Med 2018; 215:1009-1022. [PMID: 29549114 PMCID: PMC5881472 DOI: 10.1084/jem.20172306] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2018] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
Important insights from monogenic disorders into the immunopathogenesis of allergic diseases and reactions are discussed. Monogenic disorders have provided fundamental insights into human immunity and the pathogenesis of allergic diseases. The pathways identified as critical in the development of atopy range from focal defects in immune cells and epithelial barrier function to global changes in metabolism. A major goal of studying heritable single-gene disorders that lead to severe clinical allergic diseases is to identify fundamental pathways leading to hypersensitivity that can be targeted to provide novel therapeutic strategies for patients with allergic diseases, syndromic and nonsyndromic alike. Here, we review known single-gene disorders leading to severe allergic phenotypes in humans, discuss how the revealed pathways fit within our current understanding of the atopic diathesis, and propose how some pathways might be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
7
|
Cauwe B, Tian L, Franckaert D, Pierson W, Staats KA, Schlenner SM, Liston A. A novel Zap70 mutation with reduced protein stability demonstrates the rate-limiting threshold for Zap70 in T-cell receptor signalling. Immunology 2014; 141:377-87. [PMID: 24164480 DOI: 10.1111/imm.12199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 01/01/2023] Open
Abstract
Loss of ζ-associated protein 70 (Zap70) results in severe immunodeficiency in humans and mice because of the critical role of Zap70 in T-cell receptor (TCR) signalling. Here we describe a novel mouse strain generated by N-ethyl-N-nitrosourea mutagenesis, with the reduced protein stability (rps) mutation in Zap70. The A243V rps mutation resulted in decreased Zap70 protein and a reduced duration of TCR-induced calcium responses, equivalent to that induced by a 50% decrease in catalytically active Zap70. The reduction of signalling through Zap70 was insufficient to substantially perturb thymic differentiation of conventional CD4 and CD8 T cells, although Foxp3(+) regulatory T cells demonstrated altered thymic production and peripheral homeostasis. Despite the mild phenotype, the Zap70(A243V) variant lies just above the functional threshold for TCR signalling competence, as T cells relying on only a single copy of the Zap70(rps) allele for TCR signalling demonstrated no intracellular calcium response to TCR stimulation. This addition to the Zap70 allelic series indicates that a rate-limiting threshold for Zap70 protein levels exists at which signalling capacity switches from nearly intact to effectively null.
Collapse
Affiliation(s)
- Bénédicte Cauwe
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium; Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
8
|
Siggs OM, Yates AL, Schlenner S, Liston A, Lesage S, Goodnow CC. A ZAP-70 kinase domain variant prevents thymocyte-positive selection despite signalling CD69 induction. Immunology 2014; 141:587-95. [PMID: 24266404 DOI: 10.1111/imm.12220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/13/2013] [Accepted: 11/19/2013] [Indexed: 12/15/2022] Open
Abstract
Quantitative reductions in T-cell receptor (TCR) signalling are associated with severe immunodeficiency, yet in certain cases can lead to autoimmunity. Mutation of the tyrosine kinase ZAP-70 can cause either of these outcomes, yet the limits of its signal transducing capacity are not well defined. To investigate these limits we have made use of mrtless: a chemically induced mutation of Zap70 associated with T-cell deficiency. Unlike cells devoid of ZAP-70, mrtless thymocytes showed partial induction of CD5 and CD69, and were sensitive to TCR stimulation with a dose-response shifted approximately 10-fold. However, essentially no T cells were able to compensate for the mrtless mutation and mature beyond the CD4⁺ CD8⁺ stage. This outcome contrasts with a ZAP-70 Src Homology 2 domain mutant strain, where high-affinity self-reactive TCR are positively selected rather than deleted. We discuss these data with respect to current models of TCR signalling in thymocyte selection.
Collapse
Affiliation(s)
- Owen M Siggs
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Siggs OM. Dissecting mammalian immunity through mutation. Immunol Cell Biol 2014; 92:392-9. [PMID: 24518983 PMCID: PMC4038135 DOI: 10.1038/icb.2014.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 12/27/2022]
Abstract
Although mutation and natural selection have given rise to our immune system, a well-placed mutation can also cripple it, and within an expanding population we are recognizing more and more cases of single-gene mutations that compromise immunity. These mutations are an ideal tool for understanding human immunology, and there are more ways than ever to measure their physiological effects. There are also more ways to create mutations in the laboratory, and to use these resources to systematically define the function of every gene in our genome. This review focuses on the discovery and creation of mutations in the context of mammalian immunity, with an emphasis on the use of genome-wide chemical and CRISPR/Cas9 mutagenesis to reveal gene function.
Collapse
Affiliation(s)
- Owen M Siggs
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| |
Collapse
|
10
|
Gusareva ES, Kurey I, Grekov I, Lipoldová M. Genetic regulation of immunoglobulin E level in different pathological states: integration of mouse and human genetics. Biol Rev Camb Philos Soc 2013; 89:375-405. [DOI: 10.1111/brv.12059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 06/14/2013] [Accepted: 07/31/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Elena S. Gusareva
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| | - Iryna Kurey
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| | - Igor Grekov
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| | - Marie Lipoldová
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| |
Collapse
|
11
|
Park JE, Cullins D, Zalduondo L, Barnett SL, Yi AK, Kleinau S, Stuart JM, Kang AH, Myers LK. Molecular basis for T cell response induced by altered peptide ligand of type II collagen. J Biol Chem 2012; 287:19765-74. [PMID: 22511761 PMCID: PMC3366009 DOI: 10.1074/jbc.m112.349688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/10/2012] [Indexed: 11/06/2022] Open
Abstract
Mounting evidence from animal models has demonstrated that alterations in peptide-MHC interactions with the T cell receptor (TCR) can lead to dramatically different T cell outcomes. We have developed an altered peptide ligand of type II collagen, referred to as A9, which differentially regulates TCR signaling in murine T cells leading to suppression of arthritis in the experimental model of collagen-induced arthritis. This study delineates the T cell signaling pathway used by T cells stimulated by the A9·I-A(q) complex. We have found that T cells activated by A9 bypass the requirement for Zap-70 and CD3-ζ and signal via FcRγ and Syk. Using collagen-specific T cell hybridomas engineered to overexpress either Syk, Zap-70, TCR-FcRγ, or CD3-ζ, we demonstrate that A9·I-A(q) preferentially activates FcRγ/Syk but not CD3-ζ/Zap-70. Moreover, a genetic absence of Syk or FcRγ significantly reduces the altered peptide ligand induction of the nuclear factor GATA3. By dissecting the molecular mechanism of A9-induced T cell signaling we have defined a new alternate pathway that is dependent upon FcRγ and Syk to secrete immunoregulatory cytokines. Given the interest in using Syk inhibitors to treat patients with rheumatoid arthritis, understanding this pathway may be critical for the proper application of this therapy.
Collapse
Affiliation(s)
| | | | - Lillian Zalduondo
- Comparative Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Stacey L. Barnett
- Comparative Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | - Sandra Kleinau
- the Department of Cell and Molecular Biology, Uppsala University, Box 256, 751 05 Uppsala, Sweden
| | - John M. Stuart
- Departments of Medicine
- Research Service, Veterans Affairs Medical Center, Memphis, Tennessee 38104, and
| | - Andrew H. Kang
- Departments of Medicine
- Research Service, Veterans Affairs Medical Center, Memphis, Tennessee 38104, and
| | | |
Collapse
|
12
|
Thymus, innate immunity and autoimmune arthritis: Interplay of gene and environment. FEBS Lett 2011; 585:3633-9. [DOI: 10.1016/j.febslet.2011.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 01/01/2023]
|
13
|
Quantitative events determine the differentiation and function of helper T cells. Nat Immunol 2011; 12:288-94. [DOI: 10.1038/ni.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Datta S, Milner JD. Altered T-cell receptor signaling in the pathogenesis of allergic disease. J Allergy Clin Immunol 2011; 127:351-4. [PMID: 21281865 DOI: 10.1016/j.jaci.2010.11.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/17/2010] [Accepted: 11/19/2010] [Indexed: 12/19/2022]
Abstract
Mounting evidence from animal models has demonstrated that alterations in T-cell receptor (TCR) signaling alone can lead to dramatically skewed differentiation of naive T cells into T(H)2 cells, to T(H)2 effector functions, and to T(H)2-related diseases. There is significant potential relevance of these observations to human disease. Specifically, a number of immunodeficiencies associated with atopic disease might have atopy as a manifestation because of aberrant TCR signaling. It is therefore important to attempt to identify a role for defects in TCR signaling in the pathogenesis of common atopic diseases.
Collapse
Affiliation(s)
- Shrimati Datta
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | |
Collapse
|
15
|
Tanaka S, Maeda S, Hashimoto M, Fujimori C, Ito Y, Teradaira S, Hirota K, Yoshitomi H, Katakai T, Shimizu A, Nomura T, Sakaguchi N, Sakaguchi S. Graded attenuation of TCR signaling elicits distinct autoimmune diseases by altering thymic T cell selection and regulatory T cell function. THE JOURNAL OF IMMUNOLOGY 2010; 185:2295-305. [PMID: 20644168 DOI: 10.4049/jimmunol.1000848] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mice with a mutation of the zeta-associated protein of 70 kDa gene (skg mutation) are genetically prone to develop autoimmune arthritis, depending on the environment. In a set of mice with the mutation, the amount of zeta-associated protein of 70 kDa protein as well as its tyrosine phosphorylation upon TCR stimulation decreased from +/+, skg/+, skg/skg, to skg/- mice in a stepwise manner. The reduction resulted in graded alterations of thymic positive and negative selection of self-reactive T cells and Foxp3(+) natural regulatory T cells (Tregs) and their respective functions. Consequently, skg/- mice spontaneously developed autoimmune arthritis even in a microbially clean environment, whereas skg/skg mice required stimulation through innate immunity for disease manifestation. After Treg depletion, organ-specific autoimmune diseases, especially autoimmune gastritis, predominantly developed in +/+, at a lesser incidence in skg/+, but not in skg/skg BALB/c mice, which suffered from other autoimmune diseases, especially autoimmune arthritis. In correlation with this change, gastritis-mediating TCR transgenic T cells were positively selected in +/+, less in skg/+, but not in skg/skg BALB/c mice. Similarly, on the genetic background of diabetes-prone NOD mice, diabetes spontaneously developed in +/+, at a lesser incidence in skg/+, but not in skg/skg mice, which instead succumbed to arthritis. Thus, the graded attenuation of TCR signaling alters the repertoire and the function of autoimmune T cells and natural Tregs in a progressive manner. It also changes the dependency of disease development on environmental stimuli. These findings collectively provide a model of how genetic anomaly of T cell signaling contributes to the development of autoimmune disease.
Collapse
Affiliation(s)
- Satoshi Tanaka
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Milner JD, Fazilleau N, McHeyzer-Williams M, Paul W. Cutting edge: lack of high affinity competition for peptide in polyclonal CD4+ responses unmasks IL-4 production. THE JOURNAL OF IMMUNOLOGY 2010; 184:6569-73. [PMID: 20495070 DOI: 10.4049/jimmunol.1000674] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Priming of naive monoclonal CD4 T cells via weak agonsim permits GATA-3 transcription and Th2 differentiation. To test whether this process can occur in polyclonal naive populations, where a range of TCR affinities exists for any given Ag/MHC complex, we primed naive CD4 cells from 5CC7 Vbeta3 transgenic mice, which have a fixed beta-chain specific for pigeon cytochrome c peptide I-Ek. Priming populations de-pleted of higher affinity, moth cytochrome c pep-tide I-Ek tetramer-binding cells resulted in substantial IL-4 production that did not occur in the presence of higher affinity cells. TCRalpha-chain sequence analysis showed that clones that possessed TCR features associated with high affinity responses to pigeon cytochrome c made less IL-4 than clones that possessed fewer such motifs. These results indicate that cells bearing TCRs that are weakly stimulated by their cognate Ag preferentially adopt a Th2 phenotype when primed in the absence of competition from cells with higher affinity receptors.
Collapse
Affiliation(s)
- Joshua D Milner
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
17
|
Paul WE. What determines Th2 differentiation, in vitro and in vivo? Immunol Cell Biol 2010; 88:236-9. [PMID: 20157328 DOI: 10.1038/icb.2010.2] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have known since 1991 how to induce naive CD4 T cells to differentiate in vitro into Th2 cells and, over the ensuing years, a comprehensive picture of the molecules involved in this important process has emerged. GATA3 and STAT5 are both essential for in vitro differentiation, stimulating naive cells through a process involving induction, which is T-cell receptor (TCR) dependent but interleukin (IL)-4 independent, and commitment, which is IL-4 dependent. Th2 differentiation in vivo appears more complex. GATA3 and probably STAT5 are required in vivo but, at least for certain helminth infections, the IL-4/IL-4Ra/STAT6 pathway is dispensable. The role of thymic stromal lymphopoietin and of low TCR signal strength and the participation of basophils in establishing a Th2-baising in vivo environment have achieved considerable attention. Here I discuss the major players in Th2 differentiation particularly as they may exert their effects in vivo.
Collapse
Affiliation(s)
- William E Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| |
Collapse
|
18
|
Current World Literature. Curr Opin Lipidol 2009; 20:135-42. [PMID: 19276892 DOI: 10.1097/mol.0b013e32832a7e09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Abe K, Klaften M, Narita A, Kimura T, Imai K, Kimura M, Rubio-Aliaga I, Wagner S, Jakob T, Hrabé de Angelis M. Genome-wide search for genes that modulate inflammatory arthritis caused by Ali18 mutation in mice. Mamm Genome 2009; 20:152-61. [PMID: 19238339 DOI: 10.1007/s00335-009-9170-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Accepted: 12/30/2008] [Indexed: 01/17/2023]
Abstract
Many of inflammatory diseases, including inflammatory arthritis, are multifactorial bases. The Ali18 semidominant mutation induced by N-ethyl-N-nitrosourea in the C3HeB/FeJ (C3H) genome causes spontaneous inflammation of peripheral limbs and elevated immunoglobulin E (IgE) levels in mice. Although the Ali18 locus was mapped to a single locus on chromosome 4, the arthritic phenotype of Ali18/+ mice was completely suppressed in F1 hybrid genetic backgrounds. To determine the chromosomal locations of the modifier loci affecting the severity of arthritis, an autosomal genome scan of 22 affected Ali18/+ F2 mice was conducted using C57BL/6J as a partner strain. Interestingly, regions on chromosomes 1 and 3 in C3H showed significant genetic interactions. Moreover, 174 N2 (backcross to Ali18/Ali18) and 267 F2 animals were used for measurement of arthritis scores and plasma IgE levels, and also for genotyping with 153 genome-wide single nucleotide polymorphism (SNP) markers. In N2 populations, two significant trait loci for arthritis scores on chromosomes 1 and 15 were detected. Although no significant scores were detected in F2 mice besides chromosome 4, a suggestive score was detected on chromosome 3. In addition, a two-dimensional genome scan using F2 identified five suggestive scores of chromosomal combinations, chromosomes 1 x 10, 2 x 6, 3 x 4, 4 x 9, and 6 x 15. No significant trait loci affecting IgE levels were detected in both N2 and F2 populations. Identification of the Ali18 modifier genes by further detailed analyses such as congenic strains and expression profiling may dissect molecular complexity in inflammatory diseases.
Collapse
Affiliation(s)
- Koichiro Abe
- Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa, 259-1193, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chinen J, Shearer WT. Advances in basic and clinical immunology in 2008. J Allergy Clin Immunol 2009; 123:328-32. [PMID: 19203657 PMCID: PMC6154383 DOI: 10.1016/j.jaci.2008.12.1113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 12/24/2008] [Indexed: 12/30/2022]
Abstract
We reviewed selected reports in the field of basic and clinical immunology published in 2008. Research progress in the immunologic mechanisms of allergic disease included the modulation of T(H)2 responses by specific transcription factors and receptors associated with the innate immunity, underscoring the importance of the interactions between adaptive and innate immune mechanisms. Investigations of the pathophysiology of hereditary angioedema included a variety of host factors with roles in bradykinin metabolism and vasomotor activity, explaining the variable severity of the clinical presentation. The research focus in HIV infection has shifted from control of disease progression to the barriers for viral eradication, and the search for vaccine designs that provide immunity in the short window between infection and establishment of viral reservoirs. HIV-infected individuals who receive antiviral treatment develop a high incidence of asthma, resembling the inflammatory processes associated with immunoreconstitution. The correlation of molecular diagnosis and clinical presentation was analyzed in 4 relatively rare primary immunodeficiencies: hyper-IgE syndrome; immune dysfunction, polyendocrinopathy, enteropathy, X-linked disease; cartilage-hair hypoplasia; and nuclear factor-kappaB essential modulator deficiency. Studies of patients with partial DiGeorge syndrome and chronic granulomatous disease unveiled subclinical deficiencies that might have an impact in their care. Long-term outcomes from patients with severe combined immunodeficiency who received bone marrow transplants were considered successful compared with the alternative of no intervention. However, the occurrence of adverse events reinforces the need for coordinate efforts to develop optimal protocols for hematopoietic stem cell transplantation for severe immune defects.
Collapse
Affiliation(s)
- Javier Chinen
- Department of Pediatrics, Allergy and Immunology Section, Baylor College of Medicine, Houston, Tex, USA
| | | |
Collapse
|
21
|
Gailus-Durner V, Fuchs H, Adler T, Aguilar Pimentel A, Becker L, Bolle I, Calzada-Wack J, Dalke C, Ehrhardt N, Ferwagner B, Hans W, Hölter SM, Hölzlwimmer G, Horsch M, Javaheri A, Kallnik M, Kling E, Lengger C, Mörth C, Mossbrugger I, Naton B, Prehn C, Puk O, Rathkolb B, Rozman J, Schrewe A, Thiele F, Adamski J, Aigner B, Behrendt H, Busch DH, Favor J, Graw J, Heldmaier G, Ivandic B, Katus H, Klingenspor M, Klopstock T, Kremmer E, Ollert M, Quintanilla-Martinez L, Schulz H, Wolf E, Wurst W, de Angelis MH. Systemic first-line phenotyping. Methods Mol Biol 2009; 530:463-509. [PMID: 19266331 DOI: 10.1007/978-1-59745-471-1_25] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
With the completion of the mouse genome sequence an essential task for biomedical sciences in the twenty-first century will be the generation and functional analysis of mouse models for every gene in the mammalian genome. More than 30,000 mutations in ES cells will be engineered and thousands of mouse disease models will become available over the coming years by the collaborative effort of the International Mouse Knockout Consortium. In order to realize the full value of the mouse models proper characterization, archiving and dissemination of mouse disease models to the research community have to be performed. Phenotyping centers (mouse clinics) provide the necessary capacity, broad expertise, equipment, and infrastructure to carry out large-scale systemic first-line phenotyping. Using the example of the German Mouse Clinic (GMC) we will introduce the reader to the different aspects of the organization of a mouse clinic and present selected methods used in first-line phenotyping.
Collapse
|
22
|
Milner J, Paul WE. Limited T-cell receptor diversity predisposes to Th2 immunopathology: involvement of Tregs and conventional CD4 T cells. J Clin Immunol 2008; 28:631-4. [PMID: 18792766 DOI: 10.1007/s10875-008-9245-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 08/01/2008] [Indexed: 11/28/2022]
Abstract
INTRODUCTION A variety of immunodeficiencies characterized by limitations in the T-cell repertoire are also associated with Th2-like immunopathology. METHODS We established a model of this phenomenon by transferring limited numbers of mature CD4+ T-cells into lymphopenic mice. RESULT This transfer resulted in eosinophilic pneumonia with alternatively activated macrophages, eosinophilic gastritis, and other organ infiltration, associated with elevated IgE levels and Th2 cytokine production by the transferred cells. Transfer of large numbers of T-cells did not result in any pathology. The disease could be suppressed by CD25+ Foxp3+ regulatory T cells, but only when the T-cell receptor repertoire of the Tregs was diverse. CONCLUSION Collectively, the data suggest that limited T-cell receptor repertoires derived from normal CD4+ T cells can cause severe Th2 immunopathology, and that failure of control by Tregs due to limitation of their repertoire is partially responsible for this phenotype.
Collapse
Affiliation(s)
- Joshua Milner
- Laboratory of Immunology, NIAID, NIH, 9000 Rockville Pike, NIH Building 10-11N311, Bethesda, MD 208922, USA
| | | |
Collapse
|