1
|
Scadding GK, McDonald M, Backer V, Scadding G, Bernal-Sprekelsen M, Conti DM, De Corso E, Diamant Z, Gray C, Hopkins C, Jesenak M, Johansen P, Kappen J, Mullol J, Price D, Quirce S, Reitsma S, Salmi S, Senior B, Thyssen JP, Wahn U, Hellings PW. Pre-asthma: a useful concept for prevention and disease-modification? A EUFOREA paper. Part 1-allergic asthma. FRONTIERS IN ALLERGY 2024; 4:1291185. [PMID: 38352244 PMCID: PMC10863454 DOI: 10.3389/falgy.2023.1291185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 02/16/2024] Open
Abstract
Asthma, which affects some 300 million people worldwide and caused 455,000 deaths in 2019, is a significant burden to suffers and to society. It is the most common chronic disease in children and represents one of the major causes for years lived with disability. Significant efforts are made by organizations such as WHO in improving the diagnosis, treatment and monitoring of asthma. However asthma prevention has been less studied. Currently there is a concept of pre- diabetes which allows a reduction in full blown diabetes if diet and exercise are undertaken. Similar predictive states are found in Alzheimer's and Parkinson's diseases. In this paper we explore the possibilities for asthma prevention, both at population level and also investigate the possibility of defining a state of pre-asthma, in which intensive treatment could reduce progression to asthma. Since asthma is a heterogeneous condition, this paper is concerned with allergic asthma. A subsequent one will deal with late onset eosinophilic asthma.
Collapse
Affiliation(s)
- G. K. Scadding
- Department of Allergy & Rhinology, Royal National ENT Hospital, London, United Kingdom
- Division of Immunity and Infection, University College, London, United Kingdom
| | - M. McDonald
- The Allergy Clinic, Blairgowrie, Randburg, South Africa
| | - V. Backer
- Department of Otorhinolaryngology, Head & Neck Surgery, and Audiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - G. Scadding
- Allergy, Royal Brompton Hospital, London, United Kingdom
| | - M. Bernal-Sprekelsen
- Head of ORL-Deptartment, Clinic Barcelona, Barcelona, Spain
- Chair of ORL, University of Barcelona, Barcelona, Spain
| | - D. M. Conti
- The European Forum for Research and Education in Allergy and Airway Diseases Scientific Expert Team Members, Brussels, Belgium
| | - E. De Corso
- Otolaryngology Head and Neck Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Z. Diamant
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Deptarment of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
| | - C. Gray
- Paediatric Allergist, Red Cross Children’s Hospital and University of Cape Town, Cape Town, South Africa
- Kidsallergy Centre, Cape Town, South Africa
| | - C. Hopkins
- Department of Rhinology and Skull Base Surgery, Guy’s and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom
| | - M. Jesenak
- Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovakia
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - P. Johansen
- Department of Dermatology, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - J. Kappen
- Department of Pulmonology, STZ Centre of Excellence for Asthma, COPD and Respiratory Allergy, Franciscus Gasthuis & Vlietland, Rotterdam, Netherlands
| | - J. Mullol
- Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, FRCB-IDIBAPS, Universitat de Barcelona, CIBERES, Barcelona, Spain
| | - D. Price
- Observational and Pragmatic Research Institute, Singapore, Singapore
- Division of Applied Health Sciences, Centre of Academic Primary Care, University of Aberdeen, Aberdeen, United Kingdom
| | - S. Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - S. Reitsma
- Department of Otorhinolarynogology and Head/Neck Surgery, Amsterdam University Medical Centres, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - S. Salmi
- Department of Otorhinolaryngology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
- Department of Allergy, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - B. Senior
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - J. P. Thyssen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - U. Wahn
- Former Head of the Department for Pediatric Pneumology and Immunology, Charite University Medicine, Berlin, Germany
| | - P. W. Hellings
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals, Leuven, Belgium
- Laboratory of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
León B. Understanding the development of Th2 cell-driven allergic airway disease in early life. FRONTIERS IN ALLERGY 2023; 3:1080153. [PMID: 36704753 PMCID: PMC9872036 DOI: 10.3389/falgy.2022.1080153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Allergic diseases, including atopic dermatitis, allergic rhinitis, asthma, and food allergy, are caused by abnormal responses to relatively harmless foreign proteins called allergens found in pollen, fungal spores, house dust mites (HDM), animal dander, or certain foods. In particular, the activation of allergen-specific helper T cells towards a type 2 (Th2) phenotype during the first encounters with the allergen, also known as the sensitization phase, is the leading cause of the subsequent development of allergic disease. Infants and children are especially prone to developing Th2 cell responses after initial contact with allergens. But in addition, the rates of allergic sensitization and the development of allergic diseases among children are increasing in the industrialized world and have been associated with living in urban settings. Particularly for respiratory allergies, greater susceptibility to developing allergic Th2 cell responses has been shown in children living in urban environments containing low levels of microbial contaminants, principally bacterial endotoxins [lipopolysaccharide (LPS)], in the causative aeroallergens. This review highlights the current understanding of the factors that balance Th2 cell immunity to environmental allergens, with a particular focus on the determinants that program conventional dendritic cells (cDCs) toward or away from a Th2 stimulatory function. In this context, it discusses transcription factor-guided functional specialization of type-2 cDCs (cDC2s) and how the integration of signals derived from the environment drives this process. In addition, it analyzes observational and mechanistic studies supporting an essential role for innate sensing of microbial-derived products contained in aeroallergens in modulating allergic Th2 cell immune responses. Finally, this review examines whether hyporesponsiveness to microbial stimulation, particularly to LPS, is a risk factor for the induction of Th2 cell responses and allergic sensitization during infancy and early childhood and the potential factors that may affect early-age response to LPS and other environmental microbial components.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Frei R, Heye K, Roduit C. Environmental influences on childhood allergies and asthma - The Farm effect. Pediatr Allergy Immunol 2022; 33:e13807. [PMID: 35754122 PMCID: PMC9327508 DOI: 10.1111/pai.13807] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Asthma and allergies are major health problems and exert an enormous socioeconomic burden. Besides genetic predisposition, environmental factors play a crucial role in the development of these diseases in childhood. Multiple worldwide epidemiological studies have shown that children growing up on farms are immune to allergic diseases and asthma. Farm-related exposures shape children's immune homeostasis, via mediators such as N-glycolylneuraminic acid or arabinogalactan, or by diverse environmental microbes. Moreover, nutritional factors, such as breastfeeding or farm milk and food diversity, inducing short-chain fatty acids-producing bacteria in the intestine, contribute to farm-related effects. All farm-related exposures induce an anti-inflammatory response of the innate immunity and increase the differentiation of regulatory T cells and T helper cell type 1. A better understanding of the components of the farm environment, that are protective to the development of allergy and asthma, and their underlying mechanisms, will help to develop new strategies for the prevention of allergy and asthma.
Collapse
Affiliation(s)
- Remo Frei
- Division of Paediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital and Department for BioMedical Research, University of Bern, Bern, Switzerland.,Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Kristina Heye
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Children's Hospital of Eastern Switzerland, St Gallen, Switzerland
| | - Caroline Roduit
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Children's Hospital of Eastern Switzerland, St Gallen, Switzerland.,University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
de Klerk JN, Robinson PA. Drivers and hazards of consumption of unpasteurised bovine milk and milk products in high-income countries. PeerJ 2022; 10:e13426. [PMID: 35646485 PMCID: PMC9135038 DOI: 10.7717/peerj.13426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/21/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction The consumption of dairy products contributes to health, nutrition, and livelihoods globally. However, dairy products do not come without microbiological food safety risks for consumers. Despite this risk, common hygiene measures in high-income countries, particularly pasteurisation, ensures that milk is safe, and is indeed frequently mandated by law. Nevertheless, over the past two decades, there has been a global increase in the number of consumers in high-income developed countries actively seeking out unpasteurised milk in liquid and product forms for perceived nutritional and health benefits, and improved taste. The often-anecdotal claims upon which consumers make such choices are not all supported by scientific evidence; however, some recent research studies have investigated (and in some cases demonstrated) the positive impact of unpasteurised milk consumption on the prevalence of asthma, atopy, rectal cancer and respiratory illness. Methods To investigate the significance of unpasteurised milk and milk product consumption for human health in high-income countries, outbreak data between the years 2000 and 2018 were obtained for the United States of America, Canada, the European Union, the United Kingdom, Japan, New Zealand and Australia, which were then categorized into three World Health Organisation subregions: AMR A, EUR A and WPR A. Outbreak dynamic variables such as pathogens, the place of consumption, numbers of outbreaks and deaths per million capita, the average number of cases per outbreak and regulations were described and analysed using R Studio. To provide an overview of unpasteurised milk-related disease outbreaks, a rapid evidence review was also undertaken to establish an overview of what is known in the current literature about hazards and drivers of consumption. Results Foodborne outbreaks associated with unpasteurised dairy consumption have risen in high-income countries over the period 2000 to 2018, with Campylobacter spp. being the most common aetiological agent responsible, followed by Escherichia coli and Salmonella spp. The most common places of consumption are on farms or in households, indicating individuals choose to drink unpasteurised milk, rather than a widespread distribution of the product, for example, at social events and in schools. Further study is needed to better understand contributing factors, such as cultural differences in the consumption of dairy products. Conclusion There are several observable health benefits linked to consuming raw milk, but outbreaks associated with unpasteurised milk and milk products are on the rise. It cannot be definitively concluded whether the benefits outweigh the risks, and ultimately the decision lies with the individual consumer. Nevertheless, many countries have regulations in place to protect consumer health, acknowledging the definite risks to human health that unpasteurised dairy foods may pose, particularly from microbial hazards.
Collapse
Affiliation(s)
- Joanna N. de Klerk
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Philip A. Robinson
- Department of Animal Health, Behaviour and Welfare, Harper Adams University, Newport, Shropshire, United Kingdom
| |
Collapse
|
5
|
Thum C, Roy NC, Everett DW, McNabb WC. Variation in milk fat globule size and composition: A source of bioactives for human health. Crit Rev Food Sci Nutr 2021; 63:87-113. [PMID: 34190660 DOI: 10.1080/10408398.2021.1944049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Milk fat globules (MFGs) are secreted from the mammalian gland and are composed of a triacylglycerol core surrounded by a triple membrane structure, the milk fat globule membrane (MFGM). The MFGM contains complex lipids and proteins reported to have nutritional, immunological, neurological and digestive functions. Human and ruminant milk are shown to share a similar MFG structure but with different size, profile and abundance of protein and polar lipids. This review summarizes the reported data on human, bovine, caprine and ovine MFG composition and concentration of bioactive components in different MFG-size fractions. A comprehensive understanding of compositional variations between milk from different species and MFG size fractions may help promote various milk sources as targeted supplements to improve human development and health. MFG size and MFGM composition are species-specific and affected by lactation, diet and breed (or maternal origin). Purification and enrichment methods for some bioactive proteins and lipids present in the MFGM have yet to be established or are not scaled sufficiently to be used to supplement human diets. To overcome this problem, MFG size selection through fractionation or herd selection may provide a convenient way to pre-enrich the MFG fraction with specific protein and lipid components to fulfill human dietary and health requirements.
Collapse
Affiliation(s)
- Caroline Thum
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Nicole C Roy
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - David W Everett
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Der Farmeffekt revisited: vom β-Lactoglobulin mit Zink im Kuhstallstaub zur Anwendung. ALLERGO JOURNAL 2021. [DOI: 10.1007/s15007-021-4820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Abbring S, Xiong L, Diks MAP, Baars T, Garssen J, Hettinga K, van Esch BCAM. Loss of allergy-protective capacity of raw cow's milk after heat treatment coincides with loss of immunologically active whey proteins. Food Funct 2021; 11:4982-4993. [PMID: 32515464 DOI: 10.1039/d0fo01175d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The allergy-protective capacity of raw cow's milk was demonstrated to be abolished after heat treatment. The heat-sensitive whey protein fraction of raw milk is often implied to be the source of this allergy-protective effect, but a direct link between these proteins and the protection against allergic diseases is missing. This study therefore aimed at investigating the mechanistic relation between heat damage to whey proteins and allergy development. Raw cow's milk was heated for 30 min at 50, 60, 65, 70, 75, or 80 °C and the native whey protein profile of these differentially heated milk samples was determined using LC-MS/MS-based proteomics. Changes in the native protein profile were subsequently related to the capacity of these milk samples to prevent the development of ovalbumin-induced food allergy in a murine animal model. A substantial loss of native whey proteins, as well as extensive protein aggregation, was observed from 75 °C. However, whey proteins with immune-related functionalities already started to denature from 65 °C, which coincided with the temperature at which a loss of allergy protection was observed in the murine model. Complement C7, monocyte differentiation antigen CD14, and polymeric immunoglobulin receptor concentrations decreased significantly at this temperature, although several other immunologically active whey proteins also showed a decrease around 65 °C. The current study demonstrates that immunologically active whey proteins that denature around 65 °C are of importance for the allergy-protective capacity of raw cow's milk and thereby provides key knowledge for the development of microbiologically safe alternatives to raw cow's milk.
Collapse
Affiliation(s)
- Suzanne Abbring
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | - Ling Xiong
- Dairy Science and Technology, Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands
| | - Mara A P Diks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | - Ton Baars
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands. and Danone Nutricia Research, Utrecht, The Netherlands
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands
| | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands. and Danone Nutricia Research, Utrecht, The Netherlands
| |
Collapse
|
8
|
Mennini M, Arasi S, Fiocchi AG. Allergy prevention through breastfeeding. Curr Opin Allergy Clin Immunol 2021; 21:216-221. [PMID: 33394704 DOI: 10.1097/aci.0000000000000718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To perform a nonsystematic review of the literature on the role of breastfeeding as primary prevention tool for allergic diseases. RECENT FINDINGS Human milk contains vast amounts of biologically active components that have a significant impact on the development of the gut microbiota. Exclusively breastfed infants show a different microbiota, with a predominance of Bifidobacterium species in their intestines.The mechanisms underlying the antiallergic effects of human milk are most probably complex, as human milk contains not only nutritional substances but also functional molecules including polysaccharides, cytokines, proteins, and other components which can produce an epigenetic modulation of the innate and adaptive immune responses of the infant in very early life. SUMMARY Currently, there is not sufficient strong evidence to guarantee its effectiveness in allergy prevention and therefore the main international scientific societies still do not count it among the recognized primary prevention strategies of allergy.
Collapse
Affiliation(s)
- Maurizio Mennini
- Multifactorial and Systemic Diseases Research Area, Predictive and Preventive Medicine Research Unit, Division of Allergy Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | | |
Collapse
|
9
|
Sozańska B, Sikorska-Szaflik H. Diet Modifications in Primary Prevention of Asthma. Where Do We Stand? Nutrients 2021; 13:nu13010173. [PMID: 33429965 PMCID: PMC7827701 DOI: 10.3390/nu13010173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/26/2022] Open
Abstract
The steep increase in asthma prevalence, observed worldwide in recent decades, has created an urgent need to search for effective methods of its prevention. Among other environmental factors, changes in diet habits and the potential influence of individual food components on immunological processes have been extensively studied as a potential method of intervention in primary prevention of asthma. The preventive role of some nutrients has been confirmed: unpasteurized milk reduced the risk of asthma in epidemiological studies, vitamin D supplementation was effective in preventing the transient forms of wheezing in small children and high maternal intake of fish oil reduced the risk of persistent wheeze and asthma in children. However, not all studies provided consistent results, and many food ingredients are still pending for defining their role in asthma development. Moreover, a novel approach looking not only at single food ingredients, but the whole dietary patterns and diversity has recently been proposed. In this paper, we discuss the current role of nutrients in asthma primary prevention and the reasons for inconsistencies in the study results. We look at single diet components, but also the whole dietary patterns. We describe the proposed mechanisms of action at different stages of life, identify the role of modifiers and delineate future perspectives on the application of nutrients in targeting strategies for asthma primary prevention.
Collapse
|
10
|
Liu Y, Xiong L, Kontopodi E, Boeren S, Zhang L, Zhou P, Hettinga K. Changes in the milk serum proteome after thermal and non-thermal treatment. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
van Esch BCAM, Porbahaie M, Abbring S, Garssen J, Potaczek DP, Savelkoul HFJ, van Neerven RJJ. The Impact of Milk and Its Components on Epigenetic Programming of Immune Function in Early Life and Beyond: Implications for Allergy and Asthma. Front Immunol 2020; 11:2141. [PMID: 33193294 PMCID: PMC7641638 DOI: 10.3389/fimmu.2020.02141] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Specific and adequate nutrition during pregnancy and early life is an important factor in avoiding non-communicable diseases such as obesity, type 2 diabetes, cardiovascular disease, cancers, and chronic allergic diseases. Although epidemiologic and experimental studies have shown that nutrition is important at all stages of life, it is especially important in prenatal and the first few years of life. During the last decade, there has been a growing interest in the potential role of epigenetic mechanisms in the increasing health problems associated with allergic disease. Epigenetics involves several mechanisms including DNA methylation, histone modifications, and microRNAs which can modify the expression of genes. In this study, we focus on the effects of maternal nutrition during pregnancy, the effects of the bioactive components in human and bovine milk, and the environmental factors that can affect early life (i.e., farming, milk processing, and bacterial exposure), and which contribute to the epigenetic mechanisms underlying the persistent programming of immune functions and allergic diseases. This knowledge will help to improve approaches to nutrition in early life and help prevent allergies in the future.
Collapse
Affiliation(s)
- Betty C. A. M. van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Mojtaba Porbahaie
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Suzanne Abbring
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Daniel P. Potaczek
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), The Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- John Paul II Hospital, Krakow, Poland
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - R. J. Joost van Neerven
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
- FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
12
|
Dawod B, Haidl ID, Azad MB, Marshall JS. Toll-like receptor 2 impacts the development of oral tolerance in mouse pups via a milk-dependent mechanism. J Allergy Clin Immunol 2020; 146:631-641.e8. [DOI: 10.1016/j.jaci.2020.01.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/05/2020] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
|
13
|
Jacquet A, Robinson C. Proteolytic, lipidergic and polysaccharide molecular recognition shape innate responses to house dust mite allergens. Allergy 2020; 75:33-53. [PMID: 31166610 DOI: 10.1111/all.13940] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/05/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
House dust mites (HDMs) are sources of an extensive repertoire of allergens responsible for a range of allergic conditions. Technological advances have accelerated the identification of these allergens and characterized their putative roles within HDMs. Understanding their functional bioactivities is illuminating how they interact with the immune system to cause disease and how interrelations between them are essential to maximize allergic responses. Two types of allergen bioactivity, namely proteolysis and peptidolipid/lipid binding, elicit IgE and stimulate bystander responses to unrelated allergens. Much of this influence arises from Toll-like receptor (TLR) 4 or TLR2 signalling and, in the case of protease allergens, the activation of additional pleiotropic effectors with strong disease linkage. Of related interest is the interaction of HDM allergens with common components of the house dust matrix, through either their binding to allergens or their autonomous modulation of immune receptors. Herein, we provide a contemporary view of how proteolysis, lipid-binding activity and interactions with polysaccharides and polysaccharide molecular recognition systems coordinate the principal responses which underlie allergy. The power of the catalytically competent group 1 HDM protease allergen component is demonstrated by a review of disclosures surrounding the efficacy of novel inhibitors produced by structure-based design.
Collapse
Affiliation(s)
- Alain Jacquet
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC) Chulalongkorn University Bangkok Thailand
| | - Clive Robinson
- Institute for Infection and Immunity St George's, University of London London UK
| |
Collapse
|
14
|
Raw Cow's Milk and Its Protective Effect on Allergies and Asthma. Nutrients 2019; 11:nu11020469. [PMID: 30813365 PMCID: PMC6413174 DOI: 10.3390/nu11020469] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/27/2022] Open
Abstract
Living on a farm and having contact with rural exposures have been proposed as one of the most promising ways to be protected against allergy and asthma development. There is a significant body of epidemiological evidence that consumption of raw milk in childhood and adulthood in farm but also nonfarm populations can be one of the most effective protective factors. The observation is even more intriguing when considering the fact that milk is one of the most common food allergens in childhood. The exact mechanisms underlying this association are still not well understood, but the role of raw milk ingredients such as proteins, fat and fatty acids, and bacterial components has been recently studied and its influence on the immune function has been documented. In this review, we present the current understanding of the protective effect of raw milk on allergies and asthma.
Collapse
|
15
|
Morales E, Duffy D. Genetics and Gene-Environment Interactions in Childhood and Adult Onset Asthma. Front Pediatr 2019; 7:499. [PMID: 31921716 PMCID: PMC6918916 DOI: 10.3389/fped.2019.00499] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Abstract
Asthma is a heterogeneous disease that results from the complex interaction between genetic factors and environmental exposures that occur at critical periods throughout life. It seems plausible to regard childhood-onset and adult-onset asthma as different entities, each with a different pathophysiology, trajectory, and outcome. This review provides an overview about the role of genetics and gene-environment interactions in these two conditions. Looking at the genetic overlap between childhood and adult onset disease gives one window into whether there is a correlation, as well as to mechanism. A second window is offered by the genetics of the relationship between each type of asthma and other phenotypes e.g., obesity, chronic obstructive pulmonary disease (COPD), atopy, vitamin D levels, and inflammatory and immune status; and third, the genetic-specific responses to the many environmental exposures that influence risk throughout life, and particularly those that occur during early-life development. These represent a large number of possible combinations of genetic and environmental factors, at least 150 known genetic loci vs. tobacco smoke, outdoor air pollutants, indoor exposures, farming environment, and microbial exposures. Considering time of asthma onset extends the two-dimensional problem of gene-environment interactions to a three-dimensional problem, since identified gene-environment interactions seldom replicate for childhood and adult asthma, which suggests that asthma susceptibility to environmental exposures may biologically differ from early life to adulthood as a result of different pathways and mechanisms of the disease.
Collapse
Affiliation(s)
- Eva Morales
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - David Duffy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Lau MYZ, Dharmage SC, Burgess JA, Win AK, Lowe AJ, Lodge CJ, Perret J, Hui J, Thomas PS, Giles G, Thompson BR, Abramson MJ, Walters EH, Matheson MC. Early-life exposure to sibling modifies the relationship between CD14 polymorphisms and allergic sensitization. Clin Exp Allergy 2018; 49:331-340. [PMID: 30288821 DOI: 10.1111/cea.13290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/03/2017] [Accepted: 08/08/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Markers of microbial exposure are thought to be associated with risk of allergic sensitization; however, the associations are inconsistent and may be related to gene-environment interactions. OBJECTIVE To examine the relationship between polymorphisms in the CD14 gene and allergic sensitization and whether sibling exposure, as a marker of microbial exposure, modified this relationship. METHODS We used data from the Tasmanian Longitudinal Health Study and the Melbourne Atopy Cohort Study. Two CD14 polymorphisms were genotyped. Allergic sensitization was defined by a positive response to a skin prick test. Sibling exposure was measured as cumulative exposure to siblings before age 6 months, 2 and 4 years. Logistic regression and multi-level mixed-effects logistic regression were used to examine the associations. Effect estimates across the cohorts were pooled using random-effects meta-analysis. RESULTS CD14 SNPs were not individually associated with allergic sensitization in either cohort. In TAHS, cumulative sibling exposure before age 6 months, 2 and 4 years was each associated with a reduced risk of allergic sensitization at age 45 years. A similar effect was observed in MACS. Meta-analysis across the two cohorts showed consistent evidence of an interaction between cumulative sibling exposure before 6 months and the rs5744455-SNP (P = 0.001) but not with the rs2569190-SNP (P = 0.60). The pooled meta-analysis showed that the odds of sensitization with increasing cumulative exposure to sibling before 6 months of age was 20.9% smaller in those with the rs5744455-C-allele than the T-allele (OR = 0.83 vs 1.05, respectively). CONCLUSION AND CLINICAL RELEVANCE Cumulative sibling exposure reduced the risk of sensitization from childhood to middle age in genetically susceptible individuals.
Collapse
Affiliation(s)
- Melisa Y Z Lau
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - John A Burgess
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Aung K Win
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Adrian J Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Jennifer Perret
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Jennie Hui
- School of Population Health, University of Western Australia, Perth, Western Australia, Australia
| | - Paul S Thomas
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Graham Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Bruce R Thompson
- Allergy Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - E Haydn Walters
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia.,School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Melanie C Matheson
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | | |
Collapse
|
17
|
Gilles S, Akdis C, Lauener R, Schmid-Grendelmeier P, Bieber T, Schäppi G, Traidl-Hoffmann C. The role of environmental factors in allergy: A critical reappraisal. Exp Dermatol 2018; 27:1193-1200. [PMID: 30099779 DOI: 10.1111/exd.13769] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
Allergies are usually referred to as type I hypersensitivity reactions against innocuous environmental antigens, characterized by a Th2/IgE-dominated inflammation. They can manifest themselves in various organs, such as skin, gastrointestinal and respiratory tract, and comprise diseases as diverse as allergic rhinitis and conjunctivitis, bronchial asthma, oral allergy syndrome, food allergy, urticaria and atopic eczema, but also anaphylactic shock. Within the last decades, there was a significant global increase in allergy prevalence, which has been mostly attributed to changes in environment and lifestyle. But which, among all factors discussed, are the most relevant, and what are the mechanisms by which these factors promote or prevent the development of allergic diseases? To answer this, it is necessary to go back to the two key questions that have occupied allergy researchers for the last decades: Firstly, what makes an allergen an allergen? Secondly, why are more and more individuals affected? Within the last decade, we have made considerable progress in answering these questions. This review gives an overview over scientific progress in the field, summarizes latest findings and points out future prospective and research needs.
Collapse
Affiliation(s)
- Stefanie Gilles
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich, Augsburg, Germany
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Roger Lauener
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Peter Schmid-Grendelmeier
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Allergy Unit, Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Thomas Bieber
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Georg Schäppi
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Hochgebirgsklinik Davos, Davos-Wolfgang, Switzerland
| | - Claudia Traidl-Hoffmann
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich, Augsburg, Germany.,Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
18
|
Whitehead J, Lake B. Recent Trends in Unpasteurized Fluid Milk Outbreaks, Legalization, and Consumption in the United States. PLOS CURRENTS 2018; 10. [PMID: 30279996 PMCID: PMC6140832 DOI: 10.1371/currents.outbreaks.bae5a0fd685616839c9cf857792730d1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Introduction: Determining the potential risk of foodborne illness has become critical for informing policy decisions, due to the increasing availability and popularity of unpasteurized (raw) milk. Methods: Trends in foodborne illnesses reported to the Centers for Disease Control in the United States from 2005 to 2016 were analyzed, with comparison to state legal status and to consumption, as estimated by licensing records. Results: The rate of unpasteurized milk-associated outbreaks has been declining since 2010, despite increasing legal distribution. Controlling for growth in population and consumption, the outbreak rate has effectively decreased by 74% since 2005. Discussion: Studies of the role of on-farm food safety programs to promote the further reduction of unpasteurized milk outbreaks should be initiated, to investigate the efficacy of such risk management tools.
Collapse
Affiliation(s)
- Joanne Whitehead
- Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Bryony Lake
- Meta+ Research and Analysis, British Columbia, Canada
| |
Collapse
|
19
|
Exposure to nonmicrobial N-glycolylneuraminic acid protects farmers' children against airway inflammation and colitis. J Allergy Clin Immunol 2018. [DOI: 10.1016/j.jaci.2017.04.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Effect of Processing Intensity on Immunologically Active Bovine Milk Serum Proteins. Nutrients 2017; 9:nu9090963. [PMID: 28858242 PMCID: PMC5622723 DOI: 10.3390/nu9090963] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
Consumption of raw cow’s milk instead of industrially processed milk has been reported to protect children from developing asthma, allergies, and respiratory infections. Several heat-sensitive milk serum proteins have been implied in this effect though unbiased assessment of milk proteins in general is missing. The aim of this study was to compare the native milk serum proteome between raw cow’s milk and various industrially applied processing methods, i.e., homogenization, fat separation, pasteurization, ultra-heat treatment (UHT), treatment for extended shelf-life (ESL), and conventional boiling. Each processing method was applied to the same three pools of raw milk. Levels of detectable proteins were quantified by liquid chromatography/tandem mass spectrometry following filter aided sample preparation. In total, 364 milk serum proteins were identified. The 140 proteins detectable in 66% of all samples were entered in a hierarchical cluster analysis. The resulting proteomics pattern separated mainly as high (boiling, UHT, ESL) versus no/low heat treatment (raw, skimmed, pasteurized). Comparing these two groups revealed 23 individual proteins significantly reduced by heating, e.g., lactoferrin (log2-fold change = −0.37, p = 0.004), lactoperoxidase (log2-fold change = −0.33, p = 0.001), and lactadherin (log2-fold change = −0.22, p = 0.020). The abundance of these heat sensitive proteins found in higher quantity in native cow’s milk compared to heat treated milk, renders them potential candidates for protection from asthma, allergies, and respiratory infections.
Collapse
|
21
|
Lau MYZ, Dharmage SC, Burgess JA, Win AK, Lowe AJ, Lodge C, Perret J, Hui J, Thomas PS, Morrison S, Giles GG, Hopper J, Abramson MJ, Walters EH, Matheson MC. The interaction between farming/rural environment and TLR2, TLR4, TLR6 and CD14 genetic polymorphisms in relation to early- and late-onset asthma. Sci Rep 2017; 7:43681. [PMID: 28262750 PMCID: PMC5337969 DOI: 10.1038/srep43681] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
Asthma phenotypes based on age-of-onset may be differently influenced by the interaction between variation in toll-like receptor (TLR)/CD14 genes and environmental microbes. We examined the associations between single-nucleotide polymorphisms (SNP) in the TLR/CD14 genes and asthma, and their interaction with proxies of microbial exposure (childhood farm exposure and childhood rural environment). Ten SNPs in four genes (TLR2, TLR4, TLR6, CD14) were genotyped for 1,116 participants from the Tasmanian Longitudinal Health Study (TAHS). Using prospectively collected information, asthma was classified as never, early- (before 13 years) or late-onset (after 13 years). Information on childhood farm exposure/childhood rural environment was collected at baseline. Those with early-onset asthma were more likely to be males, had a family history of allergy and a personal history of childhood atopy. We found significant interaction between TLR6 SNPs and childhood farm exposure. For those with childhood farm exposure, carriers of the TLR6-rs1039559 T-allele (p-interaction = 0.009) and TLR6-rs5743810 C-allele (p-interaction = 0.02) were associated with lower risk of early-onset asthma. We suggest the findings to be interpreted as hypothesis-generating as the interaction effect did not withstand correction for multiple testing. In this large, population-based longitudinal study, we found that the risk of early- and late-onset asthma is differently influenced by the interaction between childhood farming exposure and genetic variations.
Collapse
Affiliation(s)
- Melisa Y Z Lau
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - John A Burgess
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia
| | - Aung K Win
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia
| | - Adrian J Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Caroline Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Jennifer Perret
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia
| | - Jennie Hui
- School of Population Health, the University of Western Australia, Perth, Australia
| | - Paul S Thomas
- Inflammation and Infection Research Centre, University of New South Wales, Australia
| | - Stephen Morrison
- Department of Medicine, the University of Queensland, Queensland, Australia
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Victoria, Australia.,School of Public Health &Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - John Hopper
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia
| | - Michael J Abramson
- School of Public Health &Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - E Haydn Walters
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia.,School of Medicine, University of Tasmania, Tasmania, Australia
| | - Melanie C Matheson
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Gern JE. Promising candidates for allergy prevention. J Allergy Clin Immunol 2015; 136:23-8. [PMID: 26145984 DOI: 10.1016/j.jaci.2015.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022]
Abstract
Recent advances in understanding environmental risk factors for allergic diseases in children have led to renewed efforts aimed at prevention. Factors that modify the probability of developing allergies include prenatal exposures, mode of delivery, diet, patterns of medication use, and exposure to pets and farm animals. Recent advances in microbial detection techniques demonstrate that exposure to diverse microbial communities in early life is associated with a reduction in allergic disease. In fact, microbes and their metabolic products might be essential for normal immune development. Identification of these risk factors has provided new targets for prevention of allergic diseases, and possibilities of altering microbial exposure and colonization to reduce the incidence of allergies is a promising approach. This review examines the rationale, feasibility, and potential effect for the prevention of childhood allergic diseases and explores possible strategies for enhancing exposure to beneficial microbes.
Collapse
Affiliation(s)
- James E Gern
- Departments of Pediatrics and Medicine, University of Wisconsin-Madison, Madison, Wis.
| |
Collapse
|
23
|
Yu J, Ahn K, Shin YH, Kim KW, Suh DI, Yu HS, Kang MJ, Lee KS, Hong SA, Choi KY, Lee E, Yang SI, Seo JH, Kim BJ, Kim HB, Lee SY, Choi SJ, Oh SY, Kwon JY, Lee KJ, Park HJ, Lee PR, Won HS, Hong SJ. The Interaction Between Prenatal Exposure to Home Renovation and Reactive Oxygen Species Genes in Cord Blood IgE Response is Modified by Maternal Atopy. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 8:41-8. [PMID: 26540500 PMCID: PMC4695407 DOI: 10.4168/aair.2016.8.1.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/18/2015] [Accepted: 05/14/2015] [Indexed: 11/20/2022]
Abstract
PURPOSE Although home renovation exposure during childhood has been identified as a risk factor for the development of allergy, there is limited information on the association between prenatal exposure to home renovation and cord blood (CB) IgE response. The aims of this study were to identify the effect of prenatal exposure to home renovation on CB IgE levels, and to investigate whether this exposure interacts with neonatal genes and whether the effect can be modified by maternal atopy. METHODS This study included 1,002 mother-neonate pairs from the COhort for Childhood Origin of Asthma and allergic diseases (COCOA). Prenatal environmental factors were collected using a questionnaire. The levels of CB IgE were measured by the ImmunoCAP system, and DNA was extracted from CB. RESULTS Exposure to home renovation during the prenatal period was associated with significantly higher levels of CB IgE only in neonates from atopic mothers, and the effect of renovation exposure on CB IgE levels persisted from 31 months before birth. Furthermore, prenatal exposure to home renovation increased the risk of CB IgE response interacting with polymorphisms of NRF2 and GSTP1 genes only in neonates from atopic mothers. CONCLUSIONS Maternal atopy modified the effect of prenatal exposure to home renovation on CB serum IgE response as well as the interaction between the exposure and neonatal genes involved in the oxidative stress pathway. These findings suggest that the genetically susceptible offspring of atopic mothers may be more vulnerable to the effect of prenatal exposure to home renovation on the development of allergy.
Collapse
Affiliation(s)
- Jinho Yu
- Department of Pediatrics, Childhood Asthma Atopy Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Youn Ho Shin
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Ho Sung Yu
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi Jin Kang
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Shin Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Seo Ah Hong
- ASEAN Institute for Health Development, Mahidol University, Nakhonpathom, Thailand
| | - Kil Yong Choi
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Song I Yang
- Department of Pediatrics, Childhood Asthma Atopy Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ju Hee Seo
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | - Byoung Ju Kim
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Hyo Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - So Yeon Lee
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Suk Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ja Young Kwon
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Ju Lee
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - Hee Jin Park
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - Pil Ryang Lee
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hye Sung Won
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | | |
Collapse
|
24
|
Larkin EK, Hartert TV. Genes associated with RSV lower respiratory tract infection and asthma: the application of genetic epidemiological methods to understand causality. Future Virol 2015; 10:883-897. [PMID: 26478738 DOI: 10.2217/fvl.15.55] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Infants with respiratory syncytial virus (RSV) lower respiratory tract infections (LRIs) are at increased risk for childhood asthma. The objectives of this article are to review the genes associated with both RSV LRI and asthma, review analytic approaches to assessing shared genetic risk and propose a future perspective on how these approaches can help us to understand the role of infant RSV infection as both an important risk factor for asthma and marker of shared genetic etiology between the two conditions. The review of shared genes and thus pathways associated with severity of response to RSV infection and asthma risk can help us to understand mechanisms of disease and ultimately propose new and novel targets for primary prevention of both diseases.
Collapse
Affiliation(s)
- Emma K Larkin
- Department of Medicine, Division of Allergy, Pulmonary & Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tina V Hartert
- Department of Medicine, Division of Allergy, Pulmonary & Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
25
|
Krauss-Etschmann S, Meyer KF, Dehmel S, Hylkema MN. Inter- and transgenerational epigenetic inheritance: evidence in asthma and COPD? Clin Epigenetics 2015; 7:53. [PMID: 26052354 PMCID: PMC4456695 DOI: 10.1186/s13148-015-0085-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022] Open
Abstract
Evidence is now emerging that early life environment can have lifelong effects on metabolic, cardiovascular, and pulmonary function in offspring, a concept also known as fetal or developmental programming. In mammals, developmental programming is thought to occur mainly via epigenetic mechanisms, which include DNA methylation, histone modifications, and expression of non-coding RNAs. The effects of developmental programming can be induced by the intrauterine environment, leading to intergenerational epigenetic effects from one generation to the next. Transgenerational epigenetic inheritance may be considered when developmental programming is transmitted across generations that were not exposed to the initial environment which triggered the change. So far, inter- and transgenerational programming has been mainly described for cardiovascular and metabolic disease risk. In this review, we discuss available evidence that epigenetic inheritance also occurs in respiratory diseases, using asthma and chronic obstructive pulmonary disease (COPD) as examples. While multiple epidemiological as well as animal studies demonstrate effects of 'toxic' intrauterine exposure on various asthma-related phenotypes in the offspring, only few studies link epigenetic marks to the observed phenotypes. As epigenetic marks may distinguish individuals most at risk of later disease at early age, it will enable early intervention strategies to reduce such risks. To achieve this goal further, well designed experimental and human studies are needed.
Collapse
Affiliation(s)
- Susanne Krauss-Etschmann
- />Comprehensive Pneumology Center, Helmholtz Center Munich and Children’s Hospital of Ludwig-Maximilians University, Max-Lebsche-Platz 31, 81377 Munich, Germany
- />Priority Area Asthma & Allergy, Leibniz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel, Airway Research Center North, Member of the German Center for Lung Research, Parkallee 1-40, Borstel, Germany
| | - Karolin F Meyer
- />Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
- />University of Groningen, GRIAC Research Institute, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Stefan Dehmel
- />Comprehensive Pneumology Center, Helmholtz Center Munich and Children’s Hospital of Ludwig-Maximilians University, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Machteld N Hylkema
- />Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
- />University of Groningen, GRIAC Research Institute, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| |
Collapse
|
26
|
Sahiner UM, Semic-Jusufagic A, Curtin JA, Birben E, Belgrave D, Sackesen C, Simpson A, Yavuz TS, Akdis CA, Custovic A, Kalayci O. Polymorphisms of endotoxin pathway and endotoxin exposure: in vitro IgE synthesis and replication in a birth cohort. Allergy 2014; 69:1648-58. [PMID: 25102764 DOI: 10.1111/all.12504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Genetic variants in endotoxin signaling pathway are important in modulating the effect of environmental endotoxin on asthma and atopic phenotypes. Our objective was to determine the single nucleotide polymorphisms (SNPs) in the endotoxin signaling pathway that may influence in vitro IgE synthesis and to investigate the relationship between these variants and endotoxin exposure in relation to the development of asthma and atopy in a birth cohort. METHODS Peripheral blood mononuclear cells from 45 children with asthma were stimulated with 2 and 200 ng/ml lipopolysaccharide in vitro and IgE was measured in the culture supernatants. Children were genotyped for 121 SNPs from 30 genes in the endotoxin signaling pathway. Variants with a dose-response IgE production in relation to lipopolysaccharide (LPS) were selected for replication in a population-based birth cohort, in which we investigated the interaction between these SNPs and endotoxin exposure in relation to airway hyper-responsiveness, wheeze, and atopic sensitization. RESULTS Twenty-one SNPs in nine genes (CD14, TLR4, IRF3, TRAF-6, TIRAP, TRIF, IKK-1, ST-2, SOCS1) were found to modulate the effect of endotoxin on in vitro IgE synthesis, with six displaying high linkage disequilibrium. Of the remaining 15 SNPs, for seven we found significant relationships between genotype and endotoxin exposure in the genetic association study in relation to symptomatic airway hyper-responsiveness (CD14-rs2915863 and rs2569191, TRIF-rs4807000), current wheeze (ST-2-rs17639215, IKK-1-rs2230804, and TRIF-rs4807000), and atopy (CD14-rs2915863 and rs2569192, TRAF-6-rs5030411, and IKK-1-rs2230804). CONCLUSIONS Variants in the endotoxin signaling pathway are important determinants of asthma and atopy. The genotype effect is a function of the environmental endotoxin exposure.
Collapse
Affiliation(s)
- U. M. Sahiner
- Pediatric Allergy and Asthma Unit; Hacettepe University School of Medicine; Ankara Turkey
| | - A. Semic-Jusufagic
- Centre for Respiratory Medicine and Allergy; Institute of Inflammation and Repair; University of Manchester & University Hospital of South Manchester; Manchester UK
| | - J. A. Curtin
- Centre for Respiratory Medicine and Allergy; Institute of Inflammation and Repair; University of Manchester & University Hospital of South Manchester; Manchester UK
| | - E. Birben
- Pediatric Allergy and Asthma Unit; Hacettepe University School of Medicine; Ankara Turkey
| | - D. Belgrave
- Centre for Respiratory Medicine and Allergy; Institute of Inflammation and Repair; University of Manchester & University Hospital of South Manchester; Manchester UK
- Centre for Health Informatics; Institute of Population Health; University of Manchester; Manchester UK
| | - C. Sackesen
- Pediatric Allergy and Asthma Unit; Hacettepe University School of Medicine; Ankara Turkey
| | - A. Simpson
- Centre for Respiratory Medicine and Allergy; Institute of Inflammation and Repair; University of Manchester & University Hospital of South Manchester; Manchester UK
| | - T. S. Yavuz
- Pediatric Allergy and Asthma Unit; Hacettepe University School of Medicine; Ankara Turkey
| | - C. A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - A. Custovic
- Centre for Respiratory Medicine and Allergy; Institute of Inflammation and Repair; University of Manchester & University Hospital of South Manchester; Manchester UK
| | - O. Kalayci
- Pediatric Allergy and Asthma Unit; Hacettepe University School of Medicine; Ankara Turkey
| |
Collapse
|
27
|
Lau MYZ, Dharmage SC, Burgess JA, Lowe AJ, Lodge CJ, Campbell B, Matheson MC. CD14 polymorphisms, microbial exposure and allergic diseases: a systematic review of gene-environment interactions. Allergy 2014; 69:1440-53. [PMID: 24889096 DOI: 10.1111/all.12454] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2014] [Indexed: 11/30/2022]
Abstract
Asthma and allergy may develop as a result of interactions between environmental factors and the genetic characteristics of an individual. This review aims to summarize the available evidence for, and potential effects of, an interaction between polymorphisms of the CD14 gene and exposure to microbes on the risk of asthma and allergic diseases. We searched PubMed, MEDLINE and Global Health databases, finding 12 articles which met inclusion criteria. Most studies reported a significant interaction between CD14 polymorphisms and microbial exposure. When stratified by age at microbial exposure (early life vs adult life), there was evidence of a protective effect of gene-environment interaction against atopy in children, but not adults. We also found different effects of interaction depending on the type of microbial exposures. There was no strong evidence for asthma and eczema. Future studies should consider a three-way interaction between CD14 gene polymorphisms, microbial exposures and the age of exposure.
Collapse
Affiliation(s)
- M. Y. Z. Lau
- Centre for Epidemiology and Biostatistics; School of Population and Global Health; The University of Melbourne; Carlton Vic. Australia
| | - S. C. Dharmage
- Centre for Epidemiology and Biostatistics; School of Population and Global Health; The University of Melbourne; Carlton Vic. Australia
| | - J. A. Burgess
- Centre for Epidemiology and Biostatistics; School of Population and Global Health; The University of Melbourne; Carlton Vic. Australia
| | - A. J. Lowe
- Centre for Epidemiology and Biostatistics; School of Population and Global Health; The University of Melbourne; Carlton Vic. Australia
| | - C. J. Lodge
- Centre for Epidemiology and Biostatistics; School of Population and Global Health; The University of Melbourne; Carlton Vic. Australia
| | - B. Campbell
- Centre for Epidemiology and Biostatistics; School of Population and Global Health; The University of Melbourne; Carlton Vic. Australia
| | - M. C. Matheson
- Centre for Epidemiology and Biostatistics; School of Population and Global Health; The University of Melbourne; Carlton Vic. Australia
| |
Collapse
|
28
|
Kim BJ, Lee SY, Kim HB, Lee E, Hong SJ. Environmental changes, microbiota, and allergic diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2014; 6:389-400. [PMID: 25228995 PMCID: PMC4161679 DOI: 10.4168/aair.2014.6.5.389] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/12/2013] [Indexed: 12/26/2022]
Abstract
During the last few decades, the prevalence of allergic disease has increased dramatically. The development of allergic diseases has been attributed to complex interactions between environmental factors and genetic factors. Of the many possible environmental factors, most research has focused on the most commonly encountered environmental factors, such as air pollution and environmental microbiota in combination with climate change. There is increasing evidence that such environmental factors play a critical role in the regulation of the immune response that is associated with allergic diseases, especially in genetically susceptible individuals. This review deals with not only these environmental factors and genetic factors but also their interactions in the development of allergic diseases. It will also emphasize the need for early interventions that can prevent the development of allergic diseases in susceptible populations and how these interventions can be identified.
Collapse
Affiliation(s)
- Byoung-Ju Kim
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - So-Yeon Lee
- Department of Pediatrics, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang, Korea
| | - Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Eun Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, University of Ulsan College of Medicine, Seoul, Korea. ; Research Center for Standardization of Allergic Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, University of Ulsan College of Medicine, Seoul, Korea. ; Research Center for Standardization of Allergic Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Hesperidin inhibits inflammatory response induced by Aeromonas hydrophila infection and alters CD4+/CD8+ T cell ratio. Mediators Inflamm 2014; 2014:393217. [PMID: 24891765 PMCID: PMC4033591 DOI: 10.1155/2014/393217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/21/2014] [Indexed: 12/26/2022] Open
Abstract
Background. Aeromonas hydrophila is an opportunistic bacterial pathogen that is associated with a number of human diseases. Hesperidin (HES) has been reported to exert antioxidant and anti-inflammatory activities. Objectives. The aim of this study was to investigate the potential effect of HES treatment on inflammatory response induced by A. hydrophila infection in murine. Methods. A. hydrophila-infected mice were treated with HES at 250 mg/kg b.wt./week for 4 consecutive weeks. Phagocytosis, reactive oxygen species production, CD4+/CD8+ T cell ratio, and CD14 expression on intestinal infiltrating monocytes were evaluated. The expression of E-selectin and intercellular adhesion molecule 1 on stimulated HUVECs and RAW macrophage was evaluated. Results. Percentage of CD4+ T cells in the intestinal tissues of infected treated mice was highly significantly increased; however, phagocytic index, ROS production, CD8+ T cells percentage, and CD14 expression on monocytes were significantly reduced. On the other hand, HES significantly inhibited A-LPS- and A-ECP-induced E-selectin and ICAM-1 expression on HUVECs and ICAM-1 expression on RAW macrophage. Conclusion. Present data indicated that HES has a potential role in the suppression of inflammatory response induced by A. hydrophila toxins through downmodulation of ROS production and CD14 and adhesion molecules expression, as well as increase of CD4+/CD8+ cell ratio.
Collapse
|
30
|
Frei R, Roduit C, Bieli C, Loeliger S, Waser M, Scheynius A, van Hage M, Pershagen G, Doekes G, Riedler J, von Mutius E, Sennhauser F, Akdis CA, Braun-Fahrländer C, Lauener RP. Expression of genes related to anti-inflammatory pathways are modified among farmers' children. PLoS One 2014; 9:e91097. [PMID: 24603716 PMCID: PMC3946278 DOI: 10.1371/journal.pone.0091097] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/07/2014] [Indexed: 01/22/2023] Open
Abstract
Background The hygiene hypothesis states that children exposed to higher loads of microbes such as farmers’ children suffer less from allergies later in life. Several immunological mechanisms underpinning the hygiene hypothesis have been proposed such as a shift in T helper cell balance, T regulatory cell activity, or immune regulatory mechanisms induced by the innate immunity. Objective To investigate whether the proposed immunological mechanisms for the hygiene hypotheses are found in farmers’ children. Methods We assessed gene expression levels of 64 essential markers of the innate and adaptive immunity by quantitative real-time PCR in white blood cells in 316 Swiss children of the PARSIFAL study to compare farmers’ to non-farmers’ expressions and to associate them to the prevalence of asthma and rhinoconjunctivitis, total and allergen-specific IgE in serum, and expression of Cε germ-line transcripts. Results We found enhanced expression of genes of the innate immunity such as IRAK-4 and RIPK1 and enhanced expression of regulatory molecules such as IL-10, TGF-β, SOCS4, and IRAK-2 in farmers’ children. Furthermore, farmers’ children expressed less of the TH1 associated cytokine IFN-γ while TH2 associated transcription factor GATA3 was enhanced. No significant associations between the assessed immunological markers and allergic diseases or sensitization to allergens were observed. Conclusion Farmers’ children express multiple increased innate immune response and immune regulatory molecules, which may contribute to the mechanisms of action of the hygiene hypothesis.
Collapse
Affiliation(s)
- Remo Frei
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education, Zurich, Switzerland
- * E-mail:
| | - Caroline Roduit
- Christine Kühne-Center for Allergy Research and Education, Zurich, Switzerland
- Children’s Hospital, University of Zurich, Zurich, Switzerland
| | - Christian Bieli
- Children’s Hospital, University of Zurich, Zurich, Switzerland
| | - Susanne Loeliger
- Christine Kühne-Center for Allergy Research and Education, Zurich, Switzerland
- Children’s Hospital, University of Zurich, Zurich, Switzerland
| | - Marco Waser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Annika Scheynius
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Marianne van Hage
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gert Doekes
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Erika von Mutius
- Dr. von Hauner Children’s Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | | | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education, Zurich, Switzerland
| | | | - Roger P. Lauener
- Christine Kühne-Center for Allergy Research and Education, Zurich, Switzerland
- Kantonsspital St.Gallen, St.Gallen, Switzerland
| | | |
Collapse
|
31
|
Montel MC, Buchin S, Mallet A, Delbes-Paus C, Vuitton DA, Desmasures N, Berthier F. Traditional cheeses: rich and diverse microbiota with associated benefits. Int J Food Microbiol 2014; 177:136-54. [PMID: 24642348 DOI: 10.1016/j.ijfoodmicro.2014.02.019] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 02/17/2014] [Accepted: 02/22/2014] [Indexed: 11/26/2022]
Abstract
The risks and benefits of traditional cheeses, mainly raw milk cheeses, are rarely set out objectively, whence the recurrent confused debate over their pros and cons. This review starts by emphasizing the particularities of the microbiota in traditional cheeses. It then describes the sensory, hygiene, and possible health benefits associated with traditional cheeses. The microbial diversity underlying the benefits of raw milk cheese depends on both the milk microbiota and on traditional practices, including inoculation practices. Traditional know-how from farming to cheese processing helps to maintain both the richness of the microbiota in individual cheeses and the diversity between cheeses throughout processing. All in all more than 400 species of lactic acid bacteria, Gram and catalase-positive bacteria, Gram-negative bacteria, yeasts and moulds have been detected in raw milk. This biodiversity decreases in cheese cores, where a small number of lactic acid bacteria species are numerically dominant, but persists on the cheese surfaces, which harbour numerous species of bacteria, yeasts and moulds. Diversity between cheeses is due particularly to wide variations in the dynamics of the same species in different cheeses. Flavour is more intense and rich in raw milk cheeses than in processed ones. This is mainly because an abundant native microbiota can express in raw milk cheeses, which is not the case in cheeses made from pasteurized or microfiltered milk. Compared to commercial strains, indigenous lactic acid bacteria isolated from milk/cheese, and surface bacteria and yeasts isolated from traditional brines, were associated with more complex volatile profiles and higher scores for some sensorial attributes. The ability of traditional cheeses to combat pathogens is related more to native antipathogenic strains or microbial consortia than to natural non-microbial inhibitor(s) from milk. Quite different native microbiota can protect against Listeria monocytogenes in cheeses (in both core and surface) and on the wooden surfaces of traditional equipment. The inhibition seems to be associated with their qualitative and quantitative composition rather than with their degree of diversity. The inhibitory mechanisms are not well elucidated. Both cross-sectional and cohort studies have evidenced a strong association of raw-milk consumption with protection against allergic/atopic diseases; further studies are needed to determine whether such association extends to traditional raw-milk cheese consumption. In the future, the use of meta-omics methods should help to decipher how traditional cheese ecosystems form and function, opening the way to new methods of risk-benefit management from farm to ripened cheese.
Collapse
Affiliation(s)
| | - Solange Buchin
- INRA, UR342 Technologie et Analyses Laitières, F-39801 Poligny, France
| | - Adrien Mallet
- Normandie Univ, France; UNICAEN, ABTE, F-14032 Caen, France
| | - Céline Delbes-Paus
- INRA, Unité Recherches Fromagères, 20 Côte de Reyne, F-15000 Aurillac, France
| | - Dominique A Vuitton
- UNICAEN, ABTE, F-14032 Caen, France; EA3181/Université de Franche-Comté, 25030, Besançon, France
| | | | | |
Collapse
|
32
|
Kahr N, Naeser V, Stensballe LG, Kyvik KO, Skytthe A, Backer V, Bønnelykke K, Thomsen SF. Gene-environment interaction in atopic diseases: a population-based twin study of early-life exposures. CLINICAL RESPIRATORY JOURNAL 2014; 9:79-86. [PMID: 24444295 DOI: 10.1111/crj.12110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 10/15/2013] [Accepted: 01/14/2014] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The development of atopic diseases early in life suggests an important role of perinatal risk factors. OBJECTIVES To study whether early-life exposures modify the genetic influence on atopic diseases in a twin population. METHODS Questionnaire data on atopic diseases from 850 monozygotic and 2279 like-sex dizygotic twin pairs, 3-9 years of age, from the Danish Twin Registry were cross-linked with data on prematurity, Cesarean section, maternal age at birth, parental cohabitation, season of birth and maternal smoking during pregnancy, from the Danish National Birth Registry. Significant predictors of atopic diseases were identified with logistic regression and subsequently tested for genetic effect modification using variance components analysis. RESULTS After multivariable adjustment, prematurity (gestational age below 32 weeks) [odds ratio (OR) = 1.93, confidence interval (CI) = 1.45-2.56], Cesarean section (OR = 1.25, CI = 1.05-1.49) and maternal smoking during pregnancy (OR = 1.70, CI = 1.42-2.04) significantly influenced the risk of asthma, whereas none of the factors were significantly associated with atopic dermatitis and hay fever. Variance components analysis stratified by exposure status showed no significant change in the heritability of asthma according to the identified risk factors. CONCLUSION In this population-based study of children, there was no evidence of genetic effect modification of atopic diseases by several identified early-life risk factors. The causal relationship between these risk factors and atopic diseases may therefore be mediated via mechanisms different from gene-environment interaction.
Collapse
Affiliation(s)
- Niklas Kahr
- Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wu Q, Chu HW. Role of infections in the induction and development of asthma: genetic and inflammatory drivers. Expert Rev Clin Immunol 2014; 5:97-109. [PMID: 19885377 DOI: 10.1586/1744666x.5.1.97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic and environmental factors interact to initiate and even maintain the course of asthma. As one of the highly risky environmental factors, infections in predisposed individuals can promote asthma development and exacerbations and/or prolong symptoms. This review will describe our current understanding of the genetic markers of innate immunity in the induction and development of asthma, the diverse roles of infections in modulating allergic inflammation, host susceptibility to infections and subsequent acute exacerbations in an allergic setting, and the therapeutic or preventive implications of existing knowledge. Current challenges and future directions in basic and clinical research of asthma are also discussed.
Collapse
Affiliation(s)
- Qun Wu
- Postdoctoral Research Fellow, Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A635, Denver, CO 80206, USA, Tel.: +1 303 398 1589, ,
| | | |
Collapse
|
34
|
Rule-based models of the interplay between genetic and environmental factors in childhood allergy. PLoS One 2013; 8:e80080. [PMID: 24260339 PMCID: PMC3833974 DOI: 10.1371/journal.pone.0080080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022] Open
Abstract
Both genetic and environmental factors are important for the development of allergic diseases. However, a detailed understanding of how such factors act together is lacking. To elucidate the interplay between genetic and environmental factors in allergic diseases, we used a novel bioinformatics approach that combines feature selection and machine learning. In two materials, PARSIFAL (a European cross-sectional study of 3113 children) and BAMSE (a Swedish birth-cohort including 2033 children), genetic variants as well as environmental and lifestyle factors were evaluated for their contribution to allergic phenotypes. Monte Carlo feature selection and rule based models were used to identify and rank rules describing how combinations of genetic and environmental factors affect the risk of allergic diseases. Novel interactions between genes were suggested and replicated, such as between ORMDL3 and RORA, where certain genotype combinations gave odds ratios for current asthma of 2.1 (95% CI 1.2-3.6) and 3.2 (95% CI 2.0-5.0) in the BAMSE and PARSIFAL children, respectively. Several combinations of environmental factors appeared to be important for the development of allergic disease in children. For example, use of baby formula and antibiotics early in life was associated with an odds ratio of 7.4 (95% CI 4.5-12.0) of developing asthma. Furthermore, genetic variants together with environmental factors seemed to play a role for allergic diseases, such as the use of antibiotics early in life and COL29A1 variants for asthma, and farm living and NPSR1 variants for allergic eczema. Overall, combinations of environmental and life style factors appeared more frequently in the models than combinations solely involving genes. In conclusion, a new bioinformatics approach is described for analyzing complex data, including extensive genetic and environmental information. Interactions identified with this approach could provide useful hints for further in-depth studies of etiological mechanisms and may also strengthen the basis for risk assessment and prevention.
Collapse
|
35
|
Ismail IH, Licciardi PV, Tang ML. Probiotic effects in allergic disease. J Paediatr Child Health 2013; 49:709-15. [PMID: 23574636 DOI: 10.1111/jpc.12175] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2012] [Indexed: 12/30/2022]
Abstract
The increasing prevalence of allergic disease has been linked to reduced microbial exposure in early life. Probiotics have recently been advocated for the prevention and treatment of allergic disease. This article summarises recent publications on probiotics in allergic disease, focusing on clinical studies of prevention or treatment of allergic disease. Studies employing the combined administration of pre-natal and post-natal probiotics suggest a role for certain probiotics (alone or with prebiotics) in the prevention of eczema in early childhood, with the pre-natal component of treatment appearing to be important for beneficial effects. On the other hand, current data are insufficient to support the use of probiotics for the treatment of established allergic disease, although recent studies have highlighted new hope in this area. Probiotic bacteria continue to represent the most promising intervention for primary prevention of allergic disease, and well-designed definitive intervention studies should now be a research priority.
Collapse
Affiliation(s)
- Intan H Ismail
- Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; Department of Paediatrics, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
36
|
Fuertes E, Brauer M, MacIntyre E, Bauer M, Bellander T, von Berg A, Berdel D, Brunekreef B, Chan-Yeung M, Gehring U, Herbarth O, Hoffmann B, Kerkhof M, Klümper C, Koletzko S, Kozyrskyj A, Kull I, Heinrich J, Melén E, Pershagen G, Postma D, Tiesler CMT, Carlsten C. Childhood allergic rhinitis, traffic-related air pollution, and variability in the GSTP1, TNF, TLR2, and TLR4 genes: results from the TAG Study. J Allergy Clin Immunol 2013; 132:342-52.e2. [PMID: 23639307 DOI: 10.1016/j.jaci.2013.03.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 02/05/2013] [Accepted: 03/06/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Associations between traffic-related air pollution (TRAP) and allergic rhinitis remain inconsistent, possibly because of unexplored gene-environment interactions. OBJECTIVE In a pooled analysis of 6 birth cohorts (Ntotal = 15,299), we examined whether TRAP and genetic polymorphisms related to inflammation and oxidative stress predict allergic rhinitis and sensitization. METHODS Allergic rhinitis was defined with a doctor diagnosis or reported symptoms at age 7 or 8 years. Associations between nitrogen dioxide, particulate matter 2.5 (PM2.5) mass, PM2.5 absorbance, and ozone, estimated for each child at the year of birth, and single nucleotide polymorphisms within the GSTP1, TNF, TLR2, or TLR4 genes with allergic rhinitis and aeroallergen sensitization were examined with logistic regression. Models were stratified by genotype and interaction terms tested for gene-environment associations. RESULTS Point estimates for associations between nitrogen dioxide, PM2.5 mass, and PM2.5 absorbance with allergic rhinitis were elevated, but only that for PM2.5 mass was statistically significant (1.37 [1.01, 1.86] per 5 μg/m(3)). This result was not robust to single-cohort exclusions. Carriers of at least 1 minor rs1800629 (TNF) or rs1927911 (TLR4) allele were consistently at an increased risk of developing allergic rhinitis (1.19 [1.00, 1.41] and 1.24 [1.01, 1.53], respectively), regardless of TRAP exposure. No evidence of gene-environment interactions was observed. CONCLUSION The generally null effect of TRAP on allergic rhinitis and aeroallergen sensitization was not modified by the studied variants in the GSTP1, TNF, TLR2, or TLR4 genes. Children carrying a minor rs1800629 (TNF) or rs1927911 (TLR4) allele may be at a higher risk of allergic rhinitis.
Collapse
Affiliation(s)
- Elaine Fuertes
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Klaassen EM, Thönissen BE, van Eys G, Dompeling E, Jöbsis Q. A systematic review of CD14 and toll-like receptors in relation to asthma in Caucasian children. Allergy Asthma Clin Immunol 2013; 9:10. [PMID: 23496969 PMCID: PMC3602113 DOI: 10.1186/1710-1492-9-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/12/2013] [Indexed: 11/10/2022] Open
Abstract
The aetiology of childhood asthma is complex. An early dysfunction in the immunological development of the innate immune system in combination with environmental factors possibly triggers asthma. CD14 and toll-like receptors are important components of the innate immune system. The aim of this systematic review was to obtain a better insight into the relation between CD14 and toll-like receptors and childhood asthma in Caucasians. We searched PubMed and EMBASE for relevant articles. In total, 44 articles were included. The quality of the selected studies was independently assessed by the first two authors using the Newcastle-Ottawa quality assessment scale. Toll-like receptor 2, toll-like receptor 6, toll-like receptor 9, and toll-like receptor 10 appear to have some association with childhood asthma in Caucasians. The evidence for a relation of CD14 with childhood asthma is limited. In conclusion, there is no convincing evidence yet for a role of CD14 and toll-like receptors in relation to childhood asthma. Future studies should include haplotype analysis and take environmental factors into account to further clarify the role of CD14 and toll-like receptors on childhood asthma.
Collapse
Affiliation(s)
- Ester Mm Klaassen
- Department of Paediatric Pulmonology, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Centre (MUMC), P,O, Box 5800, Maastricht, 6202 AZ, the Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Kim WK, Kwon JW, Seo JH, Kim HY, Yu J, Kim BJ, Kim HB, Lee SY, Kim KW, Kang MJ, Shin YJ, Hong SJ. Interaction between IL13 genotype and environmental factors in the risk for allergic rhinitis in Korean children. J Allergy Clin Immunol 2012; 130:421-6.e5. [PMID: 22846750 DOI: 10.1016/j.jaci.2012.04.052] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/19/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND The prevalence of allergic rhinitis (AR) is increasing worldwide. Allergic diseases develop in susceptible subjects when they are exposed to specific environmental factors. OBJECTIVE We analyzed changes in the prevalence of AR and identified genetic and environmental factors in early childhood that affect risk. METHODS We used the International Study of Asthma and Allergies in Childhood questionnaire to collect data on AR, allergies, and environmental exposures from 4554 elementary school students from 5 areas of Seoul, Korea, in 2008. We also obtained DNA from 1050 subjects from 1 area of Seoul for genotype analysis of IL13. RESULTS We identified genetic and environmental factors during infancy and early childhood that increased the risk for current AR (resulting in a diagnosis of AR and AR symptoms in the past 12 months) in elementary school-aged children. These included allergic disease in parents and antibiotic use in infants, allergic disease in parents and exposure of infants to mold, and allergic disease in parents and moving an infant to a newly built house. The risk of current AR also increased in subjects with GA or AA at nucleotide 2044 in IL13 who had been exposed to mold in the home during infancy (adjusted odds ratio, 3.27; 95% CI, 1.75-6.11) compared with subjects who had GG at this position and had not been exposed to mold (adjusted odds ratio, 3.27; 95% CI, 1.75-6.11). CONCLUSION The prevalence of AR is increasing in Korean children. Children with a family history of allergic disease and exposure to specific environmental risk factors during infancy are more likely to have AR. Children with GA or AA at IL13(+2044) are at increased risk for AR when exposed to mold in the home during the first year of life.
Collapse
Affiliation(s)
- Woo Kyung Kim
- Department of Pediatrics, Inje University Seoul Paik Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Loss G, Bitter S, Wohlgensinger J, Frei R, Roduit C, Genuneit J, Pekkanen J, Roponen M, Hirvonen MR, Dalphin JC, Dalphin ML, Riedler J, von Mutius E, Weber J, Kabesch M, Michel S, Braun-Fahrländer C, Lauener R. Prenatal and early-life exposures alter expression of innate immunity genes: the PASTURE cohort study. J Allergy Clin Immunol 2012; 130:523-30.e9. [PMID: 22846753 DOI: 10.1016/j.jaci.2012.05.049] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/20/2012] [Accepted: 05/23/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND There is evidence that gene expression of innate immunity receptors is upregulated by farming-related exposures. OBJECTIVE We sought to determine environmental and nutritional exposures associated with the gene expression of innate immunity receptors during pregnancy and the first year of a child's life. METHODS For the Protection Against Allergy: Study in Rural Environments (PASTURE) birth cohort study, 1133 pregnant women were recruited in rural areas of Austria, Finland, France, Germany, and Switzerland. mRNA expression of the Toll-like receptor (TLR) 1 through TLR9 and CD14 was assessed in blood samples at birth (n= 938) and year 1 (n= 752). Environmental exposures, as assessed by using questionnaires and a diary kept during year 1, and polymorphisms in innate receptor genes were related to gene expression of innate immunity receptors by using ANOVA and multivariate regression analysis. RESULTS Gene expression of innate immunity receptors in cord blood was overall higher in neonates of farmers (P for multifactorial multivariate ANOVA= .041), significantly so for TLR7 (adjusted geometric means ratio [aGMR], 1.15; 95% CI, 1.02-1.30) and TLR8 (aGMR, 1.15; 95% CI, 1.04-1.26). Unboiled farm milk consumption during the first year of life showed the strongest association with mRNA expression at year 1, taking the diversity of other foods introduced during that period into account: TLR4 (aGMR, 1.22; 95% CI, 1.03-1.45), TLR5 (aGMR, 1.19; 95% CI, 1.01-1.41), and TLR6 (aGMR, 1.20; 95% CI, 1.04-1.38). A previously described modification of the association between farm milk consumption and CD14 gene expression by the single nucleotide polymorphism CD14/C-1721T was not found. CONCLUSION Farming-related exposures, such as raw farm milk consumption, that were previously reported to decrease the risk for allergic outcomes were associated with a change in gene expression of innate immunity receptors in early life.
Collapse
Affiliation(s)
- Georg Loss
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Several population-based studies have replicated the finding that exposure to a farm environment is protective against the development of atopic diseases. From these studies, novel insights into potential allergy-protective mechanisms were retrieved. This review focuses on consistent and novel findings of immune mechanisms involved in the 'farm effect'. RECENT FINDINGS The most recent studies suggest that the 'farm effect' mediated by microbial exposure may be attributed to both microbial diversity and species specificity. There is convincing evidence that farm milk components and grass arabinogalactan, commonly found in cowshed, may be important. Furthermore, early exposure to a farming environment, in particular in utero, showed stronger effects than exposure later in life, potentially through modulation of the immature immune system by microbes, also involving epigenetic changes. This protective 'farm effect' remains in later adulthood. Regarding gene-environment interactions, polymorphisms in GRM1 interacted with farming in a genome-wide interaction scan for asthma. SUMMARY The novel studies strengthen the role of microbial exposure and farm milk and grass components, especially early in life, in the modulation of the immune system towards a Th1/Treg predominance. This may subsequently lead to a long-lasting lower risk of developing atopic diseases.
Collapse
|
41
|
Development of atopic dermatitis according to age of onset and association with early-life exposures. J Allergy Clin Immunol 2012; 130:130-6.e5. [DOI: 10.1016/j.jaci.2012.02.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 01/17/2023]
|
42
|
Illi S, Depner M, Genuneit J, Horak E, Loss G, Strunz-Lehner C, Büchele G, Boznanski A, Danielewicz H, Cullinan P, Heederik D, Braun-Fahrländer C, von Mutius E. Protection from childhood asthma and allergy in Alpine farm environments-the GABRIEL Advanced Studies. J Allergy Clin Immunol 2012; 129:1470-7.e6. [PMID: 22534534 DOI: 10.1016/j.jaci.2012.03.013] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND Studies on the association of farm environments with asthma and atopy have repeatedly observed a protective effect of farming. However, no single specific farm-related exposure explaining this protective farm effect has consistently been identified. OBJECTIVE We sought to determine distinct farm exposures that account for the protective effect of farming on asthma and atopy. METHODS In rural regions of Austria, Germany, and Switzerland, 79,888 school-aged children answered a recruiting questionnaire (phase I). In phase II a stratified random subsample of 8,419 children answered a detailed questionnaire on farming environment. Blood samples and specific IgE levels were available for 7,682 of these children. A broad asthma definition was used, comprising symptoms, diagnosis, or treatment ever. RESULTS Children living on a farm were at significantly reduced risk of asthma (adjusted odds ratio [aOR], 0.68; 95% CI, 0.59-0.78; P< .001), hay fever (aOR, 0.43; 95% CI, 0.36-0.52; P< .001), atopic dermatitis (aOR, 0.80; 95% CI, 0.69-0.93; P= .004), and atopic sensitization (aOR, 0.54; 95% CI, 0.48-0.61; P< .001) compared with nonfarm children. Whereas this overall farm effect could be explained by specific exposures to cows, straw, and farm milk for asthma and exposure to fodder storage rooms and manure for atopic dermatitis, the farm effect on hay fever and atopic sensitization could not be completely explained by the questionnaire items themselves or their diversity. CONCLUSION A specific type of farm typical for traditional farming (ie, with cows and cultivation) was protective against asthma, hay fever, and atopy. However, whereas the farm effect on asthma could be explained by specific farm characteristics, there is a link still missing for hay fever and atopy.
Collapse
Affiliation(s)
- Sabina Illi
- Asthma and Allergy Research Group, University Children's Hospital, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kurowski M, Majkowska-Wojciechowska B, Wardzyńska A, Kowalski ML. Associations of allergic sensitization and clinical phenotypes with innate immune response genes polymorphisms are modified by house dust mite allergen exposure. Arch Med Sci 2011; 7:1029-36. [PMID: 22328887 PMCID: PMC3264996 DOI: 10.5114/aoms.2011.26616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/15/2011] [Accepted: 04/09/2011] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Polymorphisms within innate immunity genes are associated with allergic phenotypes but results are variable. These associations were not analyzed with respect to allergen exposure. We investigated associations of TLR and CD14 polymorphisms with allergy phenotypes in the context of house dust mite (HDM) exposure. MATERIAL AND METHODS Children, aged 12-16 years (n=326), were recruited from downtown and rural locations and assessed by allergist. Skin prick tests, total and HDM-specific sIgE measurements were done. HDM allergen concentrations in dust were measured. Genetic polymorphisms were identified using restriction fragment length polymorphism (RFLP). RESULTS Allergic rhinitis, asthma and atopy were more prevalent in urban area. Although HDM allergen concentrations were higher in rural households, sIgE were present more frequently in urban children. In the whole population no association was found between HDM exposure and sensitization. In children with CD14/-159CC, CD14/-159TT and TLR9/2848GA genotypes increased exposure to HDM was associated with reduced incidence of allergic rhinitis. Significant associations of increased HDM exposure with reduced incidence of atopy were found for the whole population and subjects with CD14/-159CC, CD14/-1359GT, TLR4/896AA and TLR9/2848GA genotypes. Among children with CD14/-159CC and CD14/-1359GG significant positive correlation between HDM allergen concentrations in household and sensitization to HDM was observed. In contrast, protective effect of high HDM allergen exposure against specific sensitization was seen in subjects with TLR4/896 AG. CONCLUSIONS Development of specific sensitization and allergy may be associated with innate immune response genes polymorphisms and is modified by allergen exposure.
Collapse
Affiliation(s)
- Marcin Kurowski
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, Poland
| | | | | | | |
Collapse
|
44
|
Braun-Fahrländer C, von Mutius E. Can farm milk consumption prevent allergic diseases? Clin Exp Allergy 2011; 41:29-35. [PMID: 21155907 DOI: 10.1111/j.1365-2222.2010.03665.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cow's milk is an important part of human diet and a source of food allergy for some individuals. Medical guidance strongly discourages consumption of raw milk because of the known health risk associated with pathogenic bacteria present in unpasteurized milk. Despite these risks there is a growing body of epidemiological evidence suggesting that consumption of unprocessed cow's milk does not increase but rather decreases the risk of asthma, hay fever and atopic sensitisation. The article reviews the epidemiological literature and discusses components of unprocessed milk potentially responsible for this protection. It focuses on the role of bacteria in raw milk, the fatty acid profile, whey proteins and finally the role of allergens in milk. Although the epidemiological evidence consistently suggest a protective role of unprocessed cow's milk consumption on the development of asthma, hay fever and atopic sensitization the underlying mechanisms are not yet understood and the consumption of raw milk cannot be recommended as a preventive measure for allergic diseases.
Collapse
|
45
|
Zhang G, Candelaria P, Mäkelä JM, Khoo SK, Hayden MC, von Hertzen L, Laatikainen T, Vartiainen E, Goldblatt J, Haahtela T, LeSouëf NP. Disparity of innate immunity-related gene effects on asthma and allergy on Karelia. Pediatr Allergy Immunol 2011; 22:621-30. [PMID: 21749458 DOI: 10.1111/j.1399-3038.2011.01186.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND We investigated the interactive effects of 11 innate immunity-related genes (IL10, IL12b, IL8, TLR2, TLR4, CD14, IFNGR, CC16, IFNg, CMA1, and TGFB) and four IgE response genes (IL4, IL13, IL4RA, and STAT6) with 'Western' or 'Eastern' environments/lifestyles on asthma and allergy in Karelian children. METHODS Karelian children (412 Finnish and 446 Russian) were recruited and assessed for a range of allergic conditions, with 24 single-nucleotide polymorphisms genotyped in 15 genes. RESULTS The genotype-phenotype relationships differed in Finnish and Russian Karelian children. The interaction between polymorphisms and the variable representing 'Western' and 'Eastern' environments/ lifestyles was significant for IL10-1082 (p = 0.0083) on current rhinitis, IL12b 6408 on current conjunctivitis (p = 0.016) and atopy (p = 0.034), IL8 781 on atopic eczema (p = 0.0096), CD14 -550 on current rhinitis (p = 0.022), IFNgR1 -56 on atopic eczema(p = 0.038), and STAT6 2964 on current itchy rash (p = 0.037) and total serum IgE (p = 0.042). In addition, the G allele of IL13 130 was associated with a lower level of total serum IgE in Finnish (p = 0.003) and Russian (p = 0.01) children and overall (pooling the two populations together, p = 0.00006). After adjusting for multiple tests, the association between IL13 130 and IgE and the interactive effects of IL10-1082 on current rhinitis and IL8 781 on atopic eczema were significant by controlling a false-positive rate of 0.05 and 0.10, respectively. CONCLUSIONS Living in an Eastern vs. Western environment was associated with a different genetic profile associated with asthma and allergy in the Karelian populations.
Collapse
Affiliation(s)
- Guicheng Zhang
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Loss G, Apprich S, Waser M, Kneifel W, Genuneit J, Büchele G, Weber J, Sozanska B, Danielewicz H, Horak E, van Neerven RJJ, Heederik D, Lorenzen PC, von Mutius E, Braun-Fahrländer C. The protective effect of farm milk consumption on childhood asthma and atopy: the GABRIELA study. J Allergy Clin Immunol 2011; 128:766-773.e4. [PMID: 21875744 DOI: 10.1016/j.jaci.2011.07.048] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 07/14/2011] [Accepted: 07/16/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Farm milk consumption has been identified as an exposure that might contribute to the protective effect of farm life on childhood asthma and allergies. The mechanism of action and the role of particular constituents of farm milk, however, are not yet clear. OBJECTIVE We sought to investigate the farm milk effect and determine responsible milk constituents. METHODS In rural regions of Germany, Austria, and Switzerland, a comprehensive questionnaire about farm milk consumption and other farm-related exposures was completed by parents of 8334 school-aged children, and 7606 of them provided serum samples to assess specific IgE levels. In 800 cow's milk samples collected at the participants' homes, viable bacterial counts, whey protein levels, and total fat content were analyzed. Asthma, atopy, and hay fever were associated to reported milk consumption and for the first time to objectively measured milk constituents by using multiple regression analyses. RESULTS Reported raw milk consumption was inversely associated to asthma (adjusted odds ratio [aOR], 0.59; 95% CI, 0.46-0.74), atopy (aOR, 0.74; 95% CI, 0.61-0.90), and hay fever (aOR, 0.51; 95% CI, 0.37-0.69) independent of other farm exposures. Boiled farm milk did not show a protective effect. Total viable bacterial counts and total fat content of milk were not significantly related to asthma or atopy. Increased levels of the whey proteins BSA (aOR for highest vs lowest levels and asthma, 0.53; 95% CI, 0.30-0.97), α-lactalbumin (aOR for interquartile range and asthma, 0.71; 95% CI, 0.52-0.97), and β-lactoglobulin (aOR for interquartile range and asthma, 0.62; 95% CI, 0.39-0.97), however, were inversely associated with asthma but not with atopy. CONCLUSIONS The findings suggest that the protective effect of raw milk consumption on asthma might be associated with the whey protein fraction of milk.
Collapse
Affiliation(s)
- Georg Loss
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mahesh PA, Kummeling I, Amrutha DH, Vedanthan PK. Effect of area of residence on patterns of aeroallergen sensitization in atopic patients. Am J Rhinol Allergy 2011; 24:e98-103. [PMID: 21244724 DOI: 10.2500/ajra.2010.24.3529] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND An association with sensitization to inhaled allergens and allergic rhinitis and asthma has been established. A recent study concluded that the disparity in allergen sensitization might primarily be caused by environmental factors rather than genetic differences. The primary objective was to identify potential differences in sensitization among subjects with the same ethnicity in South India who reside in different environments. METHODS Five hundred forty-six patients presenting to a tertiary allergy center with allergic rhinitis and or asthma underwent evaluation using a structured questionnaire, skin-prick testing to common aeroallergens, and spirometry and were categorized according to area of residence. RESULTS The most common allergens causing sensitization were house-dust mite (range, 65-70%), trees (range, 52-56%), and cockroaches (range, 39-53%). There was lower risk of sensitization to cockroach allergens for subjects <21 years old living in suburban (odds ratio [OR], 0.32; 95% confidence interval [CI], 0.12-0.81) and rural environments (OR, 0.33; 95% CI, 0.11-0.96) compared with subjects <21 years old living in urban areas. There was higher risk of sensitization to fungi in subjects <21 years old living in suburban areas (OR, 1.51; 95% CI, 0.60-3.77) and rural environments (OR, 2.71; 95% CI, 0.98-7.48) compared with subjects <21 years old living in urban environments. CONCLUSION Sensitization patterns are similar in different areas of residence except in younger subjects. Sensitization to fungi was higher in younger subjects from the rural area and cockroach sensitization were higher in younger subjects from urban areas. Sensitization is an important precursor of clinical allergic disease and further studies to unravel the complex gene-environment interactions of aeroallergen sensitization in different environments are needed.
Collapse
|
48
|
Ege MJ, Strachan DP, Cookson WOCM, Moffatt MF, Gut I, Lathrop M, Kabesch M, Genuneit J, Büchele G, Sozanska B, Boznanski A, Cullinan P, Horak E, Bieli C, Braun-Fahrländer C, Heederik D, von Mutius E. Gene-environment interaction for childhood asthma and exposure to farming in Central Europe. J Allergy Clin Immunol 2011; 127:138-44, 144.e1-4. [PMID: 21211648 DOI: 10.1016/j.jaci.2010.09.041] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 01/03/2023]
Abstract
BACKGROUND Asthma is a disease in which both genetic and environmental factors play important roles. The farming environment has consistently been associated with protection from childhood asthma and atopy, and interactions have been reported with polymorphisms in innate immunity genes. OBJECTIVE To detect gene-environment interactions for asthma and atopy in the farming environment. METHODS We performed a genome-wide interaction analysis for asthma and atopy by using 500,000 genotyped single nucleotide polymorphisms (SNPs) and farm-related exposures in 1708 children from 4 rural regions of Central Europe. We also tested selectively for interactions between farm exposures and 7 SNPs that emerged as genome-wide significant in a large meta-analysis of childhood asthma and 5 SNPs that had been reported previously as interacting with farm exposures for asthma or atopy. RESULTS Neither the asthma-associated SNPs nor the SNPs previously published for interactions with asthma showed significant interactions. The genome-wide interaction study did not reveal any significant interactions with SNPs within genes in the range of interacting allele frequencies from 30% to 70%, for which our study was well powered. Among rarer SNPs, we identified 15 genes with strong interactions for asthma or atopy in relation to farming, contact with cows and straw, or consumption of raw farm milk. CONCLUSION Common genetic polymorphisms are unlikely to moderate the protective influence of the farming environment on childhood asthma and atopy, but rarer variants, particularly of the glutamate receptor, metabotropic 1 gene, may do so. Given the limited statistical power of our study, these findings should be interpreted with caution before being replicated in independent farm populations.
Collapse
Affiliation(s)
- Markus J Ege
- University Children's Hospital Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hulin M, Annesi-Maesano I. Allergies et asthme chez l’enfant en milieu rural agricole. Rev Mal Respir 2010; 27:1195-220. [DOI: 10.1016/j.rmr.2010.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 06/17/2010] [Indexed: 12/28/2022]
|
50
|
Joerink M, Oortveld MAW, Stenius F, Rindsjö E, Alm J, Scheynius A. Lifestyle and parental allergen sensitization are reflected in the intrauterine environment at gene expression level. Allergy 2010; 65:1282-9. [PMID: 20146730 DOI: 10.1111/j.1398-9995.2010.02328.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Environmental factors, including the intrauterine environment, can influence the risk of allergy development. In the present study, we investigated whether lifestyle and parental allergen sensitization status are reflected at gene expression level in the intrauterine environment. METHODS mRNA expression of 17 genes was determined by means of quantitative real-time PCR in term placenta of 36 families participating in the ALADDIN study (Assessment of Lifestyle and Allergic Disease During Infancy). Data were analysed using a linear regression model to estimate the influence of lifestyle and parental allergen sensitization on the relative mRNA expression levels. Immunohistochemistry on placenta biopsies was used to verify protein expression. RESULTS Significant differences in mRNA expression levels were detected at the foetal side of the placenta, where CD14 was expressed at higher levels in placentas from families living on a farm compared to not living on a farm, and IL-12(p40) was expressed at lower levels when the father was sensitized compared to nonsensitized. At the maternal side of the placenta, higher expression of STAT4 and lower expression of GATA3 were detected in families with sensitized compared to nonsensitized mothers, and IL-12(p40) was lower expressed when the families were living on a farm compared to not living on a farm. Immunohistochemistry performed for STAT4 and GATA3 showed that protein and mRNA levels correlated well. CONCLUSION Living on a farm and parental allergen sensitization are reflected in the intrauterine environment at the gene expression level.
Collapse
Affiliation(s)
- Maaike Joerink
- Department of Medicine Solna, Clinical Allergy Research Unit, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|