1
|
Ellis DA, Jones M, Willems HME, Cheung S, Makullah M, Aimanianda V, Steele C. Fungal chitin is not an independent mediator of allergic fungal asthma severity. Am J Physiol Lung Cell Mol Physiol 2024; 327:L293-L303. [PMID: 38915287 PMCID: PMC11442099 DOI: 10.1152/ajplung.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
Chitin, a polysaccharide found in the fungal cell wall and the exoskeletons of house dust mites and cockroaches, has garnered attention as a potential immunoreactive allergen. Mammals have evolved to express chitin-degrading chitinases (acidic mammalian chitinase/AMCase and chitotriosidase) that may modulate immune responses to chitin. We have previously reported that mice deficient in AMCase (Chia-/-) demonstrated better lung function during allergic fungal asthma. As expected, we show that mice overexpressing AMCase (SPAM mice) had worse airway hyperreactivity (AHR) during allergic fungal asthma. We further demonstrate that chitin-positive Aspergillus fumigatus conidia are detectable in the allergic lung during chronic exposure. Lung function in Chia-/- and SPAM mice is directly correlated with the level of chitinase activity during chronic fungal exposure (Chia-/- mice, negligible chitinase activity, lower AHR; SPAM mice, heightened chitinase activity, higher AHR), suggesting that the breakdown of chitin promoted AHR. However, chronic exposure of normal mice to purified A. fumigatus chitin resulted in only moderate inflammatory changes in the lung that were not sufficient to induce AHR. Moreover, despite having dramatic differences in chitinase activity, chronic exposure of Chia-/- and SPAM mice to purified A. fumigatus chitin likewise did not modulate AHR. Collectively, these results indicate that chronic exposure to fungal chitin alone is incapable of driving AHR. Furthermore, our data suggest that the chitinase-mediated degradation of chitin associated with A. fumigatus conidia may facilitate unmasking and/or liberation of other fungal cell wall components that drive inflammatory responses that contribute to AHR.NEW & NOTEWORTHY Humans with asthma sensitized to fungi often have more severe asthma than those who are not fungal-sensitized. Chitin makes up a significant portion of the cell wall of fungi and has been implicated as a pathogenic factor in allergic asthma. Ellis et al. demonstrate that chronic exposure to fungal chitin alone is unable to modulate lung function, even in the presence of differential lung chitinase activity.
Collapse
Affiliation(s)
- Diandra A Ellis
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - MaryJane Jones
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Hubertine M E Willems
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Suki Cheung
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Mgayya Makullah
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Vishukumar Aimanianda
- Unité de Mycologie Moléculaire, Institut Pasteur, Université de Paris, CNRS, UMR2000, Paris, France
| | - Chad Steele
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
2
|
Glatthardt T, van Tilburg Bernardes E, Arrieta MC. The mycobiome in atopic diseases: Inducers and triggers. J Allergy Clin Immunol 2023; 152:1368-1375. [PMID: 37865199 DOI: 10.1016/j.jaci.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Atopic diseases are characterized by type 2 inflammation, with high levels of allergen-specific TH2 cell immune responses and elevated production of IgE. These common disorders have increased in incidence around the world, which is partly explained by detrimental disturbances to the early-life intestinal microbiome. Although most studies have focused exclusively on bacterial members of the microbiome, intestinal fungi have started to be recognized for their impact on host immune development and atopy pathogenesis. From this perspective, we review recent findings demonstrating the strong interactions between members of the mycobiome and the host immune system early in life, leading to immune tolerance during eubiosis or inducing sensitization and overt TH2 cell responses during dysbiosis. Current evidence places intestinal fungi as central players in the development of allergic diseases and potential targets for atopy prevention and treatments.
Collapse
Affiliation(s)
- Thais Glatthardt
- the Department of Physiology and Pharmacology, University of Calgary, Calgary; the International Microbiome Centre, Snyder Institute for Chronic Diseases, University of Calgary, Calgary; the Department of Pediatrics, Alberta Children Hospital Research Institute, University of Calgary, Calgary
| | - Erik van Tilburg Bernardes
- the Department of Physiology and Pharmacology, University of Calgary, Calgary; the International Microbiome Centre, Snyder Institute for Chronic Diseases, University of Calgary, Calgary; the Department of Pediatrics, Alberta Children Hospital Research Institute, University of Calgary, Calgary
| | - Marie-Claire Arrieta
- the Department of Physiology and Pharmacology, University of Calgary, Calgary; the International Microbiome Centre, Snyder Institute for Chronic Diseases, University of Calgary, Calgary; the Department of Pediatrics, Alberta Children Hospital Research Institute, University of Calgary, Calgary.
| |
Collapse
|
3
|
Mahesh PA, Moitra S, Mabalirajan U, Garg M, Malamardi S, Vedanthan PK, Christopher DJ, Agrawal A, Krishna MT. Allergic diseases in India - Prevalence, risk factors and current challenges. Clin Exp Allergy 2023; 53:276-294. [PMID: 36181726 DOI: 10.1111/cea.14239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/10/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Epidemiological studies have shown a rise in the prevalence of allergic diseases in India during the last two decades. However, recent evidence from the Global Asthma Network study has observed a decrease in allergic rhinitis, asthma and atopic dermatitis in children. Still, with a population over 1.3 billion, there is a huge burden of allergic rhinitis, asthma and atopic dermatitis, and this is compounded by an unmet demand for trained allergy specialists and poor health service framework. There is wide variation in the prevalence of allergic diseases between different geographical locations in India, and the reasons are unclear at present. This may at least in part be attributable to considerable heterogeneity in aero-biology, weather, air pollution levels, cultural and religious factors, diet, socioeconomic strata and literacy. At present, factors enhancing risks and those protecting from development of atopy and allergic diseases have not been well delineated, although there is some evidence for the influence of genetic factors alongside cultural and environmental variables such as diet, exposure to tobacco smoke and air pollution and residence in urban areas. This narrative review provides an overview of data from India regarding epidemiology, risk factors and genetics and highlights gaps in evidence as well as areas for future research.
Collapse
Affiliation(s)
- Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Saibal Moitra
- Department of Allergy and Immunology, Apollo Gleneagles Hospital, Kolkota, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Center of Excellence, Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics & Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mayank Garg
- Center of Excellence, Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics & Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sowmya Malamardi
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India.,School of Psychology & Public Health, College of Science Health and Engineering, La Trobe University, Melbourne, Victoria, Australia
| | - Pudupakkam K Vedanthan
- Department of Medicine, Division of Allergy and Immunology, The University of Colorado, Aurora, Colorado, USA
| | | | - Anurag Agrawal
- Center of Excellence, Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics & Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mamidipudi Thirumala Krishna
- Department of Allergy and Immunology, University Hospitals Birmingham NHS Foundation Trust, and Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Robust chitinolytic activity of crab-eating monkey (Macaca fascicularis) acidic chitinase under a broad pH and temperature range. Sci Rep 2021; 11:15470. [PMID: 34326426 PMCID: PMC8322401 DOI: 10.1038/s41598-021-95010-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Diet of the crab-eating monkey (Macaca fascicularis) consists of both plants and animals, including chitin-containing organisms such as crabs and insects. This omnivorous monkey has a high expression of acidic chitinase (CHIA) in the stomach and here, we report on its enzymatic properties under different conditions. When we compared with Mus musculus CHIA (Mm-CHIA), Macaca fascicularis CHIA (Mf-CHIA) exhibits higher chitinolytic activity at broad pH (1.0–7.0) and temperature (30–70 ℃) range. Interestingly, at its optimum pH (5.0), Mf-CHIA showed the highest activity at 65 °C while maintaining it at robust levels between 50 and 70 °C. The degradation efficiency of Mf-CHIA was superior to Mm-CHIA toward both polymeric chitin as well as an artificial chromogenic substrate. Our results show that unique features of Mf-CHIA including its thermostability warrant the nomination of this enzyme for potential agricultural and biomedical applications.
Collapse
|
5
|
van Tilburg Bernardes E, Gutierrez MW, Arrieta MC. The Fungal Microbiome and Asthma. Front Cell Infect Microbiol 2020; 10:583418. [PMID: 33324573 PMCID: PMC7726317 DOI: 10.3389/fcimb.2020.583418] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Asthma is a group of inflammatory conditions that compromises the airways of a continuously increasing number of people around the globe. Its complex etiology comprises both genetic and environmental aspects, with the intestinal and lung microbiomes emerging as newly implicated factors that can drive and aggravate asthma. Longitudinal infant cohort studies combined with mechanistic studies in animal models have identified microbial signatures causally associated with subsequent asthma risk. The recent inclusion of fungi in human microbiome surveys has revealed that microbiome signatures associated with asthma risk are not limited to bacteria, and that fungi are also implicated in asthma development in susceptible individuals. In this review, we examine the unique properties of human-associated and environmental fungi, which confer them the ability to influence immune development and allergic responses. The important contribution of fungi to asthma development and exacerbations prompts for their inclusion in current and future asthma studies in humans and animal models.
Collapse
Affiliation(s)
- Erik van Tilburg Bernardes
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mackenzie W Gutierrez
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Przysucha N, Górska K, Krenke R. Chitinases and Chitinase-Like Proteins in Obstructive Lung Diseases - Current Concepts and Potential Applications. Int J Chron Obstruct Pulmon Dis 2020; 15:885-899. [PMID: 32368034 PMCID: PMC7185641 DOI: 10.2147/copd.s236640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/10/2020] [Indexed: 01/14/2023] Open
Abstract
Chitinases, enzymes that cleave chitin’s chain to low molecular weight chitooligomers, are widely distributed in nature. Mammalian chitinases belong to the 18-glycosyl-hydrolase family and can be divided into two groups: true chitinases with enzymatic activity (AMCase and chitotriosidase) and chitinase-like proteins (CLPs) molecules which can bind to chitin or chitooligosaccharides but lack enzymatic activity (eg, YKL-40). Chitinases are thought to be part of an innate immunity against chitin-containing parasites and fungal infections. Both groups of these hydrolases are lately evaluated also as chemical mediators or biomarkers involved in airway inflammation and fibrosis. The aim of this article is to present the current knowledge on the potential role of human chitinases and CLPs in the pathogenesis, diagnosis, and course of obstructive lung diseases. We also assessed the potential role of chitinase and CLPs inhibitors as therapeutic targets in chronic obstructive pulmonary disease and asthma.
Collapse
Affiliation(s)
- Natalia Przysucha
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Górska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
van Tilburg Bernardes E, Gutierrez MW, Arrieta MC. The Fungal Microbiome and Asthma. Front Cell Infect Microbiol 2020. [PMID: 33324573 DOI: 10.3389/fcimb.2020.583418/full] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Asthma is a group of inflammatory conditions that compromises the airways of a continuously increasing number of people around the globe. Its complex etiology comprises both genetic and environmental aspects, with the intestinal and lung microbiomes emerging as newly implicated factors that can drive and aggravate asthma. Longitudinal infant cohort studies combined with mechanistic studies in animal models have identified microbial signatures causally associated with subsequent asthma risk. The recent inclusion of fungi in human microbiome surveys has revealed that microbiome signatures associated with asthma risk are not limited to bacteria, and that fungi are also implicated in asthma development in susceptible individuals. In this review, we examine the unique properties of human-associated and environmental fungi, which confer them the ability to influence immune development and allergic responses. The important contribution of fungi to asthma development and exacerbations prompts for their inclusion in current and future asthma studies in humans and animal models.
Collapse
Affiliation(s)
- Erik van Tilburg Bernardes
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mackenzie W Gutierrez
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Sakornsakolpat P, Prokopenko D, Lamontagne M, Reeve NF, Guyatt AL, Jackson VE, Shrine N, Qiao D, Bartz TM, Kim DK, Lee MK, Latourelle JC, Li X, Morrow JD, Obeidat M, Wyss AB, Bakke P, Barr RG, Beaty TH, Belinsky SA, Brusselle GG, Crapo JD, de Jong K, DeMeo DL, Fingerlin TE, Gharib SA, Gulsvik A, Hall IP, Hokanson JE, Kim WJ, Lomas DA, London SJ, Meyers DA, O'Connor GT, Rennard SI, Schwartz DA, Sliwinski P, Sparrow D, Strachan DP, Tal-Singer R, Tesfaigzi Y, Vestbo J, Vonk JM, Yim JJ, Zhou X, Bossé Y, Manichaikul A, Lahousse L, Silverman EK, Boezen HM, Wain LV, Tobin MD, Hobbs BD, Cho MH. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Genet 2019; 51:494-505. [PMID: 30804561 PMCID: PMC6546635 DOI: 10.1038/s41588-018-0342-2] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/20/2018] [Indexed: 11/09/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. Genetic risk loci provide new insights into disease pathogenesis. We performed a genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the International COPD Genetics Consortium. We identified 82 loci associated with P < 5 × 10-8; 47 of these were previously described in association with either COPD or population-based measures of lung function. Of the remaining 35 new loci, 13 were associated with lung function in 79,055 individuals from the SpiroMeta consortium. Using gene expression and regulation data, we identified functional enrichment of COPD risk loci in lung tissue, smooth muscle, and several lung cell types. We found 14 COPD loci shared with either asthma or pulmonary fibrosis. COPD genetic risk loci clustered into groups based on associations with quantitative imaging features and comorbidities. Our analyses provide further support for the genetic susceptibility and heterogeneity of COPD.
Collapse
Affiliation(s)
- Phuwanat Sakornsakolpat
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Dmitry Prokopenko
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Maxime Lamontagne
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Quebec, Canada
| | - Nicola F Reeve
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Anna L Guyatt
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Victoria E Jackson
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nick Shrine
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Dandi Qiao
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Deog Kyeom Kim
- Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Mi Kyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Raleigh, NC, USA
| | - Jeanne C Latourelle
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Xingnan Li
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Jarrett D Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ma'en Obeidat
- University of British Columbia Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Annah B Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Raleigh, NC, USA
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Guy G Brusselle
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - James D Crapo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Kim de Jong
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Tasha E Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Department of Biostatistics and Informatics, University of Colorado Denver, Aurora, CO, USA
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Amund Gulsvik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ian P Hall
- Division of Respiratory Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham, UK
| | - John E Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - David A Lomas
- UCL Respiratory, University College London, London, UK
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Raleigh, NC, USA
| | | | - George T O'Connor
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Stephen I Rennard
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Clinical Discovery Unit, AstraZeneca, Cambridge, UK
| | - David A Schwartz
- Department of Medicine, School of Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Immunology, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Pawel Sliwinski
- 2nd Department of Respiratory Medicine, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - David Sparrow
- VA Boston Healthcare System and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - David P Strachan
- Population Health Research Institute, St. George's University of London, London, UK
| | | | | | - Jørgen Vestbo
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Jae-Joon Yim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Quebec, Canada
- Department of Molecular Medicine, Laval University, Québec, Québec, Canada
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Lies Lahousse
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - H Marike Boezen
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Louise V Wain
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Martin D Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
9
|
Caraballo L, Acevedo N, Zakzuk J. Ascariasis as a model to study the helminth/allergy relationships. Parasite Immunol 2018; 41:e12595. [PMID: 30295330 DOI: 10.1111/pim.12595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022]
Abstract
Ascariasis is the most frequent soil transmitted helminthiasis and, as well as other helminth infections, is expected to influence the clinical presentation of allergic diseases such as asthma. Indeed, several clinical and experimental works have shown an important impact either increasing or suppressing symptoms, and the same effects have been detected on the underlying immune responses. In this review we analyze the work on this field performed in Colombia, a Latin American tropical country, including aspects such as the molecular genetics of the IgE response to Ascaris; the allergenic activity of Ascaris IgE-binding molecular components and the immunological and clinical influences of ascariasis on asthma. The analysis allows us to conclude that the impact of ascariasis on the inception and evolution of allergic diseases such as asthma deserves more investigation, but advances have been made during the last years. The concurrent parasite-induced immunostimulatory and immunosuppressive effects during this helminthiasis do modify the natural history of asthma and some aspects of the practice of allergology in the tropics. Theoretically it can also influence the epidemiological trends of allergic diseases either by its absence or presence in different regions and countries.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
10
|
Acidic Mammalian Chitinase Negatively Affects Immune Responses during Acute and Chronic Aspergillus fumigatus Exposure. Infect Immun 2018; 86:IAI.00944-17. [PMID: 29712728 DOI: 10.1128/iai.00944-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Chitin is a polysaccharide that provides structure and rigidity to the cell walls of fungi and insects. Mammals possess multiple chitinases, which function to degrade chitin, thereby supporting a role for chitinases in immune defense. However, chitin degradation has been implicated in the pathogenesis of asthma. Here, we determined the impact of acidic mammalian chitinase (AMCase) (Chia) deficiency on host defense during acute exposure to the fungal pathogen Aspergillus fumigatus as well as its contribution to A. fumigatus-associated allergic asthma. We demonstrate that chitin in the fungal cell wall was detected at low levels in A. fumigatus conidia, which emerged at the highest level during hyphal transition. In response to acute A. fumigatus challenge, Chia-/- mice unexpectedly demonstrated lower A. fumigatus lung burdens at 2 days postchallenge. The lower fungal burden correlated with decreased lung interleukin-33 (IL-33) levels yet increased IL-1β and prostaglandin E2 (PGE2) production, a phenotype that we reported previously to promote the induction of IL-17A and IL-22. During chronic A. fumigatus exposure, AMCase deficiency resulted in lower dynamic and airway lung resistance than in wild-type mice. Improved lung physiology correlated with attenuated levels of the proallergic chemokines CCL17 and CCL22. Surprisingly, examination of inflammatory responses during chronic exposure revealed attenuated IL-17A and IL-22 responses, but not type 2 responses, in the absence of AMCase. Collectively, these data suggest that AMCase functions as a negative regulator of immune responses during acute fungal exposure and is a contributor to fungal asthma severity, putatively via the induction of proinflammatory responses.
Collapse
|
11
|
Uehara M, Tabata E, Ishii K, Sawa A, Ohno M, Sakaguchi M, Matoska V, Bauer PO, Oyama F. Chitinase mRNA Levels Determined by QPCR in Crab-Eating Monkey (Macaca fascicularis) Tissues: Species-Specific Expression of Acidic Mammalian Chitinase and Chitotriosidase. Genes (Basel) 2018; 9:genes9050244. [PMID: 29747453 PMCID: PMC5977184 DOI: 10.3390/genes9050244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022] Open
Abstract
Mice and humans express two active chitinases: acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Both chitinases are thought to play important roles in specific pathophysiological conditions. The crab-eating monkey (Macaca fascicularis) is one of the most frequently used nonhuman primate models in basic and applied biomedical research. Here, we performed gene expression analysis of two chitinases in normal crab-eating monkey tissues by way of quantitative real-time polymerase chain reaction (qPCR) using a single standard DNA molecule. Levels of AMCase and CHIT1 messenger RNAs (mRNAs) were highest in the stomach and the lung, respectively, when compared to other tissues. Comparative gene expression analysis of mouse, monkey, and human using monkey–mouse–human hybrid standard DNA showed that the AMCase mRNA levels were exceptionally high in mouse and monkey stomachs while very low in the human stomach. As for the CHIT1 mRNA, we detected higher levels in the monkey lung when compared with those of mouse and human. The differences of mRNA expression between the species in the stomach tissues were basically reflecting the levels of the chitinolytic activities. These results indicate that gene expression of AMCase and CHIT1 differs between mammalian species and requiring special attention in handling data in chitinase-related studies in particular organisms.
Collapse
Affiliation(s)
- Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
- Japan Society for the Promotion of Science (DC1), Koujimachi, Chiyoda-ku, Tokyo 102-0083, Japan.
| | - Kazuhiro Ishii
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166A, Baltimore, MD 21287, USA.
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166A, Baltimore, MD 21287, USA.
| | - Misa Ohno
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| | - Vaclav Matoska
- Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, 150 00 Prague, Czech Republic.
| | - Peter O Bauer
- Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, 150 00 Prague, Czech Republic.
- Bioinova Ltd., 142 20 Prague, Czech Republic.
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| |
Collapse
|
12
|
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a pulmonary disease caused by Aspergillus induced hypersensitivity. It usually occurs in immunocompetent but susceptible patients with bronchial asthma and cystic fibrosis. If ABPA goes undiagnosed and untreated, it may progress to bronchiectasis and/or pulmonary fibrosis with significant morbidity and mortality. ABPA is a well-recognized entity in adults; however, there is lack of literature in children. The aim of the present review is to summarize pathophysiology, diagnostic criteria, clinical features, and treatment of ABPA with emphasis on the pediatric population. A literature search was undertaken through PubMed till April 30, 2018, with keywords “ABPA or allergic bronchopulmonary aspergillosis” with limitation to “title.” The relevant published articles related to ABPA in pediatric population were included for the review. The ABPA is very well studied in adults. Recently, it is increasingly being recognized in children. There is lack of separate diagnostic criteria of ABPA for children. Although there are no trials regarding treatment of ABPA in children, steroids and itraconazole are the mainstay of therapy based on studies in adults and observational studies in children. Omalizumab is upcoming therapy, especially in refractory ABPA cases. There is a need to develop the pediatric-specific cutoffs for diagnostic criteria in ABPA. Well-designed trials are required to determine appropriate treatment regimen in children.
Collapse
Affiliation(s)
- Kana Ram Jat
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj C Vaidya
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Joseph L Mathew
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Jondhale
- Department of Pediatrics, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Meenu Singh
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
13
|
Zhu Y, Yan X, Zhai C, Yang L, Li M. Association between risk of asthma and gene polymorphisms in CHI3L1 and CHIA: a systematic meta-analysis. BMC Pulm Med 2017; 17:193. [PMID: 29233108 PMCID: PMC5726029 DOI: 10.1186/s12890-017-0515-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
Background Previous studies have indicated that chitinase 3-like 1 (CHI3L1) gene rs4950928 polymorphism and acidic mammalian chitinase (AMCase or CHIA) gene rs10494132 polymorphism are associated with the risk of asthma. However, the results are inconsistent because of small sample size and varied ethnicity and age in studies. Therefore, a systematic meta-analysis was important to clarify the effect of CHI3L1 rs4950928 polymorphism and CHIA rs10494132 variant on asthma risk. Methods An electronic literature search was conducted to identify all the eligible studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated and sensitivity analysis as well as publication bias were assessed to investigate the associations. All statistical analyses were performed using STATA 12.0. Results Eight published articles with 10 case-control studies were included, 5 studies were of CHI3L1 rs4950928 polymorphism and another 5 studies involved CHIA rs10494132 polymorphism. Overall, no significant association was found between CHI3L1 polymorphism and asthma susceptibility. After stratified according to ethnicity, CHI3L1 rs4950928 variant was associated with decreased asthma risk in Caucasians (GG + GC vs. CC: OR = 0.621, 95% CI = 0.484–0.797, P = 0.000; GC vs. CC: OR = 0.612, 95% CI = 0.470–0.796, P = 0.000; G vs. C: OR = 0.696, 95% CI = 0.567–0.856, P = 0.001). When stratified population by age, there was no association in children under all genetic models. As for CHIA rs10494132 polymorphism, no evidence of association between CHIA rs10494132 polymorphism and asthma risk was identified. Furthermore, subgroup analysis by ethnicity revealed a positive correlation between CHIA rs10494132 polymorphism and asthma risk among Asians (TT vs. TC + CC: OR = 1.476, 95% CI = 1.071–2.032, P = 0.017; T vs. C: OR = 1.326, 95% CI = 1.024–1.717, P = 0.032). Additionally, in the subgroup analysis conducted according to age, CHIA rs10494132 variant was also found to be associated with the increased risk of asthma in children (TT vs. TC + CC: OR = 1.472, 95% CI = 1.067–2.030, P = 0.019; T vs. C: OR = 1.320, 95% CI = 1.016–1.713, P = 0.037). Conclusions The G allele of CHI3L1 rs4950928 might be a protective factor against the development of asthma. However, the rs10494132 polymorphism of CHIA might be a risk factor for asthma.
Collapse
Affiliation(s)
- Yanting Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xin Yan
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Cui Zhai
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Lan Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Manxiang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
14
|
Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci Rep 2017; 7:6662. [PMID: 28751762 PMCID: PMC5532213 DOI: 10.1038/s41598-017-07146-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022] Open
Abstract
Chitin, a polymer of N-acetyl-D-glucosamine (GlcNAc), functions as a major structural component in crustaceans, insects and fungi and is the second most abundant polysaccharide in the nature. Although these chitin-containing organisms have been suggested as novel animal feed resources, chitin has long been considered as indigestible fibers in the animal body. Recently, we reported that acidic chitinase (Chia) is a protease-resistant major glycosidase in mouse gastrointestinal tract (GIT) and that it digests chitin in the mouse stomach. However, the physiological role of Chia in other animals including poultry remains unknown. Here, we report that Chia can function as a digestive enzyme that breaks down chitin-containing organisms in chicken GIT. Chia mRNA is predominantly expressed in the glandular stomach tissue in normal chicken. We also show that chicken Chia has a robust chitinolytic activity at pH 2.0 and is highly resistant to proteolysis by pepsin and trypsin/chymotrypsin under conditions mimicking GIT. Chia degraded shells of mealworm larvae in the presence of digestive proteases and produced (GlcNAc)2. Thus, functional similarity of chicken Chia with the mouse enzyme suggests that chitin-containing organisms can be used for alternative poultry diets not only as whole edible resources but also as enhancers of their nutritional value.
Collapse
|
15
|
Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Sci Rep 2016; 6:37756. [PMID: 27883045 PMCID: PMC5121897 DOI: 10.1038/srep37756] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/31/2016] [Indexed: 11/25/2022] Open
Abstract
Chitinases are enzymes that hydrolyze chitin, a polymer of β-1, 4-linked N-acetyl-D-glucosamine (GlcNAc). Chitin has long been considered as a source of dietary fiber that is not digested in the mammalian digestive system. Here, we provide evidence that acidic mammalian chitinase (AMCase) can function as a major digestive enzyme that constitutively degrades chitin substrates and produces (GlcNAc)2 fragments in the mouse gastrointestinal environment. AMCase was resistant to endogenous pepsin C digestion and remained active in the mouse stomach extract at pH 2.0. The AMCase mRNA levels were much higher than those of four major gastric proteins and two housekeeping genes and comparable to the level of pepsinogen C in the mouse stomach tissues. Furthermore, AMCase was expressed in the gastric pepsinogen-synthesizing chief cells. The enzyme was also stable and active in the presence of trypsin and chymotrypsin at pH 7.6, where pepsin C was completely degraded. Mouse AMCase degraded polymeric colloidal and crystalline chitin substrates in the gastrointestinal environments in presence of the proteolytic enzymes. Thus, AMCase can function as a protease-resistant major glycosidase under the conditions of stomach and intestine and degrade chitin substrates to produce (GlcNAc)2, a source of carbon, nitrogen and energy.
Collapse
|
16
|
Okawa K, Ohno M, Kashimura A, Kimura M, Kobayashi Y, Sakaguchi M, Sugahara Y, Kamaya M, Kino Y, Bauer PO, Oyama F. Loss and Gain of Human Acidic Mammalian Chitinase Activity by Nonsynonymous SNPs. Mol Biol Evol 2016; 33:3183-3193. [PMID: 27702777 PMCID: PMC5100053 DOI: 10.1093/molbev/msw198] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acidic mammalian chitinase (AMCase) is implicated in asthma, allergic inflammation, and food processing. Little is known about genetic and evolutional regulation of chitinolytic activity of AMCase. Here, we relate human AMCase polymorphisms to the mouse AMCase, and show that the highly active variants encoded by nonsynonymous single-nucleotide polymorphisms (nsSNPs) are consistent with the mouse AMCase sequence. The chitinolytic activity of the recombinant human AMCase was significantly lower than that of the mouse counterpart. By creating mouse-human chimeric AMCase protein we found that the presence of the N-terminal region of human AMCase containing conserved active site residues reduced the enzymatic activity of the molecule. We were able to significantly increase the activity of human AMCase by amino acid substitutions encoded by nsSNPs (N45, D47, and R61) with those conserved in the mouse homologue (D45, N47, and M61). For abolition of the mouse AMCase activity, introduction of M61R mutation was sufficient. M61 is conserved in most of primates other than human and orangutan as well as in other mammals. Orangutan has I61 substitution, which also markedly reduced the activity of the mouse AMCase, indicating that the M61 is a crucial residue for the chitinolytic activity. Altogether, our data suggest that human AMCase has lost its chitinolytic activity by integration of nsSNPs during evolution and that the enzyme can be reactivated by introducing amino acids conserved in the mouse counterpart.
Collapse
Affiliation(s)
- Kazuaki Okawa
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Misa Ohno
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Yuki Kobayashi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Minori Kamaya
- Department of Applied Chemistry, Kogakuin University, Hachioji, Tokyo, Japan
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Peter O Bauer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| |
Collapse
|
17
|
Xiong M, Heruth DP, Zhang LQ, Ye SQ. Identification of lung-specific genes by meta-analysis of multiple tissue RNA-seq data. FEBS Open Bio 2016; 6:774-81. [PMID: 27398317 PMCID: PMC4932457 DOI: 10.1002/2211-5463.12089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/18/2016] [Accepted: 05/18/2016] [Indexed: 12/27/2022] Open
Abstract
Lung-specific genes play critically important roles in lung development, lung physiology, and pathogenesis of lung-associated diseases. We performed a meta-analysis of multiple tissue RNA-seq data to identify lung-specific genes in order to better investigate their lung-specific functions and pathological roles. We identified 83 lung-specific genes consisting of 62 protein-coding genes, five pseudogenes and 16 noncoding RNA genes. About 49.4% of lung-specific genes were implicated in the pathogenesis of lung diseases and 21.7% were involved with lung development. The identification of genes with enriched expression in the lung will facilitate the elucidation of lung-specific functions and their roles in disease pathogenesis.
Collapse
Affiliation(s)
- Min Xiong
- Division of Experimental and Translational Genetics Department of Pediatrics The Children's Mercy Hospital University of Missouri Kansas City School of Medicine MO USA; Department of Biomedical and Health Informatics University of Missouri Kansas City School of Medicine MO USA
| | - Daniel P Heruth
- Division of Experimental and Translational Genetics Department of Pediatrics The Children's Mercy Hospital University of Missouri Kansas City School of Medicine MO USA
| | - Li Qin Zhang
- Division of Experimental and Translational Genetics Department of Pediatrics The Children's Mercy Hospital University of Missouri Kansas City School of Medicine MO USA
| | - Shui Qing Ye
- Division of Experimental and Translational Genetics Department of Pediatrics The Children's Mercy Hospital University of Missouri Kansas City School of Medicine MO USA; Department of Biomedical and Health Informatics University of Missouri Kansas City School of Medicine MO USA
| |
Collapse
|
18
|
Zhang H, Maity A, Arshad H, Holloway J, Karmaus W. Variable selection in semi-parametric models. Stat Methods Med Res 2013; 25:1736-52. [PMID: 23990355 DOI: 10.1177/0962280213499679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We propose Bayesian variable selection methods in semi-parametric models in the framework of partially linear Gaussian and problit regressions. Reproducing kernels are utilized to evaluate possibly non-linear joint effect of a set of variables. Indicator variables are introduced into the reproducing kernels for the inclusion or exclusion of a variable. Different scenarios based on posterior probabilities of including a variable are proposed to select important variables. Simulations are used to demonstrate and evaluate the methods. It was found that the proposed methods can efficiently select the correct variables regardless of the feature of the effects, linear or non-linear in an unknown form. The proposed methods are applied to two real data sets to identify cytosine phosphate guanine methylation sites associated with maternal smoking and cytosine phosphate guanine sites associated with cotinine levels with creatinine levels adjusted. The selected methylation sites have the potential to advance our understanding of the underlying mechanism for the impact of smoking exposure on health outcomes, and consequently benefit medical research in disease intervention.
Collapse
Affiliation(s)
- Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, TN, USA
| | - Arnab Maity
- Department of Statistics, North Carolina State University, NC, USA
| | - Hasan Arshad
- The David Hide Asthma and Allergy Research Center, St. Marys Hospital, Isle of Wight, UK Allergy and Clinical Immunology, University of Southampton, Southampton, UK
| | - John Holloway
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, TN, USA
| |
Collapse
|
19
|
|
20
|
Association of genetic variation in chitotriosidase with atopy in Korean children. Ann Allergy Asthma Immunol 2013; 110:444-449.e1. [PMID: 23706714 DOI: 10.1016/j.anai.2013.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/17/2013] [Accepted: 03/20/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND The atopic diseases, which are the most common chronic diseases of childhood, are complex genetic diseases that involve the contribution of multiple genetic factors to disease pathophysiology. Chitotriosidase is involved in innate immunity, but the association of chitotriosidase with allergic diseases remains unclear. OBJECTIVE To examine the contribution of genetic variation of the chitotriosidase-encoding gene CHIT1 to atopic phenotypes in a Korean cohort of children. METHODS We identified CHIT1 variations in a Korean population and conducted association analyses using 295 atopic and 242 nonatopic children. An independent replication study was performed using DNA samples from 148 atopic and 243 nonatopic children. All children were unrelated. We performed Western blot analysis in each genotype in vitro to see whether the CHIT1 A442G variation affects the final protein expression levels. RESULTS In the case-control association analysis, atopy was significantly associated with a single A442G (rs1065761) polymorphism in CHIT1 (odds ratio = 1.32, P = .01). Children with the c.442G risk allele had significantly higher blood eosinophils (P = .001), total serum IgE (P = .007), and eosinophil cationic protein (P = .02) levels. The results of the replication stage analysis confirmed a significant association between the A442G polymorphism and childhood atopy. The joint analysis of the exploratory and replication studies displayed a stronger significant association. The relative protein expression levels of chitotriosidase were significantly higher in both cell lysate and media with the G transfection compared with the wild type. CONCLUSION These results indicate that the nonsynonymous A442G polymorphism in CHIT1 is associated with risk of atopy.
Collapse
|
21
|
Ghosh S, Hoselton SA, Dorsam GP, Schuh JM. Eosinophils in fungus-associated allergic pulmonary disease. Front Pharmacol 2013; 4:8. [PMID: 23378838 PMCID: PMC3561640 DOI: 10.3389/fphar.2013.00008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/10/2013] [Indexed: 12/30/2022] Open
Abstract
Asthma is frequently caused and/or exacerbated by sensitization to fungal allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma with fungal sensitization is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen that is worsened by environmental exposure to airborne fungi and which leads to a disease course that is often very difficult to treat with standard asthma therapies. As a result of complex interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to fungal allergens may experience a greater degree of airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. From their development in the bone marrow to their recruitment to the lung via chemokine and cytokine networks, eosinophils form an important component of the inflammatory milieu that is associated with this syndrome. Eosinophils are recognized as complex multi-factorial leukocytes with diverse functions in the context of allergic fungal asthma. In this review, we will consider recent advances in our understanding of the molecular mechanisms that are associated with eosinophil development and migration to the allergic lung in response to fungal inhalation, along with the eosinophil’s function in the immune response to and the immunopathology attributed to fungus-associated allergic pulmonary disease.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University Fargo, ND, USA
| | | | | | | |
Collapse
|
22
|
Power of a reproducing kernel-based method for testing the joint effect of a set of single-nucleotide polymorphisms. Genetica 2012. [PMID: 23180006 DOI: 10.1007/s10709-012-9690-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study explored a semi-parametric method built upon reproducing kernels for estimating and testing the joint effect of a set of single nucleotide polymorphisms (SNPs). The kernel adopted is the identity-by-state kernel that measures SNP similarity between subjects. In this article, through simulations we first assessed its statistical power under different situations. It was found that in addition to the effect of sample size, the testing power was impacted by the strength of association between SNPs and the outcome of interest, and by the SNP similarity among the subjects. A quadratic relationship between SNP similarity and testing power was identified, and this relationship was further affected by sample sizes. Next we applied the method to a SNP-lung function data set to estimate and test the joint effect of a set of SNPs on forced vital capacity, one type of lung function measure. The findings were then connected to the patterns observed in simulation studies and further explored via variable importance indices of each SNP inferred from a variable selection procedure.
Collapse
|
23
|
Pekkanen J, Lampi J, Genuneit J, Hartikainen AL, Järvelin MR. Analyzing atopic and non-atopic asthma. Eur J Epidemiol 2012; 27:281-6. [PMID: 22297792 DOI: 10.1007/s10654-012-9649-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/05/2012] [Indexed: 11/28/2022]
Abstract
There is a need to better define phenotypes of asthma. However, many studies have data available only on asthma and atopy, so they are often used to define ‘atopic’ and ‘non-atopic’ asthma. We discuss and illustrate the problems of analyzing such outcomes. We used the 31 year follow-up of the Northern Finland Birth Cohort 1966 (n=5,429). ‘Atopic asthma’ and ‘non-atopic asthma’ were defined based on presence or absence of atopy (any skin prick test ≥3 mm) at age 31. Gender and ownership of cat in childhood were used as risk factors. Simple calculations on hypothetical datasets were used to support the conclusions. ‘Atopic asthma’ and ‘non-atopic asthma’, are not well separated disease entities. The association of a risk factor with ‘atopic asthma’ and ‘non-atopic asthma’ is determined both by its association with asthma and with atopy. E.g. if a risk factor is not associated with asthma, but is protective for atopy, this will produce a protective association with ‘atopic asthma’, but an opposite association with ‘non-atopic asthma’. This is the result from the typical analysis, which uses all non-asthmatics as the comparison group. Valid results, unconfounded by atopy, can be gained by comparing asthmatics to nonasthmatics separately among atopics and non-atopics, i.e. by doing the analysis stratified by atopy. If data only on asthma and atopy are available, asthma and atopy should be analyzed at first as separate outcomes. If atopic and nonatopic asthma are used as additional outcomes, valid results can be gained by stratifying the analysis by atopy.
Collapse
Affiliation(s)
- Juha Pekkanen
- Department of Environmental Health, National Institute for Health and Welfare, P.O. Box 95, 70701 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
24
|
Fitz LJ, DeClercq C, Brooks J, Kuang W, Bates B, Demers D, Winkler A, Nocka K, Jiao A, Greco RM, Mason LE, Fleming M, Quazi A, Wright J, Goldman S, Hubeau C, Williams CMM. Acidic mammalian chitinase is not a critical target for allergic airway disease. Am J Respir Cell Mol Biol 2012; 46:71-9. [PMID: 21836154 DOI: 10.1165/rcmb.2011-0095oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The expression of acidic mammalian chitinase (AMCase) is associated with Th2-driven respiratory disorders. To investigate the potentially pathological role of AMCase in allergic airway disease (AAD), we sensitized and challenged mice with ovalbumin or a combination of house dust mite (HDM) plus cockroach allergen. These mice were treated or not treated with small molecule inhibitors of AMCase, which significantly reduced allergen-induced chitinolytic activity in the airways, but exerted no apparent effect on pulmonary inflammation per se. Transgenic and AMCase-deficient mice were also submitted to protocols of allergen sensitization and challenge, yet we found little or no difference in the pattern of AAD between mutant mice and wild-type (WT) control mice. In a separate model, where mice were challenged only with intratracheal instillations of HDM without adjuvant, total bronchoalveolar lavage (BAL) cellularity, inflammatory infiltrates in lung tissues, and lung mechanics remained comparable between AMCase-deficient mice and WT control mice. However BAL neutrophil and lymphocyte counts were significantly increased in AMCase-deficient mice, whereas concentrations in BAL of IL-13 were significantly decreased compared with WT control mice. These results indicate that, although exposure to allergen stimulates the expression of AMCase and increased chitinolytic activity in murine airways, the overexpression or inhibition of AMCase exerts only a subtle impact on AAD. Conversely, the increased numbers of neutrophils and lymphocytes in BAL and the decreased concentrations of IL-13 in AMCase-deficient mice challenged intratracheally with HDM indicate that AMCase contributes to the Th1/Th2 balance in the lungs. This finding may be of particular relevance to patients with asthma and increased airway neutrophilia.
Collapse
Affiliation(s)
- Lori J Fitz
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts 02140, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Chitin, a polymer of N-acetylglucosamine, is an essential component of the fungal cell wall. Chitosan, a deacetylated form of chitin, is also important in maintaining cell wall integrity and is essential for Cryptococcus neoformans virulence. In their article, Gilbert et al. [N. M. Gilbert, L. G. Baker, C. A. Specht, and J. K. Lodge, mBio 3(1):e00007-12, 2012] demonstrate that the enzyme responsible for chitosan synthesis, chitin deacetylase (CDA), is differentially attached to the cell membrane and wall. Bioactivity is localized to the cell membrane, where it is covalently linked via a glycosylphosphatidylinositol (GPI) anchor. Findings from this study significantly enhance our understanding of cryptococcal cell wall biology. Besides the role of chitin in supporting structural stability, chitin and host enzymes with chitinase activity have an important role in host defense and modifying the inflammatory response. Thus, chitin appears to provide a link between the fungus and host that involves both innate and adaptive immune responses. Recently, there has been increased attention to the role of chitinases in the pathogenesis of allergic inflammation, especially asthma. We review these findings and explore the possible connection between fungal infections, the induction of chitinases, and asthma.
Collapse
|
26
|
Fungi and allergic lower respiratory tract diseases. J Allergy Clin Immunol 2012; 129:280-91; quiz 292-3. [PMID: 22284927 DOI: 10.1016/j.jaci.2011.12.970] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/12/2011] [Indexed: 02/06/2023]
Abstract
Asthma is a common disorder that in 2009 afflicted 8.2% of adults and children, 24.6 million persons, in the United States. In patients with moderate and severe persistent asthma, there is significantly increased morbidity, use of health care support, and health care costs. Epidemiologic studies in the United States and Europe have associated mold sensitivity, particularly to Alternaria alternata and Cladosporium herbarum, with the development, persistence, and severity of asthma. In addition, sensitivity to Aspergillus fumigatus has been associated with severe persistent asthma in adults. Allergic bronchopulmonary aspergillosis (ABPA) is caused by A fumigatus and is characterized by exacerbations of asthma, recurrent transient chest radiographic infiltrates, coughing up thick mucus plugs, peripheral and pulmonary eosinophilia, and increased total serum IgE and fungus-specific IgE levels, especially during exacerbation. The airways appear to be chronically or intermittently colonized by A fumigatus in patients with ABPA. ABPA is the most common form of allergic bronchopulmonary mycosis (ABPM); other fungi, including Candida, Penicillium, and Curvularia species, are implicated. The characteristics of ABPM include severe asthma, eosinophilia, markedly increased total IgE and specific IgE levels, bronchiectasis, and mold colonization of the airways. The term severe asthma associated with fungal sensitization (SAFS) has been coined to illustrate the high rate of fungal sensitivity in patients with persistent severe asthma and improvement with antifungal treatment. The immunopathology of ABPA, ABPM, and SAFS is incompletely understood. Genetic risks identified in patients with ABPA include HLA association and certain T(H)2-prominent and cystic fibrosis variants, but these have not been studied in patients with ABPM and SAFS. Oral corticosteroid and antifungal therapies appear to be partially successful in patients with ABPA. However, the role of antifungal and immunomodulating therapies in patients with ABPA, ABPM, and SAFS requires additional larger studies.
Collapse
|
27
|
Goldman DL, Li X, Tsirilakis K, Andrade C, Casadevall A, Vicencio AG. Increased chitinase expression and fungal-specific antibodies in the bronchoalveolar lavage fluid of asthmatic children. Clin Exp Allergy 2011; 42:523-30. [PMID: 22092749 DOI: 10.1111/j.1365-2222.2011.03886.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/30/2011] [Accepted: 09/01/2011] [Indexed: 01/20/2023]
Abstract
BACKGROUND Increasing evidence highlights the contribution of chitinases and fungal infection to the development of asthma. OBJECTIVE The purpose of this study was to characterize chitinase expression and serological markers of fungal infection in children with severe asthma. METHODS Bronchoalveolar lavage fluid (BALF) was collected from children undergoing clinically indicated flexible bronchoscopy. A diagnosis of asthma was confirmed by pulmonary function testing. BALF was tested for chitinase activity and YKL-40 (an enzymatically inactive chitinase) concentrations. Specimens were cultured for fungal organisms and tested for cryptococcal antigen by ELISA. IgG and IgA reactivity to whole extract fungal (Aspergillus fumigatus, Alternaria alternata, Cryptococcus neoformans and Candida albicans) proteins were determined by immunoblot assay. RESULTS Among the 37 patients studied, 30 were asthmatic and 7 were non-asthmatic. Asthmatics exhibited elevated serum IgE levels (median: 748 IU/mL, IQR: 219-1765 IU/mL). Chitinase activity was greater in the BALF of asthmatics (mean, 0.85 ± 1.2 U/mL) compared with non-asthmatics (mean: 0.23 ± 0.21 U/mL, P = 0.012). Likewise YKL-40 concentrations were higher in the BALF of asthmatics and correlated with chitinase activity. There was a trend towards increased fungal-specific IgG in the BALF of asthmatics compared with non-asthmatics and for C. albicans this difference reached statistical significance. IgA reactivity to C. neoformans and A. fumigatus was greater in the BALF of asthmatics compared with non-asthmatics. CONCLUSIONS AND CLINICAL RELEVANCE Compared with non-asthmatics, asthmatic children exhibited increased chitinase activity and increased YKL-40 levels in BALF. Increased IgG and IgA reactivity to fungal proteins in the BALF of asthmatics may reflect a local response to fungal infection. Our findings are consistent with and suggest a role for chitinases in asthma pathogenesis among Bronx children and provide serological evidence of an association between fungal infection and severe asthma.
Collapse
Affiliation(s)
- D L Goldman
- Department of Pediatrics, Childrens' Hospital at Montefiore and Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Van Dyken SJ, Garcia D, Porter P, Huang X, Quinlan PJ, Blanc PD, Corry DB, Locksley RM. Fungal chitin from asthma-associated home environments induces eosinophilic lung infiltration. THE JOURNAL OF IMMUNOLOGY 2011; 187:2261-7. [PMID: 21824866 DOI: 10.4049/jimmunol.1100972] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of asthma and allergic inflammation involves innate immunity, but the environmental contributions remain incompletely defined. Analysis of dust collected from the homes of asthmatic individuals revealed that the polysaccharide chitin is environmentally widespread and associated with β-glucans, possibly from ubiquitous fungi. Cell wall preparations of Aspergillus isolated from house dust induced robust recruitment of eosinophils into mouse lung, an effect that was attenuated by enzymatic degradation of cell wall chitin and β-glucans. Mice expressing constitutively active acidic mammalian chitinase in the lungs demonstrated a significant reduction in eosinophil infiltration after fungal challenge. Conversely, chitinase inhibition prolonged the duration of tissue eosinophilia. Thus, fungal chitin derived from home environments associated with asthma induces eosinophilic allergic inflammation in the lung, and mammalian chitinases, including acidic mammalian chitinase, limit this process.
Collapse
Affiliation(s)
- Steven J Van Dyken
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, He CH, Takyar S, Elias JA. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol 2011; 73:479-501. [PMID: 21054166 DOI: 10.1146/annurev-physiol-012110-142250] [Citation(s) in RCA: 636] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below.
Collapse
Affiliation(s)
- Chun Geun Lee
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8057, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Melén E, Kho AT, Sharma S, Gaedigk R, Leeder JS, Mariani TJ, Carey VJ, Weiss ST, Tantisira KG. Expression analysis of asthma candidate genes during human and murine lung development. Respir Res 2011; 12:86. [PMID: 21699702 PMCID: PMC3141421 DOI: 10.1186/1465-9921-12-86] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/23/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function. OBJECTIVE To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma. METHODS Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6. RESULTS In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. NOD1, EDN1, CCL5, RORA and HLA-G. Among the asthma genes identified in genome wide association studies, ROBO1, RORA, HLA-DQB1, IL2RB and PDE10A were differentially expressed during human lung development. CONCLUSIONS Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.
Collapse
Affiliation(s)
- Erik Melén
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chaudhary N, Marr KA. Impact of Aspergillus fumigatus in allergic airway diseases. Clin Transl Allergy 2011; 1:4. [PMID: 22410255 PMCID: PMC3294627 DOI: 10.1186/2045-7022-1-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/10/2011] [Indexed: 02/07/2023] Open
Abstract
For decades, fungi have been recognized as associated with asthma and other reactive airway diseases. In contrast to type I-mediated allergies caused by pollen, fungi cause a large number of allergic diseases such as allergic bronchopulmonary mycoses, rhinitis, allergic sinusitis and hypersensitivity pneumonitis. Amongst the fungi, Aspergillus fumigatus is the most prevalent cause of severe pulmonary allergic disease, including allergic bronchopulmonary aspergillosis (ABPA), known to be associated with chronic lung injury and deterioration in pulmonary function in people with chronic asthma and cystic fibrosis (CF). The goal of this review is to discuss new understandings of host-pathogen interactions in the genesis of allergic airway diseases caused by A. fumigatus. Host and pathogen related factors that participate in triggering the inflammatory cycle leading to pulmonary exacerbations in ABPA are discussed.
Collapse
|
32
|
Birben E, Sackesen C, Kazani S, Tincer G, Karaaslan C, Durgunsu B, Gürsel I, Wechsler ME, Israel E, Kalayci O. The effects of an insertion in the 5'UTR of the AMCase on gene expression and pulmonary functions. Respir Med 2011; 105:1160-9. [PMID: 21511453 DOI: 10.1016/j.rmed.2011.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 01/07/2023]
Abstract
BACKGROUND Studies regarding the physiological role of acidic mammalian chitinase (AMCase) and the effects of its genetic variants on asthma have produced conflicting results. OBJECTIVES We aimed to determine the genetic variants in the AMCase gene that could regulate the gene expression and thus influence disease severity. METHODS Genetic variants of the AMCase gene were determined by sequencing of asthmatics and healthy controls in up to -1 kb in the promoter region and exon 1 and 2. In an association study, a population of asthmatic (n = 504) and healthy Turkish children (n = 188) were genotyped for the observed SNPs. A replication study was performed in a North American adult population of patients with mild (n = 317) and severe (n = 145) asthma. The functional properties of the insertion were determined by promoter reporter assay, electromobility shift assay and transcription factor ELISA experiments. RESULTS Of the identified SNPs, only a ten base pair insertion (CAATCTAGGC) in the 5'UTR region of exon 2 was significantly associated with lower FEV(1) (β = -14.63 SE = 6.241, P = 0.019) in Turkish children with asthma. However, in the adult population, the same insertion showed a trend toward higher FEV(1). The insertion was shown to have enhancer activity and the mutant probe possessing the insertion had higher binding affinity for the nuclear extracts. CONCLUSION Our study shows that a ten base pair insertion in the 5'UTR region of AMCase gene may modify gene expression and thus may affect the severity of asthma. However, its effects appear to be different in different populations.
Collapse
Affiliation(s)
- Esra Birben
- Hacettepe University School of Medicine, Pediatric Allergy and Asthma Unit, Hacettepe, 06100 Ankara, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Allergic bronchopulmonary aspergillosis in asthma and cystic fibrosis. Clin Dev Immunol 2011; 2011:843763. [PMID: 21603163 PMCID: PMC3095475 DOI: 10.1155/2011/843763] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/08/2011] [Indexed: 12/18/2022]
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a Th2 hypersensitivity lung disease in response to Aspergillus fumigatus that affects asthmatic and cystic fibrosis (CF) patients. Sensitization to A. fumigatus is common in both atopic asthmatic and CF patients, yet only 1-2% of asthmatic and 7-9% of CF patients develop ABPA. ABPA is characterized by wheezing and pulmonary infiltrates which may lead to pulmonary fibrosis and/or bronchiectasis. The inflammatory response is characterized by Th2 responses to Aspergillus allergens, increased serum IgE and eosinophilia. A number of genetic risks have recently been identified in the development of ABPA. These include HLA-DR and HLA-DQ, IL-4 receptor alpha chain (IL-4RA) polymorphisms, IL-10-1082GA promoter polymorphisms, surfactant protein A2 (SP-A2) polymorphisms, and cystic fibrosis transmembrane conductance regulator gene (CFTR) mutations. The studies indicate that ABPA patients are genetically at risk to develop skewed and heightened Th2 responses to A. fumigatus antigens. These genetic risk studies and their consequences of elevated biologic markers may aid in identifying asthmatic and CF patients who are at risk to the development of ABPA. Furthermore, these studies suggest that immune modulation with medications such as anti-IgE, anti-IL-4 and/or IL-13 monoclonal antibodies may be helpful in the treatment of ABPA.
Collapse
|
34
|
Monocyte chemotactic protein (MCP3) promoter polymorphism is associated with atopic asthma in the Indian population. J Allergy Clin Immunol 2011; 128:239-242.e3. [PMID: 21388664 DOI: 10.1016/j.jaci.2011.01.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 11/23/2022]
|
35
|
Abstract
A relationship between infections and allergic airway disease has long been recognized, and many reviews have been written on this topic. However, both clinical and basic science studies published in the last 3 years provide new insights into the relationship between infection and allergic conditions. In this review, we focus on these very recent studies, which address the role of infection in the development, maintenance, and exacerbation of asthma. Bacterial, viral, fungal, and parasitic infections have each been examined and provide a framework for these novel concepts.
Collapse
Affiliation(s)
- C M Sevin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA
| | | |
Collapse
|
36
|
Leung TF, Ching KW, Sy HY, Kong APS, Tse LY, Wang SS, Lam CWK, Chan JCN, Wong GWK, Hon KL. CHIA confers susceptibility to childhood eczema. Br J Dermatol 2010; 163:1360-2. [PMID: 20731649 DOI: 10.1111/j.1365-2133.2010.10007.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Halapi E, Bjornsdottir US. Overview on the current status of asthma genetics. CLINICAL RESPIRATORY JOURNAL 2010; 3:2-7. [PMID: 20298365 DOI: 10.1111/j.1752-699x.2008.00119.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Asthma is a complex heterogeneous and mutifactorial disease occurring at the interface of multiple genes that interact with various environmental stimuli insulting the immune system at different levels and different times of disease susceptibility. OBJECTIVE The present paper is a review of the current status of the genetics of asthma. RESULTS Sequence variants in hundreds of genes have been associated with asthma using both family-based and case control screening methods. CONCLUSION As the number of genes known to be associated with asthma risk is rapidly growing, it is essential to begin integrating epidemiologic, genetic and genomic strategies to unravel the relationships between genotype and phenotype, and elucidate the pathogenesis of asthma with the goal to make clinical use of these discoveries.
Collapse
Affiliation(s)
- Eva Halapi
- deCODE Genetics Inc., Sturlugata, Reykjavik, Iceland.
| | | |
Collapse
|
38
|
Wu AC, Lasky-Su J, Rogers CA, Klanderman BJ, Litonjua AA. Fungal exposure modulates the effect of polymorphisms of chitinases on emergency department visits and hospitalizations. Am J Respir Crit Care Med 2010; 182:884-9. [PMID: 20538957 DOI: 10.1164/rccm.201003-0322oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Chitinases are enzymes that cleave chitin, which is present in fungal cells. Two types of human chitinases, chitotriosidase and acidic mammalian chitinase, and the chitinase-like protein, YKL-40, seem to play an important role in asthma. We hypothesized that exposure to environmental fungi may modulate the effect of chitinases in individuals with asthma. OBJECTIVES To explore whether interactions between high fungal exposure and common genetic variants in the two chitinases in humans, CHIT1 and CHIA, and the chitinase 3-like 1 gene, CHI3L1, are associated with severe asthma exacerbations and other asthma-related outcomes. METHODS Forty-eight single nucleotide polymorphisms (SNPs) in CHIT1, CHIA, and CHI3L1 and one CHIT1 duplication were genotyped in 395 subjects and their parents as part of the Childhood Asthma Management Program. Household levels of mold (an index of fungal exposure) were determined on house dust samples. We conducted family-based association tests with gene-environment interactions. Our outcome was severe exacerbation, defined as emergency department visits and hospitalizations from asthma over a 4-year period, and our secondary outcomes included indices of lung function and allergy-related phenotypes. MEASUREMENTS AND MAIN RESULTS Of the 395 subjects who had mold levels at randomization, 24% (95 subjects) had levels that were greater than 25,000 units per gram of house dust (high mold exposure). High mold exposure significantly modified the relation between three SNPs in CHIT1 (rs2486953, rs4950936, and rs1417149) and severe exacerbations (P for interaction 0.0010 for rs2486953, 0.0008 for rs4950936, and 0.0005 for rs1417149). High mold exposure did not significantly modify the relationship between any of the other variants and outcomes. CONCLUSIONS Environmental exposure to fungi, modifies the effect of CHIT1 SNPs on severe asthma exacerbations.
Collapse
Affiliation(s)
- Ann Chen Wu
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
39
|
Heinzmann A, Brugger M, Bierbaum S, Mailaparambil B, Kopp MV, Strauch K. Joint influences of Acidic-Mammalian-Chitinase with Interleukin-4 and Toll-like receptor-10 with Interleukin-13 in the genetics of asthma. Pediatr Allergy Immunol 2010; 21:e679-86. [PMID: 20444155 DOI: 10.1111/j.1399-3038.2010.01053.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the genetics of asthma, single genetic polymorphisms confer only a small individual risk factor. Haplotype-based association analyses, including joint analyses of several candidate genes, might therefore yield more convincing results than single-region statistics. We set out to test for joint influences of asthma genes previously identified in our study population that is acidic mammalian chitinase (AMCase), Toll-like receptor (TLR)-10, and the interleukins IL-4, IL-13, IL-8, and IL-15. In particular, we investigated whether haplotypes at two or three genes show stronger association with the trait than at a single gene alone. We genotyped 26 polymorphisms in 321 asthmatic children and 270 controls. Haplotype-based association analyses were performed by the program FAMHAP. Single-, two-, and three-gene analyses were conducted as well as conditional analyses for pairs of genes. In the two-region analyses, best evidence was found for a joint effect on asthma for AMCase and IL-4 (p(raw) < 5 x 10(-7)) as well as AMCase and IL-13 (p(raw) = 5 x 10(-7)). Besides, IL-13 and TLR-10 showed a stronger two-gene result (p(raw) = 0.001607) than the respective single-gene analyses. Conditional analyses yielded similar results for these two-gene combinations and also revealed mutual additional effects for IL-13 and IL-4 (p(stratified) = 0.014831 and 0.001525, respectively). The most significant results demonstrate a joint effect of AMCase with IL-4 or IL-13 on the trait. Furthermore, additional mutual effects were seen for AMCase and IL-4 as well as for TLR-10 and IL-13. The corresponding pathways might therefore be of particular importance in the genetics of asthma. Further studies are needed to elucidate the functional importance of these gene-gene effects and their precise role in asthma pathogenesis.
Collapse
Affiliation(s)
- Andrea Heinzmann
- Centre for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Knutsen AP, Vijay HM, Kariuki B, Santiago LA, Graff R, Wofford JD, Shah MR. Association of IL-4RA single nucleotide polymorphisms, HLA-DR and HLA-DQ in children with Alternaria-sensitive moderate-severe asthma. Clin Mol Allergy 2010; 8:5. [PMID: 20298583 PMCID: PMC2846861 DOI: 10.1186/1476-7961-8-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Accepted: 03/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asthma afflicts 6% to 8% of the United States population, and severe asthma represents approximately 10% of asthmatic patients. Several epidemiologic studies in the United States and Europe have linked Alternaria sensitivity to both persistence and severity of asthma. In order to begin to understand genetic risk factors underlying Alternaria sensitivity and asthma, in these studies we examined T cell responses to Alternaria antigens, HLA Class II restriction and HLA-DQ protection in children with severe asthma. METHODS Sixty children with Alternaria-sensitive moderate-severe asthma were compared to 49 children with Alternaria-sensitive mild asthma. We examined HLA-DR and HLA-DQ frequencies in Alternaria-sensitive asthmatic by HLA typing. To determine ratios of Th1/Th2 Alternaria-specific T-cells, cultures were stimulated in media alone, Alternaria alternata extract and Alt a1. Sensitivity to IL-4 stimulation was measured by up-regulation of CD23 on B cells. RESULTS Children with Alternaria-sensitive moderate-severe asthma trended to have increased sensitivities to Cladosporium (46% versus 35%), to Aspergillus (43% versus 28%), and significantly increased sensitivities to trees (78% versus 57%) and to weeds (68% versus 48%). The IL-4RA ile75val polymorphism was significantly increased in Alternaria-sensitive moderate-severe asthmatics, 83% (0.627 allele frequency) compared to Alternaria-sensitive mild asthmatics, 57% (0.388 allele frequency). This was associated with increased sensitivity to IL-4 stimulation measured by significantly increased IL-4 stimulated CD23 expression on CD19+ and CD86+CD19+ B cells of Alternaria-sensitive moderate-severe asthmatics. IL-5 and IL-13 synthesis was significantly increased in Alternaria-sensitive moderate-severe asthmatics compared to mild asthmatics to Alternaria extract and Alt a1 stimulation. The frequency of HLA-DQB1*03 allele was significantly decreased in Alternaria-sensitive moderate-severe asthmatics compared to mild asthmatics, 39% versus 63%, with significantly decreased allele frequency, 0.220 versus 0.398. SUMMARY In children with Alternaria-sensitive moderate severe asthma, there was an increased Th2 response to Alternaria stimulation and increased sensitivity to IL-4 stimulation. This skewing towards a Th2 response was associated with an increased frequency of the IL-4RA ile75val polymorphism. In evaluating the HLA association, there was a decreased frequency of HLA-DQB1*03 in Alternaria-sensitive moderate severe asthmatic children consistent with previous studies suggest that HLA-DQB1*03 may be protective against the development of mold-sensitive severe asthma.
Collapse
Affiliation(s)
- Alan P Knutsen
- Department of Pediatrics, Saint Louis University, St Louis, Missouri, 63104, USA
- Divisions of Allergy & Immunology, Saint Louis University, St Louis, Missouri, 63104, USA
| | - Hari M Vijay
- Health Canada, Healthy Environments and Consumer Safety Branch, Hazard Identification Division, Ottawa, ON, K1A 0K9, Canada
| | - Barbara Kariuki
- Department of Pediatrics, Saint Louis University, St Louis, Missouri, 63104, USA
- Divisions of Allergy & Immunology, Saint Louis University, St Louis, Missouri, 63104, USA
| | - Luis A Santiago
- Department of Surgery, (HLA Laboratory) Saint Louis University, St Louis, Missouri, 63104, USA
| | - Ralph Graff
- Department of Surgery, (HLA Laboratory) Saint Louis University, St Louis, Missouri, 63104, USA
| | - Jonathan D Wofford
- Department of Pediatrics, Saint Louis University, St Louis, Missouri, 63104, USA
| | - Maulik R Shah
- Department of Pediatrics, Saint Louis University, St Louis, Missouri, 63104, USA
- Department of Genetics, Saint Louis University, St Louis, Missouri, 63104, USA
| |
Collapse
|
41
|
Wu AC, Lasky-Su J, Rogers CA, Klanderman BJ, Litonjua A. Polymorphisms of chitinases are not associated with asthma. J Allergy Clin Immunol 2010; 125:754-7, 757.e1-757.e2. [PMID: 20226308 PMCID: PMC2844863 DOI: 10.1016/j.jaci.2009.12.995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 12/23/2009] [Indexed: 10/19/2022]
Abstract
Despite the potential role of chitinases and chitinase-like proteins in the pathogenesis of asthma, variants in their respective genes are not associated with asthma, changes in lung physiology or allergy-related phenotypes in Caucasian children.
Collapse
|
42
|
Muzzarelli RAA. Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 2010; 8:292-312. [PMID: 20390107 PMCID: PMC2852840 DOI: 10.3390/md8020292] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/20/2010] [Indexed: 12/22/2022] Open
Abstract
Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods chitin is covalently linked to proteins and tanned by quinones, in fungi it is covalently linked to glucans, while in bacteria chitin is diversely combined according to Gram(+/-) classification. On the other hand, isolated, purified chitin is a plain polysaccharide that, at the nano level, presents itself as a highly associated structure, recently refined in terms of regularity, nature of bonds, crystallinity degree and unusual colloidal behavior. Chitins and modified chitins exert a number of beneficial actions, i.e., (i) they stimulate macrophages by interacting with receptors on the macrophage surface that mediate the internalization of chitin particles to be degraded by lysozyme and N-acetyl-beta-glucosaminidase (such as Nod-like, Toll-like, lectin, Dectin-1, leukotriene 134 and mannose receptors); (ii) the macrophages produce cytokines and other compounds that confer non-specific host resistance against bacterial and viral infections, and anti-tumor activity; (iii) chitin is a strong Th1 adjuvant that up-regulates Th1 immunity induced by heat-killed Mycobacterium bovis, while down- regulating Th2 immunity induced by mycobacterial protein; (iv) direct intranasal application of chitin microparticles into the lung was also able to significantly down-regulate allergic response to Dermatophagoids pteronyssinus and Aspergillus fumigatus in a murine model of allergy; (v) chitin microparticles had a beneficial effect in preventing and treating histopathologic changes in the airways of asthmatic mice; (vi) authors support the fact that chitin depresses the development of adaptive type 2 allergic responses. Since the expression of chitinases, chitrotriosidase and chitinase-like proteins is greatly amplified during many infections and diseases, the common feature of chitinase-like proteins and chitinase activity in all organisms appears to be the biochemical defense of the host. Unfortunately, conceptual and methodological errors are present in certain recent articles dealing with chitin and allergy, i.e., (1) omitted consideration of mammalian chitinase and/or chitotriosidase secretion, accompanied by inactive chitinase-like proteins, as an ancestral defensive means against invasion, capable to prevent the insurgence of allergy; (2) omitted consideration of the fact that the mammalian organism recognizes more promptly the secreted water soluble chitinase produced by a pathogen, rather than the insoluble and well protected chitin within the pathogen itself; (3) superficial and incomplete reports and investigations on chitin as an allergen, without mentioning the potent allergen from crustacean flesh, tropomyosine; (4) limited perception of the importance of the chemical/biochemical characteristics of the isolated chitin or chitosan for the replication of experiments and optimization of results; and (5) lack of interdisciplinarity. There is quite a large body of knowledge today on the use of chitosans as biomaterials, and more specifically as drug carriers for a variety of applications: the delivery routes being the same as those adopted for the immunological studies. Said articles, that devote attention to the safety and biocompatibility aspects, never reported intolerance or allergy in individuals and animals, even when the quantities of chitosan used in single experiments were quite large. Therefore, it is concluded that crab, shrimp, prawn and lobster chitins, as well as chitosans of all grades, once purified, should not be considered as "crustacean derivatives", because the isolation procedures have removed proteins, fats and other contaminants to such an extent as to allow them to be classified as chemicals regardless of their origin.
Collapse
|
43
|
Olland AM, Strand J, Presman E, Czerwinski R, Joseph-McCarthy D, Krykbaev R, Schlingmann G, Chopra R, Lin L, Fleming M, Kriz R, Stahl M, Somers W, Fitz L, Mosyak L. Triad of polar residues implicated in pH specificity of acidic mammalian chitinase. Protein Sci 2009; 18:569-78. [PMID: 19241384 DOI: 10.1002/pro.63] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acidic mammalian chitinase (AMCase) is a mammalian chitinase that has been implicated in allergic asthma. One of only two active mammalian chinases, AMCase, is distinguished from other chitinases by several unique features. Here, we present the novel structure of the AMCase catalytic domain, both in the apo form and in complex with the inhibitor methylallosamidin, determined to high resolution by X-ray crystallography. These results provide a structural basis for understanding some of the unique characteristics of this enzyme, including the low pH optimum and the preference for the beta-anomer of the substrate. A triad of polar residues in the second-shell is found to modulate the highly conserved chitinase active site. As a novel target for asthma therapy, structural details of AMCase activity will help guide the future design of specific and potent AMCase inhibitors.
Collapse
Affiliation(s)
- Andrea M Olland
- Department of Chemical and Screening Sciences, Structural Biology and Computational Chemistry, Wyeth Research, Cambridge, Massachusetts 02140, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Seibold MA, Reese TA, Choudhry S, Salam MT, Beckman K, Eng C, Atakilit A, Meade K, Lenoir M, Watson HG, Thyne S, Kumar R, Weiss KB, Grammer LC, Avila P, Schleimer RP, Fahy JV, Rodriguez-Santana J, Rodriguez-Cintron W, Boot RG, Sheppard D, Gilliland FD, Locksley RM, Burchard EG. Differential enzymatic activity of common haplotypic versions of the human acidic Mammalian chitinase protein. J Biol Chem 2009; 284:19650-8. [PMID: 19435888 PMCID: PMC2740590 DOI: 10.1074/jbc.m109.012443] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Indexed: 12/19/2022] Open
Abstract
Mouse models have shown the importance of acidic mammalian chitinase activity in settings of chitin exposure and allergic inflammation. However, little is known regarding genetic regulation of AMCase enzymatic activity in human allergic diseases. Resequencing the AMCase gene exons we identified 8 non-synonymous single nucleotide polymorphisms including three novel variants (A290G, G296A, G339T) near the gene area coding for the enzyme active site, all in linkage disequilibrium. AMCase protein isoforms, encoded by two gene-wide haplotypes, and differentiated by these three single nucleotide polymorphisms, were recombinantly expressed and purified. Biochemical analysis revealed the isoform encoded by the variant haplotype displayed a distinct pH profile exhibiting greater retention of chitinase activity at acidic and basic pH values. Determination of absolute kinetic activity found the variant isoform encoded by the variant haplotype was 4-, 2.5-, and 10-fold more active than the wild type AMCase isoform at pH 2.2, 4.6, and 7.0, respectively. Modeling of the AMCase isoforms revealed positional changes in amino acids critical for both pH specificity and substrate binding. Genetic association analyses of AMCase haplotypes for asthma revealed significant protective associations between the variant haplotype in several asthma cohorts. The structural, kinetic, and genetic data regarding the AMCase isoforms are consistent with the Th2-priming effects of environmental chitin and a role for AMCase in negatively regulating this stimulus.
Collapse
Affiliation(s)
- Max A Seibold
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kumar A, Ghosh B. Genetics of asthma: a molecular biologist perspective. Clin Mol Allergy 2009; 7:7. [PMID: 19419542 PMCID: PMC2684737 DOI: 10.1186/1476-7961-7-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 05/06/2009] [Indexed: 12/30/2022] Open
Abstract
Asthma belongs to the category of classical allergic diseases which generally arise due to IgE mediated hypersensitivity to environmental triggers. Since its prevalence is very high in developed or urbanized societies it is also referred to as "disease of civilizations". Due to its increased prevalence among related individuals, it was understood quite long back that it is a genetic disorder. Well designed epidemiological studies reinforced these views. The advent of modern biological technology saw further refinements in our understanding of genetics of asthma and led to the realization that asthma is not a disorder with simple Mendelian mode of inheritance but a multifactorial disorder of the airways brought about by complex interaction between genetic and environmental factors. Current asthma research has witnessed evidences that are compelling researchers to redefine asthma altogether. Although no consensus exists among workers regarding its definition, it seems obvious that several pathologies, all affecting the airways, have been clubbed into one common category called asthma. Needless to say, genetic studies have led from the front in bringing about these transformations. Genomics, molecular biology, immunology and other interrelated disciplines have unearthed data that has changed the way we think about asthma now. In this review, we center our discussions on genetic basis of asthma; the molecular mechanisms involved in its pathogenesis. Taking cue from the existing data we would briefly ponder over the future directions that should improve our understanding of asthma pathogenesis.
Collapse
Affiliation(s)
- Amrendra Kumar
- Molecular Immunogenetics Laboratory, Institute of Genomics and Integrative Biology Mall Road, Delhi-110007, India.
| | | |
Collapse
|
46
|
Roth M, Black JL. An imbalance in C/EBPs and increased mitochondrial activity in asthmatic airway smooth muscle cells: novel targets in asthma therapy? Br J Pharmacol 2009; 157:334-41. [PMID: 19371343 DOI: 10.1111/j.1476-5381.2009.00188.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The asthma prevalence was increasing over the past two decades worldwide. Allergic asthma, caused by inhaled allergens of different origin or by food, is mediated by inflammatory mechanisms. The action of non-allergic asthma, induced by cold air, humidity, temperature or exercise, is not well understood. Asthma affects up to 15% of the population and is treated with anti-inflammatory and muscle relaxing drugs which allow symptom control. Asthma was first defined as a malfunction of the airway smooth muscle, later as an imbalanced immune response of the lung. Recent studies placed the airway smooth muscle again into the focus. Here we summarize the molecular biological basis of the deregulated function of the human airway smooth muscle cell as a cause or important contributor to the pathology of asthma. In the asthmatic human airway smooth muscle cells, there is: (i) a deregulation of cell differentiation due to low levels of maturation-regulating transcription factors such as CCAAT/enhancer binding proteins and peroxisome proliferator-activated receptors, thereby reducing the cells threshold to proliferate and to secrete pro-inflammatory cytokines under certain conditions; (ii) a higher basal energy turnover that is due to increased number and activity of mitochondria; and (iii) a modified feedback mechanism between cells and the extracellular matrix they are embedded in. All these cellular pathologies are linked to each other and to the innate immune response of the lung, but the sequence of events is unclear and needs further investigation. However, these findings may present the basis for the development of novel curative asthma drugs.
Collapse
Affiliation(s)
- Michael Roth
- Pulmonary Cell Research, Pneumology, University Hospital Basel, Biomedicine, Lab 305, Petersgraben 4, Basel CH-4031, Switzerland.
| | | |
Collapse
|
47
|
Szefler SJ. Advances in pediatric asthma in 2008: where do we go now? J Allergy Clin Immunol 2009; 123:28-34. [PMID: 19130924 DOI: 10.1016/j.jaci.2008.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 11/14/2008] [Indexed: 01/10/2023]
Abstract
This year's summary focuses on recent advances in pediatric asthma as reported in Journal publications in 2008. New National Asthma Education and Prevention Program asthma guidelines were released in 2007 with a special emphasis on asthma control. Attention was redirected to methods that could reduce impairment, specifically symptom control, and minimize risk, including exacerbations. Journal theme issues in 2008 focused on several relevant asthma topics including asthma exacerbations, exercise-induced bronchospasm, asthma and obesity, and occupational asthma. This review highlights Journal articles and related articles that reinforce principles of the guidelines and also direct us to new information that will advance asthma care for children. A major step forward will be finding ways to implement the asthma guidelines.
Collapse
Affiliation(s)
- Stanley J Szefler
- Divisions of Pediatric Clinical Pharmacology and Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|