1
|
Basagaña M, Martínez-Rivera C, Padró C, Garcia-Olivé I, Martínez-Colls M, Navarro J, Pardo L, Cruz P, Cardona Peitx G, Carabias L, Roger A, Abad J, Rosell A. Clinical characteristics of complete responders versus non-complete responders to omalizumab, benralizumab and mepolizumab in patients with severe asthma: a long-term retrospective analysis. Ann Med 2024; 56:2317356. [PMID: 38364218 PMCID: PMC10878334 DOI: 10.1080/07853890.2024.2317356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Some patients with severe asthma may benefit from treatment with biologics, but evidence has been mostly collected from randomized controlled trials (RCTs), in which patients' characteristics are different from those encountered in asthma patients in the real-world setting. The aim of this study was to describe the clinical features of complete responders versus non-complete responders to long-term treatment with biologics in patients with severe asthma attended in routine daily practice. METHODS Data of a cohort of 90 patients with severe asthma who were treated with biologics (omalizumab, benralizumab, and mepolizumab) for at least 12 months and were followed up to March 2022. Data recorded included clinical characteristics and effectiveness of treatment (exacerbation, Asthma Control Test [ACT] score, lung function, use of maintenance oral corticosteroids [mOCS]), FeNO, and blood eosinophils at baseline, at 12 months, and at the end of follow-up. Complete response is considered if, in addition to not presenting exacerbations or the use of mOCS, the ACT score was >20 and, the FEV1 >80% predicted. RESULTS An improvement in all asthma control parameters was observed after 12 months of treatment and a mean follow-up of 55 months. After 12 months of treatment 27.2% of patients met the criteria of complete response and this percentage even increased to 35.3% at the end of follow-up. Long-term complete response was associated to better lung function with mepolizumab and omalizumab treatment and to less previous exacerbations in the benralizumab group. The main cause of not achieving a complete response was the persistence of an airflow obstructive pattern. CONCLUSIONS This study shows that omalizumab, benralizumab, and mepolizumab improved the clinical outcomes of patients with severe asthma in a clinic environment with similar effect sizes to RCTs in the long term follow-up. Airflow obstruction, however, was a predictor of a non-complete response to biologics.
Collapse
Affiliation(s)
- Maria Basagaña
- Allergy Section, Severe Asthma Unit, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Martínez-Rivera
- Pneumology Department, Severe Asthma Unit, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Clara Padró
- Allergy Section, Severe Asthma Unit, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignasi Garcia-Olivé
- Pneumology Department, Severe Asthma Unit, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mimar Martínez-Colls
- Pediatric Department, Severe Asthma Unit, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Navarro
- Pediatric Department, Severe Asthma Unit, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Pardo
- Otorhinolaryngology Department, Severe Asthma Unit, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Cruz
- Otorhinolaryngology Department, Severe Asthma Unit, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gloria Cardona Peitx
- Pharmacy Department, Severe Asthma Unit, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lídia Carabias
- Pharmacy Department, Severe Asthma Unit, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Albert Roger
- Allergy Section, Severe Asthma Unit, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jorge Abad
- Pneumology Department, Severe Asthma Unit, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Rosell
- Pneumology Department, Severe Asthma Unit, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Singh G, García-Bernalt Diego J, Warang P, Park SC, Chang LA, Noureddine M, Laghlali G, Bykov Y, Prellberg M, Yan V, Singh S, Pache L, Cuadrado-Castano S, Webb B, García-Sastre A, Schotsaert M. Outcome of SARS-CoV-2 reinfection depends on genetic background in female mice. Nat Commun 2024; 15:10178. [PMID: 39580470 PMCID: PMC11585546 DOI: 10.1038/s41467-024-54334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
Antigenically distinct SARS-CoV-2 variants increase the reinfection risk for vaccinated and previously exposed population due to antibody neutralization escape. COVID-19 severity depends on many variables, including host immune responses, which differ depending on genetic predisposition. To address this, we perform immune profiling of female mice with different genetic backgrounds -transgenic K18-hACE2 and wild-type 129S1- infected with the severe B.1.351, 30 days after exposure to the milder BA.1 or severe H1N1. Prior BA.1 infection protects against B.1.351-induced morbidity in K18-hACE2 but aggravates disease in 129S1. H1N1 protects against B.1.351-induced morbidity only in 129S1. Enhanced severity in B.1.351 re-infected 129S1 is characterized by an increase of IL-10, IL-1β, IL-18 and IFN-γ, while in K18-hACE2 the cytokine profile resembles naïve mice undergoing their first viral infection. Enhanced pathology during 129S1 reinfection cannot be attributed to weaker adaptive immune responses to BA.1. Infection with BA.1 causes long-term differential remodeling and transcriptional changes in the bronchioalveolar CD11c+ compartment. K18-hACE2 CD11c+ cells show a strong antiviral defense expression profile whereas 129S1 CD11c+ cells present a more pro-inflammatory response upon restimulation. In conclusion, BA.1 induces cross-reactive adaptive immune responses in K18-hACE2 and 129S1, but reinfection outcome correlates with differential CD11c+ cells responses in the alveolar space.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Juan García-Bernalt Diego
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Seok-Chan Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Lauren A Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Moataz Noureddine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Yonina Bykov
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Prellberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vivian Yan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarabjot Singh
- RT-PCR COVID-19 Laboratory, Civil Hospital, Moga, Punjab, India
| | - Lars Pache
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Lipschultz Precision Immunology Institute (PrIISM), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brett Webb
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA.
- Lipschultz Precision Immunology Institute (PrIISM), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Joshi E, Gibson PG, McDonald VM, Murphy VE. Treatable traits in asthma during pregnancy: a call for a shift towards a precision-based management approach. Eur Respir Rev 2023; 32:230105. [PMID: 38123232 PMCID: PMC10731471 DOI: 10.1183/16000617.0105-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/16/2023] [Indexed: 12/23/2023] Open
Abstract
Asthma is the most common chronic medical condition in pregnancy. Asthma exacerbations in pregnancy are unpredictable, and are associated with adverse maternal and fetal perinatal outcomes such as preterm birth and low birthweight. Goals of asthma management in pregnancy are to establish effective asthma control and prevent exacerbations. Optimising the management of asthma in pregnancy is an important goal of practice and future research.Treatable traits is a precision medicine paradigm proposed for the management of airways diseases, which holistically addresses the complexity and heterogeneity of airways disease. It is an individualised treatment approach that aims to improve outcomes. This makes treatable traits well suited for pregnant women with asthma, who have a high prevalence of obesity, mental health conditions, poor symptom perception and suboptimal asthma management skills including low treatment adherence. These traits are measurable and treatable. In this review, we explore current knowledge on the burden of asthma, maternal and perinatal consequences of asthma during pregnancy, the treatable traits paradigm, the prevalence of treatable traits in pregnant women with asthma, and consider how the treatable traits paradigm can be integrated into the management of asthma in pregnancy.
Collapse
Affiliation(s)
- Esha Joshi
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Asthma and Breathing Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Peter G Gibson
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Asthma and Breathing Program, Hunter Medical Research Institute, Newcastle, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| | - Vanessa M McDonald
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Asthma and Breathing Program, Hunter Medical Research Institute, Newcastle, Australia
- School of Nursing and Midwifery, University of Newcastle, Newcastle, Australia
| | - Vanessa E Murphy
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Asthma and Breathing Program, Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
4
|
Lu H, Cao P. Neural Mechanisms Underlying the Coughing Reflex. Neurosci Bull 2023; 39:1823-1839. [PMID: 37606821 PMCID: PMC10661548 DOI: 10.1007/s12264-023-01104-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2023] [Indexed: 08/23/2023] Open
Abstract
Breathing is an intrinsic natural behavior and physiological process that maintains life. The rhythmic exchange of gases regulates the delicate balance of chemical constituents within an organism throughout its lifespan. However, chronic airway diseases, including asthma and chronic obstructive pulmonary disease, affect millions of people worldwide. Pathological airway conditions can disrupt respiration, causing asphyxia, cardiac arrest, and potential death. The innervation of the respiratory tract and the action of the immune system confer robust airway surveillance and protection against environmental irritants and pathogens. However, aberrant activation of the immune system or sensitization of the nervous system can contribute to the development of autoimmune airway disorders. Transient receptor potential ion channels and voltage-gated Na+ channels play critical roles in sensing noxious stimuli within the respiratory tract and interacting with the immune system to generate neurogenic inflammation and airway hypersensitivity. Although recent studies have revealed the involvement of nociceptor neurons in airway diseases, the further neural circuitry underlying airway protection remains elusive. Unraveling the mechanism underpinning neural circuit regulation in the airway may provide precise therapeutic strategies and valuable insights into the management of airway diseases.
Collapse
Affiliation(s)
- Haicheng Lu
- National Institute of Biological Sciences, Beijing, 102206, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| |
Collapse
|
5
|
Singh G, Warang P, García-Bernalt Diego J, Chang L, Bykov Y, Singh S, Pache L, Cuadrado-Castano S, Webb B, Garcia-Sastre A, Schotsaert M. Host immune responses associated with SARS-CoV-2 Omicron infection result in protection or pathology during reinfection depending on mouse genetic background. RESEARCH SQUARE 2023:rs.3.rs-3637405. [PMID: 38077015 PMCID: PMC10705603 DOI: 10.21203/rs.3.rs-3637405/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Rapid emergence of antigenic distinct SARS-CoV-2 variants implies a greater risk of reinfection as viruses can escape neutralizing antibodies induced by vaccination or previous viral exposure. Disease severity during COVID-19 depends on many variables such as age-related comorbidities, host immune status and genetic variation. The host immune response during infection with SARS-CoV-2 may contribute to disease severity, which can range from asymptomatic to severe with fatal outcome. Furthermore, the extent of host immune response activation may rely on underlying genetic predisposition for disease or protection. To address these questions, we performed immune profiling studies in mice with different genetic backgrounds - transgenic K18-hACE2 and wild-type 129S1 mice - subjected to reinfection with the severe disease-causing SARS-CoV-2 B.1.351 variant, 30 days after experimental milder BA.1 infection. BA.1 preinfection conferred protection against B.1.351-induced morbidity in K18-hACE2 mice but aggravated disease in 129S1 mice. We found that he cytokine/chemokine profile in B.1.351 re-infected 129S1mice is similar to that during severe SARS-CoV-2 infection in humans and is characterized by a much higher level of IL-10, IL-1β, IL-18 and IFN-γ, whereas in B.1.351 re-infected K18-hACE2 mice, the cytokine profile echoes the signature of naïve mice undergoing viral infection for the first time. Interestingly, the enhanced pathology observed in 129S1 mice upon reinfection cannot be attributed to a less efficient induction of adaptive immune responses to the initial BA.1 infection, as both K18-hACE2 and 129S1 mice exhibited similar B and T cell responses at 30 DPI against BA.1, with similar anti-BA.1 or B.1.351 spike-specific ELISA binding titers, levels of germinal center B-cells, and SARS-CoV-2-Spike specific tissue-resident T-cells. Long-term effects of BA.1 infection are associated with differential transcriptional changes in bronchoalveolar lavage-derived CD11c + immune cells from K18-hACE2 and 129S1, with K18-hACE2 CD11c + cells showing a strong antiviral defense gene expression profile whereas 129S1 CD11c + cells showed a more pro-inflammatory response. In conclusion, initial infection with BA.1 induces cross-reactive adaptive immune responses in both K18-hACE2 and 129S1 mice, however the different disease outcome of reinfection seems to be driven by differential responses of CD11c + cells in the alveolar space.
Collapse
Affiliation(s)
| | | | | | | | | | - Sarabjot Singh
- RT-PCR COVID-19 Laboratory, Civil Hospital, Moga, Punjab, India
| | - Lars Pache
- Sanford Burnham Prebys Medical Discovery Institute
| | | | - Brett Webb
- Department of Veterinary Sciences, University of Wyoming
| | | | | |
Collapse
|
6
|
Niu J, Guo W, Lu A, Han G, Wang G, Peng B, Zhao J. Comparison with gastric cancer-associated genes reveals the role of ferroptosis-related genes in eosinophils of asthma patients: A bioinformatic study. Medicine (Baltimore) 2023; 102:e35002. [PMID: 37832131 PMCID: PMC10578675 DOI: 10.1097/md.0000000000035002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 10/15/2023] Open
Abstract
Ferroptosis-inducing agents (FIAs) induced lipid-peroxidation-independent ferroptosis in eosinophils, thus ameliorating airway inflammation in asthmatic mice. Differences in ferroptosis-related genes (FerrGs) between eosinophils and cells in which FIAs induce canonical ferroptosis are supposed to contribute to this noncanonical ferroptosis but remain unclear. This study aims to explore these differences. This study used gastric cancer cells (GCCs) in stomach adenocarcinoma as the representative of cells in which FIAs induce canonical ferroptosis. FerrGs in Ferroptosis Database V2 respectively intersected with differentially expressed genes (DEGs) of eosinophils (E-MTAB-4660 dataset) and GCCs (GEPIA2 Stomach adenocarcinoma dataset) to obtain original ferroptosis DEGs (FerrDEGs). Then, they were subjected to Venn analysis to identify FerrDEGs shared by them and FerrDEGs exclusively expressed in eosinophils or GCCs. Identified genes were subjected to functional enrichment analysis, protein-protein interactions analysis, Hub genes analysis, and construction of the LncRNA-mediated ceRNA network. Sixty-six original FerrDEGs in eosinophils and 110 original FerrDEGs in GCCs were obtained. Venn analysis identified that eosinophils and GCCs shared 19 FerrDEGs that presented opposite expression directions and were involved in the ferroptosis pathway. Four upregulated and 20 downregulated FerrDEGs were exclusively expressed in eosinophils and GCCs, respectively. The former were enriched only in glycerolipid metabolism, while the latter were not enriched in pathways. Forty downregulated and 68 upregulated FerrDEGs were solely expressed in eosinophils and GCCs, respectively. The former was associated with the FoxO signaling pathway; the latter was related to glutathione metabolism and they were all implicated in autophagy. PPI analysis shows that the top 10 Hub genes of 66 original FerrDEGs and 44 exclusive FerrDEGs in eosinophils shared 9 genes (STAT3, NFE2L2, MAPK8, PTEN, MAPK3, TLR4, SIRT1, BECN1, and PTGS2) and they were also involved in the FoxO signaling pathway and autophagy pathway. Among them, PTEN is involved in forming a ceRNA network containing 3 LncRNAs, 3 miRNAs and 3 mRNAs. In contrast to FerrGs in cells in which FIAs induce canonical ferroptosis, the FerrGs in eosinophils differ in expression and in the regulation of ferroptosis, FoxO signaling pathway, and autophagy. It lays the groundwork for targeted induction of eosinophils lipid-peroxidation-independent ferroptosis in asthma.
Collapse
Affiliation(s)
- Jianfei Niu
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Wei Guo
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Aiyangzi Lu
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Guanxiong Han
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Guanqun Wang
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Bihui Peng
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jiping Zhao
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Meng Z, Zhang S, Li W, Wang Y, Wang M, Liu X, Liu CL, Liao S, Liu T, Yang C, Lindholt JS, Rasmussen LM, Obel LM, Stubbe J, Diederichsen AC, Sun Y, Chen Y, Yu PB, Libby P, Shi GP, Guo J. Cationic proteins from eosinophils bind bone morphogenetic protein receptors promoting vascular calcification and atherogenesis. Eur Heart J 2023; 44:2763-2783. [PMID: 37279475 PMCID: PMC10393071 DOI: 10.1093/eurheartj/ehad262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/08/2023] Open
Abstract
AIMS Blood eosinophil count and eosinophil cationic protein (ECP) concentration are risk factors of cardiovascular diseases. This study tested whether and how eosinophils and ECP contribute to vascular calcification and atherogenesis. METHODS AND RESULTS Immunostaining revealed eosinophil accumulation in human and mouse atherosclerotic lesions. Eosinophil deficiency in ΔdblGATA mice slowed atherogenesis with increased lesion smooth muscle cell (SMC) content and reduced calcification. This protection in ΔdblGATA mice was muted when mice received donor eosinophils from wild-type (WT), Il4-/-, and Il13-/- mice or mouse eosinophil-associated-ribonuclease-1 (mEar1), a murine homologue of ECP. Eosinophils or mEar1 but not interleukin (IL) 4 or IL13 increased the calcification of SMC from WT mice but not those from Runt-related transcription factor-2 (Runx2) knockout mice. Immunoblot analyses showed that eosinophils and mEar1 activated Smad-1/5/8 but did not affect Smad-2/3 activation or expression of bone morphogenetic protein receptors (BMPR-1A/1B/2) or transforming growth factor (TGF)-β receptors (TGFBR1/2) in SMC from WT and Runx2 knockout mice. Immunoprecipitation showed that mEar1 formed immune complexes with BMPR-1A/1B but not TGFBR1/2. Immunofluorescence double-staining, ligand binding, and Scatchard plot analysis demonstrated that mEar1 bound to BMPR-1A and BMPR-1B with similar affinity. Likewise, human ECP and eosinophil-derived neurotoxin (EDN) also bound to BMPR-1A/1B on human vascular SMC and promoted SMC osteogenic differentiation. In a cohort of 5864 men from the Danish Cardiovascular Screening trial and its subpopulation of 394 participants, blood eosinophil counts and ECP levels correlated with the calcification scores of different arterial segments from coronary arteries to iliac arteries. CONCLUSION Eosinophils release cationic proteins that can promote SMC calcification and atherogenesis using the BMPR-1A/1B-Smad-1/5/8-Runx2 signalling pathway.
Collapse
Affiliation(s)
- Zhaojie Meng
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Shuya Zhang
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research & Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou 571199, Hainan, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yunzhe Wang
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Minjie Wang
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Xin Liu
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Cong-Lin Liu
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sha Liao
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Tianxiao Liu
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Chongzhe Yang
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510000, Guangdong, China
| | - Jes S Lindholt
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
- Elite Research Centre of Individualized Treatment for Arterial Disease, University Hospital, Odense, Denmark
| | - Lars M Rasmussen
- Elite Research Centre of Individualized Treatment for Arterial Disease, University Hospital, Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Lasse M Obel
- Elite Research Centre of Individualized Treatment for Arterial Disease, University Hospital, Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Jane Stubbe
- Cardiovascular and Renal Research unit, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Axel C Diederichsen
- Elite Research Centre of Individualized Treatment for Arterial Disease, University Hospital, Odense, Denmark
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Yong Sun
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Birmingham VA Medical Center, Research Department, Birmingham, AL 35294, USA
| | - Yabing Chen
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Birmingham VA Medical Center, Research Department, Birmingham, AL 35294, USA
| | - Paul B Yu
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Junli Guo
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research & Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou 571199, Hainan, China
| |
Collapse
|
8
|
Qiu Q, Zhang W, Liu K, Huang F, Su J, Deng L, He J, Lin Q, Luo L. Schisandrin A ameliorates airway inflammation in model of asthma by attenuating Th2 response. Eur J Pharmacol 2023:175850. [PMID: 37329976 DOI: 10.1016/j.ejphar.2023.175850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Asthma is a persistent respiratory ailment that displays periodicity and is linked to the equilibrium of T cells. Several compounds obtained from Chinese herbal medicines display beneficial impacts on T cell regulation and the attenuation of inflammatory mediator synthesis. Schisandrin A, an active lignan derived from the Schisandra fruit, exhibits anti-inflammatory characteristics. In the present study, the network analysis conducted revealed that the nuclear factor-kappaB (NF-κB) signaling pathway is likely a prominent contributor to the anti-asthmatic effects of schisandrin A. In addition, it has been established that the inhibition of cyclooxygenase 2 (COX-2/PTGS2) is likely a significant factor in this process. The results of in vitro experiments have substantiated that schisandrin A can effectively lower the expression of COX-2 and inducible nitric oxide synthase (iNOS) in 16 HBE cells and RAW264.7 cells in a manner that is dependent on the dosage administered. It was able to effectively reduce the activation of the NF-κB signaling pathway while simultaneously improving the injury to the epithelial barrier function. Furthermore, an investigation utilizing immune infiltration as a metric revealed an inequity in Th1/Th2 cells and a surge in Th2 cytokines in asthma patients. In the OVA-induced asthma mice model, it was observed that schisandrin A treatment effectively suppressed inflammatory cell infiltration, reduced the Th2 cell ratio, inhibited mucus secretion, and prevented airway remodeling. To summarize, the administration of schisandrin A has been found to effectively alleviate the symptoms of asthma by impeding the production of inflammation, which includes reducing the Th2 cell ratio and improving the integrity of the epithelial barrier function. These findings offer valuable insights into the potential therapeutic applications of schisandrin A for the treatment of asthma.
Collapse
Affiliation(s)
- Qin Qiu
- Graduate School, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Weizhen Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdon, 51000, China
| | - Kangdi Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Fangfang Huang
- Graduate School, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Liyan Deng
- Graduate School, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jiake He
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Qianwen Lin
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
9
|
Lazarusic NK, Kasap EB, Tolic E, Dokoza M, Pavlisa G. Value of Fractional Exhaled Nitric Oxide in Diagnosing Mild Asthma Responsive to Inhaled Corticosteroids. J Clin Med 2023; 12:jcm12093330. [PMID: 37176770 PMCID: PMC10179178 DOI: 10.3390/jcm12093330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Mild asthma is often characterized by normal spirometric values and a negative bronchodilation test (BDT), which makes accurate diagnosis challenging. The aim of our study was to evaluate the diagnostic accuracy of fractional exhaled nitric oxide (FeNO) in mild asthma. METHODS In adults with symptoms suggestive of asthma and normal spirometry values, BDT, FeNO, BPT and skin prick testing were performed. Patients with positive BPT started inhaled corticosteroid (ICS) therapy. Those with positive response to ICS were considered asthmatics. RESULTS There were 142 asthmatics and 140 non-asthmatics. No significant difference was found in BDT between the groups, p = 0.233. Median FeNO levels were significantly higher in the asthma group (49.5 ppb) than in the non-asthma group (23 ppb), p < 0.001. BPT was positive in 145 (51.42%) and negative in 137 (48.58%) patients. Positive response to ICS treatment was recorded in 142/145 (97.9%) patients. In diagnosing asthma, FeNO ≥ 25 ppb had a sensitivity of 75.4% and specificity of 47.9%. CONCLUSIONS FeNO has insufficient sensitivity and specificity in mild asthma and the application of BPT is often necessary to establish an accurate diagnosis.
Collapse
Affiliation(s)
| | | | - Ena Tolic
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Martina Dokoza
- Department of Pulmonology, General Hospital, 23000 Zadar, Croatia
| | - Gordana Pavlisa
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Allegra A, Murdaca G, Gammeri L, Ettari R, Gangemi S. Alarmins and MicroRNAs, a New Axis in the Genesis of Respiratory Diseases: Possible Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24021783. [PMID: 36675299 PMCID: PMC9861898 DOI: 10.3390/ijms24021783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023] Open
Abstract
It is well ascertained that airway inflammation has a key role in the genesis of numerous respiratory pathologies, including asthma, chronic obstructive pulmonary disease, and acute respiratory distress syndrome. Pulmonary tissue inflammation and anti-inflammatory responses implicate an intricate relationship between local and infiltrating immune cells and structural pulmonary cells. Alarmins are endogenic proteins discharged after cell injury in the extracellular microenvironment. The purpose of our review is to highlight the alterations in respiratory diseases involving some alarmins, such as high mobility group box 1 (HMGB1) and interleukin (IL)-33, and their inter-relationships and relationships with genetic non-coding material, such as microRNAs. The role played by these alarmins in some pathophysiological processes confirms the existence of an axis composed of HMGB1 and IL-33. These alarmins have been implicated in ferroptosis, the onset of type 2 inflammation and airway alterations. Moreover, both factors can act on non-coding genetic material capable of modifying respiratory function. Finally, we present an outline of alarmins and RNA-based therapeutics that have been proposed to treat respiratory pathologies.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
11
|
Venegas Garrido C, Mukherjee M, Bhalla A, Nair P. Airway autoimmunity, asthma exacerbations, and response to biologics. Clin Exp Allergy 2022; 52:1365-1378. [PMID: 35993511 DOI: 10.1111/cea.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 01/26/2023]
Abstract
Biologic therapies in asthma are indicated in severe disease, and they are directed against specific inflammatory modulators that contribute to pathogenesis and severity. Currently approved biologics target T2 cytokines (IgE, IL-5, IL-4/IL-13, and TLSP) and have demonstrated efficacy in clinical outcomes such as exacerbation rate and oral corticosteroid dose reductions, blood and airway eosinophil depletion, and lung function improvement. However, a proportion of these patients may show inadequate responses to biologics, with either initial lack of improvement or clinical and functional worsening after an optimal initial response. Exacerbations while on a biologic may be due to several reasons, including imprecise identification of the dominant effector pathway contributing to severity, additional inflammatory pathways that are not targeted by the biologic, inaccuracies of the biomarker used to guide therapy, inadequate dosing schedules, intercurrent airway infections, anti-drug neutralizing antibodies, and a novel phenomenon of autoimmune responses in the airways interfering with the effectiveness of the monoclonal antibodies. This review, illustrated using case scenarios, describes the underpinnings of airway autoimmune responses in driving exacerbations while patients are being treated with biologics, device a strategy to evaluate such exacerbations, an algorithm to switch between biologics, and perhaps to consider two biologics concurrently.
Collapse
Affiliation(s)
- Carmen Venegas Garrido
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.,Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Manali Mukherjee
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.,Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anurag Bhalla
- Division of Respirology, Department of Medicine, Western University, London, Ontario, Canada
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.,Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Loewenthal L, Menzies-Gow A. FeNO in Asthma. Semin Respir Crit Care Med 2022; 43:635-645. [DOI: 10.1055/s-0042-1743290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractAsthma is a common disease affecting 350 million people worldwide, which is characterized by airways inflammation and hyperreactivity. Historically diagnosis and treatment have been mainly based on symptoms, which have the potential to result in misdiagnosis and inappropriate treatment. Nitric oxide (NO) is exhaled in human breath and is a marker of airways inflammation. Levels of NO are increased in the exhaled breath of patients with type 2 asthma and fractional exhaled nitric oxide (FeNO) provides an objective biomarker of airway inflammation. FeNO testing is an accessible, noninvasive, and easy-to-use test. Cut-off values have been established by the American Thoracic Society (ATS), the Global Initiative for Asthma (GINA), and the National Institute for Health and Care Excellence (NICE) but vary between guidance. FeNO levels have been shown to be predictive of blood and sputum eosinophil levels but should not be used in isolation and current guidance emphasizes the importance of incorporating clinical symptoms and testing when utilizing FeNO results. The inclusion of FeNO testing can increase diagnostic accuracy of asthma, while high levels in asthmatic patients can help predict response to inhaled corticosteroids (ICS) and suppression of levels with ICS to monitor adherence. FeNO levels are also a predictor of asthma risk with increased exacerbation rates and accelerated decline in lung function associated with high levels as well as having an emerging role in predicting response to some biologic therapies in severe asthma. FeNO testing is cost-effective and has been shown, when combined with clinical assessment, to improve asthma management.
Collapse
Affiliation(s)
- Lola Loewenthal
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Andrew Menzies-Gow
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, United Kingdom
| |
Collapse
|
13
|
Wu W, Gao J, Chen D, Chen G, Feng Y, Chang C, Chen S, Yi L, Zhen G. Epithelial microRNA-30a-3p targets RUNX2/HMGB1 axis to suppress airway eosinophilic inflammation in asthma. Respir Res 2022; 23:17. [PMID: 35093061 PMCID: PMC8800331 DOI: 10.1186/s12931-022-01933-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Type 2-high asthma is a prominent endotype of asthma which is characterized by airway eosinophilic inflammation. Airway epithelial cells play a critical role in the pathogenesis of asthma. Our previous miRNA profiling data showed that miR-30a-3p was downregulated in bronchial epithelial cells from asthma patients. We hypothesize that epithelial miR-30a-3p plays a role in asthma airway inflammation. Methods We measured miR‐30a-3p expression in bronchial brushings of asthma patients (n = 51) and healthy controls (n = 16), and analyzed the correlations between miR‐30a-3p expression and airway eosinophilia. We examined whether Runt-related transcription factor 2 (RUNX2) was a target of miR‐30a-3p and whether RUNX2 bound to the promoter of high mobility group box 1 (HMGB1) by using luciferase reporter assay and chromatin immunoprecipitation (ChIP)-PCR. The role of miR‐30a-3p was also investigated in a murine model of allergic airway inflammation. Results We found that miR-30a-3p expression were significantly decreased in bronchial brushings of asthma patients compared to control subjects. Epithelial miR-30a-3p expression was negatively correlated with parameters reflecting airway eosinophilia including eosinophils in induced sputum and bronchial biopsies, and fraction of exhaled nitric oxide in asthma patients. We verified that RUNX2 is a target of miR-30a-3p. Furthermore, RUNX2 bound to the promoter of HMGB1 and upregulated HMGB1 expression. RUNX2 and HMGB1 expression was both enhanced in airway epithelium and was correlated with each other in asthma patients. Inhibition of miR-30a-3p enhanced RUNX2 and HMGB1 expression, and RUNX2 overexpression upregulated HMGB1 in BEAS-2B cells. Intriguingly, airway overexpression of mmu-miR-30a-3p suppressed Runx2 and Hmgb1 expression, and alleviated airway eosinophilia in a mouse model of allergic airway inflammation. Conclusions Epithelial miR-30a-3p could possibly target RUNX2/HMGB1 axis to suppress airway eosinophilia in asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01933-x.
Collapse
|
14
|
The Therapeutic Effect of Traditional LiuJunZi Decoction on Ovalbumin-Induced Asthma in Balb/C Mice. Can Respir J 2021; 2021:6406295. [PMID: 34630778 PMCID: PMC8494547 DOI: 10.1155/2021/6406295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Aim To investigate the therapeutic effect of LiuJunZi decoction (LJZD) in an experimental model of asthma and uncover its potential mechanism. Materials and Methods The ovalbumin (OVA) was applied to induce asthma in Balb/C mice, and LJZD was orally administrated to asthmatic mice. The lung function and histological lesion were evaluated by airway hyperresponsiveness assay, lung edema assay, and hematoxylin and eosin staining. The amounts of CD4+CD25+Foxp3+ TReg cells were analyzed through combining fluorescent antibody staining with flow cytometry assay. The levels of inflammatory factors and immunoglobulins were detected by enzyme-linked immuno sorbent assay (ELISA). The expression of miR-21 and miR-146a was investigated by real-time PCR. The protein expression of activating protein-1 (AP-1), nuclear factor kappa-B (NF-κB), and NF-κB inhibitor alpha (IκBα) was determined by western blotting. Results LJZD improves OVA-induced asthma in Balb/C mice, which is manifested by decreasing lung edema, Penh levels, lung histological lesion, and inflammatory cell infiltration. LJZD increased the number of CD4+CD25+Foxp3+ TReg cells in blood mononuclear cells from asthmatic mice. Furthermore, LJZD reduced the levels of tumor necrosis factor-α (TNF-α), interleukin- (IL-) 4, IL-6, IgG1, and IgE, but increased interferon gamma (IFN-γ) expression, in serum of asthmatic mice, and also decreased the expression of IL-17a, IL-23, IL-25, and thymic stromal lymphopoietin (Tslp) in lung tissues. In addition, miR-21 and miR-146a expression and phospho (p)-NF-κB, p-IκBα, and AP-1 protein expression were inhibited by LJZD in lung tissues from asthmatic mice. Conclusion LJZD improved OVA-induced asthma in Balb/C mice by inhibiting allergic inflammation and Th2 immunoreaction, which might be associated with the inactivation of the NF-κB signaling pathway.
Collapse
|
15
|
Meteran H, Sivapalan P, Stæhr Jensen JU. Treatment Response Biomarkers in Asthma and COPD. Diagnostics (Basel) 2021; 11:1668. [PMID: 34574009 PMCID: PMC8464838 DOI: 10.3390/diagnostics11091668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are two of the most common chronic diseases worldwide. Both diseases are heterogenous and complex, and despite their similarities, they differ in terms of pathophysiological and immunological mechanisms. Mounting evidence supports the presence of several phenotypes with various responses to treatment. A systematic and thorough assessment concerning the diagnosis of both asthma and COPD is crucial to the clinical management of the disease. The identification of different biomarkers can facilitate targeted treatment and monitoring. Thanks to the presence of numerous immunological studies, our understanding of asthma phenotypes and mechanisms of disease has increased markedly in the last decade, and several treatments with monoclonal antibodies are available. There are compelling data that link eosinophilia with an increased risk of COPD exacerbations but a greater treatment response and lower all-cause mortality. Eosinophilia can be considered as a treatable trait, and the initiation of inhaled corticosteroid in COPD patients with eosinophilia is supported in many studies. In spite of advances in our understanding of both asthma and COPD in terms pathophysiology, disease mechanisms, biomarkers, and response to treatment, many uncertainties in the management of obstructive airways exist.
Collapse
Affiliation(s)
- Howraman Meteran
- Department of Internal Medicine, Respiratory Medicine Section, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (P.S.); (J.-U.S.J.)
- Department of Microbiology and Immunology, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Pradeesh Sivapalan
- Department of Internal Medicine, Respiratory Medicine Section, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (P.S.); (J.-U.S.J.)
- Department of Internal Medicine, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Jens-Ulrik Stæhr Jensen
- Department of Internal Medicine, Respiratory Medicine Section, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (P.S.); (J.-U.S.J.)
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| |
Collapse
|
16
|
Kjarsgaard M, Adatia A, Bhalla A, LaVigne N, Radford K, Huang C, Mukherjee M, Nair P. Underestimation of airway luminal eosinophilia by quantitative sputum cytometry. Allergy Asthma Clin Immunol 2021; 17:63. [PMID: 34225803 PMCID: PMC8256588 DOI: 10.1186/s13223-021-00567-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
RATIONALE On Wright-stained sputum cytospins, eosinophil differential of ≥ 1.2% is considered abnormal, and ≥ 2.3% identifies an eosinophilic endotype. We hypothesized that failure to consider free eosinophil granules (FEG), and the re-emergence (unmasking) of eosinophilia due to various reasons underestimate the prevalence of the eosinophilic endotype. METHODS This is a retrospective analysis of our Institutional Review Board-approved clinical sputum database. Of the 24,176 examinations of sputa from patients with various airway diseases, 17,693 were viable cell counts from 9570 patients (6604 on a single occasion, 2967 from multiple occasions). The prevalence of intact eosinophil % at 1.2 and 2.3% thresholds was first examined. Then, additional evidence of eosinophilia was assessed by semi-quantitative enumeration of FEGs. In those patients whose sputa were examined on multiple occasions (at the time of an exacerbation or after corticosteroid dose was reduced), re-emergence (unmasking) of eosinophilia was assessed . RESULTS Using the threshold of eosinophilia ≥ 1.2%, 6289/17693 (35.6%) of sputa were classified as eosinophilic. This increased to 7850/17693 (44.4%) when the presence of FEGs was considered. Using the threshold of eosinophilia ≥ 2.3%, 4647/17693 (26.3%) of sputa were classified as eosinophilic. This increased to 5435/17693 (30.7%) when the presence of FEG were considered. Extrapolating from the prevalence of re-emergence observed in the 2967 patients who had sputa examined on multiple occasions to the whole sample, we estimated that eosinophilia at 1.2% threshold would be observed in at least 60% of the samples, and a clinically relevant eosinophilia at 2.3% threshold would be observed in at least 48.5% of the samples. CONCLUSIONS Using a large sputum cytometry clinical database (17,693 viable cell counts), we demonstrate that a single time point intact cell count underestimates the prevalence of eosinophilia in a variety of airway diseases. The prevalence of eosinophilia increases from 35.6 to 60% (40% underestimation) at the 1.2% threshold, and from 26.3 to 48.5% (45% underestimation) at the 2.3% clinically relevant threshold, when free granules and a second examination are considered. This has important implications to identify the eosinophilic and Th2 high endotype both for clinical trials of anti-eosinophil therapies, and to select patients who may respond well to glucocorticosteroids and anti-IL5 therapies.
Collapse
Affiliation(s)
- Melanie Kjarsgaard
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada.,Department of Medicine, McMaster University, Firestone Institute for Respiratory Health, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Adil Adatia
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada.,Department of Medicine, McMaster University, Firestone Institute for Respiratory Health, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Anurag Bhalla
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada.,Department of Medicine, McMaster University, Firestone Institute for Respiratory Health, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Nicola LaVigne
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Katherine Radford
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Chynna Huang
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Manali Mukherjee
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada.,Department of Medicine, McMaster University, Firestone Institute for Respiratory Health, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada. .,Department of Medicine, McMaster University, Firestone Institute for Respiratory Health, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
17
|
Yang Y, Jia M, Ou Y, Adcock IM, Yao X. Mechanisms and biomarkers of airway epithelial cell damage in asthma: A review. CLINICAL RESPIRATORY JOURNAL 2021; 15:1027-1045. [PMID: 34097803 DOI: 10.1111/crj.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Bronchial asthma is a heterogeneous disease with complex pathological mechanisms representing different phenotypes, including severe asthma. The airway epithelium is a major site of complex pathological changes in severe asthma due, in part, to activation of inflammatory and immune mechanisms in response to noxious agents. Current imaging procedures are unable to accurately measure epithelial and airway remodeling. Damage of airway epithelial cells occurs is linked to specific phenotypes and endotypes which provides an opportunity for the identification of biomarkers reflecting epithelial, and airway, remodeling. Identification of patients with more severe epithelial disruption using biomarkers may also provide personalised therapeutic opportunities and/or markers of successful therapeutic intervention. Here, we review the evidence for ongoing epithelial cell dysregulation in the pathogenesis of asthma, the sentinel role of the airway epithelium and how understanding these molecular mechanisms provides the basis for the identification of candidate biomarkers for asthma prediction, prevention, diagnosis, treatment and monitoring.
Collapse
Affiliation(s)
- Yuemei Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingwei Ou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Emergency Medical, Zhejiang Province People's Hospital, Zhejiang, China
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Hinks TSC, Levine SJ, Brusselle GG. Treatment options in type-2 low asthma. Eur Respir J 2021; 57:13993003.00528-2020. [PMID: 32586877 DOI: 10.1183/13993003.00528-2020] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies targeting IgE or the type-2 cytokines interleukin (IL)-4, IL-5 and IL-13 are proving highly effective in reducing exacerbations and symptoms in people with severe allergic and eosinophilic asthma, respectively. However, these therapies are not appropriate for 30-50% of patients in severe asthma clinics who present with non-allergic, non-eosinophilic, "type-2 low" asthma. These patients constitute an important and common clinical asthma phenotype, driven by distinct, yet poorly understood pathobiological mechanisms. In this review we describe the heterogeneity and clinical characteristics of type-2 low asthma and summarise current knowledge on the underlying pathobiological mechanisms, which includes neutrophilic airway inflammation often associated with smoking, obesity and occupational exposures and may be driven by persistent bacterial infections and by activation of a recently described IL-6 pathway. We review the evidence base underlying existing treatment options for specific treatable traits that can be identified and addressed. We focus particularly on severe asthma as opposed to difficult-to-treat asthma, on emerging data on the identification of airway bacterial infection, on the increasing evidence base for the use of long-term low-dose macrolides, a critical appraisal of bronchial thermoplasty, and evidence for the use of biologics in type-2 low disease. Finally, we review ongoing research into other pathways including tumour necrosis factor, IL-17, resolvins, apolipoproteins, type I interferons, IL-6 and mast cells. We suggest that type-2 low disease frequently presents opportunities for identification and treatment of tractable clinical problems; it is currently a rapidly evolving field with potential for the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| | - Stewart J Levine
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guy G Brusselle
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Depts of Epidemiology and Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Wang L, Bao A, Zheng Y, Ma A, Wu Y, Shang H, Fang D, Ben S. Adenovirus vector-mediated YKL-40 shRNA attenuates eosinophil airway inflammation in a murine asthmatic model. Gene Ther 2020; 28:177-185. [PMID: 33046836 DOI: 10.1038/s41434-020-00202-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Recent studies have revealed that YKL-40 is involved in the pathogenesis of asthma. However, its specific mechanism remains unclear. The present study aims to investigate the effect of adenovirus vector-mediated YKL-40 short hairpin RNA (shRNA) on regulation of airway inflammation in a murine asthmatic model. Mice were assessed for airway hyperresponsiveness (AHR), total leukocytes and the percentage of eosinophil cells in bronchoalveolar lavage fluid (BALF). YKL-40 mRNA and protein expression levels were detected using quantitative real-time PCR and western blot assays. Enzyme-linked immunosorbent assay (ELISA) was used to detect YKL-40 and eosinophil-related chemokine expression levels in BALF and serum. Lung histology analyses were performed to evaluate the degree of inflammatory cell infiltration around the airway and airway mucus secretion.YKL-40 shRNA significantly inhibited the YKL-40 gene expression in asthmatic mice. In addition, YKL-40 shRNA alleviated eosinophilic airway inflammation, AHR, airway mucus secretion and decreased the levels of YKL-40 in BALF and serum in a murine asthmatic model. The levels and mRNA expression of IL-5, IL-13 in asthmatic mice lung tissues, eotaxin, and GM-CSF in BALF and serum significantly decreased. Bone marrow signaling molecules including IL-5, eotaxin, and GM-CSF were correlated with decreased levels of YKL-40. The study reveals that YKL-40 could be involved in asthma inflammation by altering bone marrow signaling molecules. YKL-40 gene RNA interference could provide new therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Ling Wang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aihua Bao
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zheng
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aying Ma
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Wu
- Department of Respiratory Medicine, The Affiliated Hospital of Nantong University, Nantong, China
| | - Huanxia Shang
- Department of Respiratory Medicine, Chest Hospital of Hebei Province, Shijiazhuang, China
| | - Danruo Fang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suqin Ben
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Nagala M, Crocker PR. Towards understanding the cell surface phenotype, metabolic properties and immune functions of resident macrophages of the peritoneal cavity and splenic red pulp using high resolution quantitative proteomics. Wellcome Open Res 2020. [DOI: 10.12688/wellcomeopenres.16061.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background:Resident macrophages (Mϕs) are distributed throughout the body and are important for maintaining tissue homeostasis and for defence against infections. Tissue Mϕs are highly adapted to their microenvironment and thought to mediate tissue-specific functions involving metabolism and immune defence that are not fully elucidated. Methods:We have used high resolution quantitative proteomics to gain insights into the functions of two types of resident tissue Mϕs: peritoneal cavity Mϕs and splenic red pulp Mϕs. The cellular expression levels of many proteins were validated by flow cytometry and were consistently in agreement with the proteomics data.Results:Peritoneal and splenic red pulp macrophages displayed major differences in cell surface phenotype reflecting their adaptation to different tissue microenvironments and tissue-specific functions. Peritoneal Mϕs were shown to be enriched in a number of key enzymes and metabolic pathways normally associated with the liver, such as metabolism of fructose, detoxification, nitrogen homeostasis and the urea cycle. Supporting these observations, we show that peritoneal Mϕs are able to utilise glutamine and glutamate which are rich in peritoneum for urea generation. In comparison, splenic red pulp Mϕs were enriched in proteins important for adaptive immunity such as antigen presenting MHC molecules, in addition to proteins required for erythrocyte homeostasis and iron turnover. We also show that these tissue Mϕs may utilise carbon and nitrogen substrates for different metabolic fates to support distinct tissue-specific roles.Conclusions:This study provides new insights into the functions of tissue Mϕs in immunity and homeostasis. The comprehensive proteomics data sets are a valuable resource for biologists and immunologists.
Collapse
|
21
|
Miao K, Zhang L, Pan T, Wang Y. Update on the role of endoplasmic reticulum stress in asthma. Am J Transl Res 2020; 12:1168-1183. [PMID: 32355534 PMCID: PMC7191165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Asthma has long attracted extensive attention because of its recurring symptoms of reversible airflow obstruction, airway hyperresponsiveness (AHR) and airway inflammation. Although accumulating evidence has enabled gradual increases in understanding of the pathogenesis of asthma, many questions regarding the mechanisms underlying asthma onset and progression remain unanswered. Recent advances delineating the potential functions of endoplasmic reticulum (ER) stress in meeting the need for an airway hypersensitivity response have revealed critical roles of unfolded protein response (UPR) pathways in asthma. In this review, we highlight the roles of ER stress and UPR activation in the etiology, pathogenesis and treatment of asthma and discuss whether the related mechanisms could be targets for therapeutic strategies.
Collapse
Affiliation(s)
- Kang Miao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| | - Ting Pan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology 1095 Jiefang Ave, Wuhan 430030, China
| |
Collapse
|
22
|
|
23
|
Doyen V, Casset A, Divaret-Chauveau A, Khayath N, Peiffer G, Bonniaud P, Dalphin JC, De Blay F. [Diagnosis of allergy in asthma]. Rev Mal Respir 2020; 37:243-256. [PMID: 32057505 DOI: 10.1016/j.rmr.2019.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 07/06/2019] [Indexed: 01/01/2023]
Abstract
Allergy is a hypersensitivity reaction induced by immunological mechanisms. In asthma, allergy has a complex role and is usually IgE mediated. Allergy must be evaluated during the work up but evidence of IgE sensitivity does not mean that allergens play a role in the pathophysiology of the disease. The clinical relevance of the sensitivity has to be considered. This paper describes current available tools to screen for IgE sensitivity, allergen exposure and their role in asthma.
Collapse
Affiliation(s)
- V Doyen
- Clinique d'immuno-allergologie, université Libre de Bruxelles (ULB), CHU Brugmann, place Van Gehuchten, 4, 1020 Bruxelles, Belgique.
| | - A Casset
- CNRS, CAMB UMR7199, université de Strasbourg, 67000 Strasbourg, France
| | - A Divaret-Chauveau
- Unité d'allergologie pédiatrique, hôpital d'enfants, CHRU de Nancy, 54000 Nancy, France; EA3450 développement adaptation et handicap (DevAH), université de Lorraine, 54000 Nancy, France; UMR 6249 Chrono-environment, CNRS et université de Franche-Comté, Besançon, France
| | - N Khayath
- Chest diseases department, Strasbourg University Hospital, 1, place de l'Hôpital, 67000 Strasbourg, France; Federation of translational medicine EA 3070, University of Strasbourg, BP426, 67091 Strasbourg, France
| | - G Peiffer
- Service de pneumologie, CHU Metz-Thionville, 57000 Metz, France
| | - P Bonniaud
- Service de pneumologie et soins intensifs respiratoires, hôpital François-Mitterrand, CHU Dijon-Bourgogne, 21079 Dijon, France
| | - J-C Dalphin
- UMR 6249 Chrono-environment, CNRS et université de Franche-Comté, Besançon, France; Service de pneumologie, CHU de Besançon, Besançon, France
| | - F De Blay
- Chest diseases department, Strasbourg University Hospital, 1, place de l'Hôpital, 67000 Strasbourg, France; Federation of translational medicine EA 3070, University of Strasbourg, BP426, 67091 Strasbourg, France
| |
Collapse
|
24
|
Sze E, Bhalla A, Nair P. Mechanisms and therapeutic strategies for non-T2 asthma. Allergy 2020; 75:311-325. [PMID: 31309578 DOI: 10.1111/all.13985] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/10/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022]
Abstract
Non-T2 asthma is traditionally defined as asthma without features of T2 asthma. The definition is arbitrary and is generally based on the presence of neutrophils in sputum, or the absence (or normal levels) of eosinophils or other T2 markers in sputum (paucigranulocytic), airway biopsies or in blood. This definition may be imprecise as we gain more knowledge from applying transcriptomics and proteomics to blood and airway samples. The prevalence of non-T2 asthma is also difficult to estimate as most studies are cross-sectional and influenced by concomitant treatment with glucocorticosteroids, and by the presence of recognized or unrecognized airway infections. No specific therapies have shown any clinical benefits in patients with asthma that is associated with a non-T2 inflammatory process. It remains to be seen if such an endotype truly exists and to identify treatments to target that endotype. Meanwhile, identifying intense airway neutrophilia as an indicator of airway infection and airway hyperresponsiveness as an indicator of smooth muscle dysfunction, and treating them appropriately, and not increasing glucocorticosteroids in patients who do not have obvious T2 inflammation, seem reasonable.
Collapse
Affiliation(s)
- Eric Sze
- New Territories West Cluster Tuen Mun Hospital Tuen Mun Hong Kong
- St Joseph's Healthcare & Department of Medicine Firestone Institute for Respiratory Health, McMaster University Hamilton Ontario Canada
| | - Anurag Bhalla
- St Joseph's Healthcare & Department of Medicine Firestone Institute for Respiratory Health, McMaster University Hamilton Ontario Canada
| | - Parameswaran Nair
- St Joseph's Healthcare & Department of Medicine Firestone Institute for Respiratory Health, McMaster University Hamilton Ontario Canada
| |
Collapse
|
25
|
DGKα in Neutrophil Biology and Its Implications for Respiratory Diseases. Int J Mol Sci 2019; 20:ijms20225673. [PMID: 31766109 PMCID: PMC6887790 DOI: 10.3390/ijms20225673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
Diacylglycerol kinases (DGKs) play a key role in phosphoinositide signaling by removing diacylglycerol and generating phosphatidic acid. Besides the well-documented role of DGKα and DGKζ as negative regulators of lymphocyte responses, a robust body of literature points to those enzymes, and specifically DGKα, as crucial regulators of leukocyte function. Upon neutrophil stimulation, DGKα activation is necessary for migration and a productive response. The role of DGKα in neutrophils is evidenced by its aberrant behavior in juvenile periodontitis patients, which express an inactive DGKα transcript. Together with in vitro experiments, this suggests that DGKs may represent potential therapeutic targets for disorders where inflammation, and neutrophils in particular, plays a major role. In this paper we focus on obstructive respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD), but also rare genetic diseases such as alpha-1-antitrypsin deficiency. Indeed, the biological role of DGKα is understudied outside the T lymphocyte field. The recent wave of research aiming to develop novel and specific inhibitors as well as KO mice will allow a better understanding of DGK's role in neutrophilic inflammation. Better knowledge and pharmacologic tools may also allow DGK to move from the laboratory bench to clinical trials.
Collapse
|
26
|
Acute Severe Asthma in Adolescent and Adult Patients: Current Perspectives on Assessment and Management. J Clin Med 2019; 8:jcm8091283. [PMID: 31443563 PMCID: PMC6780340 DOI: 10.3390/jcm8091283] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Asthma is a chronic airway inflammatory disease that is associated with variable expiratory flow, variable respiratory symptoms, and exacerbations which sometimes require hospitalization or may be fatal. It is not only patients with severe and poorly controlled asthma that are at risk for an acute severe exacerbation, but this has also been observed in patients with otherwise mild or moderate asthma. This review discusses current aspects on the pathogenesis and pathophysiology of acute severe asthma exacerbations and provides the current perspectives on the management of acute severe asthma attacks in the emergency department and the intensive care unit.
Collapse
|
27
|
Koski RR, Grzegorczyk KM. Comparison of Monoclonal Antibodies for Treatment of Uncontrolled Eosinophilic Asthma. J Pharm Pract 2019; 33:513-522. [PMID: 31046541 DOI: 10.1177/0897190019840597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To summarize the current literature for Food and Drug Administration (FDA)-approved monoclonal antibodies used as add-on maintenance therapy in uncontrolled eosinophilic asthma. DATA SOURCES PubMed was searched on December 17, 2018 using keywords: asthma, eosinophilic asthma, omalizumab, reslizumab, mepolizumab, benralizumab, and dupilumab. STUDY SELECTION Studies evaluating safety and efficacy of monoclonal antibodies for treatment of severe or eosinophilic asthma were included. RESULTS Twenty-one randomized, double-blind, placebo-controlled trials evaluating the current FDA-approved monoclonal antibodies (omalizumab, mepolizumab, reslizumab, benralizumab, and dupilumab) for the treatment of uncontrolled eosinophilic asthma were included. The studies demonstrated clinically significant reductions in asthma exacerbations, symptoms, emergency room visits, eosinophil counts, and improvements in pulmonary function and asthma-related quality of life. CONCLUSION Five monoclonal antibodies are available for uncontrolled eosinophilic asthma. Choice depends on patient factors. Future studies should focus on cost-effectiveness of treatment, drug-drug comparisons, and long-term efficacy and safety.
Collapse
Affiliation(s)
- Renee R Koski
- Pharmacy Practice, Ferris State University College of Pharmacy, Marquette, MI, USA
| | | |
Collapse
|
28
|
Yan Y, Bao HP, Li CL, Shi Q, Kong YH, Yao T, Li YL. Wentong decoction cures allergic bronchial asthma by regulating the apoptosis imbalance of EOS. Chin Med 2018; 13:21. [PMID: 29713367 PMCID: PMC5907368 DOI: 10.1186/s13020-018-0180-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
Background Eosinophils (EOS) is one of the most important cells involved in the pathogenesis of chronic airway inflammation in asthma, and its apoptosis is part of the mechanisms of asthma. Therefore, this study aimed to observe the effect of Chinese medicine Wentong decoction (WTD) in EOS apoptosis in asthmatic rats. This work also explored the mechanism of WTD regulation in EOS apoptosis and provided a new target for clinical treatment of asthma. Methods Asthmatic rats induced by ovalbumin were treated with WTD. Lung function of rats in each group was detected, and lung tissue pathology, EOS counts in blood and bronchoalveolar lavage fluid were observed. The degree of the EOS apoptosis in rats was detected. The expression content of interleukin (IL)-5, IL-10, chemokine (C-C motif) ligand 5 (CCL5), granulocyte-macrophage colony-stimulating factor (GM-CSF), transforming growth factor beta 1 (TGF-β1), interferon (IFN)-γ, and other cytokines in rat serum and the genes of Eotaxin mRNA, Fas mRNA, FasL mRNA, Fas/FasL and Bcl-2 mRNA in the lung tissues were determined. Results WTD can reduced airway resistance in rat models and improved airway compliance. The pathological changes of lung tissue in WTD group were significantly alleviated, at the same time, WTD could reduce the EOS count in the blood and BALF smears of the asthmatic model rats. Compared with the model group, the apoptosis degree of EOS significantly increased in rats in the WTD group. The expression of IL-5, CCL5, and GM-CSF in the serum and the expression of Eotaxin mRNA, Bcl-2 mRNA in the lung tissues in rats in the WTD group rats decreased. Moreover, the expression of IL-10, TGF-β1, and IFN-γ in the serum and the expression of Fas mRNA, FasL mRNA in the lung tissues in rats in the WTD group rats increased compared with that in rats in the model group. Conclusions Wentong decoction may accelerate EOS apoptosis, reduce asthma inflammation, and alleviate the disease through regulating and controlling the factors related to the anti-apoptosis and pro-apoptosis.
Collapse
Affiliation(s)
- Yue Yan
- 1The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases With TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, 100029 China
| | - Hai-Peng Bao
- 2Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Chun-Lei Li
- 1The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases With TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, 100029 China
| | - Qi Shi
- 1The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases With TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, 100029 China
| | - Yan-Hua Kong
- 1The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases With TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, 100029 China
| | - Ting Yao
- 1The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases With TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, 100029 China
| | - You-Lin Li
- 1The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases With TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, 100029 China
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Airway inflammation is considered to be a cardinal feature of asthma. However, the type of airway inflammation is heterogeneous and airway inflammation may even be absent. Biomarkers may help to identify the inflammatory phenotype or endotype, especially now the time has come that targeted therapies enter daily practice. RECENT FINDINGS Sputum biomarkers have increased our insights into the different inflammatory asthma phenotypes, their response to treatment and their association with progression of disease. New endotypes of type 2 driven inflammation were identified using a multidimensional approach. A specific mast cell subtype has been linked with type 2 driven inflammation and response to inhaled corticosteroids. Advances have been made with regard to sputum cytokine analysis and might also help to guide future treatment of severe asthma. SUMMARY Identifying the target population for biological therapies will not be possible without the use of biomarkers. Optimized, easy-to-apply, automated methods for sputum analysis (cellular content or soluble markers) need to be developed for implementation of sputum biomarkers in daily clinical practice.
Collapse
|
30
|
Abstract
Asthma-one of the most common chronic, non-communicable diseases in children and adults-is characterised by variable respiratory symptoms and variable airflow limitation. Asthma is a consequence of complex gene-environment interactions, with heterogeneity in clinical presentation and the type and intensity of airway inflammation and remodelling. The goal of asthma treatment is to achieve good asthma control-ie, to minimise symptom burden and risk of exacerbations. Anti-inflammatory and bronchodilator treatments are the mainstay of asthma therapy and are used in a stepwise approach. Pharmacological treatment is based on a cycle of assessment and re-evaluation of symptom control, risk factors, comorbidities, side-effects, and patient satisfaction by means of shared decisions. Asthma is classed as severe when requiring high-intensity treatment to keep it under control, or if it remains uncontrolled despite treatment. New biological therapies for treatment of severe asthma, together with developments in biomarkers, present opportunities for phenotype-specific interventions and realisation of more personalised treatment. In this Seminar, we provide a clinically focused overview of asthma, including epidemiology, pathophysiology, clinical diagnosis, asthma phenotypes, severe asthma, acute exacerbations, and clinical management of disease in adults and children older than 5 years. Emerging therapies, controversies, and uncertainties in asthma management are also discussed.
Collapse
Affiliation(s)
- Alberto Papi
- Research Centre on Asthma and COPD, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| | - Christopher Brightling
- Institute for Lung Health, Leicester National Institute for Health Research Biomedical Research Centre, Department of Infection, Immunity, and Inflammation, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Søren E Pedersen
- Department of Paediatrics, University of Southern Denmark, Kolding Hospital, Kolding, Denmark
| | - Helen K Reddel
- Clinical Management Group and NHMRC Centre of Research Excellence in Severe Asthma, Woolcock Institute of Medical Research, University of Sydney, NSW, Australia
| |
Collapse
|
31
|
Diver S, Russell RJ, Brightling CE. New and emerging drug treatments for severe asthma. Clin Exp Allergy 2018; 48:241-252. [PMID: 29315966 DOI: 10.1111/cea.13086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asthma is a common chronic inflammatory condition of the airways affecting over 300 million people world-wide. In 5%-10% of cases, it is severe, with disproportionate healthcare resource utilization including costs associated with frequent exacerbations and the long-term health effects of systemic steroids. Characterization of inflammatory pathways in severe asthma has led to the development of targeted biological and small molecule therapies which aim to achieve disease control while minimizing corticosteroid-associated morbidity. Herein, we review currently licensed agents and those in development, and speculate how drug therapy for severe asthma might evolve and impact on clinical outcomes in the near future.
Collapse
Affiliation(s)
- S Diver
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - R J Russell
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - C E Brightling
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
32
|
El Rifai A, Hussein H. Blood eosinophilia in chronic obstructive pulmonary disease: is there a relation with airway eosinophilia? AL-AZHAR ASSIUT MEDICAL JOURNAL 2018. [DOI: 10.4103/azmj.azmj_10_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
33
|
Lin L, Chen Z, Tang X, Dai F, Wei J, Sun G. 5-Oxo-ETE from Nasal Epithelial Cells Upregulates Eosinophil Cation Protein by Eosinophils in Nasal Polyps in vitro. Int Arch Allergy Immunol 2018; 177:107-115. [PMID: 29898459 DOI: 10.1159/000489819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/02/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND 5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a potent eosinophil chemoattractant and activator that is synthesized not only in inflammatory cells but also in bronchial epithelial cells. The purpose of this study is to clarify whether 5-oxo-ETE can promote the production of eosinophil cation protein (ECP) by eosinophils in nasal polyps (NP) in vitro, and whether normal nasal epithelial cells can produce this lipid mediator in response to oxidative stress. MATERIALS AND METHODS Nasal biopsy samples were obtained from normal subjects or subjects with chronic rhinosinusitis with NP. The infiltration of eosinophil in NP was detected and cultured. After that, concentrations of ECP in eosinophil and NP cultures were evaluated after the treatment of 5-oxo-ETE or 5-oxo-ETE + its receptor (OXER) antagonist, pertussis toxin (PT). Then we studied the synthesis of 5-oxo-ETE after H2O2 stimulation by normal nasal epithelial cells and by epithelial cells of NP alone in the cultures, and also determined the OXER expression in NP. RESULTS The number of infiltrative eosinophils in NP was increased. The ECP levels in eosinophil and NP cultures were enhanced after the administration of 5-oxo-ETE, and decreased by the PT treatment. 5-Oxo-ETE was upregulated in the cultures of nasal epithelial cells in the presence of H2O2 and of NP epithelial cells alone. The OXER was expressed in inflammatory cells, and not in epithelial cells. CONCLUSION 5-Oxo-ETE produced by nasal epithelial cells may play a role in the formation and development of NP.
Collapse
|
34
|
Kulkarni N, Kantar A, Costella S, Ragazzo V, Piacentini G, Boner A, O'Callaghan C. Macrophage Phagocytosis and Allergen Avoidance in Children With Asthma. Front Pediatr 2018; 6:206. [PMID: 30116724 PMCID: PMC6082964 DOI: 10.3389/fped.2018.00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/02/2018] [Indexed: 01/07/2023] Open
Abstract
Background and Objective: Airway macrophages perform the crucial functions of presenting antigens, clearing pathogens, and apoptotic cells. Macrophage phagocytosis is increased in adults with mild asthma and allergen exposure is known to activate macrophages. However, it is not clear whether the mechanism behind this is due to a primary defect or environmental factors such as allergen or lipopolysaccaride (LPS) exposure. Our aim was to assess the phagocytic function of airway macrophages in children with mild to moderate asthma after residence in a low allergen\LPS environment at high altitude. Methods: Sputum induction was performed in children with asthma at baseline and after residence for a 3 weeks' period at a high-altitude asthma center that has very low ambient allergen levels. The markers of eosinophilic inflammation (including percentage of macrophage cytoplasm with red hue) and phagocytosis of fluorescein isothiocyanate-labeled, heat-killed Staphylococcus aureus by airway macrophages was analyzed. Internalized bacteria were quantified using confocal microscopy. Results: The median bacterial count [mean (standard deviation)] per macrophage was significantly lower [39.55 (4.51) vs. 73.26 (39.42) (p = 0.006)] after residence at high altitude. No association was observed between markers of eosinophilic inflammation and bacterial phagocytosis. Conclusions: The results suggest that the mechanism behind the enhanced phagocytosis of bacteria in childhood asthma may be secondary to allergen or possibly LPS exposure.
Collapse
Affiliation(s)
- Neeta Kulkarni
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - Ahmad Kantar
- Pediatric Cough and Asthma Center, Istituti Ospedalieri Bergamaschi, University and Research Hospitals, Bergamo, Italy
| | - Silvia Costella
- High Altitude Paediatric Asthma Centre in Misurina, Pio XII Institute, Belluno, Italy
| | - Vincenzo Ragazzo
- Department of Pediatrics, Versilia Hospital, Lido di Camaiore, Italy
| | - Giorgio Piacentini
- Pediatrics Section, Department of Surgery, Dentistry, Paediatrics, and Gynaecology, University of Verona, Verona, Italy
| | - Attilio Boner
- Pediatrics Section, Department of Surgery, Dentistry, Paediatrics, and Gynaecology, University of Verona, Verona, Italy
| | - Christopher O'Callaghan
- Respiratory, Critical Care and Anaesthesia, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Children's Hospital, London, United Kingdom
| |
Collapse
|
35
|
Affiliation(s)
- Richard W Barker
- Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Doran E, Cai F, Holweg CTJ, Wong K, Brumm J, Arron JR. Interleukin-13 in Asthma and Other Eosinophilic Disorders. Front Med (Lausanne) 2017; 4:139. [PMID: 29034234 PMCID: PMC5627038 DOI: 10.3389/fmed.2017.00139] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/07/2017] [Indexed: 01/21/2023] Open
Abstract
Asthma is characterized by episodic, reversible airflow obstruction associated with variable levels of inflammation. Over the past several decades, there has been an increasing appreciation that the clinical presentation of asthma comprises a diverse set of underlying pathologies. Rather than being viewed as a single disease entity, asthma is now thought of as a clinical syndrome with the involvement of multiple pathological mechanisms. While it is appreciated that eosinophilia is present in only a subset of patients, it remains a key feature of asthma and other eosinophilic disorders such as atopic dermatitis, eosinophilic esophagitis, and chronic rhinosinusitis with nasal polyps. Eosinophils are bone marrow-derived leukocytes present in low numbers in health; however, during disease the type 2 cytokines [interleukins (IL)-4, -5, and -13] can induce rapid eosinophilopoiesis, prolonged eosinophil survival, and trafficking to the site of injury. In diseases such as allergic asthma there is an aberrant inflammatory response leading to eosinophilia, tissue damage, and airway pathology. IL-13 is a pleiotropic type 2 cytokine that has been shown to be integral in the pathogenesis of asthma and other eosinophilic disorders. IL-13 levels are elevated in animal models of eosinophilic inflammation and in the blood and tissue of patients diagnosed with eosinophilic disorders. IL-13 signaling elicits many pathogenic mechanisms including the promotion of eosinophil survival, activation, and trafficking. Data from preclinical models and clinical trials of IL-13 inhibitors in patients have revealed mechanistic insights into the role of this cytokine in driving eosinophilia. Promising results from clinical trials further support a key mechanistic role of IL-13 in asthma and other eosinophilic disorders. Here, we provide a perspective on the role of IL-13 in asthma and other eosinophilic disorders and describe ongoing clinical trials targeting this pathway in patients with significant unmet medical needs.
Collapse
Affiliation(s)
- Emma Doran
- Immunology Discovery, Genentech, Inc., South San Francisco, CA, United States
| | - Fang Cai
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA, United States
| | - Cécile T J Holweg
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA, United States
| | - Kit Wong
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA, United States
| | - Jochen Brumm
- Biostatistics, Genentech, Inc., South San Francisco, CA, United States
| | - Joseph R Arron
- Immunology Discovery, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
37
|
Pathogenesis of asthma: implications for precision medicine. Clin Sci (Lond) 2017; 131:1723-1735. [PMID: 28667070 DOI: 10.1042/cs20160253] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 01/03/2023]
Abstract
The pathogenesis of asthma is complex and multi-faceted. Asthma patients have a diverse range of underlying dominant disease processes and pathways despite apparent similarities in clinical expression. Here, we present the current understanding of asthma pathogenesis. We discuss airway inflammation (both T2HIGH and T2LOW), airway hyperresponsiveness (AHR) and airways remodelling as four key factors in asthma pathogenesis, and also outline other contributory factors such as genetics and co-morbidities. Response to current asthma therapies also varies greatly, which is probably related to the inter-patient differences in pathogenesis. Here, we also summarize how our developing understanding of detailed pathological processes potentially translates into the targeted treatment options we require for optimal asthma management in the future.
Collapse
|
38
|
Cheng SL, Lin CH. Effectiveness using higher inhaled corticosteroid dosage in patients with COPD by different blood eosinophilic counts. Int J Chron Obstruct Pulmon Dis 2016; 11:2341-2348. [PMID: 27703344 PMCID: PMC5036601 DOI: 10.2147/copd.s115132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Blood eosinophil counts have been documented as a good biomarker for patients with chronic obstructive pulmonary disease (COPD) using inhaled corticosteroid (ICS) therapy. However, the effectiveness and safety of prescribing high or medium dose of ICS for patients with different eosinophil counts are unknown. METHODS A post hoc analysis of a previous prospective randomized study was performed for COPD patients using higher dose (HD: Fluticasone 1,000 μg/day) or medium dose (MD: Fluticasone 500 μg/day) of ICS combined with Salmeterol (100 μg/day). Patients were classified into two groups: those with high eosinophil counts (HE ≥3%) and those with low eosinophil counts (LE <3%). Lung function was evaluated with forced expiratory volume in 1 second, forced vital capacity, and COPD assessment test. Frequencies of acute exacerbation and pneumonia were also measured. RESULTS Two hundred and forty-eight patients were studied and classified into higher eosinophil (HE) (n=85, 34.3%) and lower eosinophil (LE) groups (n=163, 65.7%). The levels of forced expiratory volume in 1 second were significantly increased in patients of HE group treated with HD therapy, compared with the other groups (HE/HD: 125.9±27.2 mL vs HE/MD: 94.3±23.7 mL, vs LE/HD: 70.4±20.5 mL, vs LE/MD: 49.8±16.7 mL; P<0.05) at the end of the study. Quality of life (COPD assessment test) markedly improved in HE/HD group than in MD/LE group (HE/HD: 9±5 vs LE/MD: 16±7, P=0.02). The frequency of acute exacerbation was more decreased in HE/HD group patients, compared with that in LE/MD group (HE/HD: 13.5% vs LE/MD: 28.7%, P<0.01). Pneumonia incidence was similar in the treatment groups (HE/HD: 3.2%, HE/MD: 2.6%, LE/HD: 3.5%, LE/MD 2.8%; P=0.38). CONCLUSION The study results support using blood eosinophil counts as a biomarker of ICS response and show the benefits of greater improvement of lung function, quality of life, and decreased exacerbation frequency in COPD patients with blood eosinophil counts higher than 3%, especially treated with higher dose of ICS.
Collapse
Affiliation(s)
- Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei; Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli, Taoyuan City
| | - Ching-Hsiung Lin
- Department of Internal Medicine, Division of Chest Medicine, Changhua Christian Hospital, Changhua; Department of Respiratory Care, College of Health Sciences, Chang Jung Christian University, Tainan; School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| |
Collapse
|
39
|
Negewo NA, McDonald VM, Baines KJ, Wark PA, Simpson JL, Jones PW, Gibson PG. Peripheral blood eosinophils: a surrogate marker for airway eosinophilia in stable COPD. Int J Chron Obstruct Pulmon Dis 2016; 11:1495-504. [PMID: 27445469 PMCID: PMC4936821 DOI: 10.2147/copd.s100338] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Introduction Sputum eosinophilia occurs in approximately one-third of stable chronic obstructive pulmonary disease (COPD) patients and can predict exacerbation risk and response to corticosteroid treatments. Sputum induction, however, requires expertise, may not always be successful, and does not provide point-of-care results. Easily applicable diagnostic markers that can predict sputum eosinophilia in stable COPD patients have the potential to progress COPD management. This study investigated the correlation and predictive relationship between peripheral blood and sputum eosinophils. It also examined the repeatability of blood eosinophil counts. Methods Stable COPD patients (n=141) were classified as eosinophilic or noneosinophilic based on their sputum cell counts (≥3%), and a cross-sectional analysis was conducted comparing their demographics, clinical characteristics, and blood cell counts. Receiver operating characteristic curve analysis was used to assess the predictive ability of blood eosinophils for sputum eosinophilia. Intraclass correlation coefficient was used to examine the repeatability of blood eosinophil counts. Results Blood eosinophil counts were significantly higher in patients with sputum eosinophilia (n=45) compared to those without (0.3×109/L vs 0.15×109/L; P<0.0001). Blood eosinophils correlated with both the percentage (ρ=0.535; P<0.0001) and number of sputum eosinophils (ρ=0.473; P<0.0001). Absolute blood eosinophil count was predictive of sputum eosinophilia (area under the curve =0.76, 95% confidence interval [CI] =0.67–0.84; P<0.0001). At a threshold of ≥0.3×109/L (specificity =76%, sensitivity =60%, and positive likelihood ratio =2.5), peripheral blood eosinophil counts enabled identification of the presence or absence of sputum eosinophilia in 71% of the cases. A threshold of ≥0.4×109/L had similar classifying ability but better specificity (91.7%) and higher positive likelihood ratio (3.7). In contrast, ≥0.2×109/L offered a better sensitivity (91.1%) for ruling out sputum eosinophilia. There was a good agreement between two measurements of blood eosinophil count over a median of 28 days (intraclass correlation coefficient =0.8; 95% CI =0.66–0.88; P<0.0001). Conclusion Peripheral blood eosinophil counts can help identify the presence or absence of sputum eosinophilia in stable COPD patients with a reasonable degree of accuracy.
Collapse
Affiliation(s)
- Netsanet A Negewo
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Vanessa M McDonald
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia; School of Nursing and Midwifery, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Peter Ab Wark
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Paul W Jones
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
40
|
George L, Brightling CE. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease. Ther Adv Chronic Dis 2016; 7:34-51. [PMID: 26770668 DOI: 10.1177/2040622315609251] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The chronic lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are common affecting over 500 million people worldwide and causing substantial morbidity and mortality. Asthma is typically associated with Th2-mediated eosinophilic airway inflammation, in contrast to neutrophilic inflammation observed commonly in COPD. However, there is increasing evidence that the eosinophil might play an important role in 10-40% of patients with COPD. Consistently in both asthma and COPD a sputum eosinophilia is associated with a good response to corticosteroid therapy and tailored strategies aimed to normalize sputum eosinophils reduce exacerbation frequency and severity. Advances in our understanding of the multistep paradigm of eosinophil recruitment to the airway, and the consequence of eosinophilic inflammation, has led to the development of new therapies to target these molecular pathways. In this article we discuss the mechanisms of eosinophilic trafficking, the tools to assess eosinophilic airway inflammation in asthma and COPD during stable disease and exacerbations and review current and novel anti-eosinophilic treatments.
Collapse
Affiliation(s)
- Leena George
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Department of Infection, Immunity and Inflammation, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Christopher E Brightling
- Institute for Lung Health, Clinical Science Wing, University Hospital of Leicester, Leicester LE3 9QP, UK
| |
Collapse
|
41
|
Piyadasa H, Altieri A, Basu S, Schwartz J, Halayko AJ, Mookherjee N. Biosignature for airway inflammation in a house dust mite-challenged murine model of allergic asthma. Biol Open 2016; 5:112-21. [PMID: 26740570 PMCID: PMC4823983 DOI: 10.1242/bio.014464] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
House dust mite (HDM) challenge is commonly used in murine models of allergic asthma for preclinical pathophysiological studies. However, few studies define objective readouts or biomarkers in this model. In this study we characterized immune responses and defined molecular markers that are specifically altered after HDM challenge. In this murine model, we used repeated HDM challenge for two weeks which induced hallmarks of allergic asthma seen in humans, including airway hyper-responsiveness (AHR) and elevated levels of circulating total and HDM-specific IgE and IgG1. Kinetic studies showed that at least 24 h after last HDM challenge results in significant AHR along with eosinophil infiltration in the lungs. Histologic assessment of lung revealed increased epithelial thickness and goblet cell hyperplasia, in the absence of airway wall collagen deposition, suggesting ongoing tissue repair concomitant with acute allergic lung inflammation. Thus, this model may be suitable to delineate airway inflammation processes that precede airway remodeling and development of fixed airway obstruction. We observed that a panel of cytokines e.g. IFN-γ, IL-1β, IL-4, IL-5, IL-6, KC, TNF-α, IL-13, IL-33, MDC and TARC were elevated in lung tissue and bronchoalveolar fluid, indicating local lung inflammation. However, levels of these cytokines remained unchanged in serum, reflecting lack of systemic inflammation in this model. Based on these findings, we further monitored the expression of 84 selected genes in lung tissues by quantitative real-time PCR array, and identified 31 mRNAs that were significantly up-regulated in lung tissue from HDM-challenged mice. These included genes associated with human asthma (e.g. clca3, ear11, il-13, il-13ra2, il-10, il-21, arg1 and chia1) and leukocyte recruitment in the lungs (e.g. ccl11, ccl12 and ccl24). This study describes a biosignature to enable broad and systematic interrogation of molecular mechanisms and intervention strategies for airway inflammation pertinent to allergic asthma that precedes and possibly potentiates airway remodeling and fibrosis. Summary: This study describes a systematic analysis of molecular end points in an murine model of allergic asthma. The biosignature described can be used to interrogate molecular mechanisms and intervention strategies for airway inflammation pertinent to allergic asthma that precedes and possibly potentiates airway remodeling and fibrosis.
Collapse
Affiliation(s)
- Hadeesha Piyadasa
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada
| | - Anthony Altieri
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada
| | - Sujata Basu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Jacquie Schwartz
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Andrew J Halayko
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada Canadian Respiratory Research Network
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada Canadian Respiratory Research Network
| |
Collapse
|
42
|
Schleich FN, Louis R. Importance of concomitant local and systemic eosinophilia in uncontrolled asthma. Eur Respir J 2015; 44:1098-9. [PMID: 25271232 DOI: 10.1183/09031936.00118014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Florence N Schleich
- Dept of Pulmonary Medicine, CHU Sart-Tilman, Liege, IGIGA Research Group, University of Liege, Liege, Belgium
| | - Renaud Louis
- Dept of Pulmonary Medicine, CHU Sart-Tilman, Liege, IGIGA Research Group, University of Liege, Liege, Belgium
| |
Collapse
|
43
|
Sakae TM, Maurici R, Trevisol DJ, Pizzichini MMM, Pizzichini E. Effects of prednisone on eosinophilic bronchitis in asthma: a systematic review and meta-analysis. J Bras Pneumol 2015; 40:552-63. [PMID: 25410844 PMCID: PMC4263337 DOI: 10.1590/s1806-37132014000500012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/27/2014] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE: To evaluate the effect size of oral corticosteroid treatment on eosinophilic
bronchitis in asthma, through systematic review and meta-analysis. METHODS: We systematically reviewed articles in the Medline, Cochrane Controlled Trials
Register, EMBASE, and LILACS databases. We selected studies meeting the following
criteria: comparing at least two groups or time points (prednisone vs. control,
prednisone vs. another drug, or pre- vs. post-treatment with prednisone); and
evaluating parameters before and after prednisone use, including values for sputum
eosinophils, sputum eosinophil cationic protein (ECP), and sputum IL-5-with or
without values for post-bronchodilator FEV1-with corresponding 95% CIs
or with sufficient data for calculation. The independent variables were the use,
dose, and duration of prednisone treatment. The outcomes evaluated were sputum
eosinophils, IL-5, and ECP, as well as post-bronchodilator FEV1. RESULTS: The pooled analysis of the pre- vs. post-treatment data revealed a significant
mean reduction in sputum eosinophils (↓8.18%; 95% CI: 7.69-8.67; p < 0.001),
sputum IL-5 (↓83.64 pg/mL; 95% CI: 52.45-114.83; p < 0.001), and sputum ECP
(↓267.60 µg/L; 95% CI: 244.57-290.63; p < 0.0001), as well as a significant
mean increase in post-bronchodilator FEV1 (↑8.09%; 95% CI: 5.35-10.83;
p < 0.001). CONCLUSIONS: In patients with moderate-to-severe eosinophilic bronchitis, treatment with
prednisone caused a significant reduction in sputum eosinophil counts, as well as
in the sputum levels of IL-5 and ECP. This reduction in the inflammatory response
was accompanied by a significant increase in post-bronchodilator FEV1.
Collapse
|
44
|
Biomarker as a research tool in linking exposure to air particles and respiratory health. BIOMED RESEARCH INTERNATIONAL 2015; 2015:962853. [PMID: 25984536 PMCID: PMC4422993 DOI: 10.1155/2015/962853] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 08/11/2014] [Accepted: 09/08/2014] [Indexed: 01/08/2023]
Abstract
Some of the environmental toxicants from air pollution include particulate matter (PM10), fine particulate matter (PM2.5), and ultrafine particles (UFP). Both short- and long-term exposure could result in various degrees of respiratory health outcomes among exposed persons, which rely on the individuals' health status. Methods. In this paper, we highlight a review of the studies that have used biomarkers to understand the association between air particles exposure and the development of respiratory problems resulting from the damage in the respiratory system. Data from previous epidemiological studies relevant to the application of biomarkers in respiratory system damage reported from exposure to air particles are also summarized. Results. Based on these analyses, the findings agree with the hypothesis that biomarkers are relevant in linking harmful air particles concentrations to increased respiratory health effects. Biomarkers are used in epidemiological studies to provide an understanding of the mechanisms that follow airborne particles exposure in the airway. However, application of biomarkers in epidemiological studies of health effects caused by air particles in both environmental and occupational health is inchoate. Conclusion. Biomarkers unravel the complexity of the connection between exposure to air particles and respiratory health.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW A variety of novel asthma treatments have been developed based on phenotypes, and the clinical trial results show promising responses. This review summarizes the current knowledge of biomarkers for the determination of asthma phenotypes. RECENT FINDINGS Eosinophilic inflammation is the most focused phenotype because most novel asthma treatments have targeted T-helper type 2 (Th2) pathway. Fractional-exhaled nitric oxide (FeNO) is a new method that represents an eosinophilic airway inflammation with a significant correlation with sputum eosinophilia and asthma severity instead of sputum eosinophil count that easily influenced by corticosteroid therapy. However, some reports indicated the discordance between treatment response or adjustment and FeNO levels. Serum periostin is a strong serum biomarker for eosinophilic airway inflammation and an indicator of Th2-targeted therapy (such as lebrikizumab or omalizumab) and airflow limitation. YKL-40 is associated with asthma severity and airway remodeling. In addition, genetic and metabolomic approaches have been made to determine asthma phenotypes and severity. SUMMARY Biomarkers such as FeNO and serum periostin represent eosinophilic airway inflammation, together with eosinophil-derived neurotoxin and osteopontin (OPN) needed more replication studies. Periostin, YKL-40, OPN and some metabolites (choline, arginine, acetone and protectin D1) are related to asthma severity and airflow limitation.
Collapse
|
46
|
Eltboli O, Bafadhel M, Hollins F, Wright A, Hargadon B, Kulkarni N, Brightling C. COPD exacerbation severity and frequency is associated with impaired macrophage efferocytosis of eosinophils. BMC Pulm Med 2014; 14:112. [PMID: 25007795 PMCID: PMC4115214 DOI: 10.1186/1471-2466-14-112] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/01/2014] [Indexed: 11/22/2022] Open
Abstract
Background Eosinophilic airway inflammation is observed in 10-30% of COPD subjects. Whether increased eosinophils or impairment in their clearance by macrophages is associated with the severity and frequency of exacerbations is unknown. Methods We categorised 103 COPD subjects into 4 groups determined by the upper limit of normal for their cytoplasmic macrophage red hue (<6%), an indirect measure of macrophage efferocytosis of eosinophils, and area under the curve sputum eosinophil count (≥3%/year). Eosinophil efferocytosis by monocyte-derived macrophages was studied in 17 COPD subjects and 8 normal controls. Results There were no differences in baseline lung function, health status or exacerbation frequency between the groups: A-low red hue, high sputum eosinophils (n = 10), B-high red hue, high sputum eosinophils (n = 16), C-low red hue, low sputum eosinophils (n = 19) and D- high red hue, low sputum eosinophils (n = 58). Positive bacterial culture was lower in groups A (10%) and B (6%) compared to C (44%) and D (21%) (p = 0.01). The fall in FEV1 from stable to exacerbation was greatest in group A (ΔFEV1 [95 % CI] -0.41 L [-0.65 to -0.17]) versus group B (-0.16 L [-0.32 to -0.011]), C (-0.11 L [-0.23 to -0.002]) and D (-0.16 L [-0.22 to -0.10]; p = 0.02). Macrophage efferocytosis of eosinophils was impaired in COPD versus controls (86 [75 to 92]% versus 93 [88 to 96]%; p = 0.028); was most marked in group A (71 [70 to 84]%; p = 0.0295) and was inversely correlated with exacerbation frequency (r = -0.63; p = 0.006). Conclusions Macrophage efferocytosis of eosinophils is impaired in COPD and is related to the severity and frequency of COPD exacerbations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christopher Brightling
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, UK.
| |
Collapse
|
47
|
Walford HH, Doherty TA. Diagnosis and management of eosinophilic asthma: a US perspective. J Asthma Allergy 2014; 7:53-65. [PMID: 24748808 PMCID: PMC3990389 DOI: 10.2147/jaa.s39119] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Eosinophilic asthma is now recognized as an important subphenotype of asthma based on the pattern of inflammatory cellular infiltrate in the airway. Eosinophilic asthma can be associated with increased asthma severity, atopy, late-onset disease, and steroid refractoriness. Induced sputum cell count is the gold standard for identifying eosinophilic inflammation in asthma although several noninvasive biomarkers, including fractional exhaled nitric oxide and periostin, are emerging as potential surrogates. As novel therapies and biologic agents become increasingly available, there is an increased need for specific phenotype-directed treatment strategies. Greater recognition and understanding of the unique immunopathology of this asthma phenotype has important implications for management of the disease and the potential to improve patient outcomes. The present review provides a summary of the clinical features, pathogenesis, diagnosis, and management of eosinophilic asthma.
Collapse
Affiliation(s)
- Hannah H Walford
- Department of Medicine, University of California, La Jolla, CA, USA ; Department of Pediatrics, University of California, La Jolla, CA, USA
| | - Taylor A Doherty
- Department of Medicine, University of California, La Jolla, CA, USA
| |
Collapse
|
48
|
Loutsios C, Farahi N, Porter L, Lok LSC, Peters AM, Condliffe AM, Chilvers ER. Biomarkers of eosinophilic inflammation in asthma. Expert Rev Respir Med 2014; 8:143-50. [PMID: 24460178 DOI: 10.1586/17476348.2014.880052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Eosinophils are mediators of allergic inflammation and are implicated in the pathogenesis of numerous conditions including asthma, parasitic infections, neoplasms, hyper-eosinophilic syndromes, vasculitic disorders, and organ-specific conditions. Assessing eosinophilic inflammation is therefore important in establishing a diagnosis, in monitoring and assessing response to treatment, and in testing novel therapeutics. Clinical markers of atopy and eosinophilic inflammation include indirect tests such as lung function, exhaled breath condensate analysis, fractional exhaled nitric oxide, serum immunoglobulin E levels and serum periostin. Direct measures, which quantify but do not anatomically localise inflammation include blood eosinophil counts, serum or plasma eosinophil cationic protein and sputum eosinophil levels. Cytology from bronchoalveolar lavage and histology from endobronchial and transbronchial biopsies are better at localising inflammation but are more invasive. Novel approaches using radiolabelled eosinophils with single-photon emission computed tomography, offer the prospect of non-invasive methods to localise eosinophilic inflammation.
Collapse
Affiliation(s)
- Chrystalla Loutsios
- Department of Medicine, Division of Respiratory Medicine, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Jin H, Hallstrand TS, Daly DS, Matzke MM, Nair P, Bigelow DJ, Pounds JG, Zangar RC. A halotyrosine antibody that detects increased protein modifications in asthma patients. J Immunol Methods 2013; 403:17-25. [PMID: 24295867 DOI: 10.1016/j.jim.2013.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/07/2013] [Accepted: 11/19/2013] [Indexed: 10/26/2022]
Abstract
Airway inflammation has a pathophysiological role in asthma. Eosinophils, which are commonly increased in asthmatic airways, express eosinophil peroxidase and thereby produce hypobromite and bromotyrosine. Bromotyrosine is believed to be a specific marker for eosinophil activity, but developing an antibody against monobromotyrosine, the predominant brominated tyrosine residue found in vivo has proven difficult. We evaluated whether a 3-bromobenozoic acid hapten antigen produced antibodies that recognized halogenated tyrosine residues. Studies with small-molecule inhibitors or brominated or chlorinated protein suggested that a mouse monoclonal antibody (BTK-94C) selectively bound free and protein mono- and dibromotyrosine and, to a lesser degree, chlorotyrosine, and thus was designated a general halotyrosine antibody. We evaluated if this antibody had potential for characterizing human asthma using an enzyme-linked immunosorbent assay (ELISA) microarray platform to examine the halogenation of 23 proteins in three independent sets of sputum samples (52 samples total). In 15 healthy control or asthmatic subjects, ICAM, PDGF and RANTES had greater proportional amounts of halogenation in asthmatic subjects and the halogenation signal was associated with the severity of exercise-induced airway hyperresponsiveness. In 17 severe asthma patients treated with placebo or mepolizumab to suppress eosinophils, drug-related decreases in halogenation were observed with p values ranging from 0.006 to 0.11 for these 3 proteins. Analysis of 20 subjects that either had neutrophilic asthma or were healthy controls demonstrated a broad increase in halotyrosine (possibly chlorotyrosine) in neutrophilic asthmatics. Overall, these results suggest that an ELISA utilizing BTK-94C could prove useful for assessing airway inflammation in asthma patients.
Collapse
Affiliation(s)
- Hongjun Jin
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Don S Daly
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | | | - Joel G Pounds
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | |
Collapse
|
50
|
Desai D, Newby C, Symon FA, Haldar P, Shah S, Gupta S, Bafadhel M, Singapuri A, Siddiqui S, Woods J, Herath A, Anderson IK, Bradding P, Green R, Kulkarni N, Pavord I, Marshall RP, Sousa AR, May RD, Wardlaw AJ, Brightling CE. Elevated sputum interleukin-5 and submucosal eosinophilia in obese individuals with severe asthma. Am J Respir Crit Care Med 2013; 188:657-63. [PMID: 23590263 DOI: 10.1164/rccm.201208-1470oc] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The relationship between airway inflammation and obesity in severe asthma is poorly understood. OBJECTIVES We sought to determine the relationship between sputum mediator profiles and the distribution of eosinophilic inflammation and obesity in people with severe asthma. METHODS Clinical parameters and eight mediators in sputum were assessed in 131 subjects with severe asthma from a single center categorized into lean, overweight, and obese groups defined by their body mass index. In an independent group of people with severe asthma (n = 45) and healthy control subjects (n = 19) eosinophilic inflammation was enumerated in bronchial submucosa, blood, and sputum and related to their body mass index. MEASUREMENTS AND MAIN RESULTS Sputum IL-5 geometric mean (95% confidence interval) (pg/ml) was elevated in the obese (1.8 [1.2-2.6]) compared with overweight (1.1 [0.8-1.3]; P = 0.025) and lean (0.9 [0.6-1.2]; P = 0.018) subjects with asthma and was correlated with body mass index (r = 0.29; P < 0.001). There was no relationship among body mass index, the sputum cell count, or other sputum mediators. In the bronchoscopy group the submucosal eosinophil number in the subjects with asthma was correlated with body mass index (Spearman rank correlation, rs = 0.38; P = 0.013) and the median (interquartile range) number of submucosal eosinophils was increased in obese (19.4 [11.8-31.2]) (cells per square millimeter) versus lean subjects (8.2 [5.4-14.6]) (P = 0.006). There was no significant association between sputum or peripheral blood eosinophil counts and body mass index. CONCLUSIONS Sputum IL-5 and submucosal eosinophils, but not sputum eosinophils, are elevated in obese people with severe asthma. Whether specific antieosinophilic therapy is beneficial, or improved diet and lifestyle in obese asthma has antiinflammatory effects beyond weight reduction, requires further study.
Collapse
Affiliation(s)
- Dhananjay Desai
- 1 Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|