1
|
Zhou W, Chen H, Chen X, Gao J, Ji W. Recent advances in research on common targets of neurological and sex hormonal influences on asthma. Clin Transl Allergy 2025; 15:e70022. [PMID: 39800672 PMCID: PMC11725405 DOI: 10.1002/clt2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/22/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Asthma is currently one of the most common of respiratory diseases, severely affecting the lives of patients. With the in-depth study of the role of the nervous system and sex hormones on the development of asthma, it has been found that the nervous system and sex hormones are related to each other in the pathway of asthma. OBJECTIVE To investigate the effects of sex hormones and the nervous system on the development of asthma. METHODS In this review, we searched for a large number of relevant literature to elucidate the unique mechanisms of sex hormones and the nervous system on asthma development, and summarized several common targets in the pathways of sex hormones and the nervous system on asthma. CONCLUSION We summarize several common important targets in the pathways of action of sex hormones and the nervous system in asthma, provide new directions and ideas for asthma treatment, and discuss current therapeutic limitations and future possibilities. Finally, the article predicts future applications of several important targets in asthma therapy.
Collapse
Affiliation(s)
- Wenting Zhou
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Huan Chen
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Xinyu Chen
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Jing Gao
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Wenting Ji
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| |
Collapse
|
2
|
Yang N, Wang T. c-CBL/LCK/c-JUN/ETS1/CD28 axis restrains childhood asthma by suppressing Th2 differentiation. Mol Med 2024; 30:164. [PMID: 39342146 PMCID: PMC11439220 DOI: 10.1186/s10020-024-00872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/08/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Asthma is a common immune disease with high morbidity in children. Type 2 inflammation is the center of asthma development, and mainly mediated by a subset of CD4 + T cells, T helper 2 (Th2) cells. Excess Th2 differentiation was generally associated with asthmatic attack. Casitas B-lineage lymphoma (c-CBL) was reported to involved in T cell development and databank showed its decreased expression in CD4 + T cells from peripheral blood of asthmatic children. This study aims to investigate the role of c-CBL in childhood asthma and Th2 differentiation, and explore the underlying mechanism. METHODS We collected peripheral blood samples from clinical childhood asthma cases and healthy controls, and determined c-CBL expression in CD4 + T cells. Asthma was induced in neonatal mice by ovalbumin (OVA) intraperitoneal injection and aerosol inhalation, and c-CBL expression in CD4 + T cells from peripheral blood and spleen was measured. Gain-of-function experiments was performed to confirm the effects of c-CBL on Th2 differentiation in vitro. Finally, c-CBL was delivered into asthmatic mice via lentivirus infection to verify its effects on experimental asthma. RESULTS c-CBL was lowly expressed in CD4 + T cells from asthmatic children than those of healthy controls. Similarly, it was downregulated in CD4 + T cells from peripheral blood and spleen of asthma mice. Overexpression of c-CBL restrained lung pathological injury and type 2 inflammation in experimental asthmatic mice. Gain-of-function experiments demonstrated that c-CBL inhibited Th2 differentiation of CD4 + T cells from healthy children, and mediated the ubiquitination of lymphocyte cell-specific protein-tyrosine kinase (LCK). LCK acted as a kinase to phosphorylate and activate c-JUN, which was predicted to bind promoter sequence of CD28 by bioinformatic analysis. Dual-luciferase reporter assay verified that c-JUN and ETS1 synergically enhanced transcription of CD28, and this transcription activation was aggravated by LCK overexpression. CONCLUSION c-CBL alleviated asthma and suppressed Th2 differentiation by facilitating LCK ubiquitination, interrupting c-JUN activation and CD28 expression in vivo and in vitro. c-CBL/LCK/c-JUN/ETS1/CD28 axis was partially involved in childhood asthma, and may provide novel insights for clinical treatment for asthma.
Collapse
Affiliation(s)
- Nan Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, China
| | - Tianyue Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
3
|
Ha EK, Kim JH, Han B, Shin J, Lee E, Lee KJ, Shin YH, Han MY. Viral respiratory infections requiring hospitalization in early childhood related to subsequent asthma onset and exacerbation risks. J Med Virol 2024; 96:e29876. [PMID: 39233491 DOI: 10.1002/jmv.29876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
Viral lower respiratory tract infections (LRTIs), including rhinovirus and respiratory syncytial virus during early childhood, have been linked to subsequent asthma. However, the impact of other respiratory viruses remains unclear. We analyzed nationwide Korean data from January 1, 2008, to December 31, 2018, utilizing the national health insurance database. Our study focused on 19 169 meticulously selected children exposed to severe respiratory infections requiring hospitalization with documented viral pathogens, matched with 191 690 unexposed children at a ratio of 1:10 using incidence density sampling. Our findings demonstrate that asthma exacerbation rates were higher among the exposed cohort than the unexposed cohort over a mean follow-up of 7.8 years. We observed elevated risks of asthma exacerbation and newly developed asthma compared to the unexposed cohort. Hospitalization due to rhinovirus, respiratory syncytial virus, influenza, metapneumovirus, and adenovirus was related to increased asthma exacerbations. Notably, we found a stronger association in cases of multiple LRTI hospitalizations. In conclusion, our study shows that early childhood respiratory viral infections are related to subsequent asthma exacerbations and new asthma diagnoses.
Collapse
Affiliation(s)
- Eun Kyo Ha
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Ju Hee Kim
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Boeun Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Jeewon Shin
- Department of Pediatrics, CHA Ilsan Medical Center, CHA University, Goyang, South Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Kee-Jae Lee
- Department of Information and Statistics, Korea National Open University, Seoul, South Korea
| | - Youn Ho Shin
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| |
Collapse
|
4
|
Bozek A, Mućka S, Miodonska M, Zlik A, Mroz-Dybowska M. Effect of sublingual immunotherapy on clinical and laboratory autoimmunity. Immunotherapy 2024; 16:235-241. [PMID: 38214133 PMCID: PMC10844896 DOI: 10.2217/imt-2023-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
Background: There still are few data on the long-term safety of sublingual immunotherapy (SLIT). The aim of this study was to assess the appearance of autoimmune diseases in patients before and after SLIT. Materials & methods: New cases of autoimmune diseases were monitored. Patients in the SLIT group (n = 816) were compared with controls (n = 1096). Results: The new incidences of autoimmune diseases in the SLIT group were lower compared with the control group: 18 (2.2%) versus 58 (5.3%); p < 0.05. Systemic lupus erythematosus, psoriasis and Hashimoto appeared much more often in the control group. Conclusion: SLIT had no significant effect on the induction of autoimmune diseases.
Collapse
Affiliation(s)
- Andrzej Bozek
- Clinical Department of Internal Diseases, Dermatology & Allergology, Medical University of Silesia, Katowice, Poland
| | - Szymon Mućka
- Clinical Department of Internal Diseases, Dermatology & Allergology, Medical University of Silesia, Katowice, Poland
| | - Martyna Miodonska
- Clinical Department of Internal Diseases, Dermatology & Allergology, Medical University of Silesia, Katowice, Poland
| | - Anna Zlik
- Clinical Department of Internal Diseases, Dermatology & Allergology, Medical University of Silesia, Katowice, Poland
| | - Magdalena Mroz-Dybowska
- Clinical Department of Internal Diseases, Dermatology & Allergology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
5
|
Ito T, Ichikawa T, Yamada M, Hashimoto Y, Fujino N, Numakura T, Sasaki Y, Suzuki A, Takita K, Sano H, Kyogoku Y, Saito T, Koarai A, Tamada T, Sugiura H. CYP27A1-27-hydroxycholesterol axis in the respiratory system contributes to house dust mite-induced allergic airway inflammation. Allergol Int 2024; 73:151-163. [PMID: 37607853 DOI: 10.1016/j.alit.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND 27-Hydroxycholesterol (27-HC) derived from sterol 27-hydroxylase (CYP27A1) has pro-inflammatory biological activity and is associated with oxidative stress and chronic inflammation in COPD. However, the role of regulation of CYP27A1- 27-HC axis in asthma is unclear. This study aimed to elucidate the contribution of the axis to the pathophysiology of asthma. METHODS House dust mite (HDM) extract was intranasally administered to C57BL/6 mice and the expression of CYP27A1 in the airways was analyzed by immunostaining. The effect of pre-treatment with PBS or CYP27A1 inhibitors on the cell fraction in the bronchoalveolar lavage fluid (BALF) was analyzed in the murine model. In vitro, BEAS-2B cells were treated with HDM and the levels of CYP27A1 expression were examined. Furthermore, the effect of 27-HC on the expressions of E-cadherin and ZO-1 in the cells was analyzed. The amounts of RANTES and eotaxin from the 27-HC-treated cells were analyzed by ELISA. RESULTS The administration of HDM increased the expression of CYP27A1 in the airways of mice as well as the number of eosinophils in the BALF. CYP27A1 inhibitors ameliorated the HDM-induced increase in the number of eosinophils in the BALF. Treatment with HDM increased the expression of CYP27A1 in BEAS-2B cells. The administration of 27-HC to BEAS-2B cells suppressed the expression of E-cadherin and ZO-1, and augmented the production of RANTES and eotaxin. CONCLUSIONS The results of this study suggest that aeroallergen could enhance the induction of CYP27A1, leading to allergic airway inflammation and disruption of the airway epithelial tight junction through 27-HC production.
Collapse
Affiliation(s)
- Tatsunori Ito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuichiro Hashimoto
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusaku Sasaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ayumi Suzuki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuya Takita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yorihiko Kyogoku
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuya Saito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Ha JG, Cho HJ. Unraveling the Role of Epithelial Cells in the Development of Chronic Rhinosinusitis. Int J Mol Sci 2023; 24:14229. [PMID: 37762530 PMCID: PMC10531804 DOI: 10.3390/ijms241814229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The pathophysiology of CRS is multifactorial and complex yet needs to be completed. Recent evidence emphasizes the crucial part played by epithelial cells in the development of CRS. The epithelial cells act as physical barriers and play crucial roles in host defense, including initiating and shaping innate and adaptive immune responses. This review aims to present a comprehensive understanding of the significance of nasal epithelial cells in CRS. New research suggests that epithelial dysfunction plays a role in developing CRS through multiple mechanisms. This refers to issues with a weakened barrier function, disrupted mucociliary clearance, and irregular immune responses. When the epithelial barrier is compromised, it can lead to the passage of pathogens and allergens, triggering inflammation in the body. Furthermore, impaired mucociliary clearance can accumulate pathogens and secretions of inflammatory mediators, promoting chronic inflammation. Epithelial cells can release cytokines and chemokines, which attract and activate immune cells. This can result in an imbalanced immune response that continues to cause inflammation. The interaction between nasal epithelial cells and various immune cells leads to the production of cytokines and chemokines, which can either increase or decrease inflammation. By comprehending the role of epithelial cells in CRS, we can enhance our understanding of the disease's pathogenesis and explore new therapeutics.
Collapse
Affiliation(s)
- Jong-Gyun Ha
- Department of Otorhinolaryngology—Head and Neck Surgery, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong 14353, Republic of Korea;
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Cavalcanti RFP, Gadelha FAAF, Paiva Ferreira LKD, Paiva Ferreira LAM, Chaves Júnior JV, de Araújo Batista RS, Melo TBL, de Souza FS, Alves AF, Maria Batista L, Piuvezam MR. Limosilactobacillus fermentum modulates the gut-airway axis by improving the immune response through FOXP3 activation on combined allergic rhinitis and asthma syndrome (CARAS). Immunobiology 2023; 228:152721. [PMID: 37531845 DOI: 10.1016/j.imbio.2023.152721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Combined allergic rhinitis and asthma syndrome (CARAS) is an allergic airway inflammatory disorder orchestrated by the type 2 immune response. The close gut-lung relationship has been described, however, the effect of gut-modulating agents such as probiotics in allergic airway disorder is unclear. Thus, the goal of this study was to evaluate theLimosilactobacillus fermentumsupplementation in animals with CARAS. Therefore, BALB/c mice were ovalbumin (OVA) -sensitized and -challenged after being supplemented withL. fermentum. Animals, previously probiotic supplemented, showed a decrease (p < 0.05) of inflammatory cell migration, mainly eosinophil, into the nasal (NALF) and the bronchoalveolar (BALF) fluids as well as reduction of the allergic signs such as sneezing, nasal rubbings, and nasal hyperreactivity induced by histamine as compared with non-supplemented animals. In the systemic context,L. fermentumreduced eosinophilia and the serum levels of OVA-specific IgE. The altered histological aspects of nasal and lung tissues of animals with CARAS were effectively ameliorated byL. fermentum. In the BALF, the immunomodulatory effect was due to the decreasing of type 2 and 3 cytokines (IL-4, IL-13, IL-5 and IL-17A) dependent on type 1 (IFN-γ) and Treg (IL-10) cytokine increasing. Indeed,L. fermentumimproved the FOXP3 activation. Additionally, these effects correlate with the amplification of the gut response as increasing short-chain fatty acids (SCFAs) levels, gut epithelium barrier (ZO-1) maintenance, and colon tissue integrity. These data pointed out that animals' probiotic supplemented presented immunomodulatory responses in CARAS experimental model by activating the intracellular transduction signal underlying the IL-10 gene transcription.
Collapse
Affiliation(s)
- Raquel F P Cavalcanti
- Laboratório de Imunofarmacologia, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brazil; Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Francisco A A F Gadelha
- Laboratório de Imunofarmacologia, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Laércia K D Paiva Ferreira
- Laboratório de Imunofarmacologia, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Larissa A M Paiva Ferreira
- Laboratório de Imunofarmacologia, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - José V Chaves Júnior
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brazil; Programa de Pós-graduação em Desenvolvimento e Inovação em Medicamentos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Rayanne S de Araújo Batista
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Taynara B L Melo
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Fábio S de Souza
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Adriano F Alves
- Laboratório de Imunofarmacologia, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brazil; Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, PB, Brazil
| | - Leônia Maria Batista
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brazil; Laboratório de Farmacologia do Trato Gastrointestinal, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Marcia R Piuvezam
- Laboratório de Imunofarmacologia, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brazil; Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, PB, Brazil.
| |
Collapse
|
8
|
Song YN, Lee JW, Ryu HW, Lee JK, Oh ES, Kim DY, Ro H, Yoon D, Park JY, Hong ST, Kim MO, Lee SU, Lee DY. Black Ginseng Extract Exerts Potentially Anti-Asthmatic Activity by Inhibiting the Protein Kinase Cθ-Mediated IL-4/STAT6 Signaling Pathway. Int J Mol Sci 2023; 24:11970. [PMID: 37569348 PMCID: PMC10418634 DOI: 10.3390/ijms241511970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Asthma is a chronic inflammatory lung disease that causes respiratory difficulties. Black ginseng extract (BGE) has preventative effects on respiratory inflammatory diseases such as asthma. However, the pharmacological mechanisms behind the anti-asthmatic activity of BGE remain unknown. To investigate the anti-asthmatic mechanism of BGE, phorbol 12-myristate 13-acetate plus ionomycin (PMA/Iono)-stimulated mouse EL4 cells and ovalbumin (OVA)-induced mice with allergic airway inflammation were used. Immune cells (eosinophils/macrophages), interleukin (IL)-4, -5, -13, and serum immunoglobulin E (IgE) levels were measured using an enzyme-linked immunosorbent assay. Inflammatory cell recruitment and mucus secretion in the lung tissue were estimated. Protein expression was analyzed via Western blotting, including that of inducible nitric oxide synthase (iNOS) and the activation of protein kinase C theta (PKCθ) and its downstream signaling molecules. BGE decreased T helper (Th)2 cytokines, serum IgE, mucus secretion, and iNOS expression in mice with allergic airway inflammation, thereby providing a protective effect. Moreover, BGE and its major ginsenosides inhibited the production of Th2 cytokines in PMA/Iono-stimulated EL4 cells. In EL4 cells, these outcomes were accompanied by the inactivation of PKCθ and its downstream transcription factors, such as nuclear factor of activated T cells (NFAT), nuclear factor kappa B (NF-κB), activator of transcription 6 (STAT6), and GATA binding protein 3 (GATA3), which are involved in allergic airway inflammation. BGE also inhibited the activation of PKCθ and the abovementioned transcriptional factors in the lung tissue of mice with allergic airway inflammation. These results highlight the potential of BGE as a useful therapeutic and preventative agent for allergic airway inflammatory diseases such as allergic asthma.
Collapse
Affiliation(s)
- Yu Na Song
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Jae-Won Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
| | - Hyung Won Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
| | - Jae Kyoung Lee
- Rpbio Research Institute, Rpbio Co., Ltd., Suwon 16229, Republic of Korea;
| | - Eun Sol Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Doo-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea;
| | - Ji-Yoon Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea;
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea;
| | - Mun-Ock Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
| | - Su Ui Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea;
| |
Collapse
|
9
|
Yousaf H, Khan MIU, Ali I, Munir MU, Lee KY. Emerging role of macrophages in non-infectious diseases: An update. Biomed Pharmacother 2023; 161:114426. [PMID: 36822022 DOI: 10.1016/j.biopha.2023.114426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
In the past three decades, a huge body of evidence through various research studies conducted on animal models, has demonstrated that the macrophages are centralized of all the leukocytes involved in diseases and, particularly, their role in non-infectious diseases has been studied extensively for which they have also been referred to as the "double-edged swords". The most versatile of all immunocytes, macrophages play a key role in health and diseases. Various experimental models have demonstrated the conventional paradigms such as the M1/M2 dichotomy, which is not as obvious and presents a complex characterization of the macrophages in the disease immunology. In human diseases, this M1-M2 continuum shows a complex web of mechanisms, which are majorly divided into the pro-inflammatory roles (derived mainly by the cytokines: IL-1, IL-6, IL-12, IL-23, and tumor necrosis factor) and anti-inflammatory roles (CCl-17, CCl-22, CCL-2, transforming growth factor (TGF), and interleukin-10), which are involved in the wound healing and pathogen-suppression. The conventional division of these macrophages as M1 and M2 is derived from the opposing functions of these macrophages; where M1 is involved in the tissue damage and pro-inflammatory roles and M2 promotes cell proliferation and the resolution of inflammation. Both these pathways down-regulate each other in diseases through a plethora of enzymatic and cytokine mediators.
Collapse
Affiliation(s)
- Hassan Yousaf
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore, Pakistan
| | - Malik Ihsan Ullah Khan
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore, Pakistan.
| | - Iftikhar Ali
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka, Aljouf 72388, Saudi Arabia
| | - Ka Yiu Lee
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Ostersund, Sweden.
| |
Collapse
|
10
|
Meitei HT, Lal G. T cell receptor signaling in the differentiation and plasticity of CD4 + T cells. Cytokine Growth Factor Rev 2023; 69:14-27. [PMID: 36028461 DOI: 10.1016/j.cytogfr.2022.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
CD4+ T cells are critical components of the adaptive immune system. The T cell receptor (TCR) and co-receptor signaling cascades shape the phenotype and functions of CD4+ T cells. TCR signaling plays a crucial role in T cell development, antigen recognition, activation, and differentiation upon recognition of foreign- or auto-antigens. In specific autoimmune conditions, altered TCR repertoire is reported and can predispose autoimmunity with organ-specific inflammation and tissue damage. TCR signaling modulates various signaling cascades and regulates epigenetic and transcriptional regulation during homeostasis and disease conditions. Understanding the mechanism by which coreceptors and cytokine signals control the magnitude of TCR signal amplification will aid in developing therapeutic strategies to treat inflammation and autoimmune diseases. This review focuses on the role of the TCR signaling cascade and its components in the activation, differentiation, and plasticity of various CD4+ T cell subsets.
Collapse
Affiliation(s)
| | - Girdhari Lal
- National Centre for Cell Science, SPPU campus, Ganeshkhind, Pune, MH 411007, India.
| |
Collapse
|
11
|
Oliveira CR, Carvalho J, Olímpio F, Vieira R, Aimbire F, Polonini H. Transfer factors peptides (Imuno TF ®) modulate the lung inflammation and airway remodeling in allergic asthma. Front Immunol 2023; 13:1030252. [PMID: 36685604 PMCID: PMC9846599 DOI: 10.3389/fimmu.2022.1030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Background Allergic asthma is a chronic lung disease in which the lung inflammation and airway remodeling are orchestrated by both the inflammatory and the immune cells that creates a lung millieu that favors the perpetuation of clinical symptoms. The cell signaling in asthma involves the mast cells activation during initial contact with the allergen and, principally, the participation of eosinophils as well as Th2 cells which determine increased levels of IgE, exaggerated secretion of mucus and collagen, and bronchial hyperreactivity. Moreover, allergic asthma presents lower level of cytokines associated to the both Th1 and Treg cells response, and it implies in deficiency of anti-inflammatory response to counterregulate the exaggerated inflammation against allergen. Therefore, the equilibrium between cytokines as well as transcription factors associated to Th2, Th1, and Treg cells is compromised in allergic asthma. Imuno TF® is a food supplement with ability to interfere in immune system pathways. It has been previously demonstrated that Imuno TF® upregulated Th1 cell response whilst downregulated Th2 cell response in human lymphocytes. Objective For this reason, we hypothesized that the Imuno TF effect could be restore the balance between Th1/Th2 CD4 T cells response in murine allergic asthma. Methods Initially, animals were sensitized with OVA via i.p. and challenged with OVA i.n. on days 14, 15 and 16. Treatment with Imuno TF once a day was performed via orogastric from day 17 to day 20. Mice were euthanized on day 21. Results The Imuno TF reduced eosinophilia, mucus production, and airway remodeling (collagen deposition) in asthma mice. Imuno TF influenced cellular signaling associated to allergic asthma once downregulated STAT6 expression as well as decreased IL-4, IL-5, and IL-13 in lung and serum. In addition, Imuno TF restored T-bet and Foxp3 expression as well as increased IL-12, IFN-ɣ, and IL-10. Conclusion Ultimately, Imuno TF mitigated the allergic asthma due to the restoration of balance between the responses of Th1/Th2 as well as Treg cells, and their respective transcription factors the T-bet/STAT6 and Foxp3.
Collapse
Affiliation(s)
- Carlos Rocha Oliveira
- Medical School, Group of Phytocomplexes and Cell Signaling, Anhembi Morumbi University, São José dos Campos, São Paulo, Brazil
- Postgraduate Program in Biomedical Engineering, Anhembi Morumbi University, Sao Jose dos Campos, São Paulo, Brazil
| | - Jessica Carvalho
- Department of Science and Technology, Federal University of Sao Paulo, Sao Jose dos Campos, São Paulo, Brazil
| | - Fabiana Olímpio
- Department of Science and Technology, Federal University of Sao Paulo, Sao Jose dos Campos, São Paulo, Brazil
| | - Rodolfo Vieira
- Post-Graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of Sao Paulo, Sao Jose dos Campos, Brazil
- Post-Graduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goias (Unievangelica), Anapolis, Brazil
| | - Flavio Aimbire
- Department of Science and Technology, Federal University of Sao Paulo, Sao Jose dos Campos, São Paulo, Brazil
| | | |
Collapse
|
12
|
Daley MF, Reifler LM, Glanz JM, Hambidge SJ, Getahun D, Irving SA, Nordin JD, McClure DL, Klein NP, Jackson ML, Kamidani S, Duffy J, DeStefano F. Association Between Aluminum Exposure From Vaccines Before Age 24 Months and Persistent Asthma at Age 24 to 59 Months. Acad Pediatr 2023; 23:37-46. [PMID: 36180331 PMCID: PMC10109516 DOI: 10.1016/j.acap.2022.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/20/2022] [Accepted: 08/13/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To assess the association between cumulative aluminum exposure from vaccines before age 24 months and persistent asthma at age 24 to 59 months. METHODS A retrospective cohort study was conducted in the Vaccine Safety Datalink (VSD). Vaccination histories were used to calculate cumulative vaccine-associated aluminum in milligrams (mg). The persistent asthma definition required one inpatient or 2 outpatient asthma encounters, and ≥2 long-term asthma control medication dispenses. Cox proportional hazard models were used to evaluate the association between aluminum exposure and asthma incidence, stratified by eczema presence/absence. Adjusted hazard ratios (aHR) and 95% confidence intervals (CI) per 1 mg increase in aluminum exposure were calculated, adjusted for birth month/year, sex, race/ethnicity, VSD site, prematurity, medical complexity, food allergy, severe bronchiolitis, and health care utilization. RESULTS The cohort comprised 326,991 children, among whom 14,337 (4.4%) had eczema. For children with and without eczema, the mean (standard deviation [SD]) vaccine-associated aluminum exposure was 4.07 mg (SD 0.60) and 3.98 mg (SD 0.72), respectively. Among children with and without eczema, 6.0% and 2.1%, respectively, developed persistent asthma. Among children with eczema, vaccine-associated aluminum was positively associated with persistent asthma (aHR 1.26 per 1 mg increase in aluminum, 95% CI 1.07, 1.49); a positive association was also detected among children without eczema (aHR 1.19, 95% CI 1.14, 1.25). CONCLUSION In a large observational study, a positive association was found between vaccine-related aluminum exposure and persistent asthma. While recognizing the small effect sizes identified and the potential for residual confounding, additional investigation of this hypothesis appears warranted.
Collapse
Affiliation(s)
- Matthew F Daley
- Institute for Health Research, Kaiser Permanente Colorado (MF Daley, LM Reifler, and JM Glanz), Aurora, Colo; Department of Pediatrics, University of Colorado School of Medicine (MF Daley and SJ Hambidge), Aurora, Colo.
| | - Liza M Reifler
- Institute for Health Research, Kaiser Permanente Colorado (MF Daley, LM Reifler, and JM Glanz), Aurora, Colo
| | - Jason M Glanz
- Institute for Health Research, Kaiser Permanente Colorado (MF Daley, LM Reifler, and JM Glanz), Aurora, Colo; Colorado School of Public Health (JM Glanz), Aurora, Colo
| | - Simon J Hambidge
- Department of Pediatrics, University of Colorado School of Medicine (MF Daley and SJ Hambidge), Aurora, Colo; Community Health Services, Denver Health (SJ Hambidge), Denver, Colo
| | - Darios Getahun
- Department of Research and Evaluation, Kaiser Permanente Southern California (D Getahun), Pasadena, Calif; Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine (D Getahun), Pasadena, Calif
| | - Stephanie A Irving
- Center for Health Research, Kaiser Permanente Northwest (SA Irving), Portland, Ore
| | | | - David L McClure
- Marshfield Clinic Research Institute (DL McClure), Marshfield, Wis
| | - Nicola P Klein
- Kaiser Permanente Vaccine Study Center, Kaiser Permanente Northern California (NP Klein), Oakland, Calif
| | - Michael L Jackson
- Kaiser Permanente Washington Health Research Institute (ML Jackson), Seattle, Wash
| | - Satoshi Kamidani
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine (S Kamidani), Atlanta, Ga; Immunization Safety Office, Centers for Disease Control and Prevention (S Kamidani, J Duffy, and F DeStefano), Atlanta, Ga
| | - Jonathan Duffy
- Immunization Safety Office, Centers for Disease Control and Prevention (S Kamidani, J Duffy, and F DeStefano), Atlanta, Ga
| | - Frank DeStefano
- Immunization Safety Office, Centers for Disease Control and Prevention (S Kamidani, J Duffy, and F DeStefano), Atlanta, Ga
| |
Collapse
|
13
|
Min Z, Zhou J, Mao R, Cui B, Cheng Y, Chen Z. Pyrroloquinoline Quinone Administration Alleviates Allergic Airway Inflammation in Mice by Regulating the JAK-STAT Signaling Pathway. Mediators Inflamm 2022; 2022:1267841. [PMID: 36345503 PMCID: PMC9637035 DOI: 10.1155/2022/1267841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/18/2022] [Accepted: 09/24/2022] [Indexed: 11/12/2023] Open
Abstract
The current asthma therapies are inadequate for many patients with severe asthma. Pyrroloquinoline quinone (PQQ) is a naturally-occurring redox cofactor and nutrient that can exert a multitude of physiological effects, including anti-inflammatory and antioxidative effects. We sought to explore the effects of PQQ on allergic airway inflammation and reveal the underlying mechanisms. In vitro, the effects of PQQ on the secretion of epithelial-derived cytokines by house dust mite- (HDM-) incubated 16-HBE cells and on the differentiation potential of CD4+ T cells were investigated. In vivo, PQQ was administered to mice with ovalbumin- (OVA-) induced asthma, and lung pathology and inflammatory cell infiltration were assessed. The changes in T cell subsets and signal transducers and activators of transcription (STATs) were evaluated by flow cytometry. Pretreatment with PQQ significantly decreased HDM-stimulated thymic stromal lymphopoietin (TSLP) production in a dose-dependent manner in 16-HBE cells and inhibited Th2 cell differentiation in vitro. Treatment with PQQ significantly reduced bronchoalveolar lavage fluid (BALF) inflammatory cell counts in the OVA-induced mouse model. PQQ administration also changed the secretion of IFN-γ and IL-4 as well as the percentages of Th1, Th2, Th17, and Treg cells in the peripheral blood and lung tissues, along with inhibition the phosphorylation of STAT1, STAT3, and STAT6 while promoting that of STAT4 in allergic airway inflammation model mice. PQQ can alleviate allergic airway inflammation in mice by improving the immune microenvironment and regulating the JAK-STAT signaling pathway. Our findings suggest that PQQ has great potential as a novel therapeutic agent for inflammatory diseases, including asthma.
Collapse
Affiliation(s)
- Zhihui Min
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiebai Zhou
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, China
| | - Ruolin Mao
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, China
| | - Bo Cui
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihong Chen
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Wang M, Deng R. Effects of carbon black nanoparticles and high humidity on the lung metabolome in Balb/c mice with established allergic asthma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65100-65111. [PMID: 35484453 DOI: 10.1007/s11356-022-20349-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
In respiratory diseases, the induction of allergic asthma has gradually aroused public concerns. Co-exposures of environmental risk factors such as nanoparticles and high humidity could play important roles in the development of allergic asthma. However, the relevant researches are still lacking and the involved mechanisms, especially metabolic changes, remain unclear. We took the lead in studying the combined induction effect and underlying mechanisms of carbon black nanoparticles (CB NPs) and high humidity on allergic asthma. In this work, murine models of allergic asthma were established with ovalbumin under the single and combined exposures of 15 μg/kg CB NPs and 90% relative humidity. The two risk factors, particularly their co-exposure, exhibited adjuvant effect on airway hyperresponsiveness, remodeling, and inflammation in Balb/c mice. Untargeted metabolomics identified the potential biomarkers in lung for asthma occurrence and for asthma exacerbation caused by CB NPs and high humidity. The significantly dysregulated metabolic pathways in asthmatic mice were proposed, and the disturbed metabolic pathways under the exposures of CB NPs and/or high humidity were mainly implicated in asthma symptoms. This work sheds light on the understanding for health risks of NP pollutions and high environmental humidity and contributes to useful biomarker identification and asthma control.
Collapse
Affiliation(s)
- Mingpu Wang
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China
| | - Rui Deng
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
15
|
Sex Steroids Effects on Asthma: A Network Perspective of Immune and Airway Cells. Cells 2022; 11:cells11142238. [PMID: 35883681 PMCID: PMC9318292 DOI: 10.3390/cells11142238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022] Open
Abstract
A multitude of evidence has suggested the differential incidence, prevalence and severity of asthma between males and females. A compilation of recent literature recognized sex differences as a significant non-modifiable risk factor in asthma pathogenesis. Understanding the cellular and mechanistic basis of sex differences remains complex and the pivotal point of this ever elusive quest, which remains to be clarified in the current scenario. Sex steroids are an integral part of human development and evolution while also playing a critical role in the conditioning of the immune system and thereby influencing the function of peripheral organs. Classical perspectives suggest a pre-defined effect of sex steroids, generalizing estrogens popularly under the “estrogen paradox” due to conflicting reports associating estrogen with a pro- and anti-inflammatory role. On the other hand, androgens are classified as “anti-inflammatory,” serving a protective role in mitigating inflammation. Although considered mainstream and simplistic, this observation remains valid for numerous reasons, as elaborated in the current review. Women appear immune-favored with stronger and more responsive immune elements than men. However, the remarkable female predominance of diverse autoimmune and allergic diseases contradicts this observation suggesting that hormonal differences between the sexes might modulate the normal and dysfunctional regulation of the immune system. This review illustrates the potential relationship between key elements of the immune cell system and their interplay with sex steroids, relevant to structural cells in the pathophysiology of asthma and many other lung diseases. Here, we discuss established and emerging paradigms in the clarification of observed sex differences in asthma in the context of the immune system, which will deepen our understanding of asthma etiopathology.
Collapse
|
16
|
Jo WS, Kang S, Jeong SK, Bae MJ, Lee CG, Son Y, Lee HJ, Jeong MH, Kim SH, Moon C, Shin IS, Kim JS. Low Dose Rate Radiation Regulates M2-like Macrophages in an Allergic Airway Inflammation Mouse Model. Dose Response 2022; 20:15593258221117349. [PMID: 36003321 PMCID: PMC9393681 DOI: 10.1177/15593258221117349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
We investigated the effects of low dose rate radiation (LDR) on M1 and M2
macrophages in an ovalbumin-induced mouse model of allergic airway inflammation
and asthma. After exposure to LDR (1 Gy, 1.818 mGy/h) for 24 days, mice were
euthanized and the changes in the number of M1 and M2 macrophages in the
bronchoalveolar lavage fluid and lung, and M2-associated cytokine levels, were
assessed. LDR treatment not only restored the M2-rich microenvironment but also
ameliorated asthma-related progression in a macrophage-dependent manner. In an
ovalbumin-induced mouse model, LDR treatment significantly inhibited M2, but not
M1, macrophage infiltration. M2-specific changes in macrophage polarization
during chronic lung disease reversed the positive effects of LDR. Moreover, the
levels of cytokines, including chemokine (C-C motif) ligand (CCL) 24, CCL17,
transforming growth factor beta 1, and matrix metalloproteinase-9, decreased in
ovalbumin-sensitized/challenged mice upon exposure to LDR. Collectively, our
results indicate that LDR exposure suppressed asthmatic progression, including
mucin accumulation, inflammation, and Type 2 T helper (Th2) cytokine
(interleukin (IL)-4 and IL-13) production. In conclusion, LDR exposure decreased
Th2 cytokine secretion in M2 macrophages, resulting in a reduction in
eosinophilic inflammation in ovalbumin-sensitized/challenged mice.
Collapse
Affiliation(s)
- Wol Soon Jo
- Dongnam Institute of Radiological
& Medical Sciences, Busan, Republic of Korea
| | - Sohi Kang
- College of Veterinary Medicine and
BK21 Plus Project Team, Chonnam National
University, Gwangju, Republic of Korea
| | - Soo Kyung Jeong
- Dongnam Institute of Radiological
& Medical Sciences, Busan, Republic of Korea
| | - Min Ji Bae
- Dongnam Institute of Radiological
& Medical Sciences, Busan, Republic of Korea
| | - Chang Geun Lee
- Dongnam Institute of Radiological
& Medical Sciences, Busan, Republic of Korea
| | - Yeonghoon Son
- Korea Institute of Radiological &
Medical Sciences, Seoul, Republic of Korea
| | - Hae-June Lee
- Korea Institute of Radiological &
Medical Sciences, Seoul, Republic of Korea
| | - Min Ho Jeong
- Department of Microbiology, Dong-A University College of
Medicine, Busan, Republic of Korea
| | - Sung Ho Kim
- College of Veterinary Medicine and
BK21 Plus Project Team, Chonnam National
University, Gwangju, Republic of Korea
| | - Chongjong Moon
- College of Veterinary Medicine and
BK21 Plus Project Team, Chonnam National
University, Gwangju, Republic of Korea
| | - In Sik Shin
- College of Veterinary Medicine and
BK21 Plus Project Team, Chonnam National
University, Gwangju, Republic of Korea
- In Sik Shin, College of Veterinary Medicine
and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Republic
of Korea.
| | - Joong Sun Kim
- Dongnam Institute of Radiological
& Medical Sciences, Busan, Republic of Korea
- College of Veterinary Medicine and
BK21 Plus Project Team, Chonnam National
University, Gwangju, Republic of Korea
- Joong Sun Kim, College of Veterinary
Medicine and BK21 Plus Project Team, Chonnam National University, 77
Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
17
|
DNA methylation signatures in airway cells from adult children of asthmatic mothers reflect subtypes of severe asthma. Proc Natl Acad Sci U S A 2022; 119:e2116467119. [PMID: 35666868 PMCID: PMC9214527 DOI: 10.1073/pnas.2116467119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Maternal asthma is one of the most replicated risk factors for childhood-onset asthma. However, the underlying mechanisms are unknown. We identified DNA methylation signatures in bronchial epithelial cells from adults with asthma that were specific to those with a mother with asthma. These maternal asthma-associated methylation signatures were correlated with distinct gene regulatory pathways and clinical features. Genes in 16 pathways discriminated cases with and without maternal asthma and suggested impaired T cell signaling and responses to viral and bacterial pathogens in asthmatic children of an asthmatic mother. Our findings suggest that the prenatal environment in pregnancies of mothers with asthma alters epigenetically mediated developmental programs that may lead to severe asthma in their children through diverse gene regulatory pathways. Maternal asthma (MA) is among the most consistent risk factors for asthma in children. Possible mechanisms for this observation are epigenetic modifications in utero that have lasting effects on developmental programs in children of mothers with asthma. To test this hypothesis, we performed differential DNA methylation analyses of 398,186 individual CpG sites in primary bronchial epithelial cells (BECs) from 42 nonasthma controls and 88 asthma cases, including 56 without MA (NMA) and 32 with MA. We used weighted gene coexpression network analysis (WGCNA) of 69 and 554 differentially methylated CpGs (DMCs) that were specific to NMA and MA cases, respectively, compared with controls. WGCNA grouped 66 NMA-DMCs and 203 MA-DMCs into two and five comethylation modules, respectively. The eigenvector of one MA-associated module (turquoise) was uniquely correlated with 85 genes expressed in BECs and enriched for 36 pathways, 16 of which discriminated between NMA and MA using machine learning. Genes in all 16 pathways were decreased in MA compared with NMA cases (P = 7.1 × 10−3), a finding that replicated in nasal epithelial cells from an independent cohort (P = 0.02). Functional interpretation of these pathways suggested impaired T cell signaling and responses to viral and bacterial pathogens. The MA-associated turquoise module eigenvector was additionally correlated with clinical features of severe asthma and reflective of type 2 (T2)-low asthma (i.e., low total serum immunoglobulin E, fractional exhaled nitric oxide, and eosinophilia). Overall, these data suggest that MA alters diverse epigenetically mediated pathways that lead to distinct subtypes of severe asthma in adults, including hard-to-treat T2-low asthma.
Collapse
|
18
|
Song Y, Wang ZZ, Wang L, Faybusovich P, Srivastava K, Liu C, Tversky J, Dunkin D, Busse P, Ren X, Miller R, Miao M, Li XM. Sophora flavescens Alkaloids and Corticosteroid Synergistically Augment IL-10/IL-5 Ratio with Foxp3-Gene-Epigenetic Modification in Asthma PBMCs. J Asthma Allergy 2022; 14:1559-1571. [PMID: 34992384 PMCID: PMC8711843 DOI: 10.2147/jaa.s321616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background It has been demonstrated that ASHMI (antiasthma-simplified herbal medicine intervention) can improve airway function and reduce inflammation in human asthmatic patients with high safety and tolerability. In addition, ASHMI significantly suppresses Th2 cytokine production and increases Th1 cytokine production in treating asthma. Objective Allergic asthma is associated with dysregulation of cytokines. We focused on IL-5 and IL-10 as signature Th2 and Treg cytokines to characterize ASHMI immunomodulatory components. Methods The effects of ASHMI and individual herbal constituents on IL-5 and IL-10 production by PBMCs from asthmatic subjects were determined ex vivo. Sophora flavescens (SF)-F2, containing alkaloid compounds, effects on PBMC IL-10 and IL-5 production in the presence or absence of dexamethasone (Dex), and on DNA methylation levels at the foxp3 gene promoter were determined. Results The ratio of anti-CD3/CD28 stimulated IL-10/IL-5 production by PBMCs from asthmatic subjects was significantly reduced compared to healthy subjects. In PBMCs from asthmatic subjects, ASHMI significantly reduced IL-5 production and increased IL-10 secretion in a dose-dependent manner (p < 0.05–0.01). SF-F2 was most effective in increasing IL-10, whereas SF-F4 (flavonoid compounds) was most effective in suppressing IL-5 production. Dex-treated PBMCs from asthma subjects showed a trend of increasing ratio of IL-10/IL-5 while demonstrating reduced levels in both IL-5 and IL-10 (p < 0.05). Co-culture with Dex and SF-F2 significantly prevented Dex suppression of IL-10, while retained Dex-suppression of IL-5 production, and increased IL-10/IL-5 ratio by Dex. Co-culture with SF-F2 and Dex significantly reduced DNA methylation levels at the foxp3 gene promoter at CpG−126. Conclusion The SF alkaloid-rich fraction may be responsible for ASHMI induction of IL-10 production by PBMCs and plays a synergistic effect with Dex for augmenting IL-10/IL-5 ratio.
Collapse
Affiliation(s)
- Ying Song
- Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Department of Pediatrics, Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhen-Zhen Wang
- Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Lixin Wang
- Integrated TCM & Western Medicine Department, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, People's Republic of China
| | - Paul Faybusovich
- Department of Pediatrics, Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kamal Srivastava
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.,General Nutraceutical Technology LLC, Elmsford, NY, USA
| | - Changda Liu
- Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Department of Pediatrics, Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jody Tversky
- The Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland, USA
| | - David Dunkin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Busse
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianqing Ren
- The First Affiliated Hospital of Henan University of TCM, Zhengzhou, People's Republic of China
| | - Rachel Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mingsan Miao
- Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.,Department of Otolaryngology, New York Medical College, Ardsley, NY, USA
| |
Collapse
|
19
|
Elkamhawy A, Ali EMH, Lee K. New horizons in drug discovery of lymphocyte-specific protein tyrosine kinase (Lck) inhibitors: a decade review (2011-2021) focussing on structure-activity relationship (SAR) and docking insights. J Enzyme Inhib Med Chem 2021; 36:1574-1602. [PMID: 34233563 PMCID: PMC8274522 DOI: 10.1080/14756366.2021.1937143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (Lck), a non-receptor Src family kinase, has a vital role in various cellular processes such as cell cycle control, cell adhesion, motility, proliferation, and differentiation. Lck is reported as a key factor regulating the functions of T-cell including the initiation of TCR signalling, T-cell development, in addition to T-cell homeostasis. Alteration in expression and activity of Lck results in numerous disorders such as cancer, asthma, diabetes, rheumatoid arthritis, atherosclerosis, and neuronal diseases. Accordingly, Lck has emerged as a novel target against different diseases. Herein, we amass the research efforts in literature and pharmaceutical patents during the last decade to develop new Lck inhibitors. Additionally, structure-activity relationship studies (SAR) and docking models of these new inhibitors within the active site of Lck were demonstrated offering deep insights into their different binding modes in a step towards the identification of more potent, selective, and safe Lck inhibitors.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eslam M H Ali
- Center for Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Republic of Korea.,University of Science & Technology (UST), Daejeon, Republic of Korea.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
20
|
Wilkinson ML, Gow AJ. Effects of fatty acid nitroalkanes on signal transduction pathways and airway macrophage activation. Innate Immun 2021; 27:353-364. [PMID: 34375151 PMCID: PMC8419298 DOI: 10.1177/17534259211015330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Fatty acid nitroalkenes are reversibly-reactive electrophiles that are endogenously detectable at nM concentrations and display anti-inflammatory, pro-survival actions. These actions are elicited through the alteration of signal transduction proteins via a Michael addition on nucleophilic cysteine thiols. Nitrated fatty acids (NO2-FAs), like 9- or 10-nitro-octadec-9-enolic acid, will act on signal transduction proteins directly or on key regulatory proteins to cause an up-regulation or down-regulation of the protein's expression, yielding an anti-inflammatory response. These responses have been characterized in many organ systems, such as the cardiovascular system, with the pulmonary system less well defined. Macrophages are one of the most abundant immune cells in the lung and are essential in maintaining lung homeostasis. Despite this, macrophages can play a role in both acute and chronic lung injury due to up-regulation of anti-inflammatory signal transduction pathways and down-regulation of pro-inflammatory pathways. Through their propensity to alter signal transduction pathways, NO2-FAs may be able to reduce macrophage activation during pulmonary injury. This review will focus on the implications of NO2-FAs on macrophage activation in the lung and the signal transduction pathways that may be altered, leading to reduced pulmonary injury.
Collapse
Affiliation(s)
- Melissa L Wilkinson
- Department of Pharmacology and Toxicology, The State University of New Jersey, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, The State University of New Jersey, USA
| |
Collapse
|
21
|
Özkan M, Eskiocak YC, Wingender G. Macrophage and dendritic cell subset composition can distinguish endotypes in adjuvant-induced asthma mouse models. PLoS One 2021; 16:e0250533. [PMID: 34061861 PMCID: PMC8168852 DOI: 10.1371/journal.pone.0250533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022] Open
Abstract
Asthma is a heterogeneous disease with neutrophilic and eosinophilic asthma as the main endotypes that are distinguished according to the cells recruited to the airways and the related pathology. Eosinophilic asthma is the treatment-responsive endotype, which is mainly associated with allergic asthma. Neutrophilic asthma is a treatment-resistant endotype, affecting 5-10% of asthmatics. Although eosinophilic asthma is well-studied, a clear understanding of the endotypes is essential to devise effective diagnosis and treatment approaches for neutrophilic asthma. To this end, we directly compared adjuvant-induced mouse models of neutrophilic (CFA/OVA) and eosinophilic (Alum/OVA) asthma side-by-side. The immune response in the inflamed lung was analyzed by multi-parametric flow cytometry and immunofluorescence. We found that eosinophilic asthma was characterized by a preferential recruitment of interstitial macrophages and myeloid dendritic cells, whereas in neutrophilic asthma plasmacytoid dendritic cells, exudate macrophages, and GL7+ activated B cells predominated. This differential distribution of macrophage and dendritic cell subsets reveals important aspects of the pathophysiology of asthma and holds the promise to be used as biomarkers to diagnose asthma endotypes.
Collapse
Affiliation(s)
- Müge Özkan
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
| | | | - Gerhard Wingender
- Izmir Biomedicine and Genome Center (IBG), Balcova/Izmir, Turkey
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
| |
Collapse
|
22
|
Otsuka S, Melis N, Gaida MM, Dutta D, Weigert R, Ashwell JD. Calcineurin inhibitors suppress acute graft-versus-host disease via NFAT-independent inhibition of T cell receptor signaling. J Clin Invest 2021; 131:147683. [PMID: 33822776 DOI: 10.1172/jci147683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 01/31/2023] Open
Abstract
Inhibitors of calcineurin phosphatase activity (CNIs) such as cyclosporin A (CsA) are widely used to treat tissue transplant rejection and acute graft-versus-host disease (aGVHD), for which inhibition of gene expression dependent on nuclear factor of activated T cells (NFAT) is the mechanistic paradigm. We recently reported that CNIs inhibit TCR-proximal signaling by preventing calcineurin-mediated dephosphorylation of LckS59, an inhibitory modification, raising the possibility of another mechanism by which CNIs suppress immune responses. Here we used T cells from mice that express LckS59A, which cannot accept a phosphate at residue 59, to initiate aGVHD. Although CsA inhibited NFAT-dependent gene upregulation in allo-aggressive T cells expressing either LckWT or LckS59A, it was ineffective in treating disease when the T cells expressed LckS59A. Two important NFAT-independent T cell functions were found to be CsA-resistant in LckS59A T cells: upregulation of the cytolytic protein perforin in tissue-infiltrating CD8+ T cells and antigen-specific T/DC adhesion and clustering in lymph nodes. These results demonstrate that effective treatment of aGVHD by CsA requires NFAT-independent inhibition of TCR signaling. Given that NFATs are widely expressed and off-target effects are a major limitation in CNI use, it is possible that targeting TCR-associated calcineurin directly may provide effective therapies with less toxicity.
Collapse
Affiliation(s)
| | - Nicolas Melis
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | | | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
23
|
Yingchoncharoen P, Charoenngam N, Ponvilawan B, Thongpiya J, Chaikijurajai T, Ungprasert P. The Association Between Asthma and Risk of Myasthenia Gravis: A Systematic Review and Meta-analysis. Lung 2021; 199:273-280. [PMID: 33987703 DOI: 10.1007/s00408-021-00444-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE This study aimed to investigate the association between asthma and risk of myasthenia gravis (MG) using the method of systematic review and meta-analysis. METHODS Potentially eligible studies were identified from Medline and EMBASE databases from inception to July 2020 using search strategy that comprised terms for "Asthma" and "Myasthenia Gravis". Eligible cohort study must consist of one cohort of individuals with asthma and another cohort of individuals without asthma. Then, the study must report relative risk (RR) with 95% confidence intervals (95% CIs) of incident MG between the groups. Eligible case-control studies must include cases with MG and controls without MG. Then, the study must explore their history of asthma. Odds ratio (OR) with 95% CIs of the association between asthma status and MG must be reported. Point estimates with standard errors were retrieved from each study and were combined together using the generic inverse variance method. RESULTS A total of 6,835 articles were identified. After two rounds of independent review by five investigators, two cohort studies and three case-control studies met the eligibility criteria and were included into the meta-analysis. Pooled analysis showed that asthma was significantly associated with risk of MG with the pooled risk ratio of 1.38 (95% CI 1.02-1.86). Funnel plot was symmetric, which was not suggestive of publication bias. CONCLUSION The current study found a significant association between asthma and increased risk of MG.
Collapse
Affiliation(s)
- Pitchaporn Yingchoncharoen
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nipith Charoenngam
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand. .,Section Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University School of Medicine, 85 E Newton St., Boston, MA, 02118, USA.
| | - Ben Ponvilawan
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jerapas Thongpiya
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanat Chaikijurajai
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Patompong Ungprasert
- Department of Rheumatologic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
24
|
Chao CL, Wang CJ, Huang HW, Kuo HP, Su MH, Lin HC, Teng CW, Sy LB, Wu WM. Poria cocos Modulates Th1/Th2 Response and Attenuates Airway Inflammation in an Ovalbumin-Sensitized Mouse Allergic Asthma Model. Life (Basel) 2021; 11:life11050372. [PMID: 33919400 PMCID: PMC8143325 DOI: 10.3390/life11050372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Poria cocos, called fuling, is a famous tonic in traditional Chinese medicine that reportedly possesses various pharmacological properties, including anti-inflammation and immunomodulation. However, few studies have investigated the effects of P. cocos on allergic diseases, such as allergic asthma. Allergic asthma is caused primarily by Th2 immune response and characterized by airway inflammation. This study first demonstrated the anti-allergic and anti-asthmatic effects of P. cocos extract (Lipucan®). P. cocos extract distinctly exhibited reduced inflammatory cell infiltration in the peribronchial and peribronchiolar regions compared to the asthma group in the histological analysis of pulmonary tissue sections. Prolonged P. cocos extract administration significantly reduced eosinophil infiltration, PGE2 levels, total IgE, and OVA-specific IgE. Moreover, P. cocos extract markedly suppressed Th2 cytokines, IL-4, IL-5, and IL-10. On the other hand, P. cocos extract significantly elevated IL-2 secretion by Th1 immune response. In addition, P. cocos extract elevated the IFN-γ level at a lower dose. We also observed that P. cocos extract increased the activity of NK cells. Our results suggest that P. cocos extract remodels the intrinsic Th1/Th2 response to prevent or alleviate allergy-induced asthma or symptoms.
Collapse
Affiliation(s)
- Chien-Liang Chao
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan; (C.-L.C.); (C.-J.W.); (H.-W.H.); (H.-P.K.); (M.-H.S.); (H.-C.L.)
| | - Chao-Jih Wang
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan; (C.-L.C.); (C.-J.W.); (H.-W.H.); (H.-P.K.); (M.-H.S.); (H.-C.L.)
- Sinphar Tian-Li Pharmaceutical Co., Ltd., Sinphar Group, Hangzhou 311100, China
| | - Hsin-Wen Huang
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan; (C.-L.C.); (C.-J.W.); (H.-W.H.); (H.-P.K.); (M.-H.S.); (H.-C.L.)
| | - Han-Peng Kuo
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan; (C.-L.C.); (C.-J.W.); (H.-W.H.); (H.-P.K.); (M.-H.S.); (H.-C.L.)
- SynCore Biotechnology Co., Ltd., Sinphar Group, Yilan 269, Taiwan
| | - Muh-Hwan Su
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan; (C.-L.C.); (C.-J.W.); (H.-W.H.); (H.-P.K.); (M.-H.S.); (H.-C.L.)
- SynCore Biotechnology Co., Ltd., Sinphar Group, Yilan 269, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Hang-Ching Lin
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan; (C.-L.C.); (C.-J.W.); (H.-W.H.); (H.-P.K.); (M.-H.S.); (H.-C.L.)
- School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Wen Teng
- Department of Nutritional Science, Fu-Jen Catholic University, Hsinchuang 24205, Taiwan;
| | | | - Wen-Mein Wu
- Department of Nutritional Science, Fu-Jen Catholic University, Hsinchuang 24205, Taiwan;
- Correspondence: ; Tel.: +886-2-2905-3633
| |
Collapse
|
25
|
Christopoulos PF, Gjølberg TT, Krüger S, Haraldsen G, Andersen JT, Sundlisæter E. Targeting the Notch Signaling Pathway in Chronic Inflammatory Diseases. Front Immunol 2021; 12:668207. [PMID: 33912195 PMCID: PMC8071949 DOI: 10.3389/fimmu.2021.668207] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The Notch signaling pathway regulates developmental cell-fate decisions and has recently also been linked to inflammatory diseases. Although therapies targeting Notch signaling in inflammation in theory are attractive, their design and implementation have proven difficult, at least partly due to the broad involvement of Notch signaling in regenerative and homeostatic processes. In this review, we summarize the supporting role of Notch signaling in various inflammation-driven diseases, and highlight efforts to intervene with this pathway by targeting Notch ligands and/or receptors with distinct therapeutic strategies, including antibody designs. We discuss this in light of lessons learned from Notch targeting in cancer treatment. Finally, we elaborate on the impact of individual Notch members in inflammation, which may lay the foundation for development of therapeutic strategies in chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Torleif T. Gjølberg
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre for Eye Research and Department of Ophthalmology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stig Krüger
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Guttorm Haraldsen
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jan Terje Andersen
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eirik Sundlisæter
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
26
|
Boehne C, Behrendt AK, Meyer-Bahlburg A, Boettcher M, Drube S, Kamradt T, Hansen G. Tim-3 is dispensable for allergic inflammation and respiratory tolerance in experimental asthma. PLoS One 2021; 16:e0249605. [PMID: 33822811 PMCID: PMC8023500 DOI: 10.1371/journal.pone.0249605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/19/2021] [Indexed: 11/18/2022] Open
Abstract
T cell immunoglobulin and mucin domain-containing molecule-3 (Tim-3) has been described as a transmembrane protein, expressed on the surface of various T cells as well as different cells of innate immunity. It has since been associated with Th1 mediated autoimmune diseases and transplantation tolerance studies, thereby indicating a possible role of this receptor in counter-regulation of Th2 immune responses. In the present study we therefore directly examined the role of Tim-3 in allergic inflammation and respiratory tolerance. First, Tim-3-/- mice and wild type controls were immunized and challenged with the model allergen ovalbumin (OVA) to induce an asthma-like phenotype. Analysis of cell numbers and distribution in the bronchoalveolar lavage (BAL) fluid as well as lung histology in H&E stained lung sections demonstrated a comparable degree of eosinophilic inflammation in both mouse strains. Th2 cytokine production in restimulated cell culture supernatants and serum IgE and IgG levels were equally increased in both genotypes. In addition, cell proliferation and the distribution of different T cell subsets were comparable. Moreover, analysis of both mouse strains in our respiratory tolerance model, where mucosal application of the model allergen before immunization, prevents the development of an asthma-like phenotype, revealed no differences in any of the parameters mentioned above. The current study demonstrates that Tim-3 is dispensable not only for the development of allergic inflammation but also for induction of respiratory tolerance in mice in an OVA-based model.
Collapse
Affiliation(s)
- Carolin Boehne
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
| | - Ann-Kathrin Behrendt
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
| | - Almut Meyer-Bahlburg
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Lower Saxony, Germany
| | - Martin Boettcher
- Institute of Immunology, University Hospital Jena, Jena, Thuringia, Germany
| | - Sebastian Drube
- Institute of Immunology, University Hospital Jena, Jena, Thuringia, Germany
| | - Thomas Kamradt
- Institute of Immunology, University Hospital Jena, Jena, Thuringia, Germany
| | - Gesine Hansen
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Lower Saxony, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Lower Saxony, Germany
- * E-mail:
| |
Collapse
|
27
|
Pang L, Yu P, Liu X, Fan Y, Shi Y, Zou S. Fine particulate matter induces airway inflammation by disturbing the balance between Th1/Th2 and regulation of GATA3 and Runx3 expression in BALB/c mice. Mol Med Rep 2021; 23:378. [PMID: 33760131 PMCID: PMC7986036 DOI: 10.3892/mmr.2021.12017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to examine the effects of 2.5 µm particulate matter (PM2.5) on airway inflammation and to investigate the possible underlying mechanism. Specifically, the focus was on the imbalance of T helper (Th)1/Th2 cells and the dysregulated expression of transcription factors, including trans-acting T cell-specific transcription factor 3 (GATA3), runt-related transcription factor 3 (Runx3) and T-box transcription factor TBX21 (T-bet). In this study, ambient PM2.5 was collected and analyzed, male BALB/c mice were sensitized and treated with PBS, ovalbumin (OVA), PM2.5 or OVA + PM2.5. The effects of PM2.5 alone or PM2.5 + OVA on immunopathological changes, the expression of transcription factors GATA3, Runx3 and T-bet, and the imbalance of Th1/Th2 were investigated. It was found that PM2.5 + OVA co-exposure significantly enhanced inflammatory cell infiltration, increased higher tracheal secretions in lung tissue and upregulated respiratory resistance response to acetylcholine compared with PM2.5 or OVA single exposure and control groups. In addition, higher protein and mRNA expression levels of Th2 inflammatory mediators interleukin (IL)-4, IL-5 and IL-13 in bronchoalveolar lavage fluid were observed in PM2.5 + OVA treated mice, whereas the expression levels of GATA3 and STAT6 were exhibited in mice exposed to OVA + PM2.5 compared with the OVA and PM2.5 groups. By contrast, PM2.5 exposure decreased the protein and mRNA expression levels of Th1 cytokine interferon-γ and transcription factors Runx3 and T-bet, especially among asthmatic mice, different from OVA group, PM2.5 exposure only failed to influence the expression of T-bet. To conclude, PM2.5 exposure evoked the allergic airway inflammation response, especially in the asthmatic mouse model and led to Th1/Th2 imbalance. These effects worked mainly by upregulating GATA3 and downregulating Runx3. These data suggested that Runx3 may play an important role in PM2.5-aggravated asthma in BALB/c mice.
Collapse
Affiliation(s)
- Lingling Pang
- Shandong University, Jinan, Shandong 250100, P.R. China
| | - Pengfei Yu
- Shandong University, Jinan, Shandong 250100, P.R. China
| | - Xueping Liu
- Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Yingqi Fan
- Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Ying Shi
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Shenchun Zou
- Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
28
|
Tynecka M, Moniuszko M, Eljaszewicz A. Old Friends with Unexploited Perspectives: Current Advances in Mesenchymal Stem Cell-Based Therapies in Asthma. Stem Cell Rev Rep 2021; 17:1323-1342. [PMID: 33649900 PMCID: PMC7919631 DOI: 10.1007/s12015-021-10137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have a great regenerative and immunomodulatory potential that was successfully tested in numerous pre-clinical and clinical studies of various degenerative, hematological and inflammatory disorders. Over the last few decades, substantial immunoregulatory effects of MSC treatment were widely observed in different experimental models of asthma. Therefore, it is tempting to speculate that stem cell-based treatment could become an attractive means to better suppress asthmatic airway inflammation, especially in subjects resistant to currently available anti-inflammatory therapies. In this review, we discuss mechanisms accounting for potent immunosuppressive properties of MSCs and the rationale for their use in asthma. We describe in detail an intriguing interplay between MSCs and other crucial players in the immune system as well as lung microenvironment. Finally, we reveal the potential of MSCs in maintaining airway epithelial integrity and alleviating lung remodeling.
Collapse
Affiliation(s)
- Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24A, Białystok, 15-276, Poland.
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
| |
Collapse
|
29
|
Saito T, Ichikawa T, Numakura T, Yamada M, Koarai A, Fujino N, Murakami K, Yamanaka S, Sasaki Y, Kyogoku Y, Itakura K, Sano H, Takita K, Tanaka R, Tamada T, Ichinose M, Sugiura H. PGC-1α regulates airway epithelial barrier dysfunction induced by house dust mite. Respir Res 2021; 22:63. [PMID: 33607992 PMCID: PMC7893966 DOI: 10.1186/s12931-021-01663-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
Background The airway epithelial barrier function is disrupted in the airways of asthmatic patients. Abnormal mitochondrial biogenesis is reportedly involved in the pathogenesis of asthma. However, the role of mitochondrial biogenesis in the airway barrier dysfunction has not been elucidated yet. This study aimed to clarify whether the peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α), a central regulator of mitochondrial biogenesis, is involved in the disruption of the airway barrier function induced by aeroallergens. Methods BEAS-2B cells were exposed to house dust mite (HDM) and the expressions of PGC-1α and E-cadherin, a junctional protein, were examined by immunoblotting. The effect of SRT1720, a PGC-1α activator, was investigated by immunoblotting, immunocytochemistry, and measuring the transepithelial electrical resistance (TEER) on the HDM-induced reduction in mitochondrial biogenesis markers and junctional proteins in airway bronchial epithelial cells. Furthermore,the effects of protease activated receptor 2 (PAR2) inhibitor, GB83, Toll-like receptor 4 (TLR4) inhibitor, lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS), protease inhibitors including E64 and 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) on the HDM-induced barrier dysfunction were investigated. Results The amounts of PGC-1α and E-cadherin in the HDM-treated cells were significantly decreased compared to the vehicle-treated cells. SRT1720 restored the expressions of PGC-1α and E-cadherin reduced by HDM in BEAS-2B cells. Treatment with SRT1720 also significantly ameliorated the HDM-induced reduction in TEER. In addition, GB83, LPS-RS, E64 and AEBSF prevented the HDM-induced reduction in the expression of PGC1α and E-cadherin. Conclusions The current study demonstrated that HDM disrupted the airway barrier function through the PAR2/TLR4/PGC-1α-dependent pathway. The modulation of this pathway could be a new approach for the treatment of asthma.
Collapse
Affiliation(s)
- Tsutomu Saito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Koji Murakami
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Shun Yamanaka
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Yusaku Sasaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Yorihiko Kyogoku
- Department of Respiratory Medicine, Sendai City Hospital, Sendai, Japan
| | - Koji Itakura
- Department of Respiratory Medicine, Osaki Citizen Hospital, Osaki, Miyagi, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Katsuya Takita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Rie Tanaka
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Osaki Citizen Hospital, Osaki, Miyagi, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
30
|
Huang CY, Hu RC, Li J, Chen BB, Dai AG. α1-Antitrypsin alleviates inflammation and oxidative stress by suppressing autophagy in asthma. Cytokine 2021; 141:155454. [PMID: 33611166 DOI: 10.1016/j.cyto.2021.155454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Asthma is considered an incurable disease, although many advances have been made in asthma treatments in recent years. Therefore, elucidating the pathological mechanisms and seeking novel and effective therapeutic strategies for asthma are urgently needed. METHODS Airway resistance was measured by whole-body plethysmography. H&E staining was used to observe the morphological changes in the lung. Oxidative stress was assessed by measuring the levels of MDA, CAT and SOD. Gene expression was analysed by western blotting and RT-qPCR. ELISA was used to analyse the concentrations of IL-4, IL-5 and IFN-γ. RESULTS In the present study, we successfully established in vivo and in vitro asthma models. OVA administration led to elevated lung resistance, cell counts in BALF, and cytokine secretion, impaired airway structure and enhanced oxidative stress and autophagy in a mouse model of asthma, while IL-13 induced inflammation, oxidative stress and autophagy in BEAS-2B cells. A1AT reduced lung resistance and cell counts in BALF and suppressed inflammation, oxidative stress and autophagy in a mouse model of asthma and IL-13-induced BEAS-2B cells. Mechanistic investigations revealed that autophagy activation compromised the protective effect of A1AT on IL-13-induced BEAS-2B cells. Further mechanistic studies revealed that A1AT alleviated inflammation and oxidative stress by inhibiting autophagy in the context of asthma. CONCLUSION We demonstrated that A1AT could alleviate inflammation and oxidative stress by suppressing autophagy in the context of asthma and thus ameliorate asthma. Our study revealed novel pathological mechanisms and provided novel potential therapeutic targets for asthma treatment.
Collapse
Affiliation(s)
- Chang-Yu Huang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410012, Hunan Province, PR China
| | - Rui-Cheng Hu
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410012, Hunan Province, PR China
| | - Jie Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410012, Hunan Province, PR China
| | - Bin-Bin Chen
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410012, Hunan Province, PR China
| | - Ai-Guo Dai
- Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, PR China.
| |
Collapse
|
31
|
Pfeffer PE, Mudway IS, Grigg J. Air Pollution and Asthma: Mechanisms of Harm and Considerations for Clinical Interventions. Chest 2020; 159:1346-1355. [PMID: 33461908 DOI: 10.1016/j.chest.2020.10.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022] Open
Abstract
There is global concern regarding the harmful impact of polluted air on the respiratory health of patients with asthma. Multiple epidemiologic studies have shown ongoing associations between high levels of air pollution and poor early life lung growth, development of allergic sensitization, development of asthma, airway inflammation, acutely impaired lung function, respiratory tract infections, and asthma exacerbations. However, studies have often yielded inconsistent findings, and not all studies have found significant associations; this may be related to both variations in statistical, measurement, and modeling methodologies between studies as well as differences in the concentrations and composition of air pollution globally. Overall, this variation in findings suggests we still do not fully understand the effects of ambient pollution on the lungs and on the evolution and exacerbation of airway diseases. There is clearly a need to augment epidemiologic studies with experimental studies to clarify the underlying mechanistic basis for the adverse responses reported and to identify the key gaseous and particle-related components within the complex air pollution mixture driving these outcomes. Some progress toward these aims has been made. This article reviews studies providing an improved understanding of causal pathways linking air pollution to asthma development and exacerbation. The article also considers potential strategies to reduce asthma morbidity and mortality through regulation and behavioral/pharmacologic interventions, including a consideration of pollutant avoidance strategies and antioxidant and/or vitamin D supplementation.
Collapse
Affiliation(s)
- Paul E Pfeffer
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, England.
| | - Ian S Mudway
- MRC Centre for Environment and Health Asthma UK Centre in Allergic Mechanisms of Asthma and NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, England
| | - Jonathan Grigg
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, England
| |
Collapse
|
32
|
Nyambuya TM, Dludla PV, Mxinwa V, Nkambule BB. Obesity-related asthma in children is characterized by T-helper 1 rather than T-helper 2 immune response: A meta-analysis. Ann Allergy Asthma Immunol 2020; 125:425-432.e4. [PMID: 32561508 DOI: 10.1016/j.anai.2020.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Asthma is a chronic inflammatory condition characterized by T-helper (TH) 2 polarization. In children, the prevalence of obesity is associated with an increased incidence of asthma. Notably, obesity is linked with TH1-mediated inflammation and has been identified as a major risk factor for asthma. OBJECTIVE To investigate the impact of obesity on TH1 (tumor necrosis factor α, interferon gamma, interleukin (IL)-6, IL-8) and TH2 (IL-4, IL-5, IL-10, IL-13) immune responses in children with asthma. METHODS We searched the MEDLINE and gray literature electronic databases for eligible studies from inception up until April 2020. The quality of included studies and evidence was independently assessed by 2 reviewers. The random-effects model was used in this meta-analysis, and outcomes were reported as standardized mean difference (SMD) and 95% confidence interval (CI). RESULTS Overall, 5 studies comprising 482 participants met the inclusion criteria. The meta-analysis revealed an increased TH2-mediated immune response in lean people with asthma compared with controls without asthma (SMD: -1.15 [95% CI: -1.93, 0.36]; I2 = 93%; pH < .001). However, in obese people with asthma, there was polarization toward TH1 immune response compared with lean people with asthma (SMD: -0.43 [95% CI: -0.79, -0.08]; I2 = 88%, pH < .001). CONCLUSION This meta-analysis reveals that there are differences in immune responses mediated by T-helper cells in lean and obese children with asthma. Moreover, and not unique to asthma, obesity polarizes the immune response toward TH1 rather than the classical TH2. This could be an important aspect to understand to establish effective therapeutic targets for obese children with asthma.
Collapse
Affiliation(s)
- Tawanda Maurice Nyambuya
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia.
| | - Phiwayinkosi Vusi Dludla
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bongani Brian Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
33
|
Lommatzsch M. Immune Modulation in Asthma: Current Concepts and Future Strategies. Respiration 2020; 99:566-576. [PMID: 32512570 DOI: 10.1159/000506651] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
Asthma treatment concepts have profoundly changed over the last 20 years, from standard therapeutic regimens for all patients with asthma towards individually tailored interventions targeting treatable traits ("precision medicine"). A precise and highly effective immune modulation with minimal adverse effects plays a central role in this new concept. Recently, there have been major advances in the treatment of asthma with immune-modulatory compounds. One example is the approval of several highly potent biologics for the treatment of severe asthma. New immune-modulatory strategies are expected to enter clinical practice in the future; these innovations will be especially important for patients with treatment-resistant asthma.
Collapse
Affiliation(s)
- Marek Lommatzsch
- Abteilung für Pneumologie/Interdisziplinäre Internistische Intensivstation, Medizinische Klinik I, Zentrum für Innere Medizin, Universitätsmedizin Rostock, Rostock, Germany,
| |
Collapse
|
34
|
Warifteine and methylwarifteine inhibited the type 2 immune response on combined allergic rhinitis and asthma syndrome (CARAS) experimental model through NF-кB pathway. Int Immunopharmacol 2020; 85:106616. [PMID: 32450529 DOI: 10.1016/j.intimp.2020.106616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/03/2020] [Accepted: 05/17/2020] [Indexed: 01/11/2023]
Abstract
CARAS is an airway inflammation of allergic individuals, with a type 2 immune response. The pharmacotherapy is based on drugs with relevant side effects. Thus, the goal of this study evaluated the alkaloids warifteine (War) and methylwarifteine (Mwar) from Cissampelos sympodialis in CARAS experimental model. Therefore, BALB/c mice were ovalbumin (OVA) sensitized and challenged and treated with both alkaloids. Treated animals showed a decrease (p < 0.05) of allergic signs as sneezing and nasal rubbings, histamine nasal hyperreactivity, and inflammatory cell migration into the nasal (NALF) and the bronchoalveolar (BALF) fluids, main eosinophils. In the systemic context, only Mwar reduced eosinophilia, however, both alkaloids reduced the serum levels of OVA-specific IgE. Histological analysis revealed that the alkaloids decreased the inflammatory cells into the subepithelial and perivascular regions of nasal tissue and the peribronchiolar and perivascular regions of lung tissue. Hyperplasia/hypertrophy of nasal and lung goblet cells were reduced in alkaloid treated animals; however, the treatment did not change the number of mast cells. The lung hyperactivity was attenuated by reducing hyperplasia of fibroblast and collagen fiber deposition and hypertrophy of the lung smooth muscle layer. The immunomodulatory effect was by decreasing of type 2 and 3 cytokines (IL-4/IL-13/IL-5 and IL-17A) dependent by the increasing of type 1 cytokine (IFN-γ) into the BALF of treated sick animals. Indeed, both alkaloids reduced the NF-кB (p65) activation on granulocytes and lymphocytes, indicating that the alkaloids shut down the intracellular transduction signals underlie the transcription of TH2 cytokine gens.
Collapse
|
35
|
Kortekaas Krohn I, Seys SF, Lund G, Jonckheere A, Dierckx de Casterlé I, Ceuppens JL, Steelant B, Hellings PW. Nasal epithelial barrier dysfunction increases sensitization and mast cell degranulation in the absence of allergic inflammation. Allergy 2020; 75:1155-1164. [PMID: 31769882 DOI: 10.1111/all.14132] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/21/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Increased epithelial permeability has been reported in allergic rhinitis, with histamine and type-2 inflammation being responsible for tight junction dysfunction. The impact of an epithelial barrier defect on allergic sensitization and mast cell (MC) degranulation remains speculative. METHODS Transepithelial passage of allergens was evaluated on primary human nasal epithelial cell cultures. Active sensitization was attempted by repeated intranasal ovalbumin (OVA) applications in Naïve mice. In a passive sensitization model, mice were injected with IgE to Dermatophagoides pteronyssinus (rDer p)2 and then exposed intranasally to the allergen. Chitosan was used to disrupt nasal epithelial integrity in vitro and in vivo. RESULTS Chitosan strongly reduced transepithelial electrical resistance and facilitated transepithelial allergen passage in cultured primary nasal epithelial cells. In vivo, intranasal chitosan affected occludin expression and facilitated allergen passage. After epithelial barrier disruption, intranasal OVA application induced higher OVA-specific IgG1 and total IgE in serum, and increased eosinophilia and interleukin-5 in bronchoalveolar lavage (BAL) compared to sham-OVA mice. Chitosan exposure, prior to rDer p2 allergen challenge in passively sensitized mice, resulted in increased β-hexosaminidase levels in serum and BAL compared to sham-rDer p2 mice. Intranasal treatment with the synthetic glucocorticoid fluticasone propionate prevented chitosan-induced barrier dysfunction, allergic sensitization, and MC degranulation. CONCLUSION Epithelial barrier dysfunction facilitates transepithelial allergen passage, allergic sensitization, and allergen-induced MC degranulation even in the absence of inflammatory environment. These results emphasize the crucial role of an intact epithelial barrier in prevention of allergy.
Collapse
Affiliation(s)
- Inge Kortekaas Krohn
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
| | - Sven F. Seys
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
- European Forum for Research and Education in Allergy and Airway Diseases (EUFOREA) Brussels Belgium
| | | | - Anne‐Charlotte Jonckheere
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
| | - Isabelle Dierckx de Casterlé
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
| | - Jan L. Ceuppens
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
| | - Brecht Steelant
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
| | - Peter W. Hellings
- Clinical Division of Otorhinolaryngology, Head and Neck Surgery University Hospitals Leuven Leuven Belgium
- Clinical Division of Otorhinolaryngology, Head and Neck Surgery Academic Medical Center Amsterdam The Netherlands
- Faculty of Medicine and Health Sciences University of Ghent Ghent Belgium
| |
Collapse
|
36
|
Liu L, Wang S, Xing H, Sun Y, Ding J, He N. Bulleyaconitine A inhibits the lung inflammation and airway remodeling through restoring Th1/Th2 balance in asthmatic model mice. Biosci Biotechnol Biochem 2020; 84:1409-1417. [PMID: 32290781 DOI: 10.1080/09168451.2020.1752140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The current study aimed to study the effects of Bulleyaconitine A (BLA) on asthma. Asthmatic mice model was established by ovalbumin (OVA) stimulation, and the model mice were treated by BLA. After BLA treatment, the changes in lung and airway resistances, total and differential leukocytes in the bronchoalveolar lavage fluid (BALF) were detected, and the changes in lung inflammation and airway remodeling were observed. Moreover, the secretion of IgE, Th1/Th2-type and IL-17A cytokines in BALF and serum of the asthmatic mice were determined. The resuts showed that BLA attenuated OVA-induced lung and airway resistances, inhibited the inflammatory cell recruitment in BALF and the inflammation and airway remodeling of the asthmatic mice. In addition, BLA suppressed the secretion of IgE, Th2-type cytokines, and IL-17A, but enhanced secretions of Th1-type cytokines in BALF and serum. The current study discovered that BLA inhibited the lung inflammation and airway remodeling via restoring the Th1/Th2 balance in asthmatic mice.
Collapse
Affiliation(s)
- Liping Liu
- Department of Allergy, Yantai Yuhuangding Hospital , Yantai, China
| | - Shuyun Wang
- Department of Allergy, Yantai Yuhuangding Hospital , Yantai, China
| | - Haiyan Xing
- Department of Allergy, Yantai Yuhuangding Hospital , Yantai, China
| | - Yuemei Sun
- Department of Allergy, Yantai Yuhuangding Hospital , Yantai, China
| | - Juan Ding
- Department of Allergy, Yantai Yuhuangding Hospital , Yantai, China
| | - Ning He
- Department of Allergy, Yantai Yuhuangding Hospital , Yantai, China
| |
Collapse
|
37
|
Age-related immune-modulating properties of seminal fluid that control the severity of asthma are gender specific. Aging (Albany NY) 2020; 11:707-723. [PMID: 30677748 PMCID: PMC6366957 DOI: 10.18632/aging.101773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/10/2019] [Indexed: 02/04/2023]
Abstract
Reproductive organs play a pivotal role in asthma development and progression, especially in women. Endocrine environment changes associated with the menstrual cycle, pregnancy, and menopause can exacerbate the clinical features of asthma. Factors secreted by reproductive organs may be responsible for the gender difference and age-related changes in adult asthma. Here, we show that mammalian seminal fluid has anti-asthma effects exclusively in females. Exposure to murine seminal fluid markedly reduced eosinophilic airway inflammation in 2-month-old female mice upon ovalbumin inhalation. The anti-asthma effect with seminal fluid from 10-month-old males was double that with fluid from 2-month-old males, suggesting that it depended on male sexual maturation. We further found that seminal fluid from middle-aged human volunteers had beneficial effects in asthmatic female mice; these effects were associated with transcriptional repression of osteopontin and IL-17A, which are poor prognostic factors for asthma. In 2-month-old male mice, however, human seminal fluid failed to decrease asthmatic features and even enhanced osteopontin and IL-17A transcription. Our data demonstrate that age-related seminal fluid exerts opposing effects in asthmatic male and female mice. These findings may help the development of novel approaches to control the prevalence and age-related progression of asthma in women.
Collapse
|
38
|
Jin S, Zeng X, Fang J, Lin J, Chan SY, Erzurum SC, Cheng F. A network-based approach to uncover microRNA-mediated disease comorbidities and potential pathobiological implications. NPJ Syst Biol Appl 2019; 5:41. [PMID: 31754458 PMCID: PMC6853960 DOI: 10.1038/s41540-019-0115-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022] Open
Abstract
Disease-disease relationships (e.g., disease comorbidities) play crucial roles in pathobiological manifestations of diseases and personalized approaches to managing those conditions. In this study, we develop a network-based methodology, termed meta-path-based Disease Network (mpDisNet) capturing algorithm, to infer disease-disease relationships by assembling four biological networks: disease-miRNA, miRNA-gene, disease-gene, and the human protein-protein interactome. mpDisNet is a meta-path-based random walk to reconstruct the heterogeneous neighbors of a given node. mpDisNet uses a heterogeneous skip-gram model to solve the network representation of the nodes. We find that mpDisNet reveals high performance in inferring clinically reported disease-disease relationships, outperforming that of traditional gene/miRNA-overlap approaches. In addition, mpDisNet identifies network-based comorbidities for pulmonary diseases driven by underlying miRNA-mediated pathobiological pathways (i.e., hsa-let-7a- or hsa-let-7b-mediated airway epithelial apoptosis and pro-inflammatory cytokine pathways) as derived from the human interactome network analysis. The mpDisNet offers a powerful tool for network-based identification of disease-disease relationships with miRNA-mediated pathobiological pathways.
Collapse
Affiliation(s)
- Shuting Jin
- Department of Computer Science, Xiamen University, Xiamen, 361005 China
| | - Xiangxiang Zeng
- School of Information Science and Engineering, Hunan University, Changsha, 410082 China
| | - Jiansong Fang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Jiawei Lin
- Department of Computer Science, Xiamen University, Xiamen, 361005 China
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Serpil C. Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195 USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| |
Collapse
|
39
|
Pandey R, Prakash V. Expression of FOXP3 and GATA3 Transcription Factors Among Bronchial Asthmatics in Northern Population. Indian J Clin Biochem 2019; 36:88-93. [PMID: 33505132 DOI: 10.1007/s12291-019-00853-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
Asthma is a common chronic airways inflammatory disorder in which the expression of genes for the transcription factors FoxP3 and GATA3 plays crucial roles in activation of specific T cells population and pathogenesis of asthma. Recent data have shown that Hb, Eosinophils, total leucocytes count (TLC), absolute eosinophil count (AEC), and IgE, may be involved in adversely influencing the status of several chronic diseases including asthma. In this communication, we have carried out a case control study in order to evaluate the expression of FoxP3, GATA-3 genes in 80 bronchial asthmatic patients using real time polymerase chain reaction technique, and also to analyse and compare the values of Hb, TLC, AEC, and IgE in asthmatics with 80 control subjects. The numbers of eosinophils and total leucocytes and the level of serum IgE were higher in asthmatics compared to healthy subjects. The relative expressions of FoxP3 and GATA-3 genes in control versus asthmatics were 12.42 ± 1.413 versus 5.79 ± 0.260 (P value = < 0.0001) and 4.731 ± 0.350 versus 8.415 ± 0.359 (P value = 0.0043), respectively. The asthmatics displayed comparatively decreased level of FoxP3 expression and higher level of GATA-3 expression. There was a positive and significant correlation between the level of IgE and expression of GATA-3 in asthmatics. Relatively lower level of FoxP3 mRNA expression in bronchial asthmatics may be linked with the sustained inflammatory process and decreased immune tolerance by asthmatics. A positive correlation of GATA-3 expression with the increase in IgE level shows it to be a characteristic of asthma. However, extensive work is required to delineate the targets involved in the pathogenesis of asthma for adequate therapeutic interventions.
Collapse
Affiliation(s)
- Rashmi Pandey
- Departments of Pulmonary and Critical Care Medicine, KGMU, Lucknow, India
| | - Ved Prakash
- Departments of Pulmonary and Critical Care Medicine, KGMU, Lucknow, India
| |
Collapse
|
40
|
Nieto-Fontarigo JJ, González-Barcala FJ, San José E, Arias P, Nogueira M, Salgado FJ. CD26 and Asthma: a Comprehensive Review. Clin Rev Allergy Immunol 2019; 56:139-160. [PMID: 27561663 PMCID: PMC7090975 DOI: 10.1007/s12016-016-8578-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asthma is a heterogeneous and chronic inflammatory family of disorders of the airways with increasing prevalence that results in recurrent and reversible bronchial obstruction and expiratory airflow limitation. These diseases arise from the interaction between environmental and genetic factors, which collaborate to cause increased susceptibility and severity. Many asthma susceptibility genes are linked to the immune system or encode enzymes like metalloproteases (e.g., ADAM-33) or serine proteases. The S9 family of serine proteases (prolyl oligopeptidases) is capable to process peptide bonds adjacent to proline, a kind of cleavage-resistant peptide bonds present in many growth factors, chemokines or cytokines that are important for asthma. Curiously, two serine proteases within the S9 family encoded by genes located on chromosome 2 appear to have a role in asthma: CD26/dipeptidyl peptidase 4 (DPP4) and DPP10. The aim of this review is to summarize the current knowledge about CD26 and to provide a structured overview of the numerous functions and implications that this versatile enzyme could have in this disease, especially after the detection of some secondary effects (e.g., viral nasopharyngitis) in type II diabetes mellitus patients (a subset with a certain risk of developing obesity-related asthma) upon CD26 inhibitory therapy.
Collapse
Affiliation(s)
- Juan J Nieto-Fontarigo
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Francisco J González-Barcala
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Respiratory Department, Clinic University Hospital (CHUS), Santiago de Compostela, Spain
| | - Esther San José
- Clinical Analysis Service, Clinic University Hospital (CHUS), Santiago de Compostela, Spain
| | - Pilar Arias
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Montserrat Nogueira
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Francisco J Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| |
Collapse
|
41
|
Song J, Lim HX, Lee A, Kim S, Lee JH, Kim TS. Staphylococcus succinus 14BME20 Prevents Allergic Airway Inflammation by Induction of Regulatory T Cells via Interleukin-10. Front Immunol 2019; 10:1269. [PMID: 31231389 PMCID: PMC6559308 DOI: 10.3389/fimmu.2019.01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
Asthma is a common chronic inflammatory disease, which is characterized by airway hyperresponsiveness (AHR), high serum levels of immunoglobulin (Ig)E, and recruitment of various inflammatory cells such as eosinophils and lymphocytes. Korean traditional fermented foods have been reported to exert beneficial effects against allergic diseases such as asthma and atopic dermatitis. In this study, we investigated whether Staphylococcus succinus strain 14BME20 (14BME20) isolated from doenjang, a traditional high-salt-fermented soybean food of Korea, exerts suppressive effects on allergic airway inflammation in a murine model. Mice were orally administered with 14BME20, then sensitized and challenged with ovalbumin as an allergen. Administration of the 14BME20 significantly suppressed AHR and influx of inflammatory cells into the lungs and reduced serum IgE levels. Moreover, the proportion of T helper type 2 (Th2) cells and the production of Th2 cytokines were decreased in 14BME20-treated mice, whereas dendritic cells (DCs) with tolerogenic characteristics were increased. In contrast, oral administration of 14BME20 increased the proportion of CD4+CD25+Foxp3+ regulatory T (Treg) cells and the level of interleukin (IL)-10 in 14BME20-treated mice. Furthermore, 14BME20 induced maturation of tolerogenic DCs, and 14BME20-treated DCs increased Treg cell population in a co-culture system of DCs and CD4+ T cells. The addition of a neutralizing anti-IL-10 mAb to the culture of cells that had been treated with 14BME20 decreased the enhanced Treg cell population, thereby indicating that 14BME20-treated DCs increase Treg cell population via DC-derived IL-10. These results demonstrate that oral administration of 14BME20 suppresses airway inflammation by enhancing Treg responses and suggest that the 14BME20 isolated from doenjang may be a therapeutic agent for allergic asthma.
Collapse
Affiliation(s)
- Jisun Song
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Hui Xuan Lim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Arim Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Soojung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, South Korea
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
42
|
Anatriello E, Cunha M, Nogueira J, Carvalho JL, Sá AK, Miranda M, Castro-Faria-Neto H, Keller AC, Aimbire F. Oral feeding of Lactobacillus bulgaricus N45.10 inhibits the lung inflammation and airway remodeling in murine allergic asthma: Relevance to the Th1/Th2 cytokines and STAT6/T-bet. Cell Immunol 2019; 341:103928. [PMID: 31178059 DOI: 10.1016/j.cellimm.2019.103928] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 12/31/2022]
Abstract
Asthma is a chronic disease with impacts on public health. It affects the airways causing pulmonary inflammation mediated by CD4 T cells type Th2, eosinophilia, mucus hypersecretion, and elevated IgE. The unbalance between cytokines and transcription factors is an important feature in asthma. Probiotics has gaining highlight as a therapy for chronic diseases. Thus, we investigate the Lactobacillus bulgaricus (Lb) effect in murine allergic asthma. BALB/c-mice were sensitized to ovalbumin (OA) on days 0 and 7 and were challenged from day 14-28 with OA. Mice received Lb seven days prior to sensitization and it was kept until day 28. The Lb attenuated the eosinophils infiltration, mucus and collagen secretion, IgE production, pro-inflammatory cytokines, TLR4 expression, GATA3, STAT6 and RORγt in lung. Otherwise, Lb increased the anti-inflammatory cytokines, the T-bet and foxp3. Finally, Lb attenuated the allergic asthma-induced inflammation and airway remodeling by interfering on Th1/Th2 cytokines and STAT6/T-bet transcription factors.
Collapse
Affiliation(s)
- E Anatriello
- Department of Science and Technology, Federal University of São Paulo, PO Box 12231-280, São José dos Campos, SP, Brazil
| | - M Cunha
- Laboratory of Immunopharmacology, FioCruz, Rio de Janeiro, Brazil
| | - J Nogueira
- Laboratory of Experimental Immunopathology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - J L Carvalho
- Department of Science and Technology, Federal University of São Paulo, PO Box 12231-280, São José dos Campos, SP, Brazil
| | - A K Sá
- Department of Science and Technology, Federal University of São Paulo, PO Box 12231-280, São José dos Campos, SP, Brazil
| | - M Miranda
- Department of Science and Technology, Federal University of São Paulo, PO Box 12231-280, São José dos Campos, SP, Brazil
| | | | - A C Keller
- Laboratory of Experimental Immunopathology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - F Aimbire
- Department of Science and Technology, Federal University of São Paulo, PO Box 12231-280, São José dos Campos, SP, Brazil.
| |
Collapse
|
43
|
Brosseau C, Durand M, Colas L, Durand E, Foureau A, Cheminant MA, Bouchaud G, Castan L, Klein M, Magnan A, Brouard S. CD9 + Regulatory B Cells Induce T Cell Apoptosis via IL-10 and Are Reduced in Severe Asthmatic Patients. Front Immunol 2018; 9:3034. [PMID: 30622536 PMCID: PMC6308143 DOI: 10.3389/fimmu.2018.03034] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022] Open
Abstract
CD9 was recently identified as a marker of murine IL-10-competent regulatory B cells. Functional impairments or defects in CD9+ IL-10-secreting regulatory B cells are associated with enhanced asthma-like inflammation and airway hyperresponsiveness. In mouse models, all asthma-related features can be abrogated by CD9+ B cell adoptive transfer. We aimed herein to decipher the profiles, features, and molecular mechanisms of the regulatory properties of CD9+ B cells in human and mouse. The profile of CD9+ B cells was analyzed using blood from severe asthmatic patients and normal and asthmatic mice by flow cytometry. The regulatory effects of mouse CD9+ B cells on effector T cell death, cell cycle arrest, apoptosis, and mitochondrial depolarization were determined using yellow dye, propidium iodide, Annexin V, and JC-1 staining. MAPK phosphorylation was analyzed by western blotting. Patients with severe asthma and asthmatic mice both harbored less CD19+CD9+ B cells, although these cells displayed no defect in their capacity to induce T cell apoptosis. Molecular mechanisms of regulation of CD9+ B cells characterized in mouse showed that they induced effector T cell cycle arrest in sub G0/G1, leading to apoptosis in an IL-10-dependent manner. This process occurred through MAPK phosphorylation and activation of both the intrinsic and extrinsic pathways. This study characterizes the molecular mechanisms underlying the regulation of CD9+ B cells to induce effector T cell apoptosis in mice and humans via IL-10 secretion. Defects in CD9+ B cells in blood from patients with severe asthma reveal new insights into the lack of regulation of inflammation in these patients.
Collapse
Affiliation(s)
- Carole Brosseau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France.,Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France.,Institut du Thorax, CHU de Nantes, Nantes, France
| | - Maxim Durand
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Luc Colas
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France.,Institut du Thorax, CHU de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Eugénie Durand
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Aurore Foureau
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France.,Institut du Thorax, CHU de Nantes, Nantes, France
| | - Marie-Aude Cheminant
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France
| | - Gregory Bouchaud
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France.,INRA Centre Angers-Nantes, Nantes, France
| | - Laure Castan
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,INRA Centre Angers-Nantes, Nantes, France
| | - Martin Klein
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Antoine Magnan
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France.,Institut du Thorax, CHU de Nantes, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France.,Centre d'Investigation Clinique (CIC) Biothérapie, CHU Nantes, Nantes, France
| |
Collapse
|
44
|
Kumar Singh P, Kashyap A, Silakari O. Exploration of the therapeutic aspects of Lck: A kinase target in inflammatory mediated pathological conditions. Biomed Pharmacother 2018; 108:1565-1571. [PMID: 30372858 DOI: 10.1016/j.biopha.2018.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022] Open
Abstract
Lck, a non-receptor src family kinase, plays a vital role in various cellular processes such as cell cycle control, cell adhesion, motility, proliferation and differentiation. As a 56 KDa protein, Lck phosphorylates tyrosine residues of various proteins such as ZAP-70, ITK and protein kinase C. The structure of Lck is comprised of three domains, one SH3 in tandem with a SH2 domain at the amino terminal and the kinase domain at the carboxy terminal. Physiologically, Lck is involved in the development, function and differentiation of T-cells. Additionally, Lck regulates neurite outgrowth and maintains long-term synaptic plasticity in neurons. Given a major role of Lck in cytokine production and T cell signaling, alteration in expression and activity of Lck may result in various diseased conditions like cancer, asthma, diabetes, rheumatoid arthritis, psoriasis, inflammatory bowel diseases such as Crohn's disease and ulcerative colitis, atherosclerosis etc. This article provides evidence and information establishing Lck as one of the therapeutic targets in various inflammation mediated pathophysiological conditions.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India
| | - Aanchal Kashyap
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
45
|
The Cell Research Trends of Asthma: A Stem Frequency Analysis of the Literature. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:9363820. [PMID: 30210753 PMCID: PMC6126072 DOI: 10.1155/2018/9363820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/26/2018] [Accepted: 07/22/2018] [Indexed: 02/06/2023]
Abstract
Objective This study summarized asthma literature indexed in the Medical Literature Analysis and Retrieval System Online (MEDLINE) and explored the history and present trends of asthma cell research by stem frequency ranking to forecast the prospect of future work. Methods Literature was obtained from MEDLINE for the past 30 years and divided into three groups by decade as the retrieval time. The frequency of stemmed words in each group was calculated using Python with Apache Spark and the Natural Language Tool Kit for ranking. The unique stems or shared stems of 3 decades were summarized. Results A total of 1331, 4393, and 7215 records were retrieved from 3 decades chronologically, and the stem ranking of the top 50 were listed by frequency. The number of stems shared with 3 decades was 26 and with the first and last 2 decades was 5 and 13. Conclusions The number of cell research studies of asthma has increased rapidly, and scholars have paid more attentions on experimental research, especially on mechanistic research. Eosinophils, mast cells, and T cells are the hot spots of immunocyte research, while epithelia and smooth muscle cells are the hot spots of structural cell research. The research trend is closely linked with the development of experimental technology, including animal models. Early studies featured basic research, but immunity research has dominated in recent decades. The distinct definition of asthma phenotypes associated with genetic characteristics, immunity research, and the introduction of new cells will be the hot spots in future work.
Collapse
|
46
|
Haag P, Sharma H, Rauh M, Zimmermann T, Vuorinen T, Papadopoulos NG, Weiss ST, Finotto S. Soluble ST2 regulation by rhinovirus and 25(OH)-vitamin D3 in the blood of asthmatic children. Clin Exp Immunol 2018; 193:207-220. [PMID: 29645082 PMCID: PMC6046486 DOI: 10.1111/cei.13135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2018] [Indexed: 12/27/2022] Open
Abstract
Paediatric asthma exacerbations are often caused by rhinovirus (RV). Moreover, 25(OH)-vitamin D3 (VitD3) deficiency during infancy was found associated with asthma. Here, we investigated the innate immune responses to RV and their possible modulation by 25(OH)-VitD3 serum levels in a preschool cohort of children with and without asthma. The innate lymphoid cell type 2 (ILC2)-associated marker, ST2, was found up-regulated in the blood cells of asthmatic children with low serum levels of 25(OH)-VitD3 in the absence of RV in their airways. Furthermore, in blood cells from control and asthmatic children with RV in their airways, soluble (s) ST2 (sST2) protein was found reduced. Asthmatic children with low 25(OH)-VitD3 in serum and with RV in vivo in their airways at the time of the analysis had the lowest sST2 protein levels in the peripheral blood compared to control children without RV and high levels of 25(OH)-VitD3. Amphiregulin (AREG), another ILC2-associated marker, was found induced in the control children with RV in their airways and low serum levels of 25(OH)-VitD3. In conclusion, the anti-inflammatory soluble form of ST2, also known as sST2, in serum correlated directly with interleukin (IL)-33 in the airways of asthmatic children. Furthermore, RV colonization in the airways and low serum levels of 25(OH)-VitD3 were found to be associated with down-regulation of sST2 in serum in paediatric asthma. These data indicate a counter-regulatory role of 25(OH)-VitD3 on RV-induced down-regulation of serum sST2 in paediatric asthma, which is relevant for the therapy of this disease.
Collapse
Affiliation(s)
- P. Haag
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum ErlangenErlangenGermany
| | - H. Sharma
- Translational Genomics Core, Partners Biobank, Partners HealthCare, Personalized MedicineCambridgeMAUSA
| | - M. Rauh
- Department of Allergy and Pneumology, Children's HospitalFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum ErlangenErlangenGermany
| | - T. Zimmermann
- Department of Allergy and Pneumology, Children's HospitalFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum ErlangenErlangenGermany
| | - T. Vuorinen
- Department of VirologyUniversity of TurkuTurkuFinland
| | - N. G. Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and KapodistriaUniversity of AthensAthensGreece
| | - S. T. Weiss
- Translational Genomics Core, Partners Biobank, Partners HealthCare, Personalized MedicineCambridgeMAUSA
| | - S. Finotto
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum ErlangenErlangenGermany
| |
Collapse
|
47
|
Wu JZ, Ge DD, Zhou LF, Hou LY, Zhou Y, Li QY. Effects of particulate matter on allergic respiratory diseases. Chronic Dis Transl Med 2018; 4:95-102. [PMID: 29988900 PMCID: PMC6034084 DOI: 10.1016/j.cdtm.2018.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 01/30/2023] Open
Abstract
The health impact of airborne particulate matter (PM) has long been a concern to clinicians, biologists, and the general public. With many epidemiological studies confirming the association of PM with allergic respiratory diseases, an increasing number of follow-up empirical studies are being conducted to investigate the mechanisms underlying the toxic effects of PM on asthma and allergic rhinitis. In this review, we have briefly introduced the characteristics of PM and discussed its effects on public health. Subsequently, we have focused on recent studies to elucidate the association between PM and the allergic symptoms of human respiratory diseases. Specifically, we have discussed the mechanism of action of PM in allergic respiratory diseases according to different subtypes: coarse PM (PM2.5-10), fine PM (PM2.5), and ultrafine PM.
Collapse
Affiliation(s)
- Jin-Zhun Wu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Dan-Dan Ge
- Children's Medicine Institute of Medical College, Xiamen University, Xiamen, Fujian 361102, China
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Lin-Fu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ling-Yun Hou
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Ying Zhou
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, Fujian 361102, China
- Center for BioMedical Big Data Research, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Qi-Yuan Li
- Children's Medicine Institute of Medical College, Xiamen University, Xiamen, Fujian 361102, China
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, Fujian 361102, China
- Center for BioMedical Big Data Research, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
48
|
Lu X, Fu H, Han F, Fang Y, Xu J, Zhang L, Du Q. Lipoxin A4 regulates PM2.5-induced severe allergic asthma in mice via the Th1/Th2 balance of group 2 innate lymphoid cells. J Thorac Dis 2018; 10:1449-1459. [PMID: 29707294 DOI: 10.21037/jtd.2018.03.02] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Urban particulate matter (PM) contributes to the increasing number of people with asthma, which is closely related to the development of industrialization. Especially, PM with an aerodynamic diameter of <2.5 µm (PM2.5) enhances the risk of damaging respiratory organs. It has reported that PM2.5-induced pathological changes could be considered as a remarkable molecular mechanism of PM2.5-mediated cytotoxicity in respiratory disease and even lung cancer. Methods In this study, we have investigated the effects of PM2.5 on ovalbumin (OVA)-induced asthma mice and the therapeutic effect of Lipoxin A4 (LXA4) on improving the poor pathology. Results The exposure of PM2.5 showed that both cytokines of T helper-2 (Th2) cells and transcription factors of group 2 innate lymphoid cells (ILC2s) were significantly increased, and inflammatory cell infiltration occurred in lung tissue. The LXA4 was used to treat asthma, which was an effective option in reducing inflammatory cytokines and relieving pathological symptoms, probably by regulating the Th1/Th2 balance. Conclusions These results suggest that PM2.5-induced inflammation plays a key role in the progression of asthma mice. In addition, LXA4 has a significant therapeutic effect on asthma, which indicates the direction for the treatment of asthma related inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoxia Lu
- Department of Pulmonary Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Huicong Fu
- Department of Pulmonary Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Feng Han
- Department of Pulmonary Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Yurong Fang
- Department of Pulmonary Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Jiali Xu
- Department of Pulmonary Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Liqiong Zhang
- Department of Pulmonary Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Qing Du
- Department of Pulmonary Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| |
Collapse
|
49
|
Villaseñor A, Rosace D, Obeso D, Pérez-Gordo M, Chivato T, Barbas C, Barber D, Escribese MM. Allergic asthma: an overview of metabolomic strategies leading to the identification of biomarkers in the field. Clin Exp Allergy 2017; 47:442-456. [PMID: 28160515 DOI: 10.1111/cea.12902] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergic asthma is a prominent disease especially during childhood. Indoor allergens, in general, and particularly house dust mites (HDM) are the most prevalent sensitizers associated with allergic asthma. Available data show that 65-130 million people are mite-sensitized world-wide and as many as 50% of these are asthmatic. In fact, sensitization to HDM in the first years of life can produce devastating effects on pulmonary function leading to asthmatic syndromes that can be fatal. To date, there has been considerable research into the pathological pathways and structural changes associated with allergic asthma. However, limitations related to the disease heterogeneity and a lack of knowledge into its pathophysiology have impeded the generation of valuable data needed to appropriately phenotype patients and, subsequently, treat this disease. Here, we report a systematic and integral analysis of the disease, from airway remodelling to the immune response taking place throughout the disease stages. We present an overview of metabolomics, the management of complex multifactorial diseases through the analysis of all possible metabolites in a biological sample, obtaining a global interpretation of biological systems. Special interest is placed on the challenges to obtain biological samples and the methodological aspects to acquire relevant information, focusing on the identification of novel biomarkers associated with specific phenotypes of allergic asthma. We also present an overview of the metabolites cited in the literature, which have been related to inflammation and immune response in asthma and other allergy-related diseases.
Collapse
Affiliation(s)
- A Villaseñor
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Rosace
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Obeso
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - M Pérez-Gordo
- Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - T Chivato
- Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - C Barbas
- Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Barber
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - M M Escribese
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
50
|
Respiratory Syncytial Virus Exacerbates OVA-mediated asthma in mice through C5a-C5aR regulating CD4 +T cells Immune Responses. Sci Rep 2017; 7:15207. [PMID: 29123203 PMCID: PMC5680322 DOI: 10.1038/s41598-017-15471-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/27/2017] [Indexed: 12/15/2022] Open
Abstract
Asthma exacerbation could be induced by respiratory syncytial virus (RSV), and the underlying pathogenic mechanism is related to complement activation. Although complement might regulate CD4+T cells immune responses in asthma model, this regulation existed in RSV-induced asthma model remains incompletely characterrized. In this study, we assessed the contribution of C5a-C5aR to CD4+T cell immune responses in RSV-infected asthma mice. Female BALB/C mice were sensitized and challenged with ovalbumin (OVA) while treated with RSV infection and C5a receptor antagonist (C5aRA) during challenge period. RSV enhanced lung damage, airway hyperresponsiveness, and C5aR expressions in asthma mice, while C5aRA alleviated these pathologic changes. The percentages of Th1, Th2 and Th17 cells were increased, while the percentage of Treg cells was decreased in RSV-infected asthma mice compared with asthma mice. IFN-γ, IL-4, IL-10 and IL-17A levels have similar trend with Th1, Th2, Th17 and Treg cells. Notably, above changes of CD4+T cells and their related cytokines were reversed by C5aRA. Together, the data indicates that RSV infection could apparently increase C5a and C5aR expression in the pathogenesis of RSV-infected asthma mice, meanwhile C5aRA prevents some of the CD4+T cells immune changes that are induced by RSV.
Collapse
|