1
|
Zhu R, Yao X, Li W. Langerhans cells and skin immune diseases. Eur J Immunol 2024; 54:e2250280. [PMID: 39030782 DOI: 10.1002/eji.202250280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Langerhans cells (LCs) are the key antigen-presenting cells in the epidermis in normal conditions and respond differentially to environmental and/or endogenous stimuli, exerting either proinflammatory or anti-inflammatory effects. Current knowledge about LCs mainly originates from studies utilizing mouse models, whereas with the development of single-cell techniques, there has been significant progress for human LCs, which has updated our understanding of the phenotype, ontogeny, differentiation regulation, and function of LCs. In this review, we delineated the progress of human LCs and summarized LCs' function in inflammatory skin diseases, providing new ideas for precise regulation of LC function in the prevention and treatment of skin diseases.
Collapse
Affiliation(s)
- Ronghui Zhu
- Department of Dermatology, Shanghai Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Hubei Province & Key Laboratory of Skin Infection and Immunity, Wuhan, P. R. China
| | - Xu Yao
- Department, of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, P. R. China
| | - Wei Li
- Department of Dermatology, Shanghai Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
2
|
Liu CF, Chao WY, Shih TW, Lee CL, Pan TM. The Enhancement of Regulatory T Cell Maturation and Th1/Th2 Balance through FOXP3 Expression by Lactobacillus paracasei in an Ovalbumin-Induced Allergic Skin Animal Model. Curr Issues Mol Biol 2024; 46:10714-10730. [PMID: 39451516 PMCID: PMC11505879 DOI: 10.3390/cimb46100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic allergic skin conditions, including atopic dermatitis (AD), are characterized by pruritus, erythema, xerosis, desquamation, and inflammation, significantly impacting quality of life. Long-term steroid use, while common in treatment, carries the risk of adverse effects. Previous studies have demonstrated the potential of Lactobacillus paracasei subsp. paracasei NTU 101 (NTU 101) in alleviating AD symptoms from a preventive perspective. This study, however, focuses on exploring NTU 101's therapeutic potential by investigating its effects on regulatory T cell (Treg) maturation and Th1/Th2 balance. The results revealed that NTU 101 administration effectively reduced serum IgE levels and inflammatory cell infiltration in the skin, leading to a significant improvement in both epidermal and dermal thickness in the AD model. Additionally, NTU 101 modulated the immune response by increasing the proportion of CD4+/IL-4+ (Th2) cells in the spleen and concurrently enhancing FOXP3 expression in CD4+/CD25+ cells, which is critical for Treg cell development. This immune modulation was further associated with a rebalancing of the Th1/Th2 ratio, achieved by increasing the proportion of CD4+/IFN-γ+ (Th1) cells. Moreover, NTU 101 influenced the proportion of CD4+IL-17+ (Th17) cells, thereby supporting neutrophil maturation and promoting allergen clearance, ultimately mitigating AD symptoms. These findings underscore the potential of NTU 101 not only in managing AD symptoms but also in modulating key immune pathways involved in the pathogenesis of the disease, offering a promising alternative or adjunct to conventional steroid therapies.
Collapse
Affiliation(s)
- Chin-Feng Liu
- Continuing Education Program of Food Biotechnology Applications, National Taitung University, Taitung 950017, Taiwan;
| | - Wen-Yu Chao
- SunWay Biotech Co., Taipei 114063, Taiwan; (W.-Y.C.); (T.-W.S.)
| | - Tsung-Wei Shih
- SunWay Biotech Co., Taipei 114063, Taiwan; (W.-Y.C.); (T.-W.S.)
| | - Chun-Lin Lee
- Department of Life Science, National Taitung University, Taitung 950309, Taiwan
| | - Tzu-Ming Pan
- SunWay Biotech Co., Taipei 114063, Taiwan; (W.-Y.C.); (T.-W.S.)
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106216, Taiwan
| |
Collapse
|
3
|
Pan Y, Hochgerner M, Cichoń MA, Benezeder T, Bieber T, Wolf P. Langerhans cells: Central players in the pathophysiology of atopic dermatitis. J Eur Acad Dermatol Venereol 2024. [PMID: 39157943 DOI: 10.1111/jdv.20291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/21/2024] [Indexed: 08/20/2024]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease worldwide. AD is a highly complex disease with different subtypes. Many elements of AD pathophysiology have been described, but if/how they interact with each other or which mechanisms are important in which patients is still unclear. Langerhans cells (LCs) are antigen-presenting cells (APCs) in the epidermis. Depending on the context, they can act either pro- or anti-inflammatory. Many different studies have investigated LCs in the context of AD and found them to be connected to all major mechanisms of AD pathophysiology. As APCs, LCs recruit other immune cells and shape the immune response, especially adaptive immunity via polarization of T cells. As sentinel cells, LCs are primary sensors of the skin microbiome and are important for the decision of immunity versus tolerance. LCs are also involved with the integrity of the skin barrier by influencing tight junctions. Finally, LCs are important cells in the neuro-immune crosstalk in the skin. In this review, we provide an overview about the many different roles of LCs in AD. Understanding LCs might bring us closer to a more complete understanding of this highly complex disease. Potentially, modulating LCs might offer new options for targeted therapies for AD patients.
Collapse
Affiliation(s)
- Yi Pan
- Department of Dermatology and Allergy, University Hospital of Bonn, Bonn, Germany
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Mathias Hochgerner
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai, China
| | | | - Theresa Benezeder
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital of Bonn, Bonn, Germany
- CK-CARE, Medicine Campus, Davos, Switzerland
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Peter Wolf
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| |
Collapse
|
4
|
Zheng R, Ren Y, Liu X, He C, Liu H, Wang Y, Li J, Xia S, Liu Z, Ma Y, Wang D, Xu S, Wang G, Li N. Exogenous drug-induced mouse models of atopic dermatitis. Cytokine Growth Factor Rev 2024; 77:104-116. [PMID: 38272716 DOI: 10.1016/j.cytogfr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease characterized by intense pruritus. AD is harmful to both children and adults, but its pathogenic mechanism has yet to be fully elucidated. The development of mouse models for AD has greatly contributed to its study and treatment. Among these models, the exogenous drug-induced mouse model has shown promising results and significant advantages. Until now, a large amount of AD-related research has utilized exogenous drug-induced mouse models, leading to notable advancements in research. This indicates the crucial significance of applying such models in AD research. These models exhibit diverse characteristics and are highly complex. They involve the use of various strains of mice, diverse types of inducers, and different modeling effects. However, there is currently a lack of comprehensive comparative studies on exogenous drug-induced AD mouse models, which hinders researchers' ability to choose among these models. This paper provides a comprehensive review of the features and mechanisms associated with various exogenous drug-induced mouse models, including the important role of each cytokine in AD development. It aims to assist researchers in quickly understanding models and selecting the most suitable one for further investigation.
Collapse
Affiliation(s)
- Rou Zheng
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yan Ren
- Health Science Center, Ningbo University, Ningbo, China.
| | - Xinyue Liu
- Health Science Center, Ningbo University, Ningbo, China.
| | - Canxia He
- Health Science Center, Ningbo University, Ningbo, China.
| | - Hua Liu
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Jianing Li
- Health Science Center, Ningbo University, Ningbo, China.
| | - Shuya Xia
- Health Science Center, Ningbo University, Ningbo, China.
| | - Zhifang Liu
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Yizhao Ma
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Dianchen Wang
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Suling Xu
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Geng Wang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Na Li
- Health Science Center, Ningbo University, Ningbo, China; Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
5
|
Biazus Soares G, Hashimoto T, Yosipovitch G. Atopic Dermatitis Itch: Scratching for an Explanation. J Invest Dermatol 2024; 144:978-988. [PMID: 38363270 DOI: 10.1016/j.jid.2023.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 02/17/2024]
Abstract
Chronic pruritus is a cardinal symptom of atopic dermatitis (AD). The mechanisms underlying atopic itch involve intricate crosstalk among skin, immune components, and neural components. In this review, we explore these mechanisms, focusing on key players and interactions that induce and exacerbate itch. We discuss the similarities and differences between pruritus and pain in patients with AD as well as the relationship between pruritus and factors such as sweat and the skin microbiome. Furthermore, we explore novel targets that could provide significant itch relief in these patients as well as exciting future research directions to better understand atopic pruritus in darker skin types.
Collapse
Affiliation(s)
- Georgia Biazus Soares
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Takashi Hashimoto
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Gil Yosipovitch
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
6
|
Yamamura Y, Nakashima C, Otsuka A. Interplay of cytokines in the pathophysiology of atopic dermatitis: insights from Murin models and human. Front Med (Lausanne) 2024; 11:1342176. [PMID: 38590314 PMCID: PMC10999685 DOI: 10.3389/fmed.2024.1342176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
The pathogenesis of atopic dermatitis (AD) is understood to be crucially influenced by three main factors: dysregulation of the immune response, barrier dysfunction, and pruritus. In the lesional skin of AD, various innate immune cells, including Th2 cells, type 2 innate lymphoid cells (ILC2s), and basophils, produce Th2 cytokines [interleukin (IL)-4, IL-5, IL-13, IL-31]. Alarmins such as TSLP, IL-25, and IL-33 are also produced by epidermal keratinocytes, amplifying type 2 inflammation. In the chronic phase, not only Th2 cells but also Th22 and Th17 cells increase in number, leading to suppression of filaggrin expression by IL-4, IL-13, and IL-22, which further deteriorates the epidermal barrier function. Dupilumab, which targets IL-4 and IL-13, has shown efficacy in treating moderate to severe AD. Nemolizumab, targeting IL-31RA, effectively reduces pruritus in AD patients. In addition, clinical trials with fezakinumab, targeting IL-22, have demonstrated promising results, particularly in severe AD cases. Conversely, in murine models of AD, several cytokines, initially regarded as promising therapeutic targets, have not demonstrated sufficient efficacy in clinical trials. IL-33 has been identified as a potent activator of immune cells, exacerbating AD in murine models and correlating with disease severity in human patients. However, treatments targeting IL-33 have not shown sufficient efficacy in clinical trials. Similarly, thymic stromal lymphopoietin (TSLP), integral to type 2 immune responses, induces dermatitis in animal models and is elevated in human AD, yet clinical treatments like tezepelumab exhibit limited efficacy. Therapies targeting IL-1α, IL-5, and IL-17 also failed to achieve sufficient efficacy in clinical trials. It has become clear that for treating AD, IL-4, IL-13, and IL-31 are relevant therapeutic targets during the acute phase, while IL-22 emerges as a target in more severe cases. This delineation underscores the necessity of considering distinct pathophysiological aspects and therapeutic targets in AD between mouse models and humans. Consequently, this review delineates the distinct roles of cytokines in the pathogenesis of AD, juxtaposing their significance in human AD from clinical trials against insights gleaned from AD mouse models. This approach will improve our understanding of interspecies variation and facilitate a deeper insight into the pathogenesis of AD in humans.
Collapse
Affiliation(s)
| | - Chisa Nakashima
- Department of Dermatology, Faculty of Medicine, Kindai University Hospital, Osaka, Japan
| | | |
Collapse
|
7
|
Liu CF, Shih TW, Lee CL, Pan TM. The Beneficial Role of Lactobacillus paracasei subsp. paracasei NTU 101 in the Prevention of Atopic Dermatitis. Curr Issues Mol Biol 2024; 46:2236-2250. [PMID: 38534759 DOI: 10.3390/cimb46030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Atopic dermatitis (AD) is a recurrent allergic disease characterized by symptoms such as itching, redness, swelling, dryness, scaling skin, inflammation, and tissue damage. The underlying pathogenesis of AD remains unclear. Steroid drugs are commonly used in the clinical treatment of AD; however, their long-term use may lead to associated complications. Numerous studies have indicated that probiotics could modulate the immune system, enhance immune function, or suppress excessive immune responses. In this study, Lactobacillus paracasei subsp. paracasei NTU 101 (NTU 101) was orally administered for a duration of 4 weeks, followed by the induction of AD using ovalbumin (OVA) in a mouse model. The skin condition of the stimulated site was observed during the induction period. Subsequently, the serum immunoglobulin E (IgE) content, splenocyte T cell typing, and skin histological interpretation were examined to evaluate the efficacy of NTU 101 in alleviating AD symptoms in allergen-exposed animals. The findings indicated that administering NTU 101 beforehand effectively alleviated skin symptoms in animals with AD. It reduced the infiltration of inflammatory cells in skin tissue sections, and compared to the OVA group, there was a significant reduction in the thickening of the epidermal cell layer (decreased from 89.0 ± 20.2 µM to 48.6 ± 16.0 µM) and dermis layer (decreased from 310.3 ± 69.0 µM to 209.7 ± 55.5 µM). Moreover, the proportion of regulatory T (Treg) cells and T helper 2 (Th2) cells in splenocytes significantly increased, while the proportions of T helper 1 (Th1) and T helper 17 (Th17) cells did not differ. It is speculated that the potential mechanism by which NTU 101 prevents AD involves increasing the expression of Forkhead box protein P3 (FOXP3) and promoting Treg cell maturation, thereby alleviating allergic reaction symptoms associated with AD.
Collapse
Affiliation(s)
- Chin-Feng Liu
- Continuing Education Program of Food Biotechnology Applications, National Taitung University, 684, Sec. 1, Zhonghua Rd.,Taitung 950017, Taiwan
| | | | - Chun-Lin Lee
- Department of Life Science, National Taitung University, 369, Sec. 2, University Rd., Taitung 95092, Taiwan
| | - Tzu-Ming Pan
- SunWay Biotech Co., Taipei 10617, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Abdelhadi S, Nordlind K, Johansson B, Theodorsson E, Holst M, Lönndahl L. Expression of calcitonin gene-related peptide in atopic dermatitis and correlation with distress. Immunopharmacol Immunotoxicol 2024; 46:67-72. [PMID: 37676055 DOI: 10.1080/08923973.2023.2253988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic, inflammatory, often severely itching skin disorder. It may worsen due to stress, depression, or anxiety. Calcitonin gene-related peptide (CGRP) may be involved in inflammation signaling. CGRP has also been suggested in relation to stress, depression, and anxiety. This study aimed to investigate the expression of CGRP in the skin of patients with AD. METHODS Twenty-seven adult patients with AD, characterized with clinical and psychodemographic parameters, were investigated regarding CGRP expression in skin biopsies, using an immunohistochemical technique. RESULTS The total number of CGRP-positive nerve-like fibers was found to be higher in lesional skin than in non-lesional skin. Moreover, more inflammatory cells of dendritic shape intruded into the epidermis in lesional skin compared to non-lesional skin. Keratinocytes showing expression of CGRP were also found in lesional skin. Interestingly, the number of CGRP-positive nerve-like fibers in lesional skin correlated with depressive and anxiety scores. Correlation with depressive score was also found for round CGRP-positive inflammatory cells in the epidermis. CONCLUSIONS CGRP may have a role in both the inflammatory process and distress, in AD.
Collapse
Affiliation(s)
- Saly Abdelhadi
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Klas Nordlind
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Björn Johansson
- Department of Molecular Medicine and Surgery and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mikael Holst
- Pediatric Endocrinology Unit, Department of Woman and Child Health, Astrid Lindgren Children's Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Louise Lönndahl
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Qiao W, Xie T, Lu J, Jia T, Kaku K. Identification of potential hub genes associated with atopic dermatitis-like recombinant human epidermal model using integrated transcriptomic and proteomic analysis. BIOMOLECULES & BIOMEDICINE 2024; 24:89-100. [PMID: 37540585 PMCID: PMC10787623 DOI: 10.17305/bb.2023.9439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023]
Abstract
Atopic dermatitis (AD) is a severe inflammatory skin disorder, characterized by elevated levels of proinflammatory cytokines that fuel a vicious cycle of inflammation. While inflammatory recombinant human epidermal (RHE) models relevant to AD have been established, comprehensive understanding remains limited. To illuminate changes and identify potential hub genes involved in AD-related inflammation, RHE models, stimulated by an inflammatory cocktail including polyinosinic-polycytidylic acid, tumor necrosis factor alpha (TNF-α), interleukin 4 (IL-4) and interleukin 13 (IL-13), were constructed and examined using tandem mass tags-proteomic coupled with RNA-seq transcriptomic analyses. Principal component analysis (PCA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functional enrichment were employed for the analysis of related genes and proteins. Protein-protein interaction networks helped identify hub genes, which were further confirmed by qPCR and western blot. We observed high expression of thymic stromal lymphopoietin in the inflammatory RHE. Our study identified 2369 differentially expressed genes and 880 differentially expressed proteins in the cocktail-induced group versus the normal control group. A total of 248 overlapping symbols were enriched in various biological processes and signaling pathways, including cornification envelope, cell-cell junction, calcium ion binding, extracellular matrix receptor, terpenoid backbone biosynthesis, and peroxisome proliferator-activated receptors signaling pathway, among others. Among the 248 overlapping symbols, CytoHubba identified 10 hub molecules, namely signal transducer and activator of transcription 3 (STAT3), integrin subunit beta 1 (ITGB1), filaggrin (FLG), involucrin (IVL), DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 (DDX58), small proline rich protein 1B (SPRR1B), interferon induced with helicase C domain 1 (IFIH1), desmoglein 1 (DSG1), collagen type XVII alpha 1 chain (COL17A1), and integrin subunit alpha 6 (ITGA6), based on the degree. These integrated results offer valuable insights into the molecular mechanisms of AD and present potential tools for screening cosmetic formulations intended for the treatment of AD.
Collapse
Affiliation(s)
- Wu Qiao
- Pigeon Manufacturing Shanghai CO., LTD., Shanghai, China
| | - Tong Xie
- Pigeon Manufacturing Shanghai CO., LTD., Shanghai, China
| | - Jing Lu
- Pigeon Manufacturing Shanghai CO., LTD., Shanghai, China
| | - Tinghan Jia
- Pigeon Manufacturing Shanghai CO., LTD., Shanghai, China
| | - Ken Kaku
- Pigeon Manufacturing Shanghai CO., LTD., Shanghai, China
| |
Collapse
|
10
|
Yamaguchi HL, Yamaguchi Y, Peeva E. Role of Innate Immunity in Allergic Contact Dermatitis: An Update. Int J Mol Sci 2023; 24:12975. [PMID: 37629154 PMCID: PMC10455292 DOI: 10.3390/ijms241612975] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Our understanding of allergic contact dermatitis mechanisms has progressed over the past decade. Innate immune cells that are involved in the pathogenesis of allergic contact dermatitis include Langerhans cells, dermal dendritic cells, macrophages, mast cells, innate lymphoid cells (ILCs), neutrophils, eosinophils, and basophils. ILCs can be subcategorized as group 1 (natural killer cells; ILC1) in association with Th1, group 2 (ILC2) in association with Th2, and group 3 (lymphoid tissue-inducer cells; ILC3) in association with Th17. Pattern recognition receptors (PRRs) including toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) in innate immune cells recognize damage-associated molecular patterns (DAMPs) and cascade the signal to produce several cytokines and chemokines including tumor necrosis factor (TNF)-α, interferon (IFN)-α, IFN-γ, interleukin (IL)-1β, IL-4, IL-6, IL-12, IL-13, IL-17, IL-18, and IL-23. Here we discuss the recent findings showing the roles of the innate immune system in allergic contact dermatitis during the sensitization and elicitation phases.
Collapse
Affiliation(s)
| | - Yuji Yamaguchi
- Inflammation & Immunology Research Unit, Pfizer, Collegeville, PA 19426, USA
| | - Elena Peeva
- Inflammation & Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Honda T, Kabashima K, Kunisawa J. Exploring the roles of prostanoids, leukotriens, and dietary fatty acids in cutaneous inflammatory diseases: Insights from pharmacological and genetic approaches. Immunol Rev 2023; 317:95-112. [PMID: 36815685 DOI: 10.1111/imr.13193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Prostanoids and leukotrienes (LTs) are representative of ω6 fatty acid-derived metabolites that exert their actions through specific receptors on the cell surface. These lipid mediators, being unstable in vivo, act locally at their production sites; thus, their physiological functions remain unclear. However, recent pharmacological and genetic approaches using experimental murine models have provided significant insights into the roles of these lipid mediators in various pathophysiological conditions, including cutaneous inflammatory diseases. These lipid mediators act not only through signaling by themselves but also by potentiating the signaling of other chemical mediators, such as cytokines and chemokines. For instance, prostaglandin E2 -EP4 and LTB4 -BLT1 signaling on cutaneous dendritic cells substantially facilitate their chemokine-induced migration ability into the skin and play critical roles in the priming and/or activation of antigen-specific effector T cells in the skin. In addition to these ω6 fatty acid-derived metabolites, various ω3 fatty acid-derived metabolites regulate skin immune cell functions, and some exert potent anti-inflammatory functions. Lipid mediators act as modulators of cutaneous immune responses, and manipulating the signaling from lipid mediators has the potential as a novel therapeutic approach for human skin diseases.
Collapse
Affiliation(s)
- Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Biopolis, Singapore, Singapore
- 5. A*Star Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Graduate School of Dentistry, Graduate School of Pharmaceutical Sciences, Graduate School of Science, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Toriyama M, Rizaldy D, Nakamura M, Atsumi Y, Toriyama M, Fujita F, Okada F, Morita A, Itoh H, Ishii KJ. Dendritic cell proliferation by primary cilium in atopic dermatitis. Front Mol Biosci 2023; 10:1149828. [PMID: 37179569 PMCID: PMC10169737 DOI: 10.3389/fmolb.2023.1149828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Atopic dermatitis (AD) is a common allergic eczema that affects up to 10% of adults in developed countries. Immune cells in the epidermis, namely, Langerhans cells (LCs), contribute to the pathogenesis of AD, although their exact role(s) in disease remain unclear. Methods: We performed immunostaining on human skin and peripheral blood mononuclear cells (PBMCs) and visualized primary cilium. Result and discussion: We show that human dendritic cells (DCs) and LCs have a previously unknown primary cilium-like structure. The primary cilium was assembled during DC proliferation in response to the Th2 cytokine GM-CSF, and its formation was halted by DC maturation agents. This suggests that the role of primary cilium is to transduce proliferation signaling. The platelet-derived growth factor receptor alpha (PDGFRα) pathway, which is known for transducing proliferation signals in the primary cilium, promoted DC proliferation in a manner dependent on the intraflagellar transport (IFT) system. We also examined the epidermal samples from AD patients, and observed aberrantly ciliated LCs and keratinocytes in immature and proliferating states. Our results identify a potential relationship between the primary cilium and allergic skin barrier disorders, and suggest that targeting the primary cilium may contribute to treating AD.
Collapse
Affiliation(s)
- Manami Toriyama
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Defri Rizaldy
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Motoki Nakamura
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yukiko Atsumi
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Michinori Toriyama
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo, Japan
| | - Fumitaka Fujita
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Mandom Corporation, Osaka, Japan
| | - Fumihiro Okada
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan
- Mandom Corporation, Osaka, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroshi Itoh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Ken J. Ishii
- Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Lee Y, Oh JH, Li N, Jang HJ, Ahn KS, Oh SR, Lee DH, Chung JH. Topical Skullcapflavone II attenuates atopic dermatitis in a mouse model by directly inhibiting associated cytokines in different cell types. Front Immunol 2022; 13:1064515. [PMID: 36605189 PMCID: PMC9808403 DOI: 10.3389/fimmu.2022.1064515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Skullcapflavone II (SFII), a flavonoid derived from Scutellaria baicalensis, is an anticancer agent. We aimed to validate SFII for atopic dermatitis (AD) therapy by demonstrating the anti-inflammatory effects of SFII in an AD mouse model produced by the topical application of the vitamin D3 analog MC903. We showed that topical treatment with SFII significantly suppressed MC903-induced serum IgE levels compared with topical hydrocortisone (HC) treatment. Topical SFII also prevents MC903-induced pruritus, skin hyperplasia, and inflammatory immune cell infiltration into lesional skin comparable to topical HC. In addition, MC903-induced immune cell chemoattractants and AD-associated cytokine production in skin lesions were effectively suppressed by topical SFII. The production of MC903-induced effector cytokines influencing T helper (Th)2 and Th17 polarization in lesioned skin is significantly inhibited by topical SFII. Furthermore, we showed that SFII can directly inhibit the production of AD-associated cytokines by human primary keratinocytes, mouse bone marrow-derived cells (BMDCs), and mouse CD4+ T cells in vitro. Lastly, we demonstrated that topical SFII more effectively suppressed serum IgE levels, the production of IL-4 and thymic stromal lymphopoietin (TSLP), and infiltration of CD4+ T cells and Gr-1+ cells (neutrophils) into lesion skin compared to topical baicalein (a flavonoid derived from Scutellaria baicalensis), which has anti-inflammatory effects. Taken together, our findings suggest that SFII may have promising therapeutic potential for this complex disease via the regulation of multiple AD-associated targets.
Collapse
Affiliation(s)
- Youngae Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Na Li
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Hyun-Jae Jang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju, Chungcheongbuk-do, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju, Chungcheongbuk-do, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju, Chungcheongbuk-do, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea,*Correspondence: Jin Ho Chung,
| |
Collapse
|
14
|
Chong AC, Visitsunthorn K, Ong PY. Genetic/Environmental Contributions and Immune Dysregulation in Children with Atopic Dermatitis. J Asthma Allergy 2022; 15:1681-1700. [PMID: 36447957 PMCID: PMC9701514 DOI: 10.2147/jaa.s293900] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 08/01/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common skin conditions in humans. AD affects up to 20% of children worldwide and results in morbidity for both patients and their caregivers. The basis of AD is an interplay between genetics and the environment characterized by immune dysregulation. A myriad of mutations that compromise the skin barrier and/or immune function have been linked to AD. Of these, filaggrin gene (FLG) mutations are the most evidenced. Many other mutations have been implicated in isolated studies that are often unreplicated, creating an archive of genes with potential but unconfirmed relevance to AD. Harnessing big data, polygenic risk scores (PRSs) and genome-wide association studies (GWAS) may provide a more practical strategy for identifying the genetic signatures of AD. Epigenetics may also play a role. Staphylococcus aureus is the most evidenced microbial contributor to AD. Cutaneous dysbiosis may result in over-colonization by pathogenic strains and aberrant skin immunity and inflammation. Aeroallergens, air pollution, and climate are other key environmental contributors to AD. The right climate and/or commensals may improve AD for some patients.
Collapse
Affiliation(s)
- Albert C Chong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Peck Y Ong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Division of Clinical Immunology and Allergy, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Xiao C, Zhu Z, Zhang C, Gao J, Luo Y, Fang H, Qiao H, Li W, Wang G, Fu M. A population of dermal Langerin+ dendritic cells promote the inflammation in mouse model of atopic dermatitis. Front Immunol 2022; 13:981819. [PMID: 36304463 PMCID: PMC9592551 DOI: 10.3389/fimmu.2022.981819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Cutaneous dendritic cells (DCs) have been implicated in the pathogenesis of atopic dermatitis (AD). However, the specific role of different subsets of DCs has not been well defined. This study aimed to investigate the contributions of Langerhans cells (LCs), resident dermal Langerin+ DCs (r-Langerin+ dDCs), and newly infiltrated inflammatory dermal Langerin+ DCs (i-Langerin+ dDCs) in an AD mouse model induced by the topical application of MC903. The result showed that depletion of i-Langerin+ dDCs in DTR mice after multiple diphtheria toxin (DT) injection significantly reduced thymic stromal lymphopoietin (TSLP) production in lesions and skin inflammation alleviation. However, depletion of LCs or r-Langerin+ dDCs didn’t resulted in significant changes in skin inflammation of DTA or single DT injection-treated DTR mice compared with the wild-type (WT) mice. DT-treated DTR-WT chimeric mice with the depletion of bone marrow (BM)-derived i-Langerin+ dDCs resulted in markedly decreased skin inflammation than controls, while PBS-treated chimeric mice (DTR-WT) with only the depletion of r-Langerin+ dDCs showed inflammation comparable to that in WT mice. Furthermore, TSLP contributed to the upregulation of Langerin expression in BM-derived DCs and promoted the maturation of Langerin+ DCs. In summary, the present study demonstrated that the newly infiltrated inflammatory dermal Langerin+ DCs were essential for AD development and local TSLP production, and TSLP further promoted the production of BM-derived i-Langerin+ dDCs, which might maintain AD inflammation.
Collapse
Affiliation(s)
- Chunying Xiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jixin Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yixin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Meng Fu,
| |
Collapse
|
16
|
Reshamwala K, Cheung GYC, Hsieh RC, Liu R, Joo HS, Zheng Y, Bae JS, Nguyen TH, Villaruz AE, Gozalo AS, Elkins WR, Otto M. Identification and characterization of the pathogenic potential of phenol-soluble modulin toxins in the mouse commensal Staphylococcus xylosus. Front Immunol 2022; 13:999201. [PMID: 36189200 PMCID: PMC9520458 DOI: 10.3389/fimmu.2022.999201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
In contrast to the virulent human skin commensal Staphylococcus aureus, which secretes a plethora of toxins, other staphylococci have much reduced virulence. In these species, commonly the only toxins are those of the phenol-soluble modulin (PSM) family. PSMs are species-specific and have only been characterized in a limited number of species. S. xylosus is a usually innocuous commensal on the skin of mice and other mammals. Prompted by reports on the involvement of PSMs in atopic dermatitis (AD) and the isolation of S. xylosus from mice with AD-like symptoms, we here identified and characterized PSMs of S. xylosus with a focus on a potential involvement in AD phenotypes. We found that most clinical S. xylosus strains produce two PSMs, one of the shorter α- and one of the longer β-type, which were responsible for almost the entire lytic and pro-inflammatory capacities of S. xylosus. Importantly, PSMα of S. xylosus caused lysis and degranulation of mast cells at degrees higher than that of S. aureus δ-toxin, the main PSM previously associated with AD. However, S. xylosus did not produce significant AD symptoms in wild-type mice as opposed to S. aureus, indicating that promotion of AD by S. xylosus likely requires a predisposed host. Our study indicates that non-specific cytolytic potency rather than specific interaction underlies PSM-mediated mast cell degranulation and suggest that the previously reported exceptional potency of δ-toxin of S. aureus is due to its high-level production. Furthermore, they suggest that species that produce cytolytic PSMs, such as S. xylosus, all have the capacity to promote AD, but a high combined level of PSM cytolytic potency is required to cause AD in a non-predisposed host.
Collapse
Affiliation(s)
- Kunal Reshamwala
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Gordon Y. C. Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Michael Otto, ; Gordon Y. C. Cheung,
| | - Roger C. Hsieh
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yue Zheng
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Justin S. Bae
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Thuan H. Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Amer E. Villaruz
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
| | - Alfonso S. Gozalo
- Comparative Medicine Branch (CMB), NIAID, NIH, Bethesda, MD, United States
| | - William R. Elkins
- Comparative Medicine Branch (CMB), NIAID, NIH, Bethesda, MD, United States
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), United States (US) National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Michael Otto, ; Gordon Y. C. Cheung,
| |
Collapse
|
17
|
Laundry detergent promotes allergic skin inflammation and esophageal eosinophilia in mice. PLoS One 2022; 17:e0268651. [PMID: 35759448 PMCID: PMC9236249 DOI: 10.1371/journal.pone.0268651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
The prevalence of allergic diseases is on the rise, yet the environmental factors that contribute to this increase are still being elucidated. Laundry detergent (LD) that contains cytotoxic ingredients including microbial enzymes continuously comes into contact with the skin starting in infancy. An impaired skin barrier has been suggested as a route of allergic sensitization. We hypothesized that exposure of skin to LD damages the skin barrier resulting in systemic sensitization to allergens that enter through the impaired skin barrier. Mouse skin samples exposed in vitro to microbial proteases or LD exhibited physical damage, which was more pronounced in neonatal skin as compared to adult skin. Exposure of the skin to microbial proteases in vitro resulted in an increase in the levels of interleukin (IL)-33 and thymic stromal lymphopoietin (TSLP). BALB/c wild type mice epicutaneously exposed to LD and ovalbumin (OVA) showed an increase in levels of transepidermal water loss, serum OVA-specific immunoglobulin (Ig) G1 and IgE antibodies, and a local increase of Il33, Tslp, Il4 and Il13 compared with LD or OVA alone. Following intranasal challenge with OVA, mice epicutaneously exposed to LD showed an increase in allergen-induced esophageal eosinophilia compared with LD or OVA alone. Collectively, these results suggest that LD may be an important factor that impairs the skin barrier and leads to allergen sensitization in early life, and therefore may have a role in the increase in allergic disease.
Collapse
|
18
|
Hasegawa T, Oka T, Demehri S. Alarmin Cytokines as Central Regulators of Cutaneous Immunity. Front Immunol 2022; 13:876515. [PMID: 35432341 PMCID: PMC9005840 DOI: 10.3389/fimmu.2022.876515] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Skin acts as the primary interface between the body and the environment. The skin immune system is composed of a complex network of immune cells and factors that provide the first line of defense against microbial pathogens and environmental insults. Alarmin cytokines mediate an intricate intercellular communication between keratinocytes and immune cells to regulate cutaneous immune responses. Proper functions of the type 2 alarmin cytokines, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, are paramount to the maintenance of skin homeostasis, and their dysregulation is commonly associated with allergic inflammation. In this review, we discuss recent findings on the complex regulatory network of type 2 alarmin cytokines that control skin immunity and highlight the mechanisms by which these cytokines regulate skin immune responses in host defense, chronic inflammation, and cancer.
Collapse
Affiliation(s)
| | - Tomonori Oka
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Pavel P, Blunder S, Moosbrugger-Martinz V, Elias PM, Dubrac S. Atopic Dermatitis: The Fate of the Fat. Int J Mol Sci 2022; 23:2121. [PMID: 35216234 PMCID: PMC8880331 DOI: 10.3390/ijms23042121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic and relapsing inflammatory skin disease in which dry and itchy skin may develop into skin lesions. AD has a strong genetic component, as children from parents with AD have a two-fold increased chance of developing the disease. Genetic risk loci and epigenetic modifications reported in AD mainly locate to genes involved in the immune response and epidermal barrier function. However, AD pathogenesis cannot be fully explained by (epi)genetic factors since environmental triggers such as stress, pollution, microbiota, climate, and allergens also play a crucial role. Alterations of the epidermal barrier in AD, observed at all stages of the disease and which precede the development of overt skin inflammation, manifest as: dry skin; epidermal ultrastructural abnormalities, notably anomalies of the lamellar body cargo system; and abnormal epidermal lipid composition, including shorter fatty acid moieties in several lipid classes, such as ceramides and free fatty acids. Thus, a compelling question is whether AD is primarily a lipid disorder evolving into a chronic inflammatory disease due to genetic susceptibility loci in immunogenic genes. In this review, we focus on lipid abnormalities observed in the epidermis and blood of AD patients and evaluate their primary role in eliciting an inflammatory response.
Collapse
Affiliation(s)
- Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (P.P.); (S.B.); (V.M.-M.)
| | - Stefan Blunder
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (P.P.); (S.B.); (V.M.-M.)
| | - Verena Moosbrugger-Martinz
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (P.P.); (S.B.); (V.M.-M.)
| | - Peter M. Elias
- Department of Dermatology, University of California, San Francisco, CA 94115, USA;
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (P.P.); (S.B.); (V.M.-M.)
| |
Collapse
|
20
|
Tokura Y, Hayano S. Subtypes of atopic dermatitis: From phenotype to endotype. Allergol Int 2022; 71:14-24. [PMID: 34344611 DOI: 10.1016/j.alit.2021.07.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Atopic dermatitis (AD) is a heterogenous disorder and can be classified into different types. Stratification of subtypes may enable personalized medicine approaches. AD can be categorized into the IgE-high, extrinsic subtype and the IgE-normal, intrinsic subtype. While extrinsic AD is the major subtype possessing skin barrier impairment (high incidence of filaggrin mutations), intrinsic AD occupies about 20% of AD with female dominance and preserved barrier. Extrinsic AD exhibits protein allergy and food allergy, but intrinsic AD shows metal allergy possibly in association with suprabasin deficiency. In particular, accumulated knowledge of food allergy has more clearly characterized extrinsic AD. European American (EA) and Asian AD subtypes have been also proposed. Asian patients with AD are characterized by a unique blended immune dysregulation and barrier feature phenotype between EA patients with AD and those with psoriasis. In another ethnic study, filaggrin loss-of-function mutations are not prevalent in African American patients with AD, and Th1/Th17 attenuation and Th2/Th22 skewing were seen in these patients. Recent endotype classification provides new insights for AD and other allergic disorders. Endotype is defined as the molecular mechanisms underlying the visible features/phenotype. Endotype repertoire harbors activation of type 2 cytokines, type 1 cytokines, and IL-17/IL-22, impairment of epidermal barrier, and abnormalities of intercellular lipids. Classification of endotype has been attempted with serum markers. These lines of evidence indicate a need for personalized or precision medicine appropriate for each subtype of AD.
Collapse
Affiliation(s)
- Yoshiki Tokura
- Allergic Disease Research Center, Chutoen General Medical Center, Kakegawa, Japan; Department of Dermatology, Chutoen General Medical Center, Kakegawa, Japan.
| | - Satoshi Hayano
- Allergic Disease Research Center, Chutoen General Medical Center, Kakegawa, Japan; Department of Pediatrics, Chutoen General Medical Center, Kakegawa, Japan
| |
Collapse
|
21
|
Osthole Inhibits Expression of Genes Associated with Toll-like Receptor 2 Signaling Pathway in an Organotypic 3D Skin Model of Human Epidermis with Atopic Dermatitis. Cells 2021; 11:cells11010088. [PMID: 35011650 PMCID: PMC8750192 DOI: 10.3390/cells11010088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
The Toll-like receptor (TLR) family signature has been linked to the etiopathology of atopic dermatitis (AD), a chronic inflammatory skin disease associated with skin barrier dysfunction and immune system imbalance. We aimed to investigate whether osthole (a plant-derived compound) can inhibit the genetic profile of key genes associated with TLR2 signaling (TIRAP, MyD88, IRAK1, TRAF6, IκBα, NFκB) after stimulation with LPS or histamine in a 3D in vitro model of AD. Overexpression of the aforementioned genes may directly increase the secretion of proinflammatory cytokines (CKs) and chemokines (ChKs), which may exacerbate the symptoms of AD. Relative gene expressions were quantified by qPCR and secretion of CKs and ChKs was evaluated by ELISA assay. LPS and histamine increased the relative expression of genes related to the TLR2 pathway, and osthole successfully reduced it. In summary, our results show that osthole inhibits the expression of genes associated with the TLR signaling pathway in a skin model of AD. Moreover, the secretion of CKs and ChKs after treatment of AD with osthole in a 3D skin model in vitro suggests the potential of osthole as a novel compound for the treatment of AD.
Collapse
|
22
|
Ishitsuka Y, Roop DR. The Epidermis: Redox Governor of Health and Diseases. Antioxidants (Basel) 2021; 11:47. [PMID: 35052551 PMCID: PMC8772843 DOI: 10.3390/antiox11010047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
A functional epithelial barrier necessitates protection against dehydration, and ichthyoses are caused by defects in maintaining the permeability barrier in the stratum corneum (SC), the uppermost protective layer composed of dead cells and secretory materials from the living layer stratum granulosum (SG). We have found that loricrin (LOR) is an essential effector of cornification that occurs in the uppermost layer of SG (SG1). LOR promotes the maturation of corneocytes and extracellular adhesion structure through organizing disulfide cross-linkages, albeit being dispensable for the SC permeability barrier. This review takes psoriasis and AD as the prototype of impaired cornification. Despite exhibiting immunological traits that oppose each other, both conditions share the epidermal differentiation complex as a susceptible locus. We also review recent mechanistic insights on skin diseases, focusing on the Kelch-like erythroid cell-derived protein with the cap "n" collar homology-associated protein 1/NFE2-related factor 2 signaling pathway, as they coordinate the epidermis-intrinsic xenobiotic metabolism. Finally, we refine the theoretical framework of thiol-mediated crosstalk between keratinocytes and leukocytes in the epidermis that was put forward earlier.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology Integrated Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Dennis R. Roop
- Charles C. Gates Center for Regenerative Medicine, Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
23
|
Chung H, Oh S, Shin HW, Lee Y, Lee H, Seok SH. Matrix Stiffening Enhances DNCB-Induced IL-6 Secretion in Keratinocytes Through Activation of ERK and PI3K/Akt Pathway. Front Immunol 2021; 12:759992. [PMID: 34858412 PMCID: PMC8631934 DOI: 10.3389/fimmu.2021.759992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 12/04/2022] Open
Abstract
Matrix stiffness, a critical physical property of the cellular environment, is implicated in epidermal homeostasis. In particular, matrix stiffening during the pathological progression of skin diseases appears to contribute to cellular responses of keratinocytes. However, it has not yet elucidated the molecular mechanism underlying matrix-stiffness-mediated signaling in coordination with chemical stimuli during inflammation and its effect on proinflammatory cytokine production. In this study, we demonstrated that keratinocytes adapt to matrix stiffening by increasing cell–matrix adhesion via actin cytoskeleton remodeling. Specifically, mechanosensing and signal transduction are coupled with chemical stimuli to regulate cytokine production, and interleukin-6 (IL-6) production is elevated in keratinocytes on stiffer substrates in response to 2,4-dinitrochlorobenzene. We demonstrated that β1 integrin and focal adhesion kinase (FAK) expression were enhanced with increasing stiffness and activation of ERK and the PI3K/Akt pathway was involved in stiffening-mediated IL-6 production. Collectively, our results reveal the critical role of matrix stiffening in modulating the proinflammatory response of keratinocytes, with important clinical implications for skin diseases accompanied by pathological matrix stiffening.
Collapse
Affiliation(s)
- Hyewon Chung
- Macrophages Laboratory, Department of Microbiology and Immunology, Institute of Endemic Disease, College of Medicine, Seoul National University, Seoul, South Korea
| | - Seunghee Oh
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea.,Global Technology Center, Samsung Electronics, Co., Ltd., Suwon, South Korea
| | - Hyun-Woo Shin
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Yunam Lee
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Seung Hyeok Seok
- Macrophages Laboratory, Department of Microbiology and Immunology, Institute of Endemic Disease, College of Medicine, Seoul National University, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
24
|
Park J, Lee JW, Kim SH, Oh J, Roh WS, Kim SM, Park CO, Lee MG, Kim TG. Type 2 immunity plays an essential role for murine model of allergic contact dermatitis with mixed type 1/type 2 immune response. J Dermatol Sci 2021; 104:122-131. [PMID: 34763990 DOI: 10.1016/j.jdermsci.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Both human and mouse allergic contact dermatitis (ACD) frequently demonstrates a combined type 1 and type 2 immune response. However, the relative importance of type 2 immunity in this setting has been incompletely understood yet. OBJECTIVE To explore an effector function of type 2 immunity in ACD with mixed type 1/type 2 immune response. METHODS Gene expression characteristics of contact hypersensitivity (CHS) model was examined by quantitative polymerase chain reaction. Cytokine profile of T cells was analyzed by flow cytometry. The involvement of type 2 immunity was assessed by antibody-mediated cytokine neutralization and cell depletion. The role of specific subset of cutaneous dendritic cells was evaluated using diphtheria toxin-induced cell-depleting mouse strains. RESULTS Oxazolone-induced CHS revealed a combination of type 1/type 2 gene expression. The severity of oxazolone-induced CHS was ameliorated by neutralization of IL-4 but not of IFN-γ, indicating that type 2 immunity plays a dominant effector function in this mixed type 1/type 2 model. Mechanistically, type 2 effector immunity was mounted by CD301b+Langeirn- dermal dendritic cells in part through thymic stromal lymphopoietin-interleukin 7 receptor alpha signaling-dependent manner. CONCLUSION Our findings suggest the clinical rationale for targeting type 2 immunity as a relevant therapeutic strategy for the mixed immune phenotype of ACD.
Collapse
Affiliation(s)
- Jeyun Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Won Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Hee Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jongwook Oh
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Seok Roh
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Min Kim
- Department of Dermatology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Chang Ook Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Geol Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Wu J, Fang Z, Liu T, Hu W, Wu Y, Li S. Maximizing the Utility of Transcriptomics Data in Inflammatory Skin Diseases. Front Immunol 2021; 12:761890. [PMID: 34777377 PMCID: PMC8586455 DOI: 10.3389/fimmu.2021.761890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory skin diseases are induced by disorders of the host defense system of the skin, which is composed of a barrier, innate and acquired immunity, as well as the cutaneous microbiome. These disorders are characterized by recurrent cutaneous lesions and intense itch, which seriously affecting life quality of people across all ages and ethnicities. To elucidate molecular factors for typical inflammatory skin diseases (such as psoriasis and atopic dermatitis), transcriptomic profiling assays have been largely performed. Additionally, single-cell RNA sequencing (scRNA-seq) as well as spatial transcriptomic profiling have revealed multiple potential translational targets and offered guides to improve diagnosis and treatment strategies for inflammatory skin diseases. High-throughput transcriptomics data has shown unprecedented power to disclose the complex pathophysiology of inflammatory skin diseases. Here, we will summarize discoveries from transcriptomics data and discuss how to maximize the transcriptomics data to propel the development of diagnostic biomarkers and therapeutic targets in inflammatory skin diseases.
Collapse
Affiliation(s)
- Jingni Wu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixiao Fang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Teng Liu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Hu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangjun Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Distinct human Langerhans cell subsets orchestrate reciprocal functions and require different developmental regulation. Immunity 2021; 54:2305-2320.e11. [PMID: 34508661 DOI: 10.1016/j.immuni.2021.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/19/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022]
Abstract
Langerhans cells (LCs) play a pivotal role in skin homeostasis, and the heterogeneity of LCs has long been considered. In this study, we have identified two steady-state (LC1 and LC2) and two activated LC subsets in the epidermis of human skin and in LCs derived from CD34+ hemopoietic stem cells (HSC-LCs) by utilizing single-cell RNA sequencing and mass cytometry. Analysis of HSC-LCs at multiple time-points during differentiation revealed that EGR1 and Notch signaling were among the top pathways regulating the bifurcation of LC1 and LC2. LC1 were characterized as classical LCs, mainly related to innate immunity and antigen processing. LC2 were similar to monocytes or myeloid dendritic cells, involving in immune responses and leukocyte activation. LC1 remained stable under inflammatory microenvironment, whereas LC2 were prone to being activated and demonstrated elevated expression of immuno-suppressive molecules. We revealed distinct human LC subsets that require different developmental regulation and orchestrate reciprocal functions.
Collapse
|
27
|
Hassoun D, Malard O, Barbarot S, Magnan A, Colas L. Type 2 immunity-driven diseases: Towards a multidisciplinary approach. Clin Exp Allergy 2021; 51:1538-1552. [PMID: 34617355 PMCID: PMC9292742 DOI: 10.1111/cea.14029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022]
Abstract
Asthma, atopic dermatitis and chronic rhinoconjunctivitis are highly heterogeneous. However, epidemiologic associations exist between phenotypic groups of patients. Atopic march is one such association but is not the only common point. Indeed, beyond such phenotypes, hallmarks of type 2 immunity have been found in these diseases involving immune dysregulation as well as environmental triggers and epithelial dysfunction. From the canonical Th2 cytokines (IL-4, IL-5, IL-13), new cellular and molecular actors arise, from the epithelium's alarmins to new innate immune cells. Their interactions are now better understood across the different environmental barriers, and slight differences appeared. In parallel, the development of type 2-targeting biotherapies not only raised hope to treat those diseases but also raised new questions regarding their true pathophysiological involvement. Here, we review the place of type 2 immunity in the different phenotypes of asthma, chronic rhinitis, chronic rhinosinusitis and atopic dermatitis, highlighting nuances between them. New hypotheses rising from the use of biotherapies will be discussed along with the uncertainties and unmet needs of this field.
Collapse
Affiliation(s)
- Dorian Hassoun
- CHU Nantes, CNRS, INSERM, l'institut du Thorax, Université de Nantes, Nantes, France
| | - Olivier Malard
- Department of Otorhinolaryngology and Head and Neck Surgery, Nantes University Hospital, Nantes, France
| | - Sébastien Barbarot
- Department of Dermatology, CHU Nantes, UMR 1280 PhAN, INRA, Nantes Université, Nantes, France
| | - Antoine Magnan
- INRAe UMR_S 0892, Hôpital Foch, Université de Versailles Saint-Quentin, Paris Saclay, France
| | - Luc Colas
- Plateforme Transversale d'Allergologie et d'Immunologie Clinique, Institut du Thorax, CHU de Nantes, Nantes, France.,INSERM, CHU Nantes, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, ITUN, Nantes, France
| |
Collapse
|
28
|
Nagata N, Hamasaki Y, Inagaki S, Nakamura T, Horikami D, Yamamoto-Hanada K, Inuzuka Y, Shimosawa T, Kobayashi K, Narita M, Ohya Y, Murata T. Urinary lipid profile of atopic dermatitis in murine model and human patients. FASEB J 2021; 35:e21949. [PMID: 34591339 DOI: 10.1096/fj.202100828r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/15/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022]
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease in children. The serum level of thymus and activation-regulated chemokine (TARC) is a useful AD index to reflect disease severity; however, it requires blood collection from young children. In comparison, urine samples are easier to collect in a pediatric clinical setting. Here, we analyzed the lipids excreted in urine to identify a diagnostic biomarker for AD. We generated a murine dermatitis model by repeated topical application of 2,4-dinitrofluorobenzene (DNFB) or tape-stripping the dorsal skin. Lipid metabolites excreted in the urine were comprehensively analyzed using liquid chromatography-tandem mass spectrometry. To corroborate our findings, we also analyzed urine samples from patients with AD. DNFB application induced AD-like skin lesions, including epidermal thickening, infiltration of eosinophils and T cells, and an increase in Th2 cytokine levels. Assessment of lipids excreted in urine showed a dominance of prostaglandins (PGs), namely, a PGF2α metabolite (13,14-dihydro-15-keto-tetranor-PGF1α ), a PGE2 metabolite (13,14-dihydro-15-keto-tetranor-PGE2 ), and a PGD2 metabolite (13,14-dihydro-15-keto PGJ2 ). mRNA and protein expression of PGF2α , PGE2 , and PGD2 synthase was upregulated in DNFB-treated skin. The tape-stripping model also caused dermatitis but without Th2 inflammation; urine PGF2α and PGD2 metabolite levels remained unaffected. Finally, we confirmed that the urinary levels of the aforementioned PG metabolites, as well as PGI2 metabolite, 6,15-diketo-13,14-dihydro-PGF1α and arachidonic acid metabolite, 17-hydroxyeicosatetraenoic acid (17-HETE) increased in patients with AD. Our data highlights the unique urinary lipid profile in patients with AD, which may provide insight into novel urinary biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Nanae Nagata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuta Hamasaki
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinichiro Inagaki
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Tatsuro Nakamura
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daiki Horikami
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Yusuke Inuzuka
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Koji Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masami Narita
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yukihiro Ohya
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Yamamoto Y, Otsuka A, Ishida Y, Wong LS, Seidel JA, Nonomura Y, Nakashima C, Nakajima S, Kitoh A, Nomura T, Dainichi T, Honda T, Amano W, Konishi N, Hayashi M, Matsushita M, Kabashima K. Pituitary adenylate cyclase-activating polypeptide promotes cutaneous dendritic cell functions in contact hypersensitivity. J Allergy Clin Immunol 2021; 148:858-866. [PMID: 33609627 DOI: 10.1016/j.jaci.2021.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/17/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Sensory nerves regulate cutaneous local inflammation indirectly through induction of pruritus and directly by acting on local immune cells. The underlying mechanisms for how sensory nerves influence cutaneous acquired immune responses remain to be clarified. OBJECTIVE This study aimed to explore the effect of peripheral nerves on cutaneous immune cells in cutaneous acquired immune responses. METHODS We analyzed contact hypersensitivity (CHS) responses as a murine model of delayed-type hypersensitivity in absence or presence of resiniferatoxin-induced sensory nerve denervation. We conducted ear thickness measurements, flow cytometric analyses, and mRNA expression analyses in CHS. RESULTS CHS responses were attenuated in mice that were denervated during the sensitization phase of CHS. By screening neuropeptides, we found that pituitary adenylate cyclase-activating polypeptide (PACAP) mRNA expression was decreased in the dorsal root ganglia after denervation. Administration of PACAP restored attenuated CHS response in resiniferatoxin-treated mice, and pharmacological inhibition of PACAP suppressed CHS. Flow cytometric analysis of skin-draining lymph nodes showed that cutaneous dendritic cell migration and maturation were reduced in both denervated mice and PACAP antagonist-treated mice. The expression of chemokine receptors CCR7 and CXCR4 of dendritic cell s was enhanced by addition of PACAP in vitro. CONCLUSION These findings indicate that a neuropeptide PACAP promotes the development of CHS responses by inducing cutaneous dendritic cell functions during the sensitization phase.
Collapse
Affiliation(s)
- Yasuo Yamamoto
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Central Pharmaceutical Research Institute, Japan Tobacco, Takatsuki, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Translational Research Department for Skin and Brain Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Yoshihiro Ishida
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Lai San Wong
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Judith A Seidel
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yumi Nonomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chisa Nakashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiko Kitoh
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Teruki Dainichi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wataru Amano
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Central Pharmaceutical Research Institute, Japan Tobacco, Takatsuki, Japan
| | - Noriko Konishi
- Central Pharmaceutical Research Institute, Japan Tobacco, Takatsuki, Japan
| | - Mikio Hayashi
- Central Pharmaceutical Research Institute, Japan Tobacco, Takatsuki, Japan
| | | | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Singapore Immunology Network and Skin Research Institute of Singapore, Technology and Research, Biopolis, Singapore.
| |
Collapse
|
30
|
Nakajima S, Tie D, Nomura T, Kabashima K. Novel pathogenesis of atopic dermatitis from the view of cytokines in mice and humans. Cytokine 2021; 148:155664. [PMID: 34388479 DOI: 10.1016/j.cyto.2021.155664] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022]
Abstract
Type 2 immunity and inflammation underlie allergic skin disorders, such as atopic dermatitis (AD). In type 2 inflammation, IL-4, IL-13, and IL-5, which are signature type 2 cytokines, are mainly produced by type 2 helper T (Th2) cells and form the characteristic features of AD. Epithelial cell-derived cytokines such as IL-25, IL-33, and TSLP initiate type 2 inflammation by modulating various cells, including group 2 innate lymphoid cells. Moreover, IL-31, a newly identified type 2 cytokine produced mainly by Th2 cells, induces pruritus by acting on sensory neurons in the skin. Based on both basic and clinical findings, several biologics targeting Th2 cytokines have been developed and exhibited significant efficacy as therapeutic reagents for AD. We have summarized the roles of each cytokine (IL-4, 5, 13, 25, 31, and 33, and TSLP) in the development of type 2 inflammation, especially AD, from the view of basic studies in mice and clinical trials/observation in humans.
Collapse
Affiliation(s)
- Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto Japan; Department of Drug Discovery for Inflammatory Skin Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Duerna Tie
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto Japan; Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
31
|
Yang N, Chen Z, Zhang X, Shi Y. Novel Targeted Biological Agents for the Treatment of Atopic Dermatitis. BioDrugs 2021; 35:401-415. [PMID: 34213742 DOI: 10.1007/s40259-021-00490-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatologic disease clinically characterized by intense itch, recurrent eczematous lesions, and a chronic or relapsing disease course. Mild-to-moderate AD can be controlled by using moisturizers and topical immunomodulators such as topical corticosteroids and calcineurin inhibitors. If topical therapies fail, phototherapy and systemic immunosuppressant therapies, such as ciclosporin, methotrexate, and azathioprine, can be considered. However, relapse and side effects could still occur. The pathogenesis of AD involves epidermal barrier dysfunction, skin microbiome abnormalities, and cutaneous inflammation. Inflammatory mediators, such as interleukin (IL)-4, IL-13, IL-31, IL-33, IL-17, IL-23, and thymic stromal lymphopoietin, are involved in AD development. Therefore, a series of biological agents targeting these cytokines are promising approaches for treating AD. Dupilumab is the first biological agent approved for the treatment of AD in patients aged 6 years and older in the United States. Tralokinumab, lebrikizumab, and nemolizumab have also been confirmed to have significant efficacy against AD in phase III or IIb clinical trials. Also, fezakinumab was effective in severe AD patients in a phase IIa trial. However, phase II trials of ustekinumab, tezepelumab, etokimab, secukinumab, and omalizumab have failed to meet their primary endpoints. Phase II trials of GBR 830 and KHK 4083 are ongoing. In general, further studies are needed to explore new therapeutic targets and improve the efficacy of biological agents.
Collapse
Affiliation(s)
- Nan Yang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zeyu Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, 200072, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xilin Zhang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China. .,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
32
|
Kader HA, Azeem M, Jwayed SA, Al-Shehhi A, Tabassum A, Ayoub MA, Hetta HF, Waheed Y, Iratni R, Al-Dhaheri A, Muhammad K. Current Insights into Immunology and Novel Therapeutics of Atopic Dermatitis. Cells 2021; 10:cells10061392. [PMID: 34200009 PMCID: PMC8226506 DOI: 10.3390/cells10061392] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most prevalent inflammatory disease among non-fatal skin diseases, affecting up to one fifth of the population in developed countries. AD is characterized by recurrent pruritic and localized eczema with seasonal fluctuations. AD initializes the phenomenon of atopic march, during which infant AD patients are predisposed to progressive secondary allergies such as allergic rhinitis, asthma, and food allergies. The pathophysiology of AD is complex; onset of the disease is caused by several factors, including strong genetic predisposition, disrupted epidermal barrier, and immune dysregulation. AD was initially characterized by defects in the innate immune system and a vigorous skewed adaptive Th2 response to environmental agents; there are compelling evidences that the disorder involves multiple immune pathways. Symptomatic palliative treatment is the only strategy to manage the disease and restore skin integrity. Researchers are trying to more precisely define the contribution of different AD genotypes and elucidate the role of various immune axes. In this review, we have summarized the current knowledge about the roles of innate and adaptive immune responsive cells in AD. In addition, current and novel treatment strategies for the management of AD are comprehensively described, including some ongoing clinical trials and promising therapeutic agents. This information will provide an asset towards identifying personalized targets for better therapeutic outcomes.
Collapse
Affiliation(s)
- Hidaya A. Kader
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Muhammad Azeem
- Department of Pathology, University of Würzburg, 97080 Würzburg, Germany;
| | - Suhib A. Jwayed
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Aaesha Al-Shehhi
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Attia Tabassum
- Department of Dermatology, Mayo Hospital, Lahore 54000, Pakistan;
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Rabah Iratni
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Ahmed Al-Dhaheri
- Department of Dermatology, Tawam Hospital, Al Ain 15551, United Arab Emirates;
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
- Correspondence:
| |
Collapse
|
33
|
Recent Progress in Dendritic Cell-Based Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13102495. [PMID: 34065346 PMCID: PMC8161242 DOI: 10.3390/cancers13102495] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Cancer immunotherapy has now attracted much attention because of the recent success of immune checkpoint inhibitors. However, they are only beneficial in a limited fraction of patients most probably due to lack of sufficient CD8+ cytotoxic T-lymphocytes against tumor antigens in the host. In this regard, dendritic cells are useful tools to induce host immune responses against exogenous antigens. In particular, recently characterized cross-presenting dendritic cells are capable of inducing CD8+ cytotoxic T-lymphocytes against exogenous antigens such as tumor antigens and uniquely express the chemokine receptor XCR1. Here we focus on the recent progress in DC-based cancer vaccines and especially the use of the XCR1 and its ligand XCL1 axis for the targeted delivery of cancer vaccines to cross-presenting dendritic cells. Abstract Cancer immunotherapy aims to treat cancer by enhancing cancer-specific host immune responses. Recently, cancer immunotherapy has been attracting much attention because of the successful clinical application of immune checkpoint inhibitors targeting the CTLA-4 and PD-1/PD-L1 pathways. However, although highly effective in some patients, immune checkpoint inhibitors are beneficial only in a limited fraction of patients, possibly because of the lack of enough cancer-specific immune cells, especially CD8+ cytotoxic T-lymphocytes (CTLs), in the host. On the other hand, studies on cancer vaccines, especially DC-based ones, have made significant progress in recent years. In particular, the identification and characterization of cross-presenting DCs have greatly advanced the strategy for the development of effective DC-based vaccines. In this review, we first summarize the surface markers and functional properties of the five major DC subsets. We then describe new approaches to induce antigen-specific CTLs by targeted delivery of antigens to cross-presenting DCs. In this context, the chemokine receptor XCR1 and its ligand XCL1, being selectively expressed by cross-presenting DCs and mainly produced by activated CD8+ T cells, respectively, provide highly promising molecular tools for this purpose. In the near future, CTL-inducing DC-based cancer vaccines may provide a new breakthrough in cancer immunotherapy alone or in combination with immune checkpoint inhibitors.
Collapse
|
34
|
Milam EC, Nassau S, Banta E, Fonacier L, Cohen DE. Occupational Contact Dermatitis: An Update. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:3283-3293. [PMID: 33161959 DOI: 10.1016/j.jaip.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Occupation contact dermatitis (CD) is a common inflammatory skin condition impacting every professional industry in the United States. It is associated with significant personal and professional distress, loss of revenue, and decreased productivity. Occupational CD is further subdivided into irritant CD and allergic CD. Frequently, workers may suffer from a combination of both types. Numerous workplace exposures are implicated, but there are several themes across professions, such as CD related to frequent handwashing and wet work. A detailed occupational history, physical examination, and patch testing can help to make the diagnosis. Treatment includes identification of the substance and avoidance, which often is quite challenging.
Collapse
Affiliation(s)
- Emily C Milam
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY.
| | - Stacy Nassau
- Division of Allergy and Immunology, NYU-Winthrop Hospital, Mineola, NY
| | - Erin Banta
- Division of Allergy and Immunology, NYU-Winthrop Hospital, Mineola, NY
| | - Luz Fonacier
- Division of Allergy and Immunology, NYU-Winthrop Hospital, Mineola, NY
| | - David E Cohen
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
35
|
Immunomodulatory drugs suppress Th1-inducing ability of dendritic cells but enhance Th2-mediated allergic responses. Blood Adv 2021; 4:3572-3585. [PMID: 32761232 DOI: 10.1182/bloodadvances.2019001410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/01/2020] [Indexed: 11/20/2022] Open
Abstract
Immunomodulatory drugs (IMiDs), lenalidomide and pomalidomide, are widely used treatments for multiple myeloma; however, they occasionally lead to episodes of itchy skin and rashes. Here, we analyzed the effects of IMiDs on human myeloid dendritic cells (mDCs) as major regulators of Th1 or Th2 responses and the role they play in allergy. We found that lenalidomide and pomalidomide used at clinical concentrations did not affect the survival or CD86 and OX40-ligand expression of blood mDCs in response to lipopolysaccharide (LPS) and thymic stromal lymphopoietin (TSLP) stimulation. Both lenalidomide and pomalidomide dose-dependently inhibited interleukin-12 (IL-12) and TNF production and STAT4 expression, and enhanced IL-10 production in response to LPS. When stimulated with TSLP, both IMiDs significantly enhanced CCL17 production and STAT6 and IRF4 expression and promoted memory Th2-cell responses. In 46 myeloma patients, serum CCL17 levels at the onset of lenalidomide-associated rash were significantly higher than those without rashes during lenalidomide treatment and those before treatment. Furthermore, serum CCL17 levels in patients who achieved a very good partial response (VGPR) were significantly higher compared with a less than VGPR during lenalidomide treatment. The median time to next treatment was significantly longer in lenalidomide-treated patients with rashes than those without. Collectively, IMiDs suppressed the Th1-inducing capacity of DCs, instead promoting a Th2 response. Thus, the lenalidomide-associated rashes might be a result of an allergic response driven by Th2-axis activation. Our findings suggest clinical efficacy and rashes as a side effect of IMiDs are inextricably linked through immunostimulation.
Collapse
|
36
|
Marschall P, Wei R, Segaud J, Yao W, Hener P, German BF, Meyer P, Hugel C, Ada Da Silva G, Braun R, Kaplan DH, Li M. Dual function of Langerhans cells in skin TSLP-promoted T FH differentiation in mouse atopic dermatitis. J Allergy Clin Immunol 2021; 147:1778-1794. [PMID: 33068561 DOI: 10.1016/j.jaci.2020.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is among the most common chronic inflammatory skin diseases, usually occurring early in life, and often preceding other atopic diseases such as asthma. TH2 has been believed to play a crucial role in cellular and humoral response in AD, but accumulating evidence has shown that follicular helper T cell (TFH), a critical player in humoral immunity, is associated with disease severity and plays an important role in AD pathogenesis. OBJECTIVES This study aimed at investigating how TFHs are generated during the pathogenesis of AD, particularly what is the role of keratinocyte-derived cytokine TSLP and Langerhans cells (LCs). METHODS Two experimental AD mouse models were employed: (1) triggered by the overproduction of TSLP through topical application of MC903, and (2) induced by epicutaneous allergen ovalbumin (OVA) sensitization. RESULTS This study demonstrated that the development of TFHs and germinal center (GC) response were crucially dependent on TSLP in both the MC903 model and the OVA sensitization model. Moreover, we found that LCs promoted TFH differentiation and GC response in the MC903 model, and the depletion of Langerin+ dendritic cells (DCs) or selective depletion of LCs diminished the TFH/GC response. By contrast, in the model with OVA sensitization, LCs inhibited TFH/GC response and suppressed TH2 skin inflammation and the subsequent asthma. Transcriptomic analysis of Langerin+ and Langerin- migratory DCs revealed that Langerin+ DCs became activated in the MC903 model, whereas these cells remained inactivated in OVA sensitization model. CONCLUSIONS Together, these studies revealed a dual functionality of LCs in TSLP-promoted TFH and TH2 differentiation in AD pathogenesis.
Collapse
Affiliation(s)
- Pierre Marschall
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Ruicheng Wei
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Justine Segaud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Wenjin Yao
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Pierre Hener
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Beatriz Falcon German
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Pierre Meyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Cecile Hugel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Grace Ada Da Silva
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | | | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Mei Li
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
37
|
Abstract
As the professional antigen-presenting cells of the immune system, dendritic cells (DCs) sense the microenvironment and shape the ensuing adaptive immune response. DCs can induce both immune activation and immune tolerance according to the peripheral cues. Recent work has established that DCs comprise several phenotypically and functionally heterogeneous subsets that differentially regulate T lymphocyte differentiation. This review summarizes both mouse and human DC subset phenotypes, development, diversification, and function. We focus on advances in our understanding of how different DC subsets regulate distinct CD4+ T helper (Th) cell differentiation outcomes, including Th1, Th2, Th17, T follicular helper, and T regulatory cells. We review DC subset intrinsic properties, local tissue microenvironments, and other immune cells that together determine Th cell differentiation during homeostasis and inflammation.
Collapse
Affiliation(s)
- Xiangyun Yin
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Shuting Chen
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
38
|
Toriyama M, Ishii KJ. Primary Cilia in the Skin: Functions in Immunity and Therapeutic Potential. Front Cell Dev Biol 2021; 9:621318. [PMID: 33644059 PMCID: PMC7905053 DOI: 10.3389/fcell.2021.621318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
The skin is the biggest organ and provides a physical and immunological barrier against pathogen infection. The distribution of primary cilia in the skin of mice has been reported, but which cells in human skin have them has not, and we still know very little about how they change in response to immune reactions or disease. This review introduces several studies that describe mechanisms of cilia regulation by immune reaction and the physiological relevance of cilia regulating proliferation and differentiation of stroma cells, including skin-resident Langerhans cells. We discuss the possibility of primary cilia pathology in allergic atopic dermatitis and the potential for therapies targeting primary cilia signaling.
Collapse
Affiliation(s)
- Manami Toriyama
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan.,Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Ken J Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Immunogenicity Challenges Associated with Subcutaneous Delivery of Therapeutic Proteins. BioDrugs 2021; 35:125-146. [PMID: 33523413 PMCID: PMC7848667 DOI: 10.1007/s40259-020-00465-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The subcutaneous route of administration has provided convenient and non-inferior delivery of therapeutic proteins compared to intravenous infusion, but there is potential for enhanced immunogenicity toward subcutaneously administered proteins in a subset of patients. Unwanted anti-drug antibody response toward proteins or monoclonal antibodies upon repeated administration is shown to impact the pharmacokinetics and efficacy of multiple biologics. Unique immunogenicity challenges of the subcutaneous route have been realized through various preclinical and clinical examples, although subcutaneous delivery has often demonstrated comparable immunogenicity to intravenous administration. Beyond route of administration as a treatment-related factor of immunogenicity, certain product-related risk factors are particularly relevant to subcutaneously administered proteins. This review attempts to provide an overview of the mechanism of immune response toward proteins administered subcutaneously (subcutaneous proteins) and comments on product-related risk factors related to protein structure and stability, dosage form, and aggregation. A two-wave mechanism of antigen presentation in the immune response toward subcutaneous proteins is described, and interaction with dynamic antigen-presenting cells possessing high antigen processing efficiency and migratory activity may drive immunogenicity. Mitigation strategies for immunogenicity are discussed, including those in general use clinically and those currently in development. Mechanistic insights along with consideration of risk factors involved inspire theoretical strategies to provide antigen-specific, long-lasting effects for maintaining the safety and efficacy of therapeutic proteins.
Collapse
|
40
|
Gilhar A, Reich K, Keren A, Kabashima K, Steinhoff M, Paus R. Mouse models of atopic dermatitis: a critical reappraisal. Exp Dermatol 2021; 30:319-336. [PMID: 33368555 DOI: 10.1111/exd.14270] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
Mouse models for atopic dermatitis (AD) are an indispensable preclinical research tool for testing new candidate AD therapeutics and for interrogating AD pathobiology in vivo. In this Viewpoint, we delineate why, unfortunately, none of the currently available so-called "AD" mouse models satisfactorily reflect the clinical complexity of human AD, but imitate more "allergic" or "irriant" contact dermatitis conditions. This limits the predictive value of AD models for clinical outcomes of new tested candidate AD therapeutics and the instructiveness of mouse models for human AD pathophysiology research. Here, we propose to initiate a rational debate on the minimal criteria that a mouse model should meet in order to be considered relevant for human AD. We suggest that valid AD models should at least meet the following criteria: (a) an AD-like epidermal barrier defect with reduced filaggrin expression along with hyperproliferation, hyperplasia; (b) increased epidermal expression of thymic stromal lymphopoietin (TSLP), periostin and/or chemokines such as TARC (CCL17); (c) a characteristic dermal immune cell infiltrate with overexpression of some key cytokines such as IL-4, IL-13, IL-31 and IL-33; (d) distinctive "neurodermatitis" features (sensory skin hyperinnervation, defective beta-adrenergic signalling, neurogenic skin inflammation and triggering or aggravation of AD-like skin lesions by perceived stress); and (e) response of experimentally induced skin lesions to standard AD therapy. Finally, we delineate why humanized AD mouse models (human skin xenotransplants on SCID mice) offer a particularly promising preclinical research alternative to the currently available "AD" mouse models.
Collapse
Affiliation(s)
- Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion -Israel Institute of Technology, Haifa, Israel.,Rambam Health Care Campus, Haifa, Israel
| | - Kristian Reich
- Centre for Translational Research in Inflammatory Skin Diseases, Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Skinflammation Center, Hamburg, Germany
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion -Israel Institute of Technology, Haifa, Israel
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Qatar University, Doha, Qatar.,School of Medicine, Weill Cornell University-Qatar and Qatar University, Doha, Qatar
| | - Ralf Paus
- Dr. Phillip Frost, Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Dermatology Research Centre, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|
41
|
Koshiba R, Oba T, Fuwa A, Arai K, Sasaki N, Kitazawa G, Hattori M, Matsuda H, Yoshida T. Aggravation of Food Allergy by Skin Sensitization via Systemic Th2 Enhancement. Int Arch Allergy Immunol 2020; 182:292-300. [PMID: 33176320 DOI: 10.1159/000511239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recently, the relationship between antigen contact via skin (skin sensitization) and the development of food allergies has gained increasing attention. However, few studies have examined the effects of skin sensitization on healthy skin. OBJECTIVE To examine the effect of sensitization in healthy skin on IgE and cytokine production during food allergy development. METHODS The effect of skin sensitization on food allergy was evaluated using DO11.10 mice whose T cells express ovalbumin (OVA)-specific T-cell receptors. OVA was applied to the back skin of mice dehaired by various methods, and then food allergy was induced by providing them with an OVA-containing diet. OVA-specific IgE production in the sera and decreases in body temperature due to anaphylactic reaction were measured as indicators of food allergy. In addition, IL-4 production and proliferation of splenocytes were measured in mice with food allergy after skin sensitization. RESULTS Skin sensitization in healthy skin increased IgE production and exacerbated anaphylactic symptoms induced by ingesting the antigen. Moreover, skin sensitization enhanced IL-4 production from splenocytes during the onset of food allergy. In contrast, oral tolerance was induced even after establishing skin sensitization. CONCLUSION Skin sensitization temporarily exacerbated food allergy by enhancing systemic Th2 responses. These findings will help identify the mechanisms involved in food allergy and help develop treatments.
Collapse
Affiliation(s)
- Risa Koshiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takafumi Oba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Arisa Fuwa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Katsuhiko Arai
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Nobumitsu Sasaki
- Gene Research Center, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Genki Kitazawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makoto Hattori
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroshi Matsuda
- Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tadashi Yoshida
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan,
| |
Collapse
|
42
|
Dermal IRF4+ dendritic cells and monocytes license CD4+ T helper cells to distinct cytokine profiles. Nat Commun 2020; 11:5637. [PMID: 33159073 PMCID: PMC7647995 DOI: 10.1038/s41467-020-19463-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Antigen (Ag)-presenting cells (APC) instruct CD4+ helper T (Th) cell responses, but it is unclear whether different APC subsets contribute uniquely in determining Th differentiation in pathogen-specific settings. Here, we use skin-relevant, fluorescently-labeled bacterial, helminth or fungal pathogens to track and characterize the APC populations that drive Th responses in vivo. All pathogens are taken up by a population of IRF4+ dermal migratory dendritic cells (migDC2) that similarly upregulate surface co-stimulatory molecules but express pathogen-specific cytokine and chemokine transcripts. Depletion of migDC2 reduces the amount of Ag in lymph node and the development of IFNγ, IL-4 and IL-17A responses without gain of other cytokine responses. Ag+ monocytes are an essential source of IL-12 for both innate and adaptive IFNγ production, and inhibit follicular Th cell development. Our results thus suggest that Th cell differentiation does not require specialized APC subsets, but is driven by inducible and pathogen-specific transcriptional programs in Ag+ migDC2 and monocytes.
Collapse
|
43
|
Kandil A, Hanora A, Azab M, Enany S. Proteomic analysis of bacterial communities associated with atopic dermatitis. J Proteomics 2020; 229:103944. [DOI: 10.1016/j.jprot.2020.103944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
|
44
|
Yan B, Liu N, Li J, Li J, Zhu W, Kuang Y, Chen X, Peng C. The role of Langerhans cells in epidermal homeostasis and pathogenesis of psoriasis. J Cell Mol Med 2020; 24:11646-11655. [PMID: 32916775 PMCID: PMC7579693 DOI: 10.1111/jcmm.15834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
The skin is the main barrier between the human body and the outside world, which not only plays the role of a physical barrier but also functions as the first line of defence of immunology. Langerhans cells (LCs), as dendritic cells (DC) that play an important role in the immune system, are mainly distributed in the epidermis. This review focuses on the role of these epidermal LCs in regulating skin threats (such as microorganisms, ultraviolet radiation and allergens), especially psoriasis. Since human and mouse skin DC subsets share common ontogenetic characteristics, we can further explore the role of LCs in psoriatic inflammation.
Collapse
Affiliation(s)
- Bei Yan
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Jie Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Jiaoduan Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Wu Zhu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Yehong Kuang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| |
Collapse
|
45
|
Suprabasin-null mice retain skin barrier function and show high contact hypersensitivity to nickel upon oral nickel loading. Sci Rep 2020; 10:14559. [PMID: 32884021 PMCID: PMC7471289 DOI: 10.1038/s41598-020-71536-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Suprabasin (SBSN) is expressed not only in epidermis but also in epithelial cells of the upper digestive tract where metals such as nickel are absorbed. We have recently shown that SBSN level is decreased in the stratum corneum and serum of atopic dermatitis (AD) patients, especially in intrinsic AD, which is characterized by metal allergy. By using SBSN-null (Sbsn–/–) mice, this study was conducted to investigate the outcome of SBSN deficiency in relation to AD. Sbsn–/– mice exhibited skin barrier dysfunction on embryonic day 16.5, but after birth, their barrier function was not perturbed despite the presence of ultrastructural changes in stratum corneum and keratohyalin granules. Sbsn–/– mice showed a comparable ovalbumin-specific skin immune response to wild type (WT) mice and rather lower contact hypersensitivity (CHS) responses to haptens than did WT mice. The blood nickel level after oral feeding of nickel was significantly higher in Sbsn–/– mice than in WT mice, and CHS to nickel was elevated in Sbsn–/– mice under nickel-loading condition. Our study suggests that the completely SBSN deficient mice retain normal barrier function, but harbor abnormal upper digestive tract epithelium that promotes nickel absorption and high CHS to nickel, sharing the features of intrinsic AD.
Collapse
|
46
|
Mu Z, Zhang J. The Role of Genetics, the Environment, and Epigenetics in Atopic Dermatitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:107-140. [PMID: 32445093 DOI: 10.1007/978-981-15-3449-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atopic Dermatitis (AD) is a common inflammatory disease with a genetic background. The prevalence of AD has been increasing in many countries. AD patients often have manifestations of pruritus, generalized skin dryness, and eczematous lesions. The pathogenesis of AD is complicated. The impaired skin barrier and immune imbalance play significant roles in the development of AD. Environmental factors such as allergens and pollutants are associated with the increasing prevalence. Many genetic and environmental factors induce a skin barrier deficiency, and this can lead to immune imbalance, which exacerbates the impaired skin barrier to form a vicious cycle (outside-inside-outside view). Genetic studies find many gene mutations and genetic variants, such as filaggrin mutations, which may directly induce the deficiency of the skin barrier and immune system. Epigenetic studies provide a connection between the relationship of an impaired skin barrier and immune and environmental factors, such as tobacco exposure, pollutants, microbes, and diet and nutrients. AD is a multigene disease, and thus there are many targets for regulation of expression of these genes which may contribute to the pathogenesis of AD. However, the epigenetic regulation of environmental factors in AD pathogenesis still needs to be further researched.
Collapse
Affiliation(s)
- Zhanglei Mu
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
47
|
Akdis CA, Arkwright PD, Brüggen MC, Busse W, Gadina M, Guttman‐Yassky E, Kabashima K, Mitamura Y, Vian L, Wu J, Palomares O. Type 2 immunity in the skin and lungs. Allergy 2020; 75:1582-1605. [PMID: 32319104 DOI: 10.1111/all.14318] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
There has been extensive progress in understanding the cellular and molecular mechanisms of inflammation and immune regulation in allergic diseases of the skin and lungs during the last few years. Asthma and atopic dermatitis (AD) are typical diseases of type 2 immune responses. interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin are essential cytokines of epithelial cells that are activated by allergens, pollutants, viruses, bacteria, and toxins that derive type 2 responses. Th2 cells and innate lymphoid cells (ILC) produce and secrete type 2 cytokines such as IL-4, IL-5, IL-9, and IL-13. IL-4 and IL-13 activate B cells to class-switch to IgE and also play a role in T-cell and eosinophil migration to allergic inflammatory tissues. IL-13 contributes to maturation, activation, nitric oxide production and differentiation of epithelia, production of mucus as well as smooth muscle contraction, and extracellular matrix generation. IL-4 and IL-13 open tight junction barrier and cause barrier leakiness in the skin and lungs. IL-5 acts on activation, recruitment, and survival of eosinophils. IL-9 contributes to general allergic phenotype by enhancing all of the aspects, such as IgE and eosinophilia. Type 2 ILC contribute to inflammation in AD and asthma by enhancing the activity of Th2 cells, eosinophils, and their cytokines. Currently, five biologics are licensed to suppress type 2 inflammation via IgE, IL-5 and its receptor, and IL-4 receptor alpha. Some patients with severe atopic disease have little evidence of type 2 hyperactivity and do not respond to biologics which target this pathway. Studies in responder and nonresponder patients demonstrate the complexity of these diseases. In addition, primary immune deficiency diseases related to T-cell maturation, regulatory T-cell development, and T-cell signaling, such as Omenn syndrome, severe combined immune deficiencies, immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, and DOCK8, STAT3, and CARD11 deficiencies, help in our understanding of the importance and redundancy of various type 2 immune components. The present review aims to highlight recent advances in type 2 immunity and discuss the cellular sources, targets, and roles of type 2 mechanisms in asthma and AD.
Collapse
Affiliation(s)
- Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| | - Peter D. Arkwright
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
| | - Marie-Charlotte Brüggen
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
- Department of Dermatology University Hospital Zurich Zurich Switzerland
- Faculty of Medicine University Zurich Zurich Switzerland
| | - William Busse
- Department of Medicine School of Medicine and Public Health University of Wisconsin Madison WI USA
| | - Massimo Gadina
- Translational Immunology Section Office of Science and Technology National Institute of Arthritis Musculoskeletal and Skin Disease NIH Bethesda MD USA
| | - Emma Guttman‐Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Kenji Kabashima
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan
- Agency for Science, Technology and Research (A*STAR) Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS) Singapore Singapore
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Laura Vian
- Translational Immunology Section Office of Science and Technology National Institute of Arthritis Musculoskeletal and Skin Disease NIH Bethesda MD USA
| | - Jianni Wu
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University of Madrid Madrid Spain
| |
Collapse
|
48
|
Nuttall TJ, Marsella R, Rosenbaum MR, Gonzales AJ, Fadok VA. Update on pathogenesis, diagnosis, and treatment of atopic dermatitis in dogs. J Am Vet Med Assoc 2020; 254:1291-1300. [PMID: 31067173 DOI: 10.2460/javma.254.11.1291] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Improved understanding of the pathogenesis of atopic dermatitis in dogs has led to more effective treatment plans, including skin barrier repair and new targeted treatments for management of allergy-associated itch and inflammation. The intent of this review article is to provide an update on the etiologic rationale behind current recommendations that emphasize a multimodal approach for the management of atopic dermatitis in dogs. Increasing knowledge of this complex disease process will help direct future treatment options.
Collapse
|
49
|
Kuroda Y, Yuki T, Takahashi Y, Sakaguchi H, Matsunaga K, Itagaki H. An acid-hydrolyzed wheat protein activates the inflammatory and NF-κB pathways leading to long TSLP transcription in human keratinocytes. J Toxicol Sci 2020; 45:327-337. [PMID: 32493875 DOI: 10.2131/jts.45.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hydrolyzed wheat proteins (HWPs) contained in cosmetics have occasionally caused immediate-type hypersensitivity following repeated skin exposure. Although the Cosmetic Ingredient Review Expert Panel concluded that < 3,500 Da HWP is safe for use in cosmetics, it remains biologically unknown how allergenic HWPs evoke immediate-type allergy percutaneously. Keratinocyte-derived thymic stromal lymphopoietin (TSLP) induces type 2 immune responses, which play an essential role in the pathogenesis of immediate-type allergy. Previously, we demonstrated that protein allergens in cultured human keratinocytes strongly induced long-form TSLP (loTSLP) transcription. However loTSLP-regulating signaling by HWP is poorly understood. In this study, we performed global gene expression analysis by microarray to investigate how the allergenic HWP acts on epidermal keratinocytes and the induction of loTSLP. Compared to human serum albumin (HSA), allergenic HWP induced a distinct gene expression pattern and preferentially activated various inflammatory pathways (High Mobility Group Box 1, Interleukin [IL]-6, IL-8, and acute phase response signaling). We identified 85 genes as potential nuclear factor-kappa B (NF-κB) target genes in GP19S-treated cells, compared with 29 such genes in HSA-treated cells. In addition, HWP specifically altered IL-17 signaling pathways in which transcription factors, NF-κB and activator protein-1, were activated. NF-κB signaling may be an important factor for HWP-induced inflammatory loTSLP transcription via inhibition assay. In conclusion, allergenic HWP caused an easily sensitizable milieu of activated inflammatory pathways and induced NF-κB-dependent loTSLP transcription in keratinocytes.
Collapse
Affiliation(s)
- Yasutaka Kuroda
- Safety Science Research Laboratories, Kao Corporation.,Department of Material Science and Engineering, Faculty of Engineering, Yokohama National University
| | - Takuo Yuki
- Safety Science Research Laboratories, Kao Corporation
| | | | | | - Kayoko Matsunaga
- Department of Integrative Medical Science for Allergic Disease, Fujita Health University School of Medicine
| | - Hiroshi Itagaki
- Department of Material Science and Engineering, Faculty of Engineering, Yokohama National University.,ITACS Consulting
| |
Collapse
|
50
|
Selective AhR knockout in langerin-expressing cells abates Langerhans cells and polarizes Th2/Tr1 in epicutaneous protein sensitization. Proc Natl Acad Sci U S A 2020; 117:12980-12990. [PMID: 32461368 DOI: 10.1073/pnas.1917479117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) represents an environmental sensor regulating immune responses. In the skin, AhR is expressed in several cell types, including keratinocytes, epidermal Langerhans cells (LC), and dermal dendritic cells (DC). The mechanisms how AhR activates or inhibits cutaneous immune responses remain controversial, owing to differences in the cell-specific functions of AhR and the different activating ligands. Therefore, we sought to investigate the role of AhR in LC and langerin+ and negative DC in the skin. To this aim, we generated Langerin-specific and CD11c-specific knockout (-/-) mice lacking AhR, respectively, in LC and Langerin+ dermal DC and in all CD11c+ cells. These were then tested in an epicutaneous protein (ovalbumin, Ova) sensitization model. Immunofluorescence microscopy and flow cytometry revealed that Langerin-AhR-/- but not CD11c-AhR-/- mice harbored a decreased number of LC with fewer and stunted dendrites in the epidermis as well as a decreased number of LC in skin-draining lymph nodes (LN). Moreover, in the absence of AhR, we detected an enhanced T helper type-2 (Th2) [increased interleukin 5 (IL-5) and interleukin 13 (IL-13)] and T regulatory type-1 (Tr1) (IL-10) response when LN cells were challenged with Ova in vitro, though the number of regulatory T cells (Treg) in the LN remained comparable. Langerin-AhR-/- mice also exhibited increased blood levels of Ova-specific immunoglobulin E (IgE). In conclusion, deletion of AhR in langerin-expressing cells diminishes the number and activation of LC, while enhancing Th2 and Tr1 responses upon epicutaneous protein sensitization.
Collapse
|