1
|
Vedantham M, Polari L, Poosakkannu A, Pinto RG, Sakari M, Laine J, Sipilä P, Määttä J, Gerke H, Rissanen T, Rantakari P, Toivola DM, Pulliainen AT. Body-wide genetic deficiency of poly(ADP-ribose) polymerase 14 sensitizes mice to colitis. FASEB J 2024; 38:e23775. [PMID: 38967223 DOI: 10.1096/fj.202400484r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic disease of the gastrointestinal tract affecting millions of people. Here, we investigated the expression and functions of poly(ADP-ribose) polymerase 14 (Parp14), an important regulatory protein in immune cells, with an IBD patient cohort as well as two mouse colitis models, that is, IBD-mimicking oral dextran sulfate sodium (DSS) exposure and oral Salmonella infection. Parp14 was expressed in the human colon by cells in the lamina propria, but, in particular, by the epithelial cells with a granular staining pattern in the cytosol. The same expression pattern was evidenced in both mouse models. Parp14-deficiency caused increased rectal bleeding as well as stronger epithelial erosion, Goblet cell loss, and immune cell infiltration in DSS-exposed mice. The absence of Parp14 did not affect the mouse colon bacterial microbiota. Also, the colon leukocyte populations of Parp14-deficient mice were normal. In contrast, bulk tissue RNA-Seq demonstrated that the colon transcriptomes of Parp14-deficient mice were dominated by abnormalities in inflammation and infection responses both prior and after the DSS exposure. Overall, the data indicate that Parp14 has an important role in the maintenance of colon epithelial barrier integrity. The prognostic and predictive biomarker potential of Parp14 in IBD merits further investigation.
Collapse
Affiliation(s)
| | - Lauri Polari
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | | | - Rita G Pinto
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Moona Sakari
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jukka Laine
- Department of Pathology, Turku University Hospital, Turku, Finland
| | - Petra Sipilä
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Jorma Määttä
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Heidi Gerke
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tiia Rissanen
- Department of Biostatistics, University of Turku, Turku, Finland
| | - Pia Rantakari
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | | |
Collapse
|
2
|
Davoudi P, Do DN, Rathgeber B, Colombo S, Sargolzaei M, Plastow G, Wang Z, Miar Y. Identification of consensus homozygous regions and their associations with growth and feed efficiency traits in American mink. BMC Genom Data 2024; 25:68. [PMID: 38982354 PMCID: PMC11234557 DOI: 10.1186/s12863-024-01252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
The recent chromosome-based genome assembly and the newly developed 70K single nucleotide polymorphism (SNP) array for American mink (Neogale vison) facilitate the identification of genetic variants underlying complex traits in this species. The objective of this study was to evaluate the association between consensus runs of homozygosity (ROH) with growth and feed efficiency traits in American mink. A subsample of two mink populations (n = 2,986) were genotyped using the Affymetrix Mink 70K SNP array. The identified ROH segments were included simultaneously, concatenated into consensus regions, and the ROH-based association studies were carried out with linear mixed models considering a genomic relationship matrix for 11 growth and feed efficiency traits implemented in ASReml-R version 4. In total, 298,313 ROH were identified across all individuals, with an average length and coverage of 4.16 Mb and 414.8 Mb, respectively. After merging ROH segments, 196 consensus ROH regions were detected and used for genome-wide ROH-based association analysis. Thirteen consensus ROH regions were significantly (P < 0.01) associated with growth and feed efficiency traits. Several candidate genes within the significant regions are known for their involvement in growth and body size development, including MEF2A, ADAMTS17, POU3F2, and TYRO3. In addition, we found ten consensus ROH regions, defined as ROH islands, with frequencies over 80% of the population. These islands harbored 12 annotated genes, some of which were related to immune system processes such as DTX3L, PARP9, PARP14, CD86, and HCLS1. This is the first study to explore the associations between homozygous regions with growth and feed efficiency traits in American mink. Our findings shed the light on the effects of homozygosity in the mink genome on growth and feed efficiency traits, that can be utilized in developing a sustainable breeding program for mink.
Collapse
Affiliation(s)
- Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Stefanie Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Select Sires Inc, Plain City, OH, USA
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton, AB, Canada
| | - Zhiquan Wang
- Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton, AB, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
3
|
Sturniolo I, Váróczy C, Regdon Z, Mázló A, Muzsai S, Bácsi A, Intili G, Hegedűs C, Boothby MR, Holechek J, Ferraris D, Schüler H, Virág L. PARP14 Contributes to the Development of the Tumor-Associated Macrophage Phenotype. Int J Mol Sci 2024; 25:3601. [PMID: 38612413 PMCID: PMC11011797 DOI: 10.3390/ijms25073601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Cancers reprogram macrophages (MΦs) to a tumor-growth-promoting TAM (tumor-associated MΦ) phenotype that is similar to the anti-inflammatory M2 phenotype. Poly(ADP-ribose) polymerase (PARP) enzymes regulate various aspects of MΦ biology, but their role in the development of TAM phenotype has not yet been investigated. Here, we show that the multispectral PARP inhibitor (PARPi) PJ34 and the PARP14 specific inhibitor MCD113 suppress the expression of M2 marker genes in IL-4-polarized primary murine MΦs, in THP-1 monocytic human MΦs, and in primary human monocyte-derived MΦs. MΦs isolated from PARP14 knockout mice showed a limited ability to differentiate to M2 cells. In a murine model of TAM polarization (4T1 breast carcinoma cell supernatant transfer to primary MΦs) and in a human TAM model (spheroids formed from JIMT-1 breast carcinoma cells and THP-1-MΦs), both PARPis and the PARP14 KO phenotype caused weaker TAM polarization. Increased JIMT-1 cell apoptosis in co-culture spheroids treated with PARPis suggested reduced functional TAM reprogramming. Protein profiling arrays identified lipocalin-2, macrophage migration inhibitory factor, and plasminogen activator inhibitor-1 as potential (ADP-ribosyl)ation-dependent mediators of TAM differentiation. Our data suggest that PARP14 inhibition might be a viable anticancer strategy with a potential to boost anticancer immune responses by reprogramming TAMs.
Collapse
Affiliation(s)
- Isotta Sturniolo
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csongor Váróczy
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- National Academy of Scientist Education, 4032 Debrecen, Hungary
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
| | - Szabolcs Muzsai
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
- HUN-REN-DE Allergology Research Group, 4032 Debrecen, Hungary
| | - Giorgia Intili
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy;
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
| | - Mark R. Boothby
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37235, USA;
| | | | - Dana Ferraris
- Department of Chemistry, McDaniel College, Westminster, MD 21157, USA;
| | - Herwig Schüler
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 22100 Lund, Sweden;
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Brooks DM, Anand S, Cohen MS. Immunomodulatory roles of PARPs: Shaping the tumor microenvironment, one ADP-ribose at a time. Curr Opin Chem Biol 2023; 77:102402. [PMID: 37801755 DOI: 10.1016/j.cbpa.2023.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
PARPs encompass a small yet pervasive group of 17 enzymes that catalyze a post-translational modification known as ADP-ribosylation. PARP1, the founding member, has received considerable focus; however, in recent years, the spotlight has shifted to other members within the PARP family. In this opinion piece, we first discuss surprising findings that some FDA-approved PARP1 inhibitors activate innate immune signaling in cancer cells that harbor mutations in the DNA repair pathway. We then discuss hot-off-the-press genetic and pharmacological studies that reveal roles for PARP7, PARP11, and PARP14 in immune signaling in both tumor cells and tumor-associated immune cells. We conclude with thoughts on tuning PARP1-inhibitor-mediated innate immune activation and explore the unrealized potential for small molecule modulators of other PARP family members as next-generation immuno-oncology drugs.
Collapse
Affiliation(s)
- Deja M Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA; Program in Molecular and Cellular Biology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sudarshan Anand
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cellular and Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
5
|
Stephens EN, Zhang XN, Lam AT, Li J, Pei H, Louie SG, Wang CCC, Zhang Y. A ribose-functionalized NAD + with versatile activity for ADP-ribosylation. Chem Commun (Camb) 2023; 59:13843-13846. [PMID: 37921487 PMCID: PMC10841986 DOI: 10.1039/d3cc04343f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
An NAD+ featuring an adenosyl 4'-azido functions as a general substrate for poly-ADP-ribose polymerases. Its derived mono- and poly-ADP-ribosylated proteins can be adequately recognized by distinct ADP-ribosylation-specific readers. This molecule represents the first ribose-functionalized NAD+ with versatile activities across different ADP-ribosyltransferases and provides insight into developing new probes for ADP-ribosylation.
Collapse
Affiliation(s)
- Elisa N Stephens
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Albert T Lam
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Jiawei Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan G Louie
- Titus Family Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Wang H, Luo S, Wu X, Ruan Y, Qiu L, Feng H, Zhu S, You Y, Li M, Yang W, Zhao Y, Tao X, Jiang H. Exploration of glycosyltransferases mutation status in cervical cancer reveals PARP14 as a potential prognostic marker. Glycoconj J 2023; 40:513-522. [PMID: 37650946 PMCID: PMC10638145 DOI: 10.1007/s10719-023-10134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
This study investigates the potential role of Glycosyltransferases (GTs) in the glycosylation process and their association with malignant tumors. Specifically, the study focuses on PARP14, a member of GTs, and its potential as a target for tumors in the diagnosis and treatment of cervical cancer. To gather data, the study used somatic mutation data, gene expression data and clinical information from TCGA-CESE dataset as well as tissue samples from cervical cancer patients. Further verification was conducted through RT-qPCR and immunohistochemistry staining on cervical cancer tissues to confirm the expression of PARP14. The study utilized Kaplan-Meier for survival analysis of cervical cancer patient and found significant mutational abnormalities in GTs. The high frequency mutated gene was identified as PARP14. RT-qPCR revealed significantly higher mRNA expression of PARP14 compared to precancerous tissue. Using IHC combined with Kaplan-Meier,patients in the PARP14 high expression group had a better prognosis than the low expression group. The study identified PARP14 as a frequently mutated gene in cervical cancer and proposed its potential role in diagnosis and treatment.
Collapse
Affiliation(s)
- Hui Wang
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Shen Luo
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Xin Wu
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ling Qiu
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Hao Feng
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Shurong Zhu
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Yanan You
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Ming Li
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Wenting Yang
- Shanghai Genenexus healthcare technology company, Shanghai, 200433, China
| | - Yanding Zhao
- Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, 03756, Lebanon, NH, USA
| | - Xiang Tao
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Hua Jiang
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China.
| |
Collapse
|
7
|
Wong CW, Evangelou C, Sefton KN, Leshem R, Zhang W, Gopalan V, Chattrakarn S, Fernandez Carro ML, Uzuner E, Mole H, Wilcock DJ, Smith MP, Sergiou K, Telfer BA, Isaac DT, Liu C, Perl NR, Marie K, Lorigan P, Williams KJ, Rao PE, Nagaraju RT, Niepel M, Hurlstone AFL. PARP14 inhibition restores PD-1 immune checkpoint inhibitor response following IFNγ-driven acquired resistance in preclinical cancer models. Nat Commun 2023; 14:5983. [PMID: 37752135 PMCID: PMC10522711 DOI: 10.1038/s41467-023-41737-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Resistance mechanisms to immune checkpoint blockade therapy (ICBT) limit its response duration and magnitude. Paradoxically, Interferon γ (IFNγ), a key cytokine for cellular immunity, can promote ICBT resistance. Using syngeneic mouse tumour models, we confirm that chronic IFNγ exposure confers resistance to immunotherapy targeting PD-1 (α-PD-1) in immunocompetent female mice. We observe upregulation of poly-ADP ribosyl polymerase 14 (PARP14) in chronic IFNγ-treated cancer cell models, in patient melanoma with elevated IFNG expression, and in melanoma cell cultures from ICBT-progressing lesions characterised by elevated IFNγ signalling. Effector T cell infiltration is enhanced in tumours derived from cells pre-treated with IFNγ in immunocompetent female mice when PARP14 is pharmacologically inhibited or knocked down, while the presence of regulatory T cells is decreased, leading to restoration of α-PD-1 sensitivity. Finally, we determine that tumours which spontaneously relapse in immunocompetent female mice following α-PD-1 therapy upregulate IFNγ signalling and can also be re-sensitised upon receiving PARP14 inhibitor treatment, establishing PARP14 as an actionable target to reverse IFNγ-driven ICBT resistance.
Collapse
Affiliation(s)
- Chun Wai Wong
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK
| | - Christos Evangelou
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK
| | - Kieran N Sefton
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK
| | - Rotem Leshem
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK
| | - Wei Zhang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20814, USA
| | - Sorayut Chattrakarn
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK
| | - Macarena Lucia Fernandez Carro
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK
| | - Erez Uzuner
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK
| | - Holly Mole
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Daniel J Wilcock
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Michael P Smith
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Kleita Sergiou
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Brian A Telfer
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Dervla T Isaac
- Ribon Therapeutics Inc., 35 Cambridge Park Drive, Suite 300, Cambridge, MA, 02140, USA
| | - Chang Liu
- Ribon Therapeutics Inc., 35 Cambridge Park Drive, Suite 300, Cambridge, MA, 02140, USA
| | - Nicholas R Perl
- Ribon Therapeutics Inc., 35 Cambridge Park Drive, Suite 300, Cambridge, MA, 02140, USA
| | - Kerrie Marie
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Paul Lorigan
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Withington, Manchester, M20 4BX, UK
| | - Kaye J Williams
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | | | - Raghavendar T Nagaraju
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Colorectal and Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Wilmslow Road, Withington, Manchester, UK
| | - Mario Niepel
- Ribon Therapeutics Inc., 35 Cambridge Park Drive, Suite 300, Cambridge, MA, 02140, USA
| | - Adam F L Hurlstone
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Lydia Becker Institute of Immunology, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
8
|
Wang J, Ghonim MA, Ibba SV, Luu HH, Aydin Y, Greer PA, Boulares AH. Promotion of a synthetic degradation of activated STAT6 by PARP-1 inhibition: roles of poly(ADP-ribosyl)ation, calpains and autophagy. J Transl Med 2022; 20:521. [PMID: 36348405 PMCID: PMC9644602 DOI: 10.1186/s12967-022-03715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background We reported that PARP-1 regulates genes whose products are crucial for asthma, in part, by controlling STAT6 integrity speculatively through a calpain-dependent mechanism. We wished to decipher the PARP-1/STAT6 relationship in the context of intracellular trafficking and promoter occupancy of the transcription factor on target genes, its integrity in the presence of calpains, and its connection to autophagy. Methods This study was conducted using primary splenocytes or fibroblasts derived from wild-type or PARP-1−/− mice and Jurkat T cells to mimic Th2 inflammation. Results We show that the role for PARP-1 in expression of IL-4-induced genes (e.g. gata-3) in splenocytes did not involve effects on STAT6 phosphorylation or its subcellular trafficking, rather, it influenced its occupancy of gata-3 proximal and distal promoters in the early stages of IL-4 stimulation. At later stages, PARP-1 was crucial for STAT6 integrity as its inhibition, pharmacologically or by gene knockout, compromised the fate of the transcription factor. Calpain-1 appeared to preferentially degrade JAK-phosphorylated-STAT6, which was blocked by calpastatin-mediated inhibition or by genetic knockout in mouse fibroblasts. The STAT6/PARP-1 relationship entailed physical interaction and modification by poly(ADP-ribosyl)ation independently of double-strand-DNA breaks. Poly(ADP-ribosyl)ation protected phosphorylated-STAT6 against calpain-1-mediated degradation. Additionally, our results show that STAT6 is a bonafide substrate for chaperone-mediated autophagy in a selective and calpain-dependent manner in the human Jurkat cell-line. The effects were partially blocked by IL-4 treatment and PARP-1 inhibition. Conclusions The results demonstrate that poly(ADP-ribosyl)ation plays a critical role in protecting activated STAT6 during Th2 inflammation, which may be synthetically targeted for degradation by inhibiting PARP-1.
Collapse
|
9
|
Li P, Lei Y, Qi J, Liu W, Yao K. Functional roles of ADP-ribosylation writers, readers and erasers. Front Cell Dev Biol 2022; 10:941356. [PMID: 36035988 PMCID: PMC9404506 DOI: 10.3389/fcell.2022.941356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
ADP-ribosylation is a reversible post-translational modification (PTM) tightly regulated by the dynamic interplay between its writers, readers and erasers. As an intricate and versatile PTM, ADP-ribosylation plays critical roles in various physiological and pathological processes. In this review, we discuss the major players involved in the ADP-ribosylation cycle, which may facilitate the investigation of the ADP-ribosylation function and contribute to the understanding and treatment of ADP-ribosylation associated disease.
Collapse
|
10
|
Shankar A, McAlees JW, Lewkowich IP. Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease. J Allergy Clin Immunol 2022; 150:266-276. [PMID: 35934680 PMCID: PMC9371363 DOI: 10.1016/j.jaci.2022.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Aberrant activation of CD4 TH2 cells and excessive production of TH2 cytokines such as IL-4 and IL-13 have been implicated in the pathogenesis of allergic diseases. Generally, IL-4 and IL-13 utilize Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways for induction of inflammatory gene expression and the effector functions associated with disease pathology in many allergic diseases. However, it is increasingly clear that JAK/STAT pathways activated by IL-4/IL-13 can themselves be modulated in the presence of other intracellular signaling programs, thereby changing the overall tone and/or magnitude of IL-4/IL-13 signaling. Apart from direct activation of the canonic JAK/STAT pathways, IL-4 and IL-13 also induce proinflammatory gene expression and effector functions through activation of additional signaling cascades. These alternative signaling cascades contribute to several specific aspects of IL-4/IL-13-associated cellular and molecular responses. A more complete understanding of IL-4/IL-13 signaling pathways, including the precise conditions under which noncanonic signaling pathways are activated, and the impact of these pathways on cellular- and host-level responses, will better allow us to design agents that target specific pathologic outcomes or tailor therapies for the treatment of uncommon disease endotypes.
Collapse
|
11
|
Affiliation(s)
- Srivatsan Parthasarathy
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Akusjärvi SS, Ambikan AT, Krishnan S, Gupta S, Sperk M, Végvári Á, Mikaeloff F, Healy K, Vesterbacka J, Nowak P, Sönnerborg A, Neogi U. Integrative proteo-transcriptomic and immunophenotyping signatures of HIV-1 elite control phenotype: A cross-talk between glycolysis and HIF signaling. iScience 2022; 25:103607. [PMID: 35005552 PMCID: PMC8718889 DOI: 10.1016/j.isci.2021.103607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/09/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Natural control of HIV-1 is a characteristic of <1% of HIV-1-infected individuals, so called elite controllers (EC). In this study, we sought to identify signaling pathways associated with the EC phenotype using integrative proteo-transcriptomic analysis and immunophenotyping. We found HIF signaling and glycolysis as specific traits of the EC phenotype together with dysregulation of HIF target gene transcription. A higher proportion of HIF-1α and HIF-1β in the nuclei of CD4+ and CD8+ T cells in the male EC were observed, indicating a potential increased activation of the HIF signaling pathway. Furthermore, intracellular glucose levels were elevated in EC even as the surface expression of the metabolite transporters Glut1 and MCT-1 were decreased on lymphocytes indicative of unique metabolic uptake and flux profile. Combined, our data show that glycolytic modulation and altered HIF signaling is a unique feature of the male EC phenotype that may contribute to natural control of HIV-1. Proteo-transcriptomic integration identifying features of EC phenotype Sex-specific differences in EC phenotypes Enrichment of glycolysis and HIF signaling, a unique feature in the male EC Enrichment of HIF signaling independent on HIF-1α protein levels in EC
Collapse
Affiliation(s)
- Sara Svensson Akusjärvi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Anoop T Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Shuba Krishnan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Soham Gupta
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Maike Sperk
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Campus Solna, 171 65 Stockholm, Sweden
| | - Flora Mikaeloff
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Katie Healy
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Jan Vesterbacka
- Department of Medicine Huddinge, Division of Infectious Disease, Karolinska Institutet, I73, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Piotr Nowak
- Department of Medicine Huddinge, Division of Infectious Disease, Karolinska Institutet, I73, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden.,Department of Medicine Huddinge, Division of Infectious Disease, Karolinska Institutet, I73, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden.,Manipal Institute of Virology (MIV), Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
13
|
Lin YJ, Goretzki A, Schülke S. Immune Metabolism of IL-4-Activated B Cells and Th2 Cells in the Context of Allergic Diseases. Front Immunol 2021; 12:790658. [PMID: 34925372 PMCID: PMC8671807 DOI: 10.3389/fimmu.2021.790658] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Over the last decades, the frequency of allergic disorders has steadily increased. Immunologically, allergies are caused by abnormal immune responses directed against otherwise harmless antigens derived from our environment. Two of the main cell types driving allergic sensitization and inflammation are IgE-producing plasma cells and Th2 cells. The acute activation of T and B cells, their differentiation into effector cells, as well as the formation of immunological memory are paralleled by distinct changes in cellular metabolism. Understanding the functional consequences of these metabolic changes is the focus of a new research field termed "immune metabolism". Currently, the contribution of metabolic changes in T and B cells to either the development or maintenance of allergies is not completely understood. Therefore, this mini review will introduce the fundamentals of energy metabolism, its connection to immune metabolism, and subsequently focus on the metabolic phenotypes of IL-4-activated B cells and Th2 cells.
Collapse
Affiliation(s)
- Yen-Ju Lin
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Stefan Schülke
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
14
|
Boehi F, Manetsch P, Hottiger MO. Interplay between ADP-ribosyltransferases and essential cell signaling pathways controls cellular responses. Cell Discov 2021; 7:104. [PMID: 34725336 PMCID: PMC8560908 DOI: 10.1038/s41421-021-00323-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Signaling cascades provide integrative and interactive frameworks that allow the cell to respond to signals from its environment and/or from within the cell itself. The dynamic regulation of mammalian cell signaling pathways is often modulated by cascades of protein post-translational modifications (PTMs). ADP-ribosylation is a PTM that is catalyzed by ADP-ribosyltransferases and manifests as mono- (MARylation) or poly- (PARylation) ADP-ribosylation depending on the addition of one or multiple ADP-ribose units to protein substrates. ADP-ribosylation has recently emerged as an important cell regulator that impacts a plethora of cellular processes, including many intracellular signaling events. Here, we provide an overview of the interplay between the intracellular diphtheria toxin-like ADP-ribosyltransferase (ARTD) family members and five selected signaling pathways (including NF-κB, JAK/STAT, Wnt-β-catenin, MAPK, PI3K/AKT), which are frequently described to control or to be controlled by ADP-ribosyltransferases and how these interactions impact the cellular responses.
Collapse
Affiliation(s)
- Flurina Boehi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Cancer Biology PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Patrick Manetsch
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Wang X, Lv Z, Han B, Li S, Yang Q, Wu P, Li J, Han B, Deng N, Zhang Z. The aggravation of allergic airway inflammation with dibutyl phthalate involved in Nrf2-mediated activation of the mast cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148029. [PMID: 34082215 DOI: 10.1016/j.scitotenv.2021.148029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/06/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Dibutyl phthalate (DBP)-an organic pollutant-is ubiquitous in the environment. DBP as an immune adjuvant is related to the development of multiple allergic diseases. However, the current research involving DBP-induced pulmonary toxicity remains poorly understood. Therefore, this research aimed to explore the adverse effect and potential mechanism of DBP exposure on the lungs in rats. In our study, ovalbumin was used to build a rat model of allergic airway inflammation to study any harmful effect of DBP exposure on lung tissues. Rats were treated by intragastric administration of DBP (500 mg kg-1 or 750 mg kg-1) and/or subcutaneous injection of SFN (4 mg kg-1). The results of histopathological analysis, cell count, and myeloperoxidase showed that DBP promoted the inflammatory damage of lungs. In the lung tissues, the detection of terminal deoxynucleotidyl transferase dUNT nick end labeling and oxidative stress indices showed that DBP significantly increased the level of apoptosis and oxidative stress. Western blot analysis indicated that DBP raised the expression level of thymic stromal lymphopoietin and reduced the nuclear expression level of nuclear factor-erythroid-2-related factor 2 (Nrf2), which was further verified by quantitative real-time PCR. Meanwhile, DBP treatment markedly up-regulated the inflammatory cytokines such as IL-4 and IL-13, and rat mast cell protease-2, a marker secreted by mast cells (MCs). Conversely, sulforaphane, a Nrf2 inducer, ameliorated the pulmonary damage induced by DBP in the above. Altogether, our data provides a new insight into the impacts of the activation of MCs on the DBP-induced pulmonary toxicity as well as the safety evaluation of DBP.
Collapse
Affiliation(s)
- Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| |
Collapse
|
16
|
Huang C, Leng D, Zheng P, Deng M, Li L, Wu G, Sun B, Zhang XD. Comprehensive transcriptome analysis of peripheral blood unravels key lncRNAs implicated in ABPA and asthma. PeerJ 2021; 9:e11453. [PMID: 34221710 PMCID: PMC8236232 DOI: 10.7717/peerj.11453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/23/2021] [Indexed: 11/20/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a complex hypersensitivity lung disease caused by a fungus known as Aspergillus fumigatus. It complicates and aggravates asthma. Despite their potential associations, the underlying mechanisms of asthma developing into ABPA remain obscure. Here we performed an integrative transcriptome analysis based on three types of human peripheral blood, which derived from ABPA patients, asthmatic patients and health controls, aiming to identify crucial lncRNAs implicated in ABPA and asthma. Initially, a high-confidence dataset of lncRNAs was identified using a stringent filtering pipeline. A comparative mutational analysis revealed no significant difference among these samples. Differential expression analysis disclosed several immune-related mRNAs and lncRNAs differentially expressed in ABPA and asthma. For each disease, three sub-networks were established using differential network analysis. Many key lncRNAs implicated in ABPA and asthma were identified, respectively, i.e., AL139423.1-201, AC106028.4-201, HNRNPUL1-210, PUF60-218 and SREBF1-208. Our analysis indicated that these lncRNAs exhibits in the loss-of-function networks, and the expression of which were repressed in the occurrences of both diseases, implying their important roles in the immune-related processes in response to the occurrence of both diseases. Above all, our analysis proposed a new point of view to explore the relationship between ABPA and asthma, which might provide new clues to unveil the pathogenic mechanisms for both diseases.
Collapse
Affiliation(s)
- Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, SAR, China, Macau, China.,Stat Key laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China, Macau, China
| | - Dongliang Leng
- Faculty of Health and Science, University of Macau, Macao, Macau
| | - Peiyan Zheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory, Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Deng
- Faculty of Health and Science, University of Macau, Macao, Macau
| | - Lu Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory, Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ge Wu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory, Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory, Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | |
Collapse
|
17
|
Malgras M, Garcia M, Jousselin C, Bodet C, Lévêque N. The Antiviral Activities of Poly-ADP-Ribose Polymerases. Viruses 2021; 13:v13040582. [PMID: 33808354 PMCID: PMC8066025 DOI: 10.3390/v13040582] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
The poly-adenosine diphosphate (ADP)-ribose polymerases (PARPs) are responsible for ADP-ribosylation, a reversible post-translational modification involved in many cellular processes including DNA damage repair, chromatin remodeling, regulation of translation and cell death. In addition to these physiological functions, recent studies have highlighted the role of PARPs in host defenses against viruses, either by direct antiviral activity, targeting certain steps of virus replication cycle, or indirect antiviral activity, via modulation of the innate immune response. This review focuses on the antiviral activity of PARPs, as well as strategies developed by viruses to escape their action.
Collapse
Affiliation(s)
- Mathilde Malgras
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, 86073 Poitiers, France; (M.M.); (M.G.); (C.J.); (C.B.)
| | - Magali Garcia
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, 86073 Poitiers, France; (M.M.); (M.G.); (C.J.); (C.B.)
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, 86021 Poitiers, France
| | - Clément Jousselin
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, 86073 Poitiers, France; (M.M.); (M.G.); (C.J.); (C.B.)
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, 86021 Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, 86073 Poitiers, France; (M.M.); (M.G.); (C.J.); (C.B.)
| | - Nicolas Lévêque
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, 86073 Poitiers, France; (M.M.); (M.G.); (C.J.); (C.B.)
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, 86021 Poitiers, France
- Correspondence: nicolas.lévê; Tel.: +33-(0)5-49-44-38-17
| |
Collapse
|
18
|
Schenkel LB, Molina JR, Swinger KK, Abo R, Blackwell DJ, Lu AZ, Cheung AE, Church WD, Kunii K, Kuplast-Barr KG, Majer CR, Minissale E, Mo JR, Niepel M, Reik C, Ren Y, Vasbinder MM, Wigle TJ, Richon VM, Keilhack H, Kuntz KW. A potent and selective PARP14 inhibitor decreases protumor macrophage gene expression and elicits inflammatory responses in tumor explants. Cell Chem Biol 2021; 28:1158-1168.e13. [PMID: 33705687 DOI: 10.1016/j.chembiol.2021.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/18/2020] [Accepted: 02/11/2021] [Indexed: 11/28/2022]
Abstract
PARP14 has been implicated by genetic knockout studies to promote protumor macrophage polarization and suppress the antitumor inflammatory response due to its role in modulating interleukin-4 (IL-4) and interferon-γ signaling pathways. Here, we describe structure-based design efforts leading to the discovery of a potent and highly selective PARP14 chemical probe. RBN012759 inhibits PARP14 with a biochemical half-maximal inhibitory concentration of 0.003 μM, exhibits >300-fold selectivity over all PARP family members, and its profile enables further study of PARP14 biology and disease association both in vitro and in vivo. Inhibition of PARP14 with RBN012759 reverses IL-4-driven protumor gene expression in macrophages and induces an inflammatory mRNA signature similar to that induced by immune checkpoint inhibitor therapy in primary human tumor explants. These data support an immune suppressive role of PARP14 in tumors and suggest potential utility of PARP14 inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Laurie B Schenkel
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA; MOMA Therapeutics, Cambridge, MA 02142, USA
| | - Jennifer R Molina
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Kerren K Swinger
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA; Xilio Therapeutics, Waltham, MA 02451, USA
| | - Ryan Abo
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA; Obsidian Therapeutics, Cambridge, MA 02138, USA
| | - Danielle J Blackwell
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Alvin Z Lu
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Anne E Cheung
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA; A2Empowerment, Arlington, MA 02474, USA
| | - W David Church
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Kaiko Kunii
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Kristy G Kuplast-Barr
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Christina R Majer
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Elena Minissale
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Jan-Rung Mo
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Mario Niepel
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Christopher Reik
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA; Bain & Company, Boston, MA 02116, USA
| | - Yue Ren
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Melissa M Vasbinder
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Tim J Wigle
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Victoria M Richon
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA; Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Heike Keilhack
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Kevin W Kuntz
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA.
| |
Collapse
|
19
|
Challa S, Stokes MS, Kraus WL. MARTs and MARylation in the Cytosol: Biological Functions, Mechanisms of Action, and Therapeutic Potential. Cells 2021; 10:313. [PMID: 33546365 PMCID: PMC7913519 DOI: 10.3390/cells10020313] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Mono(ADP-ribosyl)ation (MARylation) is a regulatory post-translational modification of proteins that controls their functions through a variety of mechanisms. MARylation is catalyzed by mono(ADP-ribosyl) transferase (MART) enzymes, a subclass of the poly(ADP-ribosyl) polymerase (PARP) family of enzymes. Although the role of PARPs and poly(ADP-ribosyl)ation (PARylation) in cellular pathways, such as DNA repair and transcription, is well studied, the role of MARylation and MARTs (i.e., the PARP 'monoenzymes') are not well understood. Moreover, compared to PARPs, the development of MART-targeted therapeutics is in its infancy. Recent studies are beginning to shed light on the structural features, catalytic targets, and biological functions of MARTs. The development of new technologies to study MARTs have uncovered essential roles for these enzymes in the regulation of cellular processes, such as RNA metabolism, cellular transport, focal adhesion, and stress responses. These insights have increased our understanding of the biological functions of MARTs in cancers, neuronal development, and immune responses. Furthermore, several novel inhibitors of MARTs have been developed and are nearing clinical utility. In this review, we summarize the biological functions and molecular mechanisms of MARTs and MARylation, as well as recent advances in technology that have enabled detection and inhibition of their activity. We emphasize PARP-7, which is at the forefront of the MART subfamily with respect to understanding its biological roles and the development of therapeutically useful inhibitors. Collectively, the available studies reveal a growing understanding of the biochemistry, chemical biology, physiology, and pathology of MARTs.
Collapse
Affiliation(s)
- Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - MiKayla S. Stokes
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
20
|
The roles of post-translational modifications and coactivators of STAT6 signaling in tumor growth and progression. Future Med Chem 2020; 12:1945-1960. [DOI: 10.4155/fmc-2020-0224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Signal transducers and activators of transcription 6 (STAT6) are highly expressed in various tumors and associated with tumorigenesis, immunosuppression, proliferation, metastasis and poor prognosis in human cancers. In response to IL-4/13, STAT6 is phosphorylated, dimerizes and triggers transcriptional regulation after recruitment of coactivators to transcriptosome, such as CBP/p300, SRC-1, PARP-14 and PSF. Post-translational modifications, including phosphorylation, ubiquitination, ADP-ribosylation and acetylation, have been explored for molecular mechanisms of STAT6 in tumor development and management. STAT6 has been developed as a specific biomarker for distinguishing and diagnosing tumor phenotypes, although it is observed to be frequently mutated in metastatic tumors. In this article, we focus mainly on the structural characteristics of STAT6 and its role in tumor growth and progression.
Collapse
|
21
|
In silico identification and in vitro activity of natural products as ADP-ribosyl transferase member 8 inhibitors. Future Med Chem 2020; 12:1729-1741. [PMID: 33032449 DOI: 10.4155/fmc-2020-0138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: ADP-ribosyl transferase member 8 (ARTD8) of the ARTD superfamily has been identified as a possible anti-cancer, antiviral and anti-inflammatory target. Method: Pure actives from natural products with a documented anti-cancer activity were docked into the catalytic site of 3SMI.pdb using PyRx and AutoDock Vina. Results: Epigallocatechin gallate (EGCG), trans-resveratrol, indol-3-carbinol, curcumin, quercetin and naringenin were investigated, in vitro, against ARTD8, revealing EGCG and quercetin as lead compounds, with EGCG displaying complete inhibition at 10 μM. Both EGCG and quercetins docked poses spanned across both the nicotinamide and adenine subsites of the catalytic domain, interacting with conserved residues Ser1641 and/or Ser1607 and Tyr1646. Thereby, suggesting that the meta-hydroxy group on the catechin ring B backbone may be responsible for these inhibition effects.
Collapse
|
22
|
Abstract
This review aims to reflect upon the major developments in PARP14 research from late 2017 to early 2020. In doing so, this report will focus on the continual elucidation of PARP14's function including an emerging role in viral replication. This is in addition to other functional developments in cancer and inflammation, along with reflecting upon the leads in inhibitor design, including the increased attention toward the macrodomain. This report will also include a brief recap on contemporary poly(ADP-ribose) polymerase inhibitors and reflect upon the development surrounding the other poly(ADP-ribose) polymerases to overall give a succinct update to assist the development of selective PARP14 inhibitors.
Collapse
Affiliation(s)
- Amanda L Tauber
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast 4229, Queensland, Australia
| | - Stephan M Levonis
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast 4229, Queensland, Australia
| | - Stephanie S Schweiker
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast 4229, Queensland, Australia
| |
Collapse
|
23
|
Webb TE, Saad R. Sequence homology between human PARP14 and the SARS-CoV-2 ADP ribose 1'-phosphatase. Immunol Lett 2020; 224:38-39. [PMID: 32534867 PMCID: PMC7289111 DOI: 10.1016/j.imlet.2020.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/25/2020] [Indexed: 12/23/2022]
Abstract
•There is amino acid sequence homology between the ADP-ribose binding sites of human PARP14 and SARS-CoV-2 ADRP. •This homology is even more pronounced in bat species. •The model proposed highlights the potential of the PARP axis to yield druggable targets for the treatment of COVID-19.
Collapse
Affiliation(s)
- Thomas E Webb
- University College London Hospital, 235 Euston Rd, Bloomsbury, London, NW 2BU, United Kingdom.
| | - Ramy Saad
- Royal Sussex County Hospital, Barry Building, Eastern Rd, Brighton, BN2 5BE, United Kingdom
| |
Collapse
|
24
|
Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H, Aikawa M. The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes Dev 2020; 34:341-359. [PMID: 32029454 PMCID: PMC7050484 DOI: 10.1101/gad.334425.119] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Poly-adenosine diphosphate-ribose polymerases (PARPs) promote ADP-ribosylation, a highly conserved, fundamental posttranslational modification (PTM). PARP catalytic domains transfer the ADP-ribose moiety from NAD+ to amino acid residues of target proteins, leading to mono- or poly-ADP-ribosylation (MARylation or PARylation). This PTM regulates various key biological and pathological processes. In this review, we focus on the roles of the PARP family members in inflammation and host-pathogen interactions. Here we give an overview the current understanding of the mechanisms by which PARPs promote or suppress proinflammatory activation of macrophages, and various roles PARPs play in virus infections. We also demonstrate how innovative technologies, such as proteomics and systems biology, help to advance this research field and describe unanswered questions.
Collapse
Affiliation(s)
- Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Catherine M Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Shin Mukai
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Human Pathology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health, Moscow 119146, Russian Federation
| |
Collapse
|
25
|
Zhang XN, Cheng Q, Chen J, Lam AT, Lu Y, Dai Z, Pei H, Evdokimov NM, Louie SG, Zhang Y. A ribose-functionalized NAD + with unexpected high activity and selectivity for protein poly-ADP-ribosylation. Nat Commun 2019; 10:4196. [PMID: 31519936 PMCID: PMC6744458 DOI: 10.1038/s41467-019-12215-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+)-dependent ADP-ribosylation plays important roles in physiology and pathophysiology. It has been challenging to study this key type of enzymatic post-translational modification in particular for protein poly-ADP-ribosylation (PARylation). Here we explore chemical and chemoenzymatic synthesis of NAD+ analogues with ribose functionalized by terminal alkyne and azido groups. Our results demonstrate that azido substitution at 3'-OH of nicotinamide riboside enables enzymatic synthesis of an NAD+ analogue with high efficiency and yields. Notably, the generated 3'-azido NAD+ exhibits unexpected high activity and specificity for protein PARylation catalyzed by human poly-ADP-ribose polymerase 1 (PARP1) and PARP2. And its derived poly-ADP-ribose polymers show increased resistance to human poly(ADP-ribose) glycohydrolase-mediated degradation. These unique properties lead to enhanced labeling of protein PARylation by 3'-azido NAD+ in the cellular contexts and facilitate direct visualization and labeling of mitochondrial protein PARylation. The 3'-azido NAD+ provides an important tool for studying cellular PARylation.
Collapse
Affiliation(s)
- Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jingwen Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Albert T Lam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yanran Lu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nikolai M Evdokimov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Stan G Louie
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA. .,Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA. .,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA. .,Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
26
|
Ke Y, Zhang J, Lv X, Zeng X, Ba X. Novel insights into PARPs in gene expression: regulation of RNA metabolism. Cell Mol Life Sci 2019; 76:3283-3299. [PMID: 31055645 PMCID: PMC6697709 DOI: 10.1007/s00018-019-03120-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is an important post-translational modification in which an ADP-ribose group is transferred to the target protein by poly(ADP-riboses) polymerases (PARPs). Since the discovery of poly-ADP-ribose (PAR) 50 years ago, its roles in cellular processes have been extensively explored. Although research initially focused on the functions of PAR and PARPs in DNA damage detection and repair, our understanding of the roles of PARPs in various nuclear and cytoplasmic processes, particularly in gene expression, has increased significantly. In this review, we discuss the current advances in understanding the roles of PARylation with a particular emphasis in gene expression through RNA biogenesis and processing. In addition to updating PARP's significance in transcriptional regulation, we specifically focus on how PARPs and PARylation affect gene expression, especially inflammation-related genes, at the post-transcriptional levels by modulating RNA processing and degrading. Increasing evidence suggests that PARP inhibition is a promising treatment for inflammation-related diseases besides conventional chemotherapy for cancer.
Collapse
Affiliation(s)
- Yueshuang Ke
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Jing Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xueping Lv
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China.
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
27
|
Palazzo L, Mikolčević P, Mikoč A, Ahel I. ADP-ribosylation signalling and human disease. Open Biol 2019; 9:190041. [PMID: 30991935 PMCID: PMC6501648 DOI: 10.1098/rsob.190041] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
ADP-ribosylation (ADPr) is a reversible post-translational modification of proteins, which controls major cellular and biological processes, including DNA damage repair, cell proliferation and differentiation, metabolism, stress and immune responses. In order to maintain the cellular homeostasis, diverse ADP-ribosyl transferases and hydrolases are involved in the fine-tuning of ADPr systems. The control of ADPr network is vital, and dysregulation of enzymes involved in the regulation of ADPr signalling has been linked to a number of inherited and acquired human diseases, such as several neurological disorders and in cancer. Conversely, the therapeutic manipulation of ADPr has been shown to ameliorate several disorders in both human and animal models. These include cardiovascular, inflammatory, autoimmune and neurological disorders. Herein, we summarize the recent findings in the field of ADPr, which support the impact of this modification in human pathophysiology and highlight the curative potential of targeting ADPr for translational and molecular medicine.
Collapse
Affiliation(s)
- Luca Palazzo
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| |
Collapse
|
28
|
Qin W, Wu HJ, Cao LQ, Li HJ, He CX, Zhao D, Xing L, Li PQ, Jin X, Cao HL. Research Progress on PARP14 as a Drug Target. Front Pharmacol 2019; 10:172. [PMID: 30890936 PMCID: PMC6411704 DOI: 10.3389/fphar.2019.00172] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
Poly-adenosine diphosphate-ribose polymerase (PARP) implements posttranslational mono- or poly-ADP-ribosylation modification of target proteins. Among the known 18 members in the enormous family of PARP enzymes, several investigations about PARP1, PARP2, and PARP5a/5b have been launched in the past few decades; more specifically, PARP14 is gradually emerging as a promising drug target. An intact PARP14 (also named ARTD8 or BAL2) is constructed by macro1, macro2, macro3, WWE, and the catalytic domain. PARP14 takes advantage of nicotinamide adenine dinucleotide (NAD+) as a metabolic substrate to conduct mono-ADP-ribosylation modification on target proteins, taking part in cellular responses and signaling pathways in the immune system. Therefore, PARP14 has been considered a fascinating target for treatment of tumors and allergic inflammation. More importantly, PARP14 could be a potential target for a chemosensitizer based on the theory of synthetic lethality and its unique role in homologous recombination DNA repair. This review first gives a brief introduction on several representative PARP members. Subsequently, current literatures are presented to reveal the molecular mechanisms of PARP14 as a novel drug target for cancers (e.g., diffuse large B-cell lymphoma, multiple myeloma, prostate cancer, and hepatocellular carcinoma) and allergic inflammatory. Finally, potential PARP inhibitor-associated adverse effects are discussed. The review could be a meaningful reference for innovative drug or chemosensitizer discovery targeting to PARP14.
Collapse
Affiliation(s)
- Wei Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hong-Jie Wu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lu-Qi Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hui-Jin Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Chun-Xia He
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Dong Zhao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lu Xing
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Peng-Quan Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xi Jin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hui-Ling Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
29
|
D'Angeli F, Scalia M, Cirnigliaro M, Satriano C, Barresi V, Musso N, Trovato-Salinaro A, Barbagallo D, Ragusa M, Di Pietro C, Purrello M, Spina-Purrello V. PARP-14 Promotes Survival of Mammalian α but Not β Pancreatic Cells Following Cytokine Treatment. Front Endocrinol (Lausanne) 2019; 10:271. [PMID: 31130919 PMCID: PMC6509146 DOI: 10.3389/fendo.2019.00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
PARP-14 (poly-ADP Ribose Polymerase-14), a member of the PARP family, belongs to the group of Bal proteins (B Aggressive Lymphoma). PARP-14 has recently appeared to be involved in the transduction pathway mediated by JNKs (c Jun N terminal Kinases), among which JNK2 promotes cancer cell survival. Several pharmacological PARP inhibitors are currently used as antitumor agents, even though they have also proved to be effective in many inflammatory diseases. Cytokine release from immune system cells characterizes many autoimmune inflammatory disorders, including type I diabetes, in which the inflammatory state causes β cell loss. Nevertheless, growing evidence supports a concomitant implication of glucagon secreting α cells in type I diabetes progression. Here, we provide evidence on the activation of a survival pathway, mediated by PARP-14, in pancreatic α cells, following treatment of αTC1.6 glucagonoma and βTC1 insulinoma cell lines with a cytokine cocktail: interleukin 1 beta (IL-1β), interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). Through qPCR, western blot and confocal analysis, we demonstrated higher expression levels of PARP-14 in αTC1.6 cells with respect to βTC1 cells under inflammatory stimuli. By cytofluorimetric and caspase-3 assays, we showed the higher resistance of α cells compared to β cells to apoptosis induced by cytokines. Furthermore, the ability of PJ-34 to modulate the expression of the proteins involved in the survival pathway suggests a protective role of PARP-14. These data shed light on a poorly characterized function of PARP-14 in αTC1.6 cells in inflammatory contexts, widening the potential pharmacological applications of PARP inhibitors.
Collapse
Affiliation(s)
- Floriana D'Angeli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Marina Scalia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Matilde Cirnigliaro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Angela Trovato-Salinaro
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Vittoria Spina-Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
- *Correspondence: Vittoria Spina-Purrello
| |
Collapse
|
30
|
Kirby IT, Kojic A, Arnold MR, Thorsell AG, Karlberg T, Vermehren-Schmaedick A, Sreenivasan R, Schultz C, Schüler H, Cohen MS. A Potent and Selective PARP11 Inhibitor Suggests Coupling between Cellular Localization and Catalytic Activity. Cell Chem Biol 2018; 25:1547-1553.e12. [PMID: 30344052 DOI: 10.1016/j.chembiol.2018.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/08/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022]
Abstract
Poly-ADP-ribose polymerases (PARPs1-16) play pivotal roles in diverse cellular processes. PARPs that catalyze poly-ADP-ribosylation (PARylation) are the best characterized PARP family members because of the availability of potent and selective inhibitors for these PARPs. There has been comparatively little success in developing selective small-molecule inhibitors of PARPs that catalyze mono-ADP-ribosylation (MARylation), limiting our understanding of the cellular role of MARylation. Here we describe the structure-guided design of inhibitors of PARPs that catalyze MARylation. The most selective analog, ITK7, potently inhibits the MARylation activity of PARP11, a nuclear envelope-localized PARP. ITK7 is greater than 200-fold selective over other PARP family members. Using live-cell imaging, we show that ITK7 causes PARP11 to dissociate from the nuclear envelope. These results suggest that the cellular localization of PARP11 is regulated by its catalytic activity.
Collapse
Affiliation(s)
- Ilsa T Kirby
- Program in Chemical Biology, Oregon Health & Science University, Portland, OR 97210, USA; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States
| | - Ana Kojic
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany; EMBL, Heidelberg University, Heidelberg, Germany
| | - Moriah R Arnold
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States
| | - Ann-Gerd Thorsell
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7c, 14157, Huddinge, Sweden
| | - Tobias Karlberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7c, 14157, Huddinge, Sweden
| | - Anke Vermehren-Schmaedick
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States
| | - Raashi Sreenivasan
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States
| | - Carsten Schultz
- Program in Chemical Biology, Oregon Health & Science University, Portland, OR 97210, USA; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States; European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Herwig Schüler
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7c, 14157, Huddinge, Sweden
| | - Michael S Cohen
- Program in Chemical Biology, Oregon Health & Science University, Portland, OR 97210, USA; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States.
| |
Collapse
|
31
|
Becker AC, Gannagé M, Giese S, Hu Z, Abou-Eid S, Roubaty C, Paul P, Bühler L, Gretzmeier C, Dumit VI, Kaeser-Pebernard S, Schwemmle M, Münz C, Dengjel J. Influenza A Virus Induces Autophagosomal Targeting of Ribosomal Proteins. Mol Cell Proteomics 2018; 17:1909-1921. [PMID: 29980615 PMCID: PMC6166674 DOI: 10.1074/mcp.ra117.000364] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 07/04/2018] [Indexed: 12/24/2022] Open
Abstract
Seasonal epidemics of influenza A virus are a major cause of severe illness and are of high socio-economic relevance. For the design of effective antiviral therapies, a detailed knowledge of pathways perturbed by virus infection is critical. We performed comprehensive expression and organellar proteomics experiments to study the cellular consequences of influenza A virus infection using three human epithelial cell lines derived from human lung carcinomas: A549, Calu-1 and NCI-H1299. As a common response, the type I interferon pathway was up-regulated upon infection. Interestingly, influenza A virus infection led to numerous cell line-specific responses affecting both protein abundance as well as subcellular localization. In A549 cells, the vesicular compartment appeared expanded after virus infection. The composition of autophagsomes was altered by targeting of ribosomes, viral mRNA and proteins to these double membrane vesicles. Thus, autophagy may support viral protein translation by promoting the clustering of the respective molecular machinery in autophagosomes in a cell line-dependent manner.
Collapse
Affiliation(s)
- Andrea C Becker
- From the ‡Department of Dermatology, Medical Center University of Freiburg, Hauptstr. 7, 79104 Freiburg, Germany.,§Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany
| | - Monique Gannagé
- ¶Department of Pathology and Immunology, School of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Sebastian Giese
- §Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany.,‖Institute for Virology, Medical Center, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Zehan Hu
- From the ‡Department of Dermatology, Medical Center University of Freiburg, Hauptstr. 7, 79104 Freiburg, Germany.,§Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany.,§§Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Shadi Abou-Eid
- §§Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Carole Roubaty
- §§Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Petra Paul
- **Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Lea Bühler
- From the ‡Department of Dermatology, Medical Center University of Freiburg, Hauptstr. 7, 79104 Freiburg, Germany.,§Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany
| | - Christine Gretzmeier
- From the ‡Department of Dermatology, Medical Center University of Freiburg, Hauptstr. 7, 79104 Freiburg, Germany.,§Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany
| | - Veronica I Dumit
- ‡‡Core Facility Proteomics, Center for Biological Systems Analysis (ZBSA), University of Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany
| | | | - Martin Schwemmle
- §Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany.,‖Institute for Virology, Medical Center, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Christian Münz
- **Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jörn Dengjel
- From the ‡Department of Dermatology, Medical Center University of Freiburg, Hauptstr. 7, 79104 Freiburg, Germany; .,§Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany.,§§Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
32
|
Zaffini R, Gotte G, Menegazzi M. Asthma and poly(ADP-ribose) polymerase inhibition: a new therapeutic approach. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:281-293. [PMID: 29483769 PMCID: PMC5813949 DOI: 10.2147/dddt.s150846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Asthma is a chronic lung disease affecting people of all ages worldwide, and it frequently begins in childhood. Because of its chronic nature, it is characterized by pathological manifestations, including airway inflammation, remodeling, and goblet cell hyperplasia. Current therapies for asthma, including corticosteroids and beta-2 adrenergic agonists, are directed toward relieving the symptoms of the asthmatic response, with poor effectiveness against the underlying causes of the disease. Asthma initiation and progression depends on the T helper (Th) 2 type immune response carried out by a complex interplay of cytokines, such as interleukin (IL) 4, IL5, and IL13, and the signal transducer and activator of transcription 6. Much of the data resulting from different laboratories support the role of poly(ADP-ribose) polymerase (PARP) 1 and PARP14 activation in asthma. Indeed, PARP enzymes play key roles in the regulation and progression of the inflammatory asthma process because they affect the expression of genes and chemokines involved in the immune response. Consistently, PARP inhibition achievable either upon genetic ablation or by using pharmacological agents has shown a range of therapeutic effects against the disease. Indeed, in the last two decades, several preclinical studies highlighted the protective effects of PARP inhibition in various animal models of asthma. PARP inhibitors showed the ability to reduce the overall lung inflammation acting with a specific effect on immune cell recruitment and through the modulation of asthma-associated cytokines production. PARP inhibition has been shown to affect the Th1–Th2 balance and, at least in some aspects, the airway remodeling. In this review, we summarize and discuss the steps that led PARP inhibition to become a possible future therapeutic strategy against allergic asthma.
Collapse
Affiliation(s)
- Raffaela Zaffini
- Department of Neuroscience, Biomedicine and Movement Science, Biochemistry Section, University of Verona, Verona, Italy
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Science, Biochemistry Section, University of Verona, Verona, Italy
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Science, Biochemistry Section, University of Verona, Verona, Italy
| |
Collapse
|
33
|
Kirby IT, Morgan RK, Cohen MS. A Simple, Sensitive, and Generalizable Plate Assay for Screening PARP Inhibitors. Methods Mol Biol 2018; 1813:245-252. [PMID: 30097873 DOI: 10.1007/978-1-4939-8588-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Poly-ADP-ribose polymerases (also known as ADP-ribosyltransferases or ARTDs) are a family of 17 enzymes in humans that catalyze the reversible posttranslational modification known as ADP-ribosylation. PARPs are implicated in diverse cellular processes, from DNA repair to the unfolded protein response. Small-molecule inhibitors of PARPs have improved our understanding of PARP-mediated biology and, in some cases, have emerged as promising treatments for cancers and other human diseases. However these advancements are hindered, in part, by a poor understanding of inhibitor selectivity across the PARP family. Here, we describe a simple, sensitive, and generalizable plate assay to test the potency and selectivity of small molecules against several PARP enzymes in vitro. In principle, this assay can be extended to all active PARPs, providing a convenient and direct comparison of inhibitors across the entire PARP enzyme family.
Collapse
Affiliation(s)
- Ilsa T Kirby
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - Rory K Morgan
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - Michael S Cohen
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
34
|
Chen J, Lam AT, Zhang Y. A macrodomain-linked immunosorbent assay (MLISA) for mono-ADP-ribosyltransferases. Anal Biochem 2017; 543:132-139. [PMID: 29247608 DOI: 10.1016/j.ab.2017.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022]
Abstract
ADP-ribosyltransferases (ARTs) catalyze reversible additions of mono- and poly-ADP-ribose onto diverse types of proteins by using nicotinamide adenine dinucleotide (NAD+) as a cosubstrate. In the human ART superfamily, 14 out of 20 members are shown to catalyze endogenous protein mono-ADP-ribosylation and play important roles in regulating various physiological and pathophysiological processes. Identification of new modulators of mono-ARTs can thus potentially lead to discovery of novel therapeutics. In this study, we developed a macrodomain-linked immunosorbent assay (MLISA) for characterizing mono-ARTs. Recombinant macrodomain 2 from poly-ADP-ribose polymerase 14 (PARP14) was generated with a C-terminal human influenza hemagglutinin (HA) tag for detecting mono-ADP-ribosylated proteins. Coupled with an anti-HA secondary antibody, the generated HA-tagged macrodomain 2 reveals high specificity for mono-ADP-ribosylation catalyzed by distinct mono-ARTs. Kinetic parameters of PARP15-catalyzed automodification were determined by MLISA and are in good agreement with previous studies. Eight commonly used chemical tools for PARPs were examined by MLISA with PARP15 and PARP14 in 96-well plates and exhibited moderate inhibitory activities for PARP15, consistent with published reports. These results demonstrate that MLISA provides a new and convenient method for quantitative characterization of mono-ART enzymes and may allow identification of potent mono-ART inhibitors in a high-throughput-compatible manner.
Collapse
Affiliation(s)
- Jingwen Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Albert T Lam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
35
|
Sethi GS, Dharwal V, Naura AS. Poly(ADP-Ribose)Polymerase-1 in Lung Inflammatory Disorders: A Review. Front Immunol 2017; 8:1172. [PMID: 28974953 PMCID: PMC5610677 DOI: 10.3389/fimmu.2017.01172] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022] Open
Abstract
Asthma, acute lung injury (ALI), and chronic obstructive pulmonary disease (COPD) are lung inflammatory disorders with a common outcome, that is, difficulty in breathing. Corticosteroids, a class of potent anti-inflammatory drugs, have shown less success in the treatment/management of these disorders, particularly ALI and COPD; thus, alternative therapies are needed. Poly(ADP-ribose)polymerases (PARPs) are the post-translational modifying enzymes with a primary role in DNA repair. During the last two decades, several studies have reported the critical role played by PARPs in a good of inflammatory disorders. In the current review, the studies that address the role of PARPs in asthma, ALI, and COPD have been discussed. Among the different members of the family, PARP-1 emerges as a key player in the orchestration of lung inflammation in asthma and ALI. In addition, PARP activation seems to be associated with the progression of COPD. Furthermore, PARP-14 seems to play a crucial role in asthma. STAT-6 and GATA-3 are reported to be central players in PARP-1-mediated eosinophilic inflammation in asthma. Interestingly, oxidative stress-PARP-1-NF-κB axis appears to be tightly linked with inflammatory response in all three-lung diseases despite their distinct pathophysiologies. The present review sheds light on PARP-1-regulated factors, which may be common or differential players in asthma/ALI/COPD and put forward our prospective for future studies.
Collapse
Affiliation(s)
| | - Vivek Dharwal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, India
| |
Collapse
|
36
|
Krishnamurthy P, Da-Silva-Arnold S, Turner MJ, Travers JB, Kaplan MH. Poly-ADP ribose polymerase-14 limits severity of allergic skin disease. Immunology 2017; 152:451-461. [PMID: 28653395 DOI: 10.1111/imm.12782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/02/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022] Open
Abstract
Poly-ADP ribose polymerase-14 (PARP14 or ARTD8) was initially identified as a transcriptional co-activator for signal transducer and activator of transcription 6 (Stat6), where the presence of interleukin-4 (IL-4) and activated Stat6 induces the enzymatic activity of PARP14 that promotes T helper type 2 differentiation and allergic airway disease. To further our understanding of PARP14 in allergic disease, we studied the function of PARP14 in allergic inflammation of skin using mice that express constitutively active Stat6 in T cells (Stat6VT) and develop spontaneous inflammation of the skin. We mated Stat6VT mice to Parp14-/- mice and observed that approximately 75% of the Stat6VT × Parp14-/- mice develop severe atopic dermatitis (AD)-like lesions, compared with about 50% of Stat6VT mice, and have increased morbidity compared with Stat6VT mice. Despite this, gene expression in the skin and the cellular infiltrates was only modestly altered by the absence of PARP14. In contrast, we saw significant changes in systemic T-cell cytokine production. Moreover, adoptive transfer experiments demonstrated that decreases in IL-4 production reflected a cell intrinsic role for PARP14 in Th2 cytokine control. Hence, our data suggest that although PARP14 has similar effects on T-cell cytokine production in several allergic disease models, the outcome of those effects is distinct, depending on the target organ of disease.
Collapse
Affiliation(s)
- Purna Krishnamurthy
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sonia Da-Silva-Arnold
- Department of Dermatology, and Roudebush Veterans' Administration Hospital, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew J Turner
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Dermatology, and Roudebush Veterans' Administration Hospital, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeffrey B Travers
- Department of Dermatology, and Roudebush Veterans' Administration Hospital, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pediatrics and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
37
|
Al-Khami AA, Ghonim MA, Del Valle L, Ibba SV, Zheng L, Pyakurel K, Okpechi SC, Garay J, Wyczechowska D, Sanchez-Pino MD, Rodriguez PC, Boulares AH, Ochoa AC. Fuelling the mechanisms of asthma: Increased fatty acid oxidation in inflammatory immune cells may represent a novel therapeutic target. Clin Exp Allergy 2017; 47:1170-1184. [PMID: 28456994 DOI: 10.1111/cea.12947] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Increasing evidence has shown the close link between energy metabolism and the differentiation, function, and longevity of immune cells. Chronic inflammatory conditions such as parasitic infections and cancer trigger a metabolic reprogramming from the preferential use of glucose to the up-regulation of fatty acid oxidation (FAO) in myeloid cells, including macrophages and granulocytic and monocytic myeloid-derived suppressor cells. Asthma is a chronic inflammatory condition where macrophages, eosinophils, and polymorphonuclear cells play an important role in its pathophysiology. OBJECTIVE We tested whether FAO might play a role in the development of asthma-like traits and whether the inhibition of this metabolic pathway could represent a novel therapeutic approach. METHODS OVA- and house dust mite (HDM)-induced murine asthma models were used in this study. RESULTS Key FAO enzymes were significantly increased in the bronchial epithelium and inflammatory immune cells infiltrating the respiratory epithelium of mice exposed to OVA or HDM. Pharmacologic inhibition of FAO significantly decreased allergen-induced airway hyperresponsiveness, decreased the number of inflammatory cells, and reduced the production of cytokines and chemokines associated with asthma. CONCLUSIONS AND CLINICAL RELEVANCE These novel observations suggest that allergic airway inflammation increases FAO in inflammatory cells to support the production of cytokines, chemokines, and other factors important in the development of asthma. Inhibition of FAO by re-purposing existing drugs approved for the treatment of heart disease may provide a novel therapeutic approach for the treatment of asthma.
Collapse
Affiliation(s)
- A A Al-Khami
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Faculty of Science, Tanta University, Tanta, Egypt
| | - M A Ghonim
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - L Del Valle
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - S V Ibba
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - L Zheng
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - K Pyakurel
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - S C Okpechi
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J Garay
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - D Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - M D Sanchez-Pino
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - P C Rodriguez
- University of Augusta Cancer Center, Augusta, GA, USA
| | - A H Boulares
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - A C Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
38
|
Identification of PARP14 inhibitors using novel methods for detecting auto-ribosylation. Biochem Biophys Res Commun 2017; 486:626-631. [DOI: 10.1016/j.bbrc.2017.03.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022]
|
39
|
Navarro J, Gozalbo-López B, Méndez AC, Dantzer F, Schreiber V, Martínez C, Arana DM, Farrés J, Revilla-Nuin B, Bueno MF, Ampurdanés C, Galindo-Campos MA, Knobel PA, Segura-Bayona S, Martin-Caballero J, Stracker TH, Aparicio P, Del Val M, Yélamos J. PARP-1/PARP-2 double deficiency in mouse T cells results in faulty immune responses and T lymphomas. Sci Rep 2017; 7:41962. [PMID: 28181505 PMCID: PMC5299517 DOI: 10.1038/srep41962] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
The maintenance of T-cell homeostasis must be tightly regulated. Here, we have identified a coordinated role of Poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in maintaining T-lymphocyte number and function. Mice bearing a T-cell specific deficiency of PARP-2 in a PARP-1-deficient background showed defective thymocyte maturation and diminished numbers of peripheral CD4+ and CD8+ T-cells. Meanwhile, peripheral T-cell number was not affected in single PARP-1 or PARP-2-deficient mice. T-cell lymphopenia was associated with dampened in vivo immune responses to synthetic T-dependent antigens and virus, increased DNA damage and T-cell death. Moreover, double-deficiency in PARP-1/PARP-2 in T-cells led to highly aggressive T-cell lymphomas with long latency. Our findings establish a coordinated role of PARP-1 and PARP-2 in T-cell homeostasis that might impact on the development of PARP-centred therapies.
Collapse
Affiliation(s)
- Judith Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Beatriz Gozalbo-López
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Andrea C Méndez
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Françoise Dantzer
- Biotechnology and Cell Signaling, UMR7242-CNRS, Laboratory of Excellence Medalis, ESBS, Illkirch, France
| | - Valérie Schreiber
- Biotechnology and Cell Signaling, UMR7242-CNRS, Laboratory of Excellence Medalis, ESBS, Illkirch, France
| | - Carlos Martínez
- Experimental Pathology Unit, IMIB-LAIB-Arrixaca, Murcia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - David M Arana
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jordi Farrés
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Beatriz Revilla-Nuin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Genomic Unit. IMIB-LAIB-Arrixaca, Murcia, Spain
| | - María F Bueno
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Coral Ampurdanés
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Miguel A Galindo-Campos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Philip A Knobel
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sandra Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pedro Aparicio
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, Murcia, Spain
| | - Margarita Del Val
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Department of Immunology, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
40
|
Iwata H, Goettsch C, Sharma A, Ricchiuto P, Goh WWB, Halu A, Yamada I, Yoshida H, Hara T, Wei M, Inoue N, Fukuda D, Mojcher A, Mattson PC, Barabási AL, Boothby M, Aikawa E, Singh SA, Aikawa M. PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation. Nat Commun 2016; 7:12849. [PMID: 27796300 PMCID: PMC5095532 DOI: 10.1038/ncomms12849] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 08/03/2016] [Indexed: 12/23/2022] Open
Abstract
Despite the global impact of macrophage activation in vascular disease, the underlying mechanisms remain obscure. Here we show, with global proteomic analysis of macrophage cell lines treated with either IFNγ or IL-4, that PARP9 and PARP14 regulate macrophage activation. In primary macrophages, PARP9 and PARP14 have opposing roles in macrophage activation. PARP14 silencing induces pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells, whereas it suppresses anti-inflammatory gene expression and STAT6 phosphorylation in M(IL-4) cells. PARP9 silencing suppresses pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells. PARP14 induces ADP-ribosylation of STAT1, which is suppressed by PARP9. Mutations at these ADP-ribosylation sites lead to increased phosphorylation. Network analysis links PARP9-PARP14 with human coronary artery disease. PARP14 deficiency in haematopoietic cells accelerates the development and inflammatory burden of acute and chronic arterial lesions in mice. These findings suggest that PARP9 and PARP14 cross-regulate macrophage activation.
Collapse
Affiliation(s)
- Hiroshi Iwata
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Claudia Goettsch
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Amitabh Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Physics, Center for Complex Network Research, Northeastern University, Boston, Massachusetts 02115, USA
| | - Piero Ricchiuto
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wilson Wen Bin Goh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Arda Halu
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Iwao Yamada
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hideo Yoshida
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Takuya Hara
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mei Wei
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Noriyuki Inoue
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daiju Fukuda
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alexander Mojcher
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter C Mattson
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Albert-László Barabási
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Physics, Center for Complex Network Research, Northeastern University, Boston, Massachusetts 02115, USA
| | - Mark Boothby
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
41
|
Zaffini R, Di Paola R, Cuzzocrea S, Menegazzi M. PARP inhibition treatment in a nonconventional experimental mouse model of chronic asthma. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1301-1313. [PMID: 27604227 DOI: 10.1007/s00210-016-1294-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/25/2016] [Indexed: 01/15/2023]
Abstract
Allergic asthma is an immunological disease that occurs as a consequence of aeroallergen exposure. Inhibition of poly(ADP-ribose) polymerases (PARPs) in conventional models of asthma-like reaction has emerged as an effective anti-inflammatory and airway remodeling intervention. In a house dust mite (HDM) exposure mouse model, we investigated the impact of PARP inhibition on allergic airway inflammation, sensitization, and remodeling. Mice were intranasally exposed to a HDM extract for 5 days per week for up to 5 weeks. Mice were administered, or not, by PARP inhibitors 3-aminobenzamide (3-ABA) or 5-aminoisoquinolinone (5-AIQ) during the last 2 weeks of HDM treatment. Mice treated with PARP inhibitors after HDM stimulation showed a significant decrease in the number of total cells and eosinophils detectable in the bronchoalveolar lavage fluid as compared with the HDM-stimulated ones. In vitro HDM-stimulated splenocyte culture produced considerable amounts of the Th2 cytokines that were not affected by treatment with PARP inhibitors. Immunoglobulin levels in the serum were also unchanged. In the lung tissue, collagen deposition was decreased, whereas α-smooth muscle actin thickening was not significantly affected. Moreover, in HDM-stimulated PARP inhibitor-treated groups, we found a downregulation in the activation of signal transducer and activator of trascription-6 (STAT-6) and a significant decrease in the mRNA levels of C-C motif chemokine 11 (CCL11). In this mouse model of chronic asthma PARP inhibition treatment, although it does not affect sensitization, it effectively reduces the allergic airway inflammation and affects the remodeling through a mechanism involving STAT6 and CCL11.
Collapse
Affiliation(s)
- Raffaela Zaffini
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy
| | - Rosanna Di Paola
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Marta Menegazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy.
| |
Collapse
|
42
|
Krishnamurthy P, Kaplan MH. STAT6 and PARP Family Members in the Development of T Cell-dependent Allergic Inflammation. Immune Netw 2016; 16:201-10. [PMID: 27574499 PMCID: PMC5002446 DOI: 10.4110/in.2016.16.4.201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
Allergic inflammation requires the orchestration of altered gene expression in the target tissue and in the infiltrating immune cells. The transcription factor STAT6 is critical in activating cytokine gene expression and cytokine signaling both in the immune cells and in target tissue cells including airway epithelia, keratinocytes and esophageal epithelial cells. STAT6 is activated by the cytokines IL-4 and IL-13 to mediate the pathogenesis of allergic disorders such as asthma, atopic dermatitis, food allergy and eosinophilic esophagitis (EoE). In this review, we summarize the role of STAT6 in allergic diseases, its interaction with the co-factor PARP14 and the molecular mechanisms by which STAT6 and PARP14 regulate gene transcription.
Collapse
Affiliation(s)
- Purna Krishnamurthy
- Department of Pediatrics, Wells Center for Pediatric Research, Indianapolis, IN 46202, USA.; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H Kaplan
- Department of Pediatrics, Wells Center for Pediatric Research, Indianapolis, IN 46202, USA.; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
43
|
Hill DA, Spergel JM. The Immunologic Mechanisms of Eosinophilic Esophagitis. Curr Allergy Asthma Rep 2016; 16:9. [PMID: 26758862 DOI: 10.1007/s11882-015-0592-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Eosinophilic esophagitis (EoE) is a chronic allergic inflammatory disease that is triggered by food and/or environmental allergens and is characterized by a clinical and pathologic phenotype of progressive esophageal dysfunction due to tissue inflammation and fibrosis. EoE is suspected in patients with painful swallowing, among other symptoms, and is diagnosed by the presence of 15 or more eosinophils per high-power field in one or more of at least four esophageal biopsy specimens. The prevalence of EoE is increasing and has now reached rates similar to those of other chronic gastrointestinal disorders such as Crohn's disease. In recent years, our understanding of the immunologic mechanisms underlying this condition has grown considerably. Thanks to new genetic, molecular, cellular, animal, and translational studies, we can now postulate a detailed pathway by which exposure to allergens results in a complex and coordinated type 2 inflammatory cascade that, if not intervened upon, can result in pain on swallowing, esophageal strictures, and food impaction. Here, we review the most recent research in this field to synthesize and summarize our current understanding of this complex and important disease.
Collapse
Affiliation(s)
- David A Hill
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3550 Market St., Philadelphia, PA, 19104, USA
| | - Jonathan M Spergel
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. .,Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3550 Market St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
44
|
Bock FJ, Chang P. New directions in poly(ADP-ribose) polymerase biology. FEBS J 2016; 283:4017-4031. [PMID: 27087568 DOI: 10.1111/febs.13737] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/18/2016] [Accepted: 04/13/2016] [Indexed: 12/17/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) regulate the function of target proteins by modifying them with ADP-ribose, a large and unique post-translational modification. Humans express 17 PARPs; however, historically, much of the focus has been on PARP1 and its function in DNA damage repair. Recent work has uncovered an amazing diversity of function for these enzymes including the regulation of fundamental physiological processes in the cell and at the organismal level, as well as new roles in regulating cellular stress responses. In this review, we discuss recent advancements in our understanding of this important protein family, and technological developments that have been critical for moving the field forward. Finally, we discuss new directions that we feel are important areas of further scientific exploration.
Collapse
Affiliation(s)
- Florian J Bock
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, UK
| | | |
Collapse
|
45
|
Passeri D, Camaioni E, Liscio P, Sabbatini P, Ferri M, Carotti A, Giacchè N, Pellicciari R, Gioiello A, Macchiarulo A. Concepts and Molecular Aspects in the Polypharmacology of PARP-1 Inhibitors. ChemMedChem 2015; 11:1219-26. [PMID: 26424664 DOI: 10.1002/cmdc.201500391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 11/08/2022]
Abstract
Recent years have witnessed a renewed interest in PARP-1 inhibitors as promising anticancer agents with multifaceted functions. Particularly exciting developments include the approval of olaparib (Lynparza) for the treatment of refractory ovarian cancer in patients with BRCA1/2 mutations, and the increasing understanding of the polypharmacology of PARP-1 inhibitors. The aim of this review article is to provide the reader with a comprehensive overview of the distinct levels of the polypharmacology of PARP-1 inhibitors, including 1) inter-family polypharmacology, 2) intra-family polypharmacology, and 3) multi-signaling polypharmacology. Progress made in gaining insight into the molecular basis of these multiple target-independent and target-dependent activities of PARP-1 inhibitors are discussed, with an outlook on the potential impact that a better understanding of polypharmacology may have in aiding the explanation as to why some drug candidates work better than others in clinical settings, albeit acting on the same target with similar inhibitory potency.
Collapse
Affiliation(s)
- Daniela Passeri
- TES Pharma S.r.l., via Palmiro Togliatti 20, 06073 Corciano, Perugia, Italy
| | - Emidio Camaioni
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Paride Liscio
- TES Pharma S.r.l., via Palmiro Togliatti 20, 06073 Corciano, Perugia, Italy
| | - Paola Sabbatini
- TES Pharma S.r.l., via Palmiro Togliatti 20, 06073 Corciano, Perugia, Italy
| | - Martina Ferri
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Andrea Carotti
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Nicola Giacchè
- TES Pharma S.r.l., via Palmiro Togliatti 20, 06073 Corciano, Perugia, Italy
| | | | - Antimo Gioiello
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Antonio Macchiarulo
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy.
| |
Collapse
|
46
|
Mehrotra P, Krishnamurthy P, Sun J, Goenka S, Kaplan MH. Poly-ADP-ribosyl polymerase-14 promotes T helper 17 and follicular T helper development. Immunology 2015. [PMID: 26222149 DOI: 10.1111/imm.12515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transcription factors are critical determinants of T helper cell fate and require a variety of co-factors to activate gene expression. We previously identified the ADP ribosyl-transferase poly-ADP-ribosyl polymerase 14 (PARP-14) as a co-factor of signal transducer and activator of transcription (STAT) 6 that is important in B-cell and T-cell responses to interleukin-4, particularly in the differentiation of T helper type 2 (Th2) cells. However, whether PARP-14 functions during the development of other T helper subsets is not known. In this report we demonstrate that PARP-14 is highly expressed in Th17 cells, and that PARP-14 deficiency and pharmacological blockade of PARP activity result in diminished Th17 differentiation in vitro and in a model of allergic airway inflammation. We further show that PARP-14 is expressed in T follicular helper (Tfh) cells and Tfh cell development is impaired in PARP-14-deficient mice following immunization with sheep red blood cells or inactivated influenza virus. Decreases in Th17 and Tfh development are correlated with diminished phospho-STAT3 and decreased expression of the interleukin-6 receptor α-chain in T cells. Together, these studies demonstrate that PARP-14 regulates multiple cytokine responses during inflammatory immunity.
Collapse
Affiliation(s)
- Purvi Mehrotra
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Integrative and Cellular Physiology, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Purna Krishnamurthy
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jie Sun
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shreevrat Goenka
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark H Kaplan
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
47
|
Intracellular Mono-ADP-Ribosylation in Signaling and Disease. Cells 2015; 4:569-95. [PMID: 26426055 PMCID: PMC4695847 DOI: 10.3390/cells4040569] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022] Open
Abstract
A key process in the regulation of protein activities and thus cellular signaling pathways is the modification of proteins by post-translational mechanisms. Knowledge about the enzymes (writers and erasers) that attach and remove post-translational modifications, the targets that are modified and the functional consequences elicited by specific modifications, is crucial for understanding cell biological processes. Moreover detailed knowledge about these mechanisms and pathways helps to elucidate the molecular causes of various diseases and in defining potential targets for therapeutic approaches. Intracellular adenosine diphosphate (ADP)-ribosylation refers to the nicotinamide adenine dinucleotide (NAD+)-dependent modification of proteins with ADP-ribose and is catalyzed by enzymes of the ARTD (ADP-ribosyltransferase diphtheria toxin like, also known as PARP) family as well as some members of the Sirtuin family. Poly-ADP-ribosylation is relatively well understood with inhibitors being used as anti-cancer agents. However, the majority of ARTD enzymes and the ADP-ribosylating Sirtuins are restricted to catalyzing mono-ADP-ribosylation. Although writers, readers and erasers of intracellular mono-ADP-ribosylation have been identified only recently, it is becoming more and more evident that this reversible post-translational modification is capable of modulating key intracellular processes and signaling pathways. These include signal transduction mechanisms, stress pathways associated with the endoplasmic reticulum and stress granules, and chromatin-associated processes such as transcription and DNA repair. We hypothesize that mono-ADP-ribosylation controls, through these different pathways, the development of cancer and infectious diseases.
Collapse
|
48
|
Hottiger MO. Nuclear ADP-Ribosylation and Its Role in Chromatin Plasticity, Cell Differentiation, and Epigenetics. Annu Rev Biochem 2015; 84:227-63. [PMID: 25747399 DOI: 10.1146/annurev-biochem-060614-034506] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein ADP-ribosylation is an ancient posttranslational modification with high biochemical complexity. It alters the function of modified proteins or provides a scaffold for the recruitment of other proteins and thus regulates several cellular processes. ADP-ribosylation is governed by ADP-ribosyltransferases and a subclass of sirtuins (writers), is sensed by proteins that contain binding modules (readers) that recognize specific parts of the ADP-ribosyl posttranslational modification, and is removed by ADP-ribosylhydrolases (erasers). The large amount of experimental data generated and technical progress made in the last decade have significantly advanced our knowledge of the function of ADP-ribosylation at the molecular level. This review summarizes the current knowledge of nuclear ADP-ribosylation reactions and their role in chromatin plasticity, cell differentiation, and epigenetics and discusses current progress and future perspectives.
Collapse
Affiliation(s)
- Michael O Hottiger
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
49
|
Kiss B, Szántó M, Szklenár M, Brunyánszki A, Marosvölgyi T, Sárosi E, Remenyik É, Gergely P, Virág L, Decsi T, Rühl R, Bai P. Poly(ADP) ribose polymerase-1 ablation alters eicosanoid and docosanoid signaling and metabolism in a murine model of contact hypersensitivity. Mol Med Rep 2014; 11:2861-7. [PMID: 25482287 DOI: 10.3892/mmr.2014.3044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 09/24/2014] [Indexed: 11/05/2022] Open
Abstract
Poly(ADP‑ribose) polymerase (PARP)‑1 is a pro‑inflammatory protein. The inhibition of PARP‑1 reduces the activity of numerous pro‑inflammatory transcription factors, which results in the reduced production of pro‑inflammatory cytokines, chemokines, matrix metalloproteinases and inducible nitric oxide synthase, culminating in reduced inflammation of the skin and other organs. The aim of the present study was to investigate the effects of the deletion of PARP‑1 expression on polyunsaturated fatty acids (PUFA), and PUFA metabolite composition, in mice under control conditions or undergoing an oxazolone (OXA)‑induced contact hypersensitivity reaction (CHS). CHS was elicited using OXA in both the PARP‑1+/+ and PARP‑1/ mice, and the concentration of PUFAs and PUFA metabolites in the diseased skin were assessed using lipidomics experiments. The levels of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were shown to be increased in the PARP‑1/ mice, as compared with the control, unsensitized PARP‑1+/+ mice. In addition, higher expression levels of fatty acid binding protein 7 (FABP7) were detected in the PARP‑1/ mice. FABP7 is considered to be a specific carrier of DHA and EPA. Furthermore, the levels of the metabolites of DHA and EPA (considered mainly as anti‑inflammatory or pro‑resolving factors) were higher, as compared with the metabolites of arachidonic acid (considered mainly pro‑inflammatory), both in the unsensitized control and OXA‑sensitized PARP‑1/ mice. The results of the present study suggest that the genetic deletion of PARP‑1 may affect the PUFA‑homeostasis of the skin, resulting in an anti‑inflammatory milieu, including increased DHA and EPA levels, and DHA and EPA metabolite levels. This may be an important component of the anti‑inflammatory action of PARP‑1 inhibition.
Collapse
Affiliation(s)
- Borbála Kiss
- Department of Dermatology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Magdolna Szántó
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | | | - Attila Brunyánszki
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | | | - Eszter Sárosi
- Department of Pediatrics, University of Pécs, H-7623 Pécs, Hungary
| | - Éva Remenyik
- Department of Dermatology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Pál Gergely
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tamás Decsi
- Department of Pediatrics, University of Pécs, H-7623 Pécs, Hungary
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, H‑4032 Debrecen, Hungary
| | - Peter Bai
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
50
|
Palladium-catalyzed N-arylation of 2-aminobenzothiazole-4-carboxylates/carboxamides: facile synthesis of PARP14 inhibitors. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|