1
|
Ju HH, Lee J, Kim SK, Kim SY, Ahn JH, Skiba NP, Rao PV, Choi JA. Physiological activation of liver X receptor provides protection against ocular inflammation in uveitic glaucoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167573. [PMID: 39547517 DOI: 10.1016/j.bbadis.2024.167573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Virus-induced trabeculitis is considered a significant cause of uveitic glaucoma, being marked by a sudden increase in intraocular pressure and relatively mild inflammation in the anterior chamber of the eye. In previous proteome analyses of aqueous humor (AH) derived from Cytomegalovirus (CMV) uveitic glaucoma patients, we observed the liver X receptor (LXR) pathway to be among the most prominently activated canonical pathways. In the present study, we explored the role of the LXR pathway in the etiology of glaucoma in association with ocular inflammation. LXRα/β and ABCA1, the downstream targets of LXR, were distributed throughout the conventional AH outflow pathway of the human eye, and their increased levels in human trabecular meshwork cells in response to CMV infection and -lipopolysaccharide (LPS) treatment. Treatment with an LXR agonist (T091317) suppressed LPS-induced inflammation and this response was reversed under the deficiency of LXRα/LXRβ. Furthermore, in the rat endotoxin uveitis model, the LXR agonist significantly reduced infiltrating cells and expression of proinflammatory cytokines in the iris and retina. These results reveal upregulation of LXR-ABCA1 under inflammatory insult in the conventional AH outflow pathway, and activation of LXR exhibiting an anti-inflammatory effect, implying its essential physiological protective role in glaucoma associated with ocular inflammation.
Collapse
Affiliation(s)
- Hyun Hee Ju
- Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jiyoung Lee
- Department of Ophthalmology, College of Medicine, Daejeon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC. USA
| | - Ponugoti V Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC. USA
| | - Jin A Choi
- Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zhang M, Liu T, Luo L, Zhang Y, Chen Q, Wang F, Xie Y. Common diagnostic biomarkers and molecular mechanisms of Helicobacter pylori infection and inflammatory bowel disease. Front Immunol 2024; 15:1492810. [PMID: 39712025 PMCID: PMC11659760 DOI: 10.3389/fimmu.2024.1492810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Background Helicobacter pylori (H. pylori) may be present in the intestinal mucosa of patients with inflammatory bowel disease (IBD), which is a chronic inflammation of the gastrointestinal tract. The role of H. pylori in the pathogenesis of IBD remains unclear. In this study, bioinformatics techniques were used to investigate the correlation and co-pathogenic pathways between H. pylori and IBD. Methods The following matrix data were downloaded from the GEO database: H. pylori-associated gastritis, GSE233973 and GSE27411; and IBD, GSE3365 and GSE179285. Differential gene analysis was performed via the limma software package in the R environment. A protein-protein interaction (PPI) network of DEGs was constructed via the STRING database. Cytoscape software, through the CytoHubba plugin, filters the PPI subnetwork and identifies Hub genes. Validation of the Hub genes was performed in the validation set. Immune analysis was conducted via the CIBERSORT algorithm. Transcription factor interaction and small molecule drug analyses of the Hub genes were also performed. Results Using the GSE233973 and GSE3365 datasets, 151 differentially expressed genes (DEGs) were identified. GO enrichment analysis revealed involvement in leukocyte migration and chemotaxis, response to lipopolysaccharides, response to biostimulatory stimuli, and regulation of interleukin-8 (IL-8) production. Ten Hub genes (TLR4, IL10, CXCL8, IL1B, TLR2, CXCR2, CCL2, IL6, CCR1 and MMP-9) were identified via the PPI network and Cytoscape software. Enrichment analysis of the Hub genes focused on the lipopolysaccharide response, bacterial molecular response, biostimulatory response and leukocyte movement. Validation using the GSE27411 and GSE179285 datasets revealed that MMP-9 was significantly upregulated in both the H. pylori and IBD groups. The CIBERSORT algorithm revealed immune infiltration differences between the control and disease groups of IBD patients. Additionally, the CMap database identified the top 11 small molecule compounds across 10 cell types, including TPCA-1, AS-703026 and memantine, etc. Conclusion Our study revealed the co-pathogenic mechanism between H. pylori and IBD and identified 10 Hub genes related to cellular immune regulation and signal transduction. The expression of MMP-9 is significantly upregulated in both H. pylori infection and IBD. This study provides a new perspective for exploring the prevention and treatment of H. pylori infection and IBD.
Collapse
Affiliation(s)
- Minglin Zhang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tong Liu
- Department of General Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Lijun Luo
- School of Medical Laboratory Science, Hebei North University, Zhangjiakou, Hebei, China
| | - Yi Zhang
- Department of General Surgery, The First People's Hospital of Qingzhen City, Guiyang, Guizhou, China
| | - Qijiao Chen
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuxin Xie
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Granela H, Perez AB, Morier L, Alvarez M, Guzmán MG, Sierra B. Possible effects of ancestry-related oxysterol-binding protein-like 10 genetic polymorphisms on dengue virus replication and anti-dengue immune response. Heliyon 2024; 10:e37535. [PMID: 39444395 PMCID: PMC11497451 DOI: 10.1016/j.heliyon.2024.e37535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose Oxysterol-binding protein-like 10 (OSBPL10) gene has been associated with reduced susceptibility to severe dengue in individuals of African descent. The aim of this study was to determine the possible effect of OSBPL10 on dengue virus (DENV) replication as well as the impact of African and European haplotypes of six OSBPL10 small nuclear polymorphisms (SNPs) on dengue multiplication and innate immune response. Methods We conducted gene knockdown experiments targeting OSBPL10 in THP-1 and Huh-7D12 cell lines, followed by a DENV-2 replication assay. Extracellular viral load was determined using qRT-PCR. To investigate the impact of SNPs haplotypes on viral replication and gene expression we cultured peripheral blood mononuclear cells (PBMC) from individuals with homozygous African and European haplotypes of OSBPL10 with DENV-2. Individual genotyping was performed using High Resolution Melt (HRM) analysis. The level of viral replication was assessed through plaque assay, while RT-PCR was employed to determine the expression levels of RXR-α, IFN-γ, IL-10 and IL-8 genes. Results In vitro OSBPL10 knockdown significantly reduced DENV-2 replication. Individuals carrying European haplotypes showed higher DENV titers along with elevated levels of RXR-α and IL-8 mRNA compared to those carrying African haplotypes, who exhibited lower viral loads alongside increased IFN-γ and IL-10 expression. Conclusions Our findings further explore the role of OSBPL10 in DENV multiplication, immune response to infection. The European haplotypes of OSBPL10 appear to increase DENV replication and promote RXR-α and IL-8 mRNA expression which correlates with the suppressive effect of these mediators on type I IFN, promoting viral replication and a deficient antiviral response. In contrast, the African haplotype showed a reduction in DENV replication and enhanced IFN-γ and IL-10 mRNA expression, which could be related to the better management of dengue infection and the low frequency of severe disease in this ethnic groupe.
Collapse
Affiliation(s)
- Hector Granela
- Virology Department, “Pedro Kourí” Tropical Medicine Institute (IPK). Autopista Novia del Mediodía, km 61/2.Havana, Cuba
| | - Ana B. Perez
- Virology Department, “Pedro Kourí” Tropical Medicine Institute (IPK). Autopista Novia del Mediodía, km 61/2.Havana, Cuba
| | - Luis Morier
- Virology Department, Biology Faculty, University of Havana. 455, 25th Street. Havana, Cuba
| | - Mayling Alvarez
- Virology Department, “Pedro Kourí” Tropical Medicine Institute (IPK). Autopista Novia del Mediodía, km 61/2.Havana, Cuba
| | - Maria G. Guzmán
- Virology Department, “Pedro Kourí” Tropical Medicine Institute (IPK). Autopista Novia del Mediodía, km 61/2.Havana, Cuba
| | - Beatriz Sierra
- Virology Department, “Pedro Kourí” Tropical Medicine Institute (IPK). Autopista Novia del Mediodía, km 61/2.Havana, Cuba
| |
Collapse
|
4
|
Nagai M, Okawa T, Nakata K, Takahashi D, Miyajima R, Shiratori H, Yamanaka D, Nakamura A, Oyama C, Takahashi SI, Toyama-Sorimachi N, Suzuki K, Ohashi W, Dohi T, Kawamura YI, Hase K. Sugar and arginine facilitate oral tolerance by ensuring the functionality of tolerogenic immune cell subsets in the intestine. Cell Rep 2024; 43:114490. [PMID: 38990720 DOI: 10.1016/j.celrep.2024.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Although oral tolerance is a critical system in regulating allergic disorders, the mechanisms by which dietary factors regulate the induction and maintenance of oral tolerance remain unclear. To address this, we explored the differentiation and function of various immune cells in the intestinal immune system under fasting and ad libitum-fed conditions before oral ovalbumin (OVA) administration. Fasting mitigated OVA-specific Treg expansion, which is essential for oral tolerance induction. This abnormality mainly resulted from functional defects in the CX3CR1+ cells responsible for the uptake of luminal OVA and reduction of tolerogenic CD103+ dendritic cells. Eventually, fasting impaired the preventive effect of oral OVA administration on asthma and allergic rhinitis development. Specific food ingredients, namely carbohydrates and arginine, were indispensable for oral tolerance induction by activating glycolysis and mTOR signaling. Overall, prior food intake and nutritional signals are critical for maintaining immune homeostasis by inducing tolerance to ingested food antigens.
Collapse
Affiliation(s)
- Motoyoshi Nagai
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan.
| | - Takuma Okawa
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Kazuaki Nakata
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Reina Miyajima
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Hiroaki Shiratori
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Daisuke Yamanaka
- Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Atsuo Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan; Dairy Science and Technology Institute, Kyodo Milk Industry Co., Hinode-machi, Nishitama-gun, Tokyo, Japan
| | - Chinatsu Oyama
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Koichiro Suzuki
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Wakana Ohashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Taeko Dohi
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Yuki I Kawamura
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan; The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima 960-1296, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan.
| |
Collapse
|
5
|
Ramos L. Dimorphic Regulation of the MafB Gene by Sex Steroids in Hamsters, Mesocricetus auratus. Animals (Basel) 2024; 14:1728. [PMID: 38929347 PMCID: PMC11200555 DOI: 10.3390/ani14121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
MafB is a transcription factor that regulates macrophage differentiation. Macrophages are a traditional feature of the hamster Harderian gland (HG); however, studies pertaining to MafB expression in the HG are scant. Here, the full-length cDNA of the MafB gene in hamsters was cloned and sequenced. Molecular characterization revealed that MafB encodes a protein containing 323 amino acids with a DNA-binding domain, a transactivation domain, and a leucine zipper domain. qPCR assays indicated that MafB was expressed in different tissues of both sexes. The highest relative expression levels in endocrine tissues were identified in the pancreas. Gonadectomy in male hamsters was associated with significantly higher mRNA levels in the HG; replacement with dihydrotestosterone restored mRNA expression. The HG in male hamsters contained twofold more MafB mRNA than the HG of female hamsters. Adrenals revealed similar mRNA relative expression levels during the estrous cycle. The estrous phase was associated with higher mRNA levels in the ovary. A significantly up-regulated expression and sexual dimorphism of MafB was found in the pancreas. Therefore, MafB in the HG may play an active role in the macrophage differentiation required for phagocytosis activity and intraocular repair. Additionally, sex steroids appear to strongly influence the MafB expression in the HG and pancreas. These studies highlight the probable biological importance of MafB in immunological defense and pancreatic β cell regulation.
Collapse
Affiliation(s)
- Luis Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, Mexico
| |
Collapse
|
6
|
Chatterjee A, Jayaprakasan M, Chakrabarty AK, Lakkaniga NR, Bhatt BN, Banerjee D, Narwaria A, Katiyar CK, Dubey SK. Comprehensive insights into rheumatoid arthritis: Pathophysiology, current therapies and herbal alternatives for effective disease management. Phytother Res 2024; 38:2764-2799. [PMID: 38522945 DOI: 10.1002/ptr.8187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Rheumatoid arthritis is a chronic autoimmune inflammatory disease characterized by immune response overexpression, causing pain and swelling in the synovial joints. This condition is caused by auto-reactive antibodies that attack self-antigens due to their incapacity to distinguish between self and foreign molecules. Dysregulated activity within numerous signalling and immunological pathways supports the disease's development and progression, elevating its complexity. While current treatments provide some alleviation, their effectiveness is accompanied by a variety of adverse effects that are inherent in conventional medications. As a result, there is a deep-rooted necessity to investigate alternate therapeutic strategies capable of neutralizing these disadvantages. Medicinal herbs display a variety of potent bioactive phytochemicals that are effective in the complementary management of disease, thus generating an enormous potency for the researchers to delve deep into the development of novel phytomedicine against autoimmune diseases, although additional evidence and understanding are required in terms of their efficacy and pharmacodynamic mechanisms. This literature-based review highlights the dysregulation of immune tolerance in rheumatoid arthritis, analyses the pathophysiology, elucidates relevant signalling pathways involved, evaluates present and future therapy options and underscores the therapeutic attributes of a diverse array of medicinal herbs in addressing this severe disease.
Collapse
Affiliation(s)
- Amrita Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Monisha Jayaprakasan
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | | | | | | | | |
Collapse
|
7
|
Zhao H, Chen X, Sun Y, Shen P, Lin H, Sun F, Zhan S. Associations Between Thiazolidinediones Use and Incidence of Rheumatoid Arthritis: A Retrospective Population-Based Cohort Study. Arthritis Care Res (Hoboken) 2024; 76:486-496. [PMID: 38108108 DOI: 10.1002/acr.25277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVE Preclinical studies suggest that thiazolidinediones (TZDs) may have a protective effect on rheumatoid arthritis (RA), but evidence from population-based studies is scarce. This study aimed to assess the association between use of TZDs and incidence of RA in a retrospective cohort of patients with type 2 diabetes mellitus (T2DM). METHODS A retrospective cohort of patients with T2DM who were new users of TZDs or alpha glucosidase inhibitors (AGIs) was assembled. We applied the inverse probability of treatment weighted Cox model to estimate the hazard ratio (HR) of RA incidence associated with the use of TZDs compared with AGIs. RESULTS The final analysis included 56,796 new users of AGIs and 14,892 new users of TZDs. The incidence of RA was 187.4 and 135.2 per 100,000 person-years in AGI users and TZD users, respectively. Compared with use of AGIs, TZD use was associated with a reduction in RA incidence, with an HR of 0.72 (95% confidence interval [95% CI] 0.59-0.89). HRs for cumulative use of TZDs for 0.51 to 4.0 years and more than 4 years with incidence of RA were 0.55 (95% CI 0.35-0.88) and 0.74 (95% CI 0.57-0.98), respectively. Various subgroup analyses and sensitivity analyses were consistent with the primary analysis. CONCLUSION Use of TZDs is associated with a decreased risk of incident RA in patients with T2DM.
Collapse
Affiliation(s)
| | - Xiaowei Chen
- Peking University, Beijing, China, and Tianjin Medical University, Tianjin, China
| | - Yexiang Sun
- Yinzhou District Center for Disease Control and Prevention, Ningbo, China
| | - Peng Shen
- Yinzhou District Center for Disease Control and Prevention, Ningbo, China
| | - Hongbo Lin
- Yinzhou District Center for Disease Control and Prevention, Ningbo, China
| | - Feng Sun
- Peking University, Beijing, China
| | - Siyan Zhan
- Peking University and Peking University Third Hospital, Beijing, China
| |
Collapse
|
8
|
Hsu YT, Wu CC, Wang CC, Sheu CC, Yang YH, Cheng MY, Lai RS, Leung SY, Lin CC, Wei YF, Lai YF, Cheng MH, Chen HC, Yang CJ, Wang CJ, Liu HJ, Chen HL, Hung CH, Lee CL, Huang MS, Huang SK. Increased di-(2-ethylhexyl) phthalate exposure poses a differential risk for adult asthma clusters. Respir Res 2024; 25:139. [PMID: 38521900 PMCID: PMC10960985 DOI: 10.1186/s12931-024-02764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/10/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND DEHP, a common plasticizer known for its hormone-disrupting properties, has been associated with asthma. However, a significant proportion of adult asthma cases are "non-atopic", lacking a clear etiology. METHODS In a case-control study conducted between 2011 and 2015, 365 individuals with current asthma and 235 healthy controls from Kaohsiung City were enrolled. The control group comprised individuals without asthma, Type 2 Diabetes Mellitus (T2DM), hypertension, or other respiratory/allergic conditions. The study leveraged asthma clusters (Clusters A to F) established in a prior investigation. Analysis involved the examination of urinary DEHP metabolites (MEHP and MEHHP), along with the assessment of oxidative stress, sphingolipid metabolites, and inflammatory biomarkers. Statistical analyses encompassed Spearman's rank correlation coefficients, multiple logistic regression, and multinomial logistic regression. RESULTS Asthma clusters (E, D, C, F, A) exhibited significantly higher ORs of MEHHP exposures compared to the control group. When considering asthma-related comorbidities (T2DM, hypertension, or both), patients without comorbidities demonstrated significantly higher ORs of the sum of primary and secondary metabolites (MEHP + MEHHP) and MEHHP compared to those with asthma comorbidities. A consistent positive correlation between urinary HEL and DEHP metabolites was observed, but a consistent negative correlation between DEHP metabolites and selected cytokines was identified. CONCLUSION The current study reveals a heightened risk of MEHHP and MEHP + MEHHP exposure in specific asthma subgroups, emphasizing its complex relationship with asthma. The observed negative correlation with cytokines suggests a new avenue for research, warranting robust evidence from epidemiological and animal studies.
Collapse
Affiliation(s)
- Yuan-Ting Hsu
- National Institute of Environmental Health Sciences, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsin Yang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Ming-Yen Cheng
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, China
| | - Ruay-Sheng Lai
- Division of Chest Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Sum-Yee Leung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Cheng Lin
- Chest Division, Department of Internal Medicine, Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Ping-Tung, Taiwan
| | - Yu-Feng Wei
- Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yung-Fa Lai
- Division of Chest Medicine, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Meng-Hsuan Cheng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huang-Chi Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Jen Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Jen Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Huei-Ju Liu
- National Institute of Environmental Health Sciences, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Hua-Ling Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital and College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chon-Lin Lee
- Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Marine Environment and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Ming-Shyan Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Division of Chest Medicine, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Hu C, Hu W, Tang B, Bao Q, Jiang X, Tang L, Wang H, He L, Lv M, Xiao Y, Liu C, Li X, Liu Y, Li J, Huang G, Dong Z, Li Z, Guo T, Yang S. Plasma and urine proteomics and gut microbiota analysis reveal potential factors affecting COVID-19 vaccination response. iScience 2024; 27:108851. [PMID: 38318387 PMCID: PMC10838952 DOI: 10.1016/j.isci.2024.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/15/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
The efficacy of COVID-19 vaccination relies on the induction of neutralizing antibodies, which can vary among vaccine recipients. In this study, we investigated the potential factors affecting the neutralizing antibody response by combining plasma and urine proteomics and gut microbiota analysis. We found that activation of the LXR/FXR pathway in plasma was associated with the production of ACE2-RBD-inhibiting antibodies, while urine proteins related to complement system, acute phase response signaling, LXR/FXR, and STAT3 pathways were correlated with neutralizing antibody production. Moreover, we observed a correlation between the gut microbiota and plasma and urine proteins, as well as the vaccination response. Based on the above data, we built a predictive model for vaccination response (AUC = 0.85). Our study provides insights into characteristic plasma and urine proteins and gut microbiota associated with the ACE2-RBD-inhibiting antibodies, which could benefit our understanding of the host response to COVID-19 vaccination.
Collapse
Affiliation(s)
- Changjiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Weichao Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qiyu Bao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xingyu Jiang
- Laboratory Medicine Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - He Wang
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Lijiao He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Moyang Lv
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Cheng Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xinzhe Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yunyi Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jie Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Guiping Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Zhen Dong
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Zhongjun Li
- Laboratory Medicine Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Tiannan Guo
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
10
|
Li M, Luo L, Lin C, Ni B, Zou L, Song Z, Hao F, Wu Y, Luo N. Vitamin D3 mitigates autoimmune inflammation caused by activation of myeloid dendritic cells in SLE. Exp Dermatol 2024; 33:e14926. [PMID: 37702410 DOI: 10.1111/exd.14926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which defective T cells, immune complex deposition and other immune system alterations contribute to pathological changes of multiple organ systems. The vitamin D metabolite c is a critical immunomodulator playing pivotal roles in the immune system. Epidemiological evidence indicates that vitamin D deficiency is correlated with the severity of SLE. Our aim is to investigate the effects of 1,25(OH)2D3 (VitD3) on the activation of myeloid dendritic cells (mDCs) by autologous DNA-containing immune complex (DNA-ICs), and the effects of VitD3 on immune system balance during SLE. We purified DNA-ICs from the serum of SLE patients and isolated mDCs from normal subjects. In vitro studies showed that DNA-ICs were internalized and consumed by mDCs. VitD3 blocked the effects of DNA-ICs on RelB, IL-10 and TNF-α in mDCs. Further analysis indicated that DNA-ICs stimulated histone acetylation in the RelB promoter region, which was inhibited by VitD3. Knockdown of the histone deacetylase 3 gene (HDAC3) blocked these VitD3-mediated effects. Co-culture of mDCs and CD4+ T cells showed that VitD3 inhibited multiple processes mediated by DNA-ICs, including proliferation, downregulation of IL-10, TGF-β and upregulation of TNF-α. Moreover, VitD3 could also reverse the effects of DNA-IC-induced imbalance of CD4+ CD127- Foxp3+ T cells and CD4+ IL17+ T cells. Taken together, our results indicated that autologous DNA-ICs stimulate the activation of mDCs in the pathogenesis of SLE, and VitD3 inhibits this stimulatory effects of DNA-ICs by negative transcriptional regulation of RelB gene and maintaining the Treg/Th17 immune cell balance. These results suggest that vitamin D may have therapeutic value for the treatment of SLE.
Collapse
Affiliation(s)
- Mingfang Li
- Department of Dermatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Dermatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Luo
- Department of Dermatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chuanchuan Lin
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Ni
- Institute of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liyun Zou
- Institute of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei Hao
- Department of Dermatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Wu
- Department of Digital Medicine, College of Biomedical Engineering and Medical Imaging, Army Medical University (Third Military Medical University), Chongqing, China
| | - Na Luo
- Department of Dermatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
11
|
Leal AS, Hung PY, Chowdhury AS, Liby KT. Retinoid X Receptor agonists as selective modulators of the immune system for the treatment of cancer. Pharmacol Ther 2023; 252:108561. [PMID: 37952906 PMCID: PMC10704405 DOI: 10.1016/j.pharmthera.2023.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Upon heterodimerizing with other nuclear receptors, retinoid X receptors (RXR) act as ligand-dependent transcription factors, regulating transcription of critical signaling pathways that impact numerous hallmarks of cancer. By controlling both inflammation and immune responses, ligands that activate RXR can modulate the tumor microenvironment. Several small molecule agonists of these essential receptors have been synthesized. Historically, RXR agonists were tested for inhibition of growth in cancer cells, but more recent drug discovery programs screen new molecules for inhibition of inflammation or activation of immune cells. Bexarotene is the first successful example of an effective therapeutic that molecularly targets RXR; this drug was approved to treat cutaneous T cell lymphoma and is still used as a standard of care treatment for this disease. No additional RXR agonists have yet achieved FDA approval, but several promising novel compounds are being developed. In this review, we provide an overview of the multiple mechanisms by which RXR signaling regulates inflammation and tumor immunity. We also discuss the potential of RXR-dependent immune cell modulation for the treatment or prevention of cancer and concomitant challenges and opportunities.
Collapse
Affiliation(s)
- Ana S Leal
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States of America; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Pei-Yu Hung
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Afrin Sultana Chowdhury
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States of America; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| |
Collapse
|
12
|
Zhang H, Wang J, Sun J, Wang Q, Guo L, Ju X. Regulatory mechanism underlying liver X receptor effects on the tumor microenvironment, inflammation and tumorigenesis. Expert Opin Ther Targets 2023; 27:989-998. [PMID: 37753584 DOI: 10.1080/14728222.2023.2264513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Liver X receptors (LXRs) have emerged as novel targets for tumor treatment. LXRs within the tumor microenvironment show the capacity to impact tumorigenesis and tumor development by regulating the infiltration of immune cells and release of cytokines to moderate inflammation. AREAS COVERED In this review, we present a systematic description of recent progress in understanding the impact of LXRs on the tumor microenvironment and tumorigenesis. We also summarize the antitumor effects mediated by LXRs via their regulation of cytokine expression. Additionally, we discuss the limitations of LXR research in tumor studies to date. EXPERT OPINION Previous studies have demonstrated abnormal LXR expression in tumor tissues, and activation of LXRs has been shown to inhibit tumorigenesis and promote apoptosis in tumor cells. However, LXRs can also affect tumorigenesis by regulating immune cell functions within the tumor immune microenvironment. By summarizing the impact of LXRs on immune cells, we provide new insights into the multifaceted nature of LXRs as antitumor targets.
Collapse
Affiliation(s)
- Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jing Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiang Sun
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lanfang Guo
- Department of Clinical Laboratory Medicine, The Fourth People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
13
|
Zhang X, Meng J, Shi X, Quinet RJ, Davis W, Zakem J, Keshavamurthy C, Patel R, Lobo G, Hellmers L, Ray AN, Rivers LE, Ali H, Posas-Mendoza T, Hille C, You Z. Lupus pathogenesis and autoimmunity are exacerbated by high fat diet-induced obesity in MRL/lpr mice. Lupus Sci Med 2023; 10:10/1/e000898. [PMID: 37041033 PMCID: PMC10106072 DOI: 10.1136/lupus-2023-000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/18/2023] [Indexed: 04/13/2023]
Abstract
OBJECTIVE SLE is an autoimmune disease characterised by persistent inflammation and autoantibody production. Genetic predisposition and environmental factors such as a high-fat diet (HFD) may contribute to lupus development. However, the immune cell profile and gender difference in response to HFD in lupus have not been reported. Here we investigated the impact of HFD on lupus pathogenesis and autoimmunity using lupus-prone mice. METHODS Thirty male and 30 female MRL/lymphoproliferation (lpr) mice were fed with regular diet (RD) or HFD. Body weights were recorded weekly. SLE progression was monitored by skin lesion, urine protein, titres of antidouble-strand DNA (dsDNA) and ANA. At week 14, kidney and skin tissue sections were stained with H&E and periodic acid-Schiff to detect histological kidney index and skin score. Splenocytes were identified by immunofluorescence staining and flow cytometry. RESULTS HFD significantly increased body weight and lipid levels compared with RD (p<0.01). Skin lesions were observed in 55.6% of the HFD group compared with 11.1% of the RD group, with greater histopathological skin scores in the female HFD group (p<0.01). Although both male and female mice had higher serum IgG in the HFD group than in the RD group, only the male HFD group showed an increased trend in anti-dsDNA Ab and ANA titres. Kidney pathological changes in the HFD group were more severe in male mice than in female mice (p<0.05), detected by proteinuria, kidney index and glomerular cell proliferation. Significant increases of germinal centre B cells and T follicular helper cells were observed in the spleens of HFD mice (p<0.05). CONCLUSION HFD induced an accelerated and exacerbated lupus development and autoimmunity in MRL/lpr mice. Our results parallel many known clinical lupus phenotypes and sexual dimorphism in which male patients are likelier to have a severe disease (nephritis) than female lupus patients who may have a broader range of lupus symptoms.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Juan Meng
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Rheumatology and Immunology, Beijing Chao-Yang Hospital Capital Medical University, Beijing, China
| | - Xuhua Shi
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Rheumatology and Immunology, Beijing Chao-Yang Hospital Capital Medical University, Beijing, China
| | - Robert James Quinet
- Department of Rheumatology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - William Davis
- Department of Rheumatology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
- Department of Rheumatology, The University of Queensland Medical School, Ochsner Clinical School, New Orleans, Louisiana, USA
| | - Jerald Zakem
- Department of Rheumatology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Chandana Keshavamurthy
- Department of Rheumatology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
- Department of Rheumatology, The University of Queensland Medical School, Ochsner Clinical School, New Orleans, Louisiana, USA
| | - Ronak Patel
- Department of Rheumatology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Gitanjali Lobo
- Department of Rheumatology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Linh Hellmers
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Alicia Nicole Ray
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Laura E Rivers
- Department of Rheumatology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Hiba Ali
- Department of Rheumatology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | | | - Chad Hille
- Department of Rheumatology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| |
Collapse
|
14
|
de la Aleja AG, Herrero C, Torres-Torresano M, Schiaffino MT, Del Castillo A, Alonso B, Vega MA, Puig-Kröger A, Castrillo A, Corbí ÁL. Inhibition of LXR controls the polarization of human inflammatory macrophages through upregulation of MAFB. Cell Mol Life Sci 2023; 80:96. [PMID: 36930354 PMCID: PMC10020776 DOI: 10.1007/s00018-023-04745-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Monocyte-derived macrophages contribute to pathogenesis in inflammatory diseases and their effector functions greatly depend on the prevailing extracellular milieu. Whereas M-CSF primes macrophages for acquisition of an anti-inflammatory profile, GM-CSF drives the generation of T cell-stimulatory and pro-inflammatory macrophages. Liver X Receptors (LXRα and LXRβ) are nuclear receptors that control cholesterol metabolism and regulate differentiation of tissue-resident macrophages. Macrophages from rheumatoid arthritis and other inflammatory pathologies exhibit an enriched LXR pathway, and recent reports have shown that LXR activation raises pro-inflammatory effects and impairs the acquisition of the anti-Inflammatory profile of M-CSF-dependent monocyte-derived macrophages (M-MØ). We now report that LXR inhibition prompts the acquisition of an anti-inflammatory gene and functional profile of macrophages generated within a pathological environment (synovial fluid from Rheumatoid Arthritis patients) as well as during the GM-CSF-dependent differentiation of human monocyte-derived macrophages (GM-MØ). Mechanistically, inhibition of LXR results in macrophages with higher expression of the v-Maf Avian Musculoaponeurotic Fibrosarcoma Oncogene Homolog B (MAFB) transcription factor, which governs the macrophage anti-inflammatory profile, as well as over-expression of MAFB-regulated genes. Indeed, gene silencing experiments on human macrophages evidenced that MAFB is required for the LXR inhibitor to enhance the anti-inflammatory nature of human macrophages. As a whole, our results demonstrate that LXR inhibition prompts the acquisition of an anti-inflammatory transcriptional and functional profile of human macrophages in a MAFB-dependent manner, and propose the use of LXR antagonists as potential therapeutic alternatives in macrophage re-programming strategies during inflammatory responses.
Collapse
Affiliation(s)
- Arturo González de la Aleja
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Cristina Herrero
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Mónica Torres-Torresano
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - María Teresa Schiaffino
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alejandro Del Castillo
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Bárbara Alonso
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Miguel A Vega
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Amaya Puig-Kröger
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
- Instituto Investigaciones Biomédicas "Alberto Sols" (IIBM), Centro Mixto Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Ángel L Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
15
|
Lv W, Zhang D, He T, Liu Y, Shao L, Lv Z, Pu X, Wang Y, Liu L. Combination of Lactobacillus plantarum improves the effects of tacrolimus on colitis in a mouse model. Front Cell Infect Microbiol 2023; 13:1130820. [PMID: 36992690 PMCID: PMC10040537 DOI: 10.3389/fcimb.2023.1130820] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
The gut microbiome has been considered to play an important role in inflammatory bowel disease (IBD). Our previous study reported that tacrolimus-altered gut microbiota elicited immunoregulatory effects in both colonic mucosa and circulation, contributing to an increased allograft survival rate in mice. Here, we aimed to observe the changes in the tacrolimus-induced microbiome in a dextran sulfate sodium (DSS)-induced colitis mouse model and explore the possibility and efficacy of combination therapy with tacrolimus and the microbiome on colitis. Mice were divided into the control, DSS, tacrolimus monotherapy and tacrolimus plus Lactobacillus plantarum 550 (Lacto)-treated groups. The body weight, stool consistency, hematochezia and survival of mice were observed daily. Total RNA from colonic mucosa was extracted and subjected to transcriptome sequencing. Cecal contents were collected and the 16S rRNA sequencing was performed to characterize the gut microbiome and the ultrahigh- performance liquid chromatography-MS/MS (UHPLC-MS/MS) was used for targeted quantification of bile acids. The results confirmed that tacrolimus significantly ameliorated DSS-induced colitis in mice. Beneficial alterations of the gut microbiome characterized by a remarkable expansion of the genus Lactobacillus were induced by tacrolimus treatment. Oral supplementation with Lacto further improved the tacrolimus-mediated suppression of body weight loss in colitis, while the survival time of mice was further prolonged and the inflammation of colonic mucosa was obviously relieved. The immune and inflammation-related signaling pathways, including IFN-γ and IFN-α response, allograft rejection, IL2 STAT5 signaling and the inflammatory response pathways, were further downregulated in the tacrolimus plus Lacto cotreatment group. Cotreatment also improved the diversity of the gut microbiome and rescued the concentration of taurochenodeoxycholic acid (TCDCA) in colitis. The latter was positively correlated with the abundance of Lactobacillus but negatively related to the disease activity index score. Overall, our results indicated that Lactobacillus plantarum promoted the therapeutic effect of tacrolimus in experimental colitis, offering a promising strategy to combine tacrolimus and Lactobacillus in the treatment of colitis patients.
Collapse
Affiliation(s)
- Wei Lv
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Di Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Tian He
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingying Liu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Limei Shao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongping Lv
- Technology Research Institute of Shuxi Condiments of Sichuan Cuisine Co. LTD, Chengdu, Sichuan, China
| | - Xiaoping Pu
- Technology Research Institute of Shuxi Condiments of Sichuan Cuisine Co. LTD, Chengdu, Sichuan, China
| | - Yufang Wang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yufang Wang, ; Ling Liu,
| | - Ling Liu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yufang Wang, ; Ling Liu,
| |
Collapse
|
16
|
Joo H, Gu C, Wiest M, Duluc D, Fernandez E, Nyarige V, Yi J, Oh S. Differential expression of nuclear hormone receptors by dendritic cell subsets in human vaginal mucosa and skin. Front Immunol 2023; 13:1063343. [PMID: 36713394 PMCID: PMC9880315 DOI: 10.3389/fimmu.2022.1063343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Nuclear hormone receptors (NHRs) expressed by dendritic cells (DCs), the major immune inducers and regulators, could play important roles in host immunity. Assessment of NHRs expressed by DCs in the vaginal mucosa (VM), in comparison with those expressed by DCs in other tissues, will thus help us understand the immunology of human vagina. This study identified 16 NHR transcripts that are differentially expressed among 8 different antigen-presenting cell (APC) subsets isolated from human VM, skin, and blood. The expression profiles of NHRs were largely tissue specific. VM APCs expressed increased levels of LXRA, RXRA, ESRRA, ESRRAP2, and PPARG, whereas skin and blood APCs expressed increased levels of NURR1, NOR1 and RARA. Of interest, female sex hormone receptors, ESR1 and PGR, were found to be mainly expressed by non-APC cell types in the VM; ESR1 by HLA-DR+CD34+ and PGR by HLA-DR- cells. ERα and PR were expressed by vimentin+ cells in the VM, but not in human skin. ERα, but not PR, was also expressed in CD10+ cells in the lamina propria of VM. In conclusion, NHR expression by APC subsets is tissue- and cell type-specific. Future studies on the roles of individual NHRs expressed by different cell types, including DC subsets, in the human VM are warranted.
Collapse
Affiliation(s)
- HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Chao Gu
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Matthew Wiest
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Dorothee Duluc
- Immunoconcept, Centre National de la Recherche Scientifique (CNRS) UMR 5164, Bordeaux University, Bordeaux, France
| | - Emyly Fernandez
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Verah Nyarige
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, United States
| | - Johnny Yi
- Department of Medical and Surgery Gynecology, Mayo Clinic, Phoenix, AZ, United States
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States,*Correspondence: SangKon Oh,
| |
Collapse
|
17
|
Rijavec M, Maver A, Turner PJ, Hočevar K, Košnik M, Yamani A, Hogan S, Custovic A, Peterlin B, Korošec P. Integrative transcriptomic analysis in human and mouse model of anaphylaxis identifies gene signatures associated with cell movement, migration and neuroinflammatory signalling. Front Immunol 2022; 13:1016165. [PMID: 36569939 PMCID: PMC9772259 DOI: 10.3389/fimmu.2022.1016165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Background Anaphylaxis is an acute life-threatening allergic reaction and a concern at a global level; therefore, further progress in understanding the underlying mechanisms and more effective strategies for diagnosis, prevention and management are needed. Objective We sought to identify the global architecture of blood transcriptomic features of anaphylaxis by integrating expression data from human patients and mouse model of anaphylaxis. Methods Bulk RNA-sequencings of peripheral whole blood were performed in: i) 14 emergency department (ED) patients with acute anaphylaxis, predominantly to Hymenoptera venom, ii) 11 patients with peanut allergy undergoing double-blind, placebo-controlled food challenge (DBPCFC) to peanut, iii) murine model of IgE-mediated anaphylaxis. Integrative characterisation of differential gene expression, immune cell-type-specific gene expression profiles, and functional and pathway analysis was undertaken. Results 1023 genes were commonly and significantly dysregulated during anaphylaxis in ED and DBPCFC patients; of those genes, 29 were also dysregulated in the mouse model. Cell-type-specific gene expression profiles showed a rapid downregulation of blood basophil and upregulation of neutrophil signature in ED and DBPCFC patients and the mouse model, but no consistent and/or significant differences were found for other blood cells. Functional and pathway analysis demonstrated that human and mouse blood transcriptomic signatures of anaphylaxis follow trajectories of upregulation of cell movement, migration and neuroinflammatory signalling, and downregulation of lipid activating nuclear receptors signalling. Conclusion Our study highlights the matched and extensive blood transcriptomic changes and suggests the involvement of discrete cellular components and upregulation of migration and neuroinflammatory pathways during anaphylaxis.
Collapse
Affiliation(s)
- Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre, Ljubljana, Slovenia
| | - Paul J. Turner
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Keli Hočevar
- Clinical Institute of Medical Genetics, University Medical Centre, Ljubljana, Slovenia
| | - Mitja Košnik
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Amnah Yamani
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Simon P. Hogan
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre, Ljubljana, Slovenia
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Ishtiaq SM, Arshad MI, Khan JA. PPARγ signaling in hepatocarcinogenesis: Mechanistic insights for cellular reprogramming and therapeutic implications. Pharmacol Ther 2022; 240:108298. [PMID: 36243148 DOI: 10.1016/j.pharmthera.2022.108298] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) is leading cause of cancer-related mortalities globally. The therapeutic approaches for chronic liver diseases-associated liver cancers aimed at modulating immune check-points and peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathway during multistep process of hepatocarcinogenesis that played a dispensable role in immunopathogenesis and outcomes of disease. Herein, the review highlights PPARγ-induced effects in balancing inflammatory (tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1) and anti-inflammatory cytokines (IL-10, transforming growth factor beta (TGF-β), and interplay of PPARγ, hepatic stellate cells and fibrogenic niche in cell-intrinsic and -extrinsic crosstalk of hepatocarcinogenesis. PPARγ-mediated effects in pre-malignant microenvironment promote growth arrest, cell senescence and cell clearance in liver cancer pathophysiology. Furthermore, PPARγ-immune cell axis of liver microenvironment exhibits an immunomodulation strategy of resident immune cells of the liver (macrophages, natural killer cells, and dendritic cells) in concomitance with current clinical guidelines of the European Association for Study of Liver Diseases (EASL) for several liver diseases. Thus, mechanistic insights of PPARγ-associated high value targets and canonical signaling suggest PPARγ as a possible therapeutic target in reprogramming of hepatocarcinogenesis to decrease burden of liver cancers, worldwide.
Collapse
Affiliation(s)
- Syeda Momna Ishtiaq
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Junaid Ali Khan
- Department of Pharmacology and Physiology, MNS University of Agriculture, Multan 60000, Pakistan.
| |
Collapse
|
19
|
Saas P, Vetter M, Maraux M, Bonnefoy F, Perruche S. Resolution therapy: Harnessing efferocytic macrophages to trigger the resolution of inflammation. Front Immunol 2022; 13:1021413. [PMID: 36389733 PMCID: PMC9651061 DOI: 10.3389/fimmu.2022.1021413] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 09/03/2023] Open
Abstract
Several chronic inflammatory diseases are associated with non-resolving inflammation. Conventional anti-inflammatory drugs fail to completely cure these diseases. Resolution pharmacology is a new therapeutic approach based on the use of pro-resolving mediators that accelerate the resolution phase of inflammation by targeting the productive phase of inflammation. Indeed, pro-resolving mediators prevent leukocyte recruitment and induce apoptosis of accumulated leukocytes. This approach is now called resolution therapy with the introduction of complex biological drugs and cell-based therapies. The main objective of resolution therapy is to specifically reduce the duration of the resolution phase to accelerate the return to homeostasis. Under physiological conditions, macrophages play a critical role in the resolution of inflammation. Indeed, after the removal of apoptotic cells (a process called efferocytosis), macrophages display anti-inflammatory reprogramming and subsequently secrete multiple pro-resolving factors. These factors can be used as resolution therapy. Here, we review the different mechanisms leading to anti-inflammatory reprogramming of macrophages after efferocytosis and the pro-resolving factors released by these efferocytic macrophages. We classify these mechanisms in three different categories: macrophage reprogramming induced by apoptotic cell-derived factors, by molecules expressed by apoptotic cells (i.e., "eat-me" signals), and induced by the digestion of apoptotic cell-derived materials. We also evoke that macrophage reprogramming may result from cooperative mechanisms, for instance, implicating the apoptotic cell-induced microenvironment (including cellular metabolites, specific cytokines or immune cells). Then, we describe a new drug candidate belonging to this resolution therapy. This candidate, called SuperMApo, corresponds to the secretome of efferocytic macrophages. We discuss its production, the pro-resolving factors present in this drug, as well as the results obtained in experimental models of chronic (e.g., arthritis, colitis) and acute (e.g., peritonitis or xenogeneic graft-versus-host disease) inflammatory diseases.
Collapse
Affiliation(s)
- Philippe Saas
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Mathieu Vetter
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Melissa Maraux
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Francis Bonnefoy
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| | - Sylvain Perruche
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| |
Collapse
|
20
|
Li N, Li Y, Han X, Zhang J, Han J, Jiang X, Wang W, Xu Y, Xu Y, Fu Y, Si S. LXR agonist inhibits inflammation through regulating MyD88 mRNA alternative splicing. Front Pharmacol 2022; 13:973612. [PMID: 36313296 PMCID: PMC9614042 DOI: 10.3389/fphar.2022.973612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Liver X receptors (LXRs) are important regulators of cholesterol metabolism and inflammatory responses. LXR agonists exhibit potently anti-inflammatory effects in macrophages, which make them beneficial to anti-atherogenic therapy. In addition to transrepressive regulation by SUMOylation, LXRs can inhibit inflammation by various mechanisms through affecting multiple targets. In this study, we found that the classic LXR agonist T0901317 mediated numerous genes containing alternative splice sites, including myeloid differentiation factor 88 (MyD88), that contribute to inflammatory inhibition in RAW264.7 macrophages. Furthermore, T0901317 increased level of alternative splice short form of MyD88 mRNA by down-regulating expression of splicing factor SF3A1, leading to nuclear factor κB-mediated inhibition of inflammation. In conclusion, our results suggest for the first time that the LXR agonist T0901317 inhibits lipopolysaccharide-induced inflammation through regulating MyD88 mRNA alternative splicing involved in TLR4 signaling pathway.
Collapse
Affiliation(s)
- Ni Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Ni Li, ; Yu Fu, ; Shuyi Si,
| | - Yan Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangxue Han
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinhai Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weizhi Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Fu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei
- *Correspondence: Ni Li, ; Yu Fu, ; Shuyi Si,
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Ni Li, ; Yu Fu, ; Shuyi Si,
| |
Collapse
|
21
|
Liu Y, Xu J, Ren X, Zhang Y, Ke Z, Zhou J, Wang Y, Zhang Y, Liu Y. Cholecystectomy-induced secondary bile acids accumulation ameliorates colitis through inhibiting monocyte/macrophage recruitment. Gut Microbes 2022; 14:2107387. [PMID: 36050867 PMCID: PMC9450905 DOI: 10.1080/19490976.2022.2107387] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although post-cholecystectomy (PC) patients usually have gastrointestinal complications and a higher risk of colorectal cancer, previous studies undetected a heightened risk of inflammatory bowel disease. Thus, we tried to investigate cholecystectomy's impact and pathophysiological mechanism on murine colitis models and clarify the association among fecal bile acids (BAs), mucosal bacterial microbiota, and immune cells in the PC patients. One month or three months after cholecystectomy, mice have induced colitis and tested BAs and fecal microbiota analysis. Next, mice were treated with various cholecystectomy-accumulated bile acids in drinking water for three months before inducing colitis. All 14 paired PC patients and healthy subjects were enrolled for BAs and mucosal microbiota analysis. Cholecystectomy ameliorated DSS-induced murine colitis, accelerated mucosal repair, and induced a significant shifting of fecal microbiota and BAs profiles under colitis status, which featured a higher relative abundance of species involved in BAs metabolism and increased secondary BAs concentrations. Cholecystectomy-associated secondary BAs (LCA, DCA, and HDCA) also ameliorated DSS-induced colitis and accelerated mucosal repair in mice. Cholecystectomy and specific secondary BAs treatments inhibited monocytes/macrophages recruitment in colitis mice. In vitro, cholecystectomy-associated secondary BAs also downregulated monocytes chemokines in the THP-1 derived macrophages through activation of the LXRα-linked signaling pathway. The alterations of mucosal microbiota and fecal BAs profiles were found in the PC patients, characterized as increased species with potential immuno-modulating effects and secondary BAs, which were negatively associated with peripheral monocytes levels. Cholecystectomy-induced secondary bile acids accumulation ameliorated colitis through inhibiting monocyte/macrophage recruitment, which might be mediated by the LXRα-related signaling pathway. Cholecystectomy, after 3 months follow-up, has an immune-regulatory role in murine colitis, preliminarily explaining that no increased risk of IBD had been reported in the PC patients, which still warrants further studies.
Collapse
Affiliation(s)
- Yun Liu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Xinhua Ren
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Ziliang Ke
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Jianhua Zhou
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yang Wang
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Yifan Zhang
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China,CONTACT Yulan Liu Department of Gastroenterology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
22
|
Tseng HH, Li CY, Wu ST, Su HH, Wong TH, Wu HE, Chang YW, Huang SK, Tsai EM, Suen JL. Di-(2-ethylhexyl) Phthalate Promotes Allergic Lung Inflammation by Modulating CD8α + Dendritic Cell Differentiation via Metabolite MEHP-PPARγ Axis. Front Immunol 2022; 13:581854. [PMID: 35663974 PMCID: PMC9160748 DOI: 10.3389/fimmu.2022.581854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a common plasticizer, is a ubiquitous environmental pollutant that can disrupt endocrine function. Epidemiological studies suggest that chronic exposure to DEHP in the environment is associated with the prevalence of childhood allergic diseases; however, the underlying causal relationship and immunological mechanism remain unclear. This study explored the immunomodulatory effect of DEHP on allergic lung inflammation, while particularly focusing on the impact of DEHP and its metabolite on dendritic cell differentiation and activity of peroxisome proliferator-activated receptor gamma (PPARγ). The results showed that exposure to DEHP at a human tolerable daily intake dose exacerbated allergic lung inflammation in mice. Ex vivo flow cytometric analysis revealed that DEHP-exposed mice displayed a significantly decreased number of CD8α+ dendritic cells (DCs) in spleens and DC progenitors in the bone marrow, as well as, less interleukin-12 production in splenic DCs and increased T helper 2 polarization. Pharmacological experiments showed that mono-(2-ethylhexyl) phthalate (MEHP), the main metabolite of DEHP, significantly hampered the differentiation of CD8α+ DCs from Fms-like tyrosine kinase 3 ligand-differentiated bone marrow culture, by modulating PPARγ activity. These results suggested that chronic exposure to DEHP at environmentally relevant levels, promotes allergic lung inflammation, at least in part, by altering DC differentiation through the MEHP-PPARγ axis. This study has crucial implications for the interaction(s) between environmental pollutants and innate immunity, with respect to the development of allergic asthma.
Collapse
Affiliation(s)
- Hsin-Han Tseng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shin-Ting Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Han Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Hsuan Wong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-En Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Wei Chang
- Department of Laboratory, Taitung Hospital, Ministry of Health and Welfare, Taitung, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan.,Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eing Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Lucas R, Szklenar M, Mihály J, Szegedi A, Töröcsik D, Rühl R. Plasma Levels of Bioactive Vitamin D and A5 Ligands Positively Correlate with Clinical Atopic Dermatitis Markers. Dermatology 2022; 238:1076-1083. [PMID: 35609515 DOI: 10.1159/000524343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/27/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Over the past decade, several controversial studies described a relationship between vitamin D and atopic diseases. Low plasma vitamin D levels or even vitamin D deficiency was associated with an increased incidence of atopic disease, postulating that a higher dietary intake of vitamin D may be a beneficial strategy against atopic diseases such as atopic dermatitis (AD). OBJECTIVE Our aim was to determine the relationship between plasma 25-hydroxyvitamin D3 (25(OH)D3) levels, the levels of the ligand of the vitamin D receptor (VDR) heterodimerization partner as well as the retinoid X receptor (RXR) and the active vitamin A5 derivative 9-cis-13,14-dihydroretinoic acid (9CDHRA) and AD severity. METHODS/RESULTS Samples from AD patients (n = 20) and healthy volunteers (n = 20) were assessed. In our study, the frequently measured VDR ligand precursor 25(OH)D3 in addition to the VDR-ligand 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 9CDHRA displayed no different levels when compared with the plasma of AD patients and healthy volunteers. When performing further correlation studies focusing on AD patients, plasma 25(OH)D3 levels showed a negative correlation with eosinophils in blood (EOS) and SCORing Atopic Dermatitis (SCORAD) values, while 1,25(OH)2D3 and 9CDHRA levels correlated positively with plasma IgE, EOS, and SCORAD values. CONCLUSION In consequence, the metabolic activation of vitamin D from 25(OH)D3 towards 1,25(OH)2D3 as well as the co-liganding of the RXR by 9CDHRA may be an important signalling mechanism, an important marker for AD development and severity as well as the basis for novel nutritional and pharmaceutical AD treatment options.
Collapse
Affiliation(s)
- Renata Lucas
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Johanna Mihály
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Daniel Töröcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
24
|
Gerasimova EV, Popkova TV, Gerasimova DA, Kirichenko TV. Macrophage Dysfunction in Autoimmune Rheumatic Diseases and Atherosclerosis. Int J Mol Sci 2022; 23:4513. [PMID: 35562903 PMCID: PMC9102949 DOI: 10.3390/ijms23094513] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 12/28/2022] Open
Abstract
One of the problems of modern medical science is cardiovascular pathology caused by atherosclerotic vascular lesions in patients with autoimmune rheumatic diseases (ARDs). The similarity between the mechanisms of the immunopathogenesis of ARD and chronic low-grade inflammation in atherosclerosis draws attention. According to modern concepts, chronic inflammation associated with uncontrolled activation of both innate and acquired immunity plays a fundamental role in all stages of ARDs and atherosclerotic processes. Macrophage monocytes play an important role among the numerous immune cells and mediators involved in the immunopathogenesis of both ARDs and atherosclerosis. An imbalance between M1-like and M2-like macrophages is considered one of the causes of ARDs. The study of a key pathogenetic factor in the development of autoimmune and atherosclerotic inflammation-activated monocyte/macrophages will deepen the knowledge of chronic inflammation pathogenesis.
Collapse
Affiliation(s)
- Elena V. Gerasimova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia; (E.V.G.); (T.V.P.)
| | - Tatiana V. Popkova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia; (E.V.G.); (T.V.P.)
| | - Daria A. Gerasimova
- Chair of Organization and Economy of Pharmacy, Institute of Pharmacy, A.P. Nelyubina, I.M. Sechenov First Moscow State Medical University (Sechenov University), 96k1 Ave. Vernadsky, 119526 Moscow, Russia;
| | - Tatiana V. Kirichenko
- Laboratory of Medical Genetics, Chazov National Medical Research Center of Cardiology, 15-a Cherepkovskaya Str., 121552 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, A.P. Avtsyn Research Institute for Human Morphology, 3 Tsyurupa St., 117418 Moscow, Russia
| |
Collapse
|
25
|
Yu Z, Xie X, Su X, Lv H, Song S, Liu C, You Y, Tian M, Zhu L, Wang L, Qi J, Zhu Q. ATRA-mediated-crosstalk between stellate cells and Kupffer cells inhibits autophagy and promotes NLRP3 activation in acute liver injury. Cell Signal 2022; 93:110304. [DOI: 10.1016/j.cellsig.2022.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
|
26
|
Robinson GA, Wilkinson MGL, Wincup C. The Role of Immunometabolism in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2022; 12:806560. [PMID: 35154082 PMCID: PMC8826250 DOI: 10.3389/fimmu.2021.806560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder in which pathogenic abnormalities within both the innate and adaptive immune response have been described. In order to activated, proliferate and maintain this immunological response a drastic upregulation in energy metabolism is required. Recently, a greater understanding of these changes in cellular bioenergetics have provided new insight into the links between immune response and the pathogenesis of a number of diseases, ranging from cancer to diabetes and multiple sclerosis. In this review, we highlight the latest understanding of the role of immunometabolism in SLE with particular focus on the role of abnormal mitochondrial function, lipid metabolism, and mTOR signaling in the immunological phenomenon observed in the SLE. We also consider what implications this has for future therapeutic options in the management of the disease in future.
Collapse
Affiliation(s)
- George Anthony Robinson
- Department of Rheumatology, Division of Medicine, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), University College London, London, United Kingdom
| | - Meredyth G Ll Wilkinson
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), University College London, London, United Kingdom.,Department of Rheumatology, University College London Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research and Teaching Department, University College London, London, United Kingdom
| | - Chris Wincup
- Department of Rheumatology, Division of Medicine, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), University College London, London, United Kingdom
| |
Collapse
|
27
|
González de la Aleja A, Herrero C, Torres-Torresano M, de la Rosa JV, Alonso B, Capa-Sardón E, Muller IB, Jansen G, Puig-Kröger A, Vega MA, Castrillo A, Corbí ÁL. Activation of LXR Nuclear Receptors Impairs the Anti-Inflammatory Gene and Functional Profile of M-CSF-Dependent Human Monocyte-Derived Macrophages. Front Immunol 2022; 13:835478. [PMID: 35280993 PMCID: PMC8907538 DOI: 10.3389/fimmu.2022.835478] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Liver X Receptors (LXR) control cholesterol metabolism and exert anti-inflammatory actions but their contribution to human macrophage polarization remains unclear. The LXR pathway is enriched in pro-inflammatory macrophages from rheumatoid arthritis as well as in tumors-associated macrophages from human tumors. We now report that LXR activation inhibits the anti-inflammatory gene and functional profile of M-CSF-dependent human macrophages, and prompts the acquisition of a pro-inflammatory gene signature, with both effects being blocked by an LXR inverse agonist. Mechanistically, the LXR-stimulated macrophage polarization shift correlates with diminished expression of MAFB and MAF, which govern the macrophage anti-inflammatory profile, and with enhanced release of activin A. Indeed, LXR activation impaired macrophage polarization in response to tumor-derived ascitic fluids, as well as the expression of MAF- and MAFB-dependent genes. Our results demonstrate that LXR activation limits the anti-inflammatory human macrophage polarization and prompts the acquisition of an inflammatory transcriptional and functional profile.
Collapse
Affiliation(s)
- Arturo González de la Aleja
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cristina Herrero
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mónica Torres-Torresano
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Juan Vladimir de la Rosa
- Unidad de Biomedicina (Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC)), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Bárbara Alonso
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Capa-Sardón
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ittai B. Muller
- Department of Clinical Chemistry, Amsterdam University Medical Center, Location VUmc, Amsterdam, Netherlands
| | - Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Location VUmc, Amsterdam, Netherlands
| | - Amaya Puig-Kröger
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Miguel A. Vega
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina (Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC)), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
- Instituto Investigaciones Biomédicas “Alberto Sols” (IIBM), and Centro Mixto Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (Consejo Superior de Investigaciones Científicas (ICSIC)-UAM), Madrid, Spain
| | - Ángel L. Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
28
|
Jiang J, Mei J, Ma Y, Jiang S, Zhang J, Yi S, Feng C, Liu Y, Liu Y. Tumor hijacks macrophages and microbiota through extracellular vesicles. EXPLORATION (BEIJING, CHINA) 2022; 2:20210144. [PMID: 37324578 PMCID: PMC10190998 DOI: 10.1002/exp.20210144] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 06/17/2023]
Abstract
The tumor microenvironment (TME) is a biological system with sophisticated constituents. In addition to tumor cells, tumor-associated macrophages (TAMs) and microbiota are also dominant components. The phenotypic and functional changes of TAMs are widely considered to be related to most tumor progressions. The chronic colonization of pathogenic microbes and opportunistic pathogens accounts for the generation and development of tumors. As messengers of cell-to-cell communication, tumor-derived extracellular vesicles (TDEVs) can transfer various malignant factors, regulating physiological and pathological changes in the recipients and affecting TAMs and microbes in the TME. Despite the new insights into tumorigenesis and progress brought by the above factors, the crosstalk among tumor cells, macrophages, and microbiota remain elusive, and few studies have focused on how TDEVs act as an intermediary. We reviewed how tumor cells recruit and domesticate macrophages and microbes through extracellular vehicles and how hijacked macrophages and microbiota interact with tumor-promoting feedback, achieving a reciprocal coexistence under the TME and working together to facilitate tumor progression. It is significant to seek evidence to clarify those specific interactions and reveal therapeutic targets to curb tumor progression and improve prognosis.
Collapse
Affiliation(s)
- Jipeng Jiang
- Postgraduate School Medical School of Chinese PLA Beijing P. R. China
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing P. R. China
- University of Chinese Academy of Science Beijing P. R. China
| | - Yongfu Ma
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Shasha Jiang
- Postgraduate School Medical School of Chinese PLA Beijing P. R. China
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Jian Zhang
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Shaoqiong Yi
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Changjiang Feng
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Yang Liu
- Postgraduate School Medical School of Chinese PLA Beijing P. R. China
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing P. R. China
- GBA National Institute for Nanotechnology Innovation Guangdong P. R. China
| |
Collapse
|
29
|
Scutellariae Radix and Citri Reticulatae Pericarpium Mixture Regulate PPAR γ/RXR Signaling in Reflux Esophagitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6969241. [PMID: 35027935 PMCID: PMC8752236 DOI: 10.1155/2022/6969241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022]
Abstract
Objective Gastroesophageal reflux disease (GERD) is a gastrointestinal disorder in which stomach contents reflux into the esophagus, causing complications such as mucosal damage. GERD is a very common disease and is on the rise worldwide. The aim of this study was to assess the impact of a Scutellariae Radix and Citri Reticulatae Pericarpium mixture (SC) on esophageal mucosal injury in rats with chronic acid reflux esophagitis (CARE). Methods After inducing reflux esophagitis through surgery, the group was separated and the drug was administered for 2 weeks: normal rats (Normal, n = 8), CARE-induced rats were treated with distilled water (Control, n = 8), CARE-induced rats were treated with vitamin E 30 mg/kg body weight (VitE, n = 8), CARE-induced rats were treated with SC 100 mg/kg body weight (SC100, n = 8), and CARE-induced rats were treated with SC 200 mg/kg body weight (SC200, n = 8). Results SC treatment significantly reduced the degree of esophageal mucosal damage, significantly reduced levels of MDA and MPO, and inhibited the activation of the NF-κB inflammatory pathway by activating the PPARγ/RXR pathway. In addition, SC treatment significantly regulated the expression of arachidonic acid-related proteins (COX-1, COX-2, and PGE2) and modulated the MMP/TIMP proteins in reflux esophagitis. Conclusion Consequently, SC improved the damage to the esophageal mucosa. Also, the anti-inflammatory effects of the SC suggested the inhibition of NF-κB pathway through the activation of the PPARγ/RXR pathway, thereby reducing the expression of inflammation-related cytokines.
Collapse
|
30
|
Jiang J, Mei J, Yi S, Feng C, Ma Y, Liu Y, Liu Y, Chen C. Tumor associated macrophage and microbe: The potential targets of tumor vaccine delivery. Adv Drug Deliv Rev 2022; 180:114046. [PMID: 34767863 DOI: 10.1016/j.addr.2021.114046] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023]
Abstract
The occurrence and development of tumors depend on the tumor microenvironment (TME), which is made of various immune cells, activated fibroblasts, basement membrane, capillaries, and extracellular matrix. Tumor associated macrophages (TAMs) and microbes are important components in TME. Tumor cells can recruit and educate TAMs and microbes, and the hijacked TAMs and microbes can promote the progression of tumor reciprocally. Tumor vaccine delivery remodeling TME by targeting TAM and microbes can not only enhance the specificity and immunogenicity of antigens, but also contribute to the regulation of TME. Tumor vaccine design benefits from nanotechnology which is a suitable platform for antigen and adjuvant delivery to catalyze new candidate vaccines applying to clinical therapy at unparalleled speed. In view of the characteristics and mechanisms of TME development, vaccine delivery targeting and breaking the malignant interactions among tumor cells, TAMs, and microbes may serve as a novel strategy for tumor therapy.
Collapse
|
31
|
Jiang Z, Shao M, Dai X, Pan Z, Liu D. Identification of Diagnostic Biomarkers in Systemic Lupus Erythematosus Based on Bioinformatics Analysis and Machine Learning. Front Genet 2022; 13:865559. [PMID: 35495164 PMCID: PMC9047905 DOI: 10.3389/fgene.2022.865559] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects several organs and causes variable clinical symptoms. Exploring new insights on genetic factors may help reveal SLE etiology and improve the survival of SLE patients. The current study is designed to identify key genes involved in SLE and develop potential diagnostic biomarkers for SLE in clinical practice. Expression data of all genes of SLE and control samples in GSE65391 and GSE72509 datasets were downloaded from the Gene Expression Omnibus (GEO) database. A total of 11 accurate differentially expressed genes (DEGs) were identified by the "limma" and "RobustRankAggreg" R package. All these genes were functionally associated with several immune-related biological processes and a single KEGG (Kyoto Encyclopedia of Genes and Genome) pathway of necroptosis. The PPI analysis showed that IFI44, IFI44L, EIF2AK2, IFIT3, IFITM3, ZBP1, TRIM22, PRIC285, XAF1, and PARP9 could interact with each other. In addition, the expression patterns of these DEGs were found to be consistent in GSE39088. Moreover, Receiver operating characteristic (ROC) curves analysis indicated that all these DEGs could serve as potential diagnostic biomarkers according to the area under the ROC curve (AUC) values. Furthermore, we constructed the transcription factor (TF)-diagnostic biomarker-microRNA (miRNA) network composed of 278 nodes and 405 edges, and a drug-diagnostic biomarker network consisting of 218 nodes and 459 edges. To investigate the relationship between diagnostic biomarkers and the immune system, we evaluated the immune infiltration landscape of SLE and control samples from GSE6539. Finally, using a variety of machine learning methods, IFI44 was determined to be the optimal diagnostic biomarker of SLE and then verified by quantitative real-time PCR (qRT-PCR) in an independent cohort. Our findings may benefit the diagnosis of patients with SLE and guide in developing novel targeted therapy in treating SLE patients.
Collapse
Affiliation(s)
- Zhihang Jiang
- Department of Rheumatology and Immunology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Mengting Shao
- Computational Systems Biology Laboratory, Department of Bioinformatics, Shantou University Medical College (SUMC), Shantou, China
| | - Xinzhu Dai
- Department of Rheumatology and Immunology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhixin Pan
- Department of Rheumatology and Immunology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dongmei Liu
- Department of Rheumatology and Immunology, Shengjing Hospital, China Medical University, Shenyang, China
- *Correspondence: Dongmei Liu,
| |
Collapse
|
32
|
Sarohan AR, Kızıl M, İnkaya AÇ, Mahmud S, Akram M, Cen O. A novel hypothesis for COVID-19 pathogenesis: Retinol depletion and retinoid signaling disorder. Cell Signal 2021; 87:110121. [PMID: 34438017 PMCID: PMC8380544 DOI: 10.1016/j.cellsig.2021.110121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
The SARS-CoV-2 virus has caused a worldwide COVID-19 pandemic. In less than a year and a half, more than 200 million people have been infected and more than four million have died. Despite some improvement in the treatment strategies, no definitive treatment protocol has been developed. The pathogenesis of the disease has not been clearly elucidated yet. A clear understanding of its pathogenesis will help develop effective vaccines and drugs. The immunopathogenesis of COVID-19 is characteristic with acute respiratory distress syndrome and multiorgan involvement with impaired Type I interferon response and hyperinflammation. The destructive systemic effects of COVID-19 cannot be explained simply by the viral tropism through the ACE2 and TMPRSS2 receptors. In addition, the recently identified mutations cannot fully explain the defect in all cases of Type I interferon synthesis. We hypothesize that retinol depletion and resulting impaired retinoid signaling play a central role in the COVID-19 pathogenesis that is characteristic for dysregulated immune system, defect in Type I interferon synthesis, severe inflammatory process, and destructive systemic multiorgan involvement. Viral RNA recognition mechanism through RIG-I receptors can quickly consume a large amount of the body's retinoid reserve, which causes the retinol levels to fall below the normal serum levels. This causes retinoid insufficiency and impaired retinoid signaling, which leads to interruption in Type I interferon synthesis and an excessive inflammation. Therefore, reconstitution of the retinoid signaling may prove to be a valid strategy for management of COVID-19 as well for some other chronic, degenerative, inflammatory, and autoimmune diseases.
Collapse
Affiliation(s)
- Aziz Rodan Sarohan
- Department of Obstetrics and Gynecology, Medicina Plus Medical Center, 75. Yıl Mah., İstiklal Cad. 1305 Sk., No: 16 Sultangazi, İstanbul, Turkey.
| | - Murat Kızıl
- Department of Chemistry, Faculty of Science, Dicle University. Diyarbakır, Turkey
| | - Ahmet Çağkan İnkaya
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey
| | - Shokhan Mahmud
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Muhammad Akram
- Department of Eastern Medicine Government College, University Faisalabad, Pakistan
| | - Osman Cen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America; Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, United States of America
| |
Collapse
|
33
|
van Daal MT, Folkerts G, Garssen J, Braber S. Pharmacological Modulation of Immune Responses by Nutritional Components. Pharmacol Rev 2021; 73:198-232. [PMID: 34663688 DOI: 10.1124/pharmrev.120.000063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The incidence of noncommunicable diseases (NCDs) has increased over the last few decades, and one of the major contributors to this is lifestyle, especially diet. High intake of saturated fatty acids and low intake of dietary fiber is linked to an increase in NCDs. Conversely, a low intake of saturated fatty acids and a high intake of dietary fiber seem to have a protective effect on general health. Several mechanisms have been identified that underlie this phenomenon. In this review, we focus on pharmacological receptors, including the aryl hydrocarbon receptor, binding partners of the retinoid X receptor, G-coupled protein receptors, and toll-like receptors, which can be activated by nutritional components and their metabolites. Depending on the nutritional component and the receptors involved, both proinflammatory and anti-inflammatory effects occur, leading to an altered immune response. These insights may provide opportunities for the prevention and treatment of NCDs and their inherent (sub)chronic inflammation. SIGNIFICANCE STATEMENT: This review summarizes the reported effects of nutritional components and their metabolites on the immune system through manipulation of specific (pharmacological) receptors, including the aryl hydrocarbon receptor, binding partners of the retinoid X receptor, G-coupled protein receptors, and toll-like receptors. Nutritional components, such as vitamins, fibers, and unsaturated fatty acids are able to resolve inflammation, whereas saturated fatty acids tend to exhibit proinflammatory effects. This may aid decision makers and scientists in developing strategies to decrease the incidence of noncommunicable diseases.
Collapse
Affiliation(s)
- Marthe T van Daal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| |
Collapse
|
34
|
Miranda-Bautista J, Rodríguez-Feo JA, Puerto M, López-Cauce B, Lara JM, González-Novo R, Martín-Hernández D, Ferreiro-Iglesias R, Bañares R, Menchén L. Liver X Receptor Exerts Anti-Inflammatory Effects in Colonic Epithelial Cells via ABCA1 and Its Expression Is Decreased in Human and Experimental Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:1661-1673. [PMID: 33609028 DOI: 10.1093/ibd/izab034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Liver X receptor (LXR) exerts anti-inflammatory effects in macrophages. The aim of this study was to explore the expression and function of LXR in the colonic epithelium under inflammatory conditions. METHODS The expression of LXR was explored by Western blot and immunohistochemistry in colonic biopsies from patients diagnosed with inflammatory bowel disease (IBD) and control patients. In addition, LXR and its target gene expression were analyzed in the colon from interleukin (IL)-10-deficient (IL-10-/-) and wild-type mice. Caco-2 cells were pretreated with the synthetic LXR agonist GW3965 and further challenged with IL-1β, the expression of IL-8 and chemokine (C-C motif) ligand (CCL)-28 chemokines, the activation of mitogen-activated protein (MAP) kinases, and the nuclear translocation of the p65 subunit of nuclear factor kappa B was evaluated. Glibenclamide was used as an ABCA1 antagonist. RESULTS We found that LXR expression was downregulated in colonic samples from patients with IBD and IL-10-/- mice. The nuclear positivity of LXR inversely correlated with ulcerative colitis histologic activity. Colonic IL-1β mRNA levels negatively correlated with both LXRα and LXRβ in the colon of IL-10-/- mice, where a decreased mRNA expression of the LXR target genes ABCA1 and FAS was shown. In addition, IL-1β decreased the expression of the LXR target gene ABCA1 in cultured intestinal epithelial cells. The synthetic LXR agonist GW3965 led to a decreased nuclear positivity of the p65 subunit of nuclear factor kappa B, a phosphorylation ratio of the p44-42 MAP kinase, and the expression of CCL-28 and IL-8 in IL-1β-stimulated Caco-2 cells. The pharmacological inhibition of ABCA1 increased the phosphorylation of p44-42 after GW3965 treatment and IL-1β stimulation. CONCLUSIONS The LXR-ABCA1 pathway exerts anti-inflammatory effects in intestinal epithelial cells and is impaired in the colonic mucosa of patients with IBD and IL-10-/- mice.
Collapse
Affiliation(s)
- José Miranda-Bautista
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Juan A Rodríguez-Feo
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Marta Puerto
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Beatriz López-Cauce
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - José M Lara
- Servicio de Anatomía Patológica, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Raquel González-Novo
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - David Martín-Hernández
- Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Rafael Bañares
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
35
|
Bu J, Zhang M, Wu Y, Jiang N, Guo Y, He X, He H, Jeyalatha MV, Reinach PS, Liu Z, Li W. High-Fat Diet Induces Inflammation of Meibomian Gland. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 34398199 PMCID: PMC8374999 DOI: 10.1167/iovs.62.10.13] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To determine if a high-fat diet (HFD) induces meibomian gland (MG) inflammation in mice. Methods Male C57BL/6J mice were fed a standard diet (SD), HFD, or HFD supplemented with the peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist rosiglitazone for various durations. Body weight, blood lipid levels, and eyelid changes were monitored at regular intervals. MG sections were subjected to hematoxylin and eosin staining, LipidTox staining, TUNEL assay, and immunostaining. Quantitative RT-PCR and western blot analyses were performed to detect relative gene expression and signaling pathway activation in MGs. Results MG acinus accumulated more lipids in the mice fed the HFD. Periglandular CD45-positive and F4/80-positive cell infiltration were more evident in the HFD mice, and they were accompanied by upregulation of inflammation-related cytokines. PPAR-γ downregulation accompanied activation of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways in the HFD mice. There was increased acini cell apoptosis and mitochondria damage in mice fed the HFD. MG inflammation was ameliorated following a shift to the standard diet and rosiglitazone treatment in the mice fed the HFD. Conclusions HFD-induced declines in PPAR-γ expression and MAPK and NF-κB signaling pathway activation resulted in MG inflammation and dysfunction in mice.
Collapse
Affiliation(s)
- Jinghua Bu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China.,Eye Institute of Xiamen University, Xiamen, Fujian, China.,School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Minjie Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yang Wu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian, China
| | - Nan Jiang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yuli Guo
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xin He
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hui He
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - M Vimalin Jeyalatha
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Peter Sol Reinach
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zuguo Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Eye Institute of Xiamen University, Xiamen, Fujian, China
| | - Wei Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Eye Institute of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
36
|
Sun Y, Long J, Chen W, Sun Y, Zhou L, Zhang L, Zeng H, Yuan D. Alisol B 23-acetate, a new promoter for cholesterol efflux from dendritic cells, alleviates dyslipidemia and inflammation in advanced atherosclerotic mice. Int Immunopharmacol 2021; 99:107956. [PMID: 34284288 DOI: 10.1016/j.intimp.2021.107956] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 01/02/2023]
Abstract
Atherosclerosis (AS) is characterized by dyslipidemia and chronic inflammation. In the high-fat environment, the lipid metabolism of dendritic cells (DCs) is abnormal, which leads to abnormal immune function, promotes the occurrence of immune inflammatory reactions, and promotes the development of AS. Alisol B 23-acetate (23B) is a triterpenoid in the rhizomes of Alisma, which is a traditional Chinese medicine. Here, we identified cholesterol metabolism-related targets of 23B through a virtual screen, and further transcriptome analysis revealed that 23B can change antigen presentation and cholesterol metabolism pathways in cholesterol-loaded DCs. In vitro experiments confirmed that 23B promoted cholesterol efflux from ApoE-/- DCs, reduced the expression of MHC II, CD80, and CD86, and inhibited the activation of CD4+ T cells and the production of inflammatory cytokines IL-12 and IFN-γ. In advanced AS mice, 23B can decrease triacylglycerol (TG) levels and increase high-density lipoprotein-cholesterol (HDL-C) levels in plasma and the expression of cholesterol efflux genes in the aorta. Neither helper T cells 1 (Th1) nor regulatory T cells (Tregs) in peripheral blood changed significantly in the presence of 23B, but 23B reduced the levels of IL-12 and IFN-γ in serum. However, 23B did not change the total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) levels in serum or lipid accumulation in the aorta. Moreover, 23B did not increase the production of IL-10 and TGF-β1 in vivo or in vitro. These results indicate that 23B promotes cholesterol efflux from DCs, which can improve the immune inflammatory response and contribute to controlling the inflammatory status of AS.
Collapse
Affiliation(s)
- Yuting Sun
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, China
| | - Weikai Chen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, China
| | - Yunxia Sun
- Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road 155, Nanjing 210029, China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, China
| | - Linhui Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, China
| | - Hongbo Zeng
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, China
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, China.
| |
Collapse
|
37
|
Mai CT, Zheng DC, Li XZ, Zhou H, Xie Y. Liver X receptors conserve the therapeutic target potential for the treatment of rheumatoid arthritis. Pharmacol Res 2021; 170:105747. [PMID: 34186192 DOI: 10.1016/j.phrs.2021.105747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic multi-system autoimmune disease with extremely complex pathogenesis. Significantly altered lipid paradox related to the inflammatory burden is reported in RA patients, inducing 50% higher cardiovascular risks. Recent studies have also demonstrated that lipid metabolism can regulate many functions of immune cells in which metabolic pathways have altered. The nuclear liver X receptors (LXRs), including LXRα and LXRβ, play a central role in regulating lipid homeostasis and inflammatory responses. Undoubtedly, LXRs have been considered as an attractive therapeutic target for the treatment of RA. However, there are some contradictory effects of LXRs agonists observed in previous animal studies where both pro-inflammatory role and anti-inflammatory role were revealed for LXRs activation in RA. Therefore, in addition to updating the knowledge of LXRs as the prominent regulators of lipid homeostasis, the purpose of this review is to summarize the effects of LXRs agonists in RA-associated immune cells, to explore the underlying reasons for the contradictory therapeutic effects of LXRs agonists observed in RA animal models, and to discuss future strategy for the treatment of RA with LXRs modulators.
Collapse
Affiliation(s)
- Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - De-Chong Zheng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Xin-Zhi Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
38
|
Sun Y, Zhou L, Chen W, Zhang L, Zeng H, Sun Y, Long J, Yuan D. Immune metabolism: a bridge of dendritic cells function. Int Rev Immunol 2021; 41:313-325. [PMID: 33792460 DOI: 10.1080/08830185.2021.1897124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An increasing number of researches have shown that cell metabolism regulates cell function. Dendritic cells (DCs), a professional antigen presenting cells, connect innate and adaptive immune responses. The preference of DCs for sugar or lipid affects its phenotypes and functions. In many diseases such as atherosclerosis (AS), diabetes mellitus and tumor, altered glucose or lipid level in microenvironment makes DCs exert ineffective or opposite immune roles, which accelerates the development of these diseases. In this article, we review the metabolism pathways of glucose and cholesterol in DCs, and the effects of metabolic changes on the phenotype and function of DCs. In addition, we discuss the effects of changes in glucose and lipid levels on DCs in the context of different diseases for better understanding the relationship between DCs and diseases. The immune metabolism of DCs may be a potential intervention link to treat metabolic-related immune diseases.
Collapse
Affiliation(s)
- Yuting Sun
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Weikai Chen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Linhui Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Hongbo Zeng
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yunxia Sun
- Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
39
|
Leal AS, Reich LA, Moerland JA, Zhang D, Liby KT. Potential therapeutic uses of rexinoids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:141-183. [PMID: 34099107 DOI: 10.1016/bs.apha.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of nuclear receptors, particularly retinoid X receptors (RXR), and their involvement in numerous pathways related to development sparked interest in their immunomodulatory properties. Genetic models using deletion or overexpression of RXR and the subsequent development of several small molecules that are agonists or antagonists of this receptor support a promising therapeutic role for these receptors in immunology. Bexarotene was approved in 1999 for the treatment of cutaneous T cell lymphoma. Several other small molecule RXR agonists have since been synthesized with limited preclinical development, but none have yet achieved FDA approval. Cancer treatment has recently been revolutionized with the introduction of immune checkpoint inhibitors, but their success has been restricted to a minority of patients. This review showcases the emerging immunomodulatory effects of RXR and the potential of small molecules that target this receptor as therapies for cancer and other diseases. Here we describe the essential roles that RXR and partner receptors play in T cells, dendritic cells, macrophages and epithelial cells, especially within the tumor microenvironment. Most of these effects are site and cancer type dependent but skew immune cells toward an anti-inflammatory and anti-tumor effect. This beneficial effect on immune cells supports the promise of combining rexinoids with approved checkpoint blockade therapies in order to enhance efficacy of the latter and to delay or potentially eliminate drug resistance. The data compiled in this review strongly suggest that targeting RXR nuclear receptors is a promising new avenue in immunomodulation for cancer and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ana S Leal
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lyndsey A Reich
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jessica A Moerland
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Di Zhang
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Karen T Liby
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
40
|
Liu Y, Luo S, Zhan Y, Wang J, Zhao R, Li Y, Zeng J, Lu Q. Increased Expression of PPAR-γ Modulates Monocytes Into a M2-Like Phenotype in SLE Patients: An Implicative Protective Mechanism and Potential Therapeutic Strategy of Systemic Lupus Erythematosus. Front Immunol 2021; 11:579372. [PMID: 33584646 PMCID: PMC7873911 DOI: 10.3389/fimmu.2020.579372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/23/2020] [Indexed: 12/02/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a spectrum of autoimmune disorders characterized by continuous inflammation and the production of autoantibodies. Monocytes, as precursors of dendritic cells and macrophages, are involved in the pathogenesis of SLE, particularly in the inflammatory reactions. Previous studies have proved that Pam3CSK4, as a synthetic ligand of TLR2, could stimulate monocytes to differentiated into a M2-like phenotype which presented immunosuppressive functions. However, the underlying mechanisms remain to be further studied. Here, we reported an increased expression of PPAR-γ in the CD14+ monocytes from SLE patients, particularly in the treated group of SLE patients and the group with positive anti-dsDNA antibodies. Additionally, PPAR-γ expression decreased in the SLE patients with skin lesion. Furthermore, we demonstrated that Pam3CSK4 stimulation can decrease the expression of CCR7, CD80, IL-1β, IL-6, IL-12, and NF-κB which were related to the M1-like subset of monocytes and increased the expression of ARG1 which was related to the M2-like subset through upregulated PPAR-γ expression and consequently downregulated NF-κB expression in the CD14+ monocytes in a time-dependent manner. ChIP-qPCR results further demonstrated that Pam3CSK4 pretreatment could modulate PPAR-γ expression by regulating histone modification through the inhibition of Sirt1 binding to the PPAR-γ promoter. Taken together, our study indicated a protective role of TLR2/Sirt1/PPAR-γ pathway in the pathogenesis of SLE which provided potential therapeutic strategies.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Shuangyan Luo
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Jiayu Wang
- Xiangya Medical School of Central South University, Changsha, China
| | - Rui Zhao
- Xiangya Medical School of Central South University, Changsha, China
| | - Yingjie Li
- Xiangya Medical School of Central South University, Changsha, China
| | - Jinrong Zeng
- Department of Dermatology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| |
Collapse
|
41
|
O’Brien J, Wendell SG. Electrophile Modulation of Inflammation: A Two-Hit Approach. Metabolites 2020; 10:metabo10110453. [PMID: 33182676 PMCID: PMC7696920 DOI: 10.3390/metabo10110453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Electrophilic small molecules have gained significant attention over the last decade in the field of covalent drug discovery. Long recognized as mediators of the inflammatory process, recent evidence suggests that electrophiles may modulate the immune response through the regulation of metabolic networks. These molecules function as pleiotropic signaling mediators capable of reversibly reacting with nucleophilic biomolecules, most notably at reactive cysteines. More specifically, electrophiles target critical cysteines in redox regulatory proteins to activate protective pathways such as the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1) antioxidant signaling pathway while also inhibiting Nuclear Factor κB (NF-κB). During inflammatory states, reactive species broadly alter cell signaling through the oxidation of lipids, amino acids, and nucleic acids, effectively propagating the inflammatory sequence. Subsequent changes in metabolic signaling inform immune cell maturation and effector function. Therapeutic strategies targeting inflammatory pathologies leverage electrophilic drug compounds, in part, because of their documented effect on the redox balance of the cell. With mounting evidence demonstrating the link between redox signaling and metabolism, electrophiles represent ideal therapeutic candidates for the treatment of inflammatory conditions. Through their pleiotropic signaling activity, electrophiles may be used strategically to both directly and indirectly target immune cell metabolism.
Collapse
|
42
|
Host Immune Defense upon Fungal Infections with Mucorales: Pathogen-Immune Cell Interactions as Drivers of Inflammatory Responses. J Fungi (Basel) 2020; 6:jof6030173. [PMID: 32957440 PMCID: PMC7557740 DOI: 10.3390/jof6030173] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
During the last few decades, mucormycosis has emerged as one of the most common fungal infections, following candidiasis and aspergillosis. The fungal order responsible for causing mucormycosis is the Mucorales. The main hallmarks of this infection include the invasion of blood vessels, infarction, thrombosis, and tissue necrosis, which are exhibited at the latest stages of the infection. Therefore, the diagnosis is often delayed, and the rapid progression of the infection severely endangers the life of people suffering from diabetes mellitus, hematological malignancies, or organ transplantation. Given the fact that mortality rates for mucormycosis range from 40 to 80%, early diagnosis and novel therapeutic strategies are urgently needed to battle the infection. However, compared to other fungal infections, little is known about the host immune response against Mucorales and the influence of inflammatory processes on the resolution of the infection. Hence, in this review, we summarized our current understanding of the interplay among pro-inflammatory cytokines, chemokines, and the host-immune cells in response to mucoralean fungi, as well as their potential use for immunotherapies.
Collapse
|
43
|
Liu Y, Wang J, Luo S, Zhan Y, Lu Q. The roles of PPARγ and its agonists in autoimmune diseases: A comprehensive review. J Autoimmun 2020; 113:102510. [PMID: 32622513 PMCID: PMC7327470 DOI: 10.1016/j.jaut.2020.102510] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 01/10/2023]
Abstract
Autoimmune diseases are common diseases of the immune system that are characterized by the loss of self-tolerance and the production of autoantibodies; the breakdown of immune tolerance and the prolonged inflammatory reaction are undisputedly core steps in the initiation and maintenance of autoimmunity. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors that belong to the nuclear hormone receptor family and act as ligand-activated transcription factors. There are three different isotypes of PPARs: PPARα, PPARγ, and PPARβ/δ. PPARγ is an established regulator of glucose homeostasis and lipid metabolism. Recent studies have demonstrated that PPARγ exhibits anti-inflammatory and anti-fibrotic effects in multiple disease models. PPARγ can also modulate the activation and polarization of macrophages, regulate the function of dendritic cells and mediate T cell survival, activation, and differentiation. In this review, we summarize the signaling pathways and biological functions of PPARγ and focus on how PPARγ and its agonists play protective roles in autoimmune diseases, including autoimmune thyroid diseases, multiple sclerosis, rheumatoid arthritis, systemic sclerosis, systemic lupus erythematosus, primary Sjogren syndrome and primary biliary cirrhosis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China
| | - Jiayu Wang
- Xiangya Medical School, Central South University, #176 Tongzipo Rd, Changsha, Hunan, 410013, PR China
| | - Shuangyan Luo
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China
| | - Yi Zhan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China.
| |
Collapse
|
44
|
Orliaguet L, Dalmas E, Drareni K, Venteclef N, Alzaid F. Mechanisms of Macrophage Polarization in Insulin Signaling and Sensitivity. Front Endocrinol (Lausanne) 2020; 11:62. [PMID: 32140136 PMCID: PMC7042402 DOI: 10.3389/fendo.2020.00062] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Type-2 diabetes (T2D) is a disease of two etiologies: metabolic and inflammatory. At the cross-section of these etiologies lays the phenomenon of metabolic inflammation. Whilst metabolic inflammation is characterized as systemic, a common starting point is the tissue-resident macrophage, who's successful physiological or aberrant pathological adaptation to its microenvironment determines disease course and severity. This review will highlight the key mechanisms in macrophage polarization, inflammatory and non-inflammatory signaling that dictates the development and progression of insulin resistance and T2D. We first describe the known homeostatic functions of tissue macrophages in insulin secreting and major insulin sensitive tissues. Importantly we highlight the known mechanisms of aberrant macrophage activation in these tissues and the ways in which this leads to impairment of insulin sensitivity/secretion and the development of T2D. We next describe the cellular mechanisms that are known to dictate macrophage polarization. We review recent progress in macrophage bio-energetics, an emerging field of research that places cellular metabolism at the center of immune-effector function. Importantly, following the advent of the metabolically-activated macrophage, we cover the known transcriptional and epigenetic factors that canonically and non-canonically dictate macrophage differentiation and inflammatory polarization. In closing perspectives, we discuss emerging research themes and highlight novel non-inflammatory or non-immune roles that tissue macrophages have in maintaining microenvironmental and systemic homeostasis.
Collapse
Affiliation(s)
- Lucie Orliaguet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Elise Dalmas
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Karima Drareni
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicolas Venteclef
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Fawaz Alzaid
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| |
Collapse
|
45
|
Ryu H, Kim J, Kim D, Lee JE, Chung Y. Cellular and Molecular Links between Autoimmunity and Lipid Metabolism. Mol Cells 2019; 42:747-754. [PMID: 31766832 PMCID: PMC6883973 DOI: 10.14348/molcells.2019.0196] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 12/19/2022] Open
Abstract
The incidence of atherosclerosis is higher among patients with several autoimmune diseases such as psoriasis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). It is well documented that innate immune cells including macrophages and dendritic cells sense lipid species such as saturated fatty acids and oxidized low-density lipoprotein and produce pro-inflammatory cytokines and chemokines. However, whether a hyperlipidemic environment also impacts autoimmune T cell responses has been unclear. Among CD4+ T cells, Th17 and follicular helper T (Tfh) cells are known to play pathogenic roles in the development of hyperlipidemiaassociated autoimmune diseases. This review gives an overview of the cellular and molecular mechanisms by which dysregulated lipid metabolism impacts the pathogenesis of autoimmune diseases, with specific emphasis on Th17 and Tfh cells.
Collapse
Affiliation(s)
- Heeju Ryu
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826,
Korea
| | - Jiyeon Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826,
Korea
| | - Daehong Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826,
Korea
| | - Jeong-Eun Lee
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826,
Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
46
|
The contribution of macrophages to systemic lupus erythematosus. Clin Immunol 2019; 207:1-9. [DOI: 10.1016/j.clim.2019.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/25/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022]
|
47
|
Unsworth AJ, Flora GD, Gibbins JM. Non-genomic effects of nuclear receptors: insights from the anucleate platelet. Cardiovasc Res 2019; 114:645-655. [PMID: 29452349 PMCID: PMC5915957 DOI: 10.1093/cvr/cvy044] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) have the ability to elicit two different kinds of responses, genomic and non-genomic. Although genomic responses control gene expression by influencing the rate of transcription, non-genomic effects occur rapidly and independently of transcriptional regulation. Due to their anucleate nature and mechanistically well-characterized and rapid responses, platelets provide a model system for the study of any non-genomic effects of the NRs. Several NRs have been found to be present in human platelets, and multiple NR agonists have been shown to elicit anti-platelet effects by a variety of mechanisms. The non-genomic functions of NRs vary, including the regulation of kinase and phosphatase activity, ion channel function, intracellular calcium levels, and production of second messengers. Recently, the characterization of mechanisms and identification of novel binding partners of NRs have further strengthened the prospects of developing their ligands into potential therapeutics that offer cardio-protective properties in addition to their other defined genomic effects.
Collapse
Affiliation(s)
- Amanda J Unsworth
- School of Biological Sciences, Institute of Cardiovascular and Metabolic Research, Harborne Building, Whiteknights, Reading RG6 6AS, Berkshire, UK
| | - Gagan D Flora
- School of Biological Sciences, Institute of Cardiovascular and Metabolic Research, Harborne Building, Whiteknights, Reading RG6 6AS, Berkshire, UK
| | - Jonathan M Gibbins
- School of Biological Sciences, Institute of Cardiovascular and Metabolic Research, Harborne Building, Whiteknights, Reading RG6 6AS, Berkshire, UK
| |
Collapse
|
48
|
Daniel B, Nagy G, Horvath A, Czimmerer Z, Cuaranta-Monroy I, Poliska S, Hays TT, Sauer S, Francois-Deleuze J, Nagy L. The IL-4/STAT6/PPARγ signaling axis is driving the expansion of the RXR heterodimer cistrome, providing complex ligand responsiveness in macrophages. Nucleic Acids Res 2019; 46:4425-4439. [PMID: 29506156 PMCID: PMC5961189 DOI: 10.1093/nar/gky157] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
Retinoid X receptor (RXR) is an obligate heterodimeric partner of several nuclear receptors (NRs), and as such a central component of NR signaling regulating the immune and metabolic phenotype of macrophages. Importantly, the binding motifs of RXR heterodimers are enriched in the tissue-selective open chromatin regions of resident macrophages, suggesting roles in subtype specification. Recent genome-wide studies revealed that RXR binds to thousands of sites in the genome, but the mechanistic details how the cistrome is established and serves ligand-induced transcriptional activity remained elusive. Here we show that IL-4-mediated macrophage plasticity results in a greatly extended RXR cistrome via both direct and indirect actions of the transcription factor STAT6. Activation of STAT6 leads to chromatin remodeling and RXR recruitment to de novo enhancers. In addition, STAT6 triggers a secondary transcription factor wave, including PPARγ. PPARγ appears to be indispensable for the development of RXR-bound de novo enhancers, whose activities can be modulated by the ligands of the PPARγ:RXR heterodimer conferring ligand selective cellular responses. Collectively, these data reveal the mechanisms leading to the dynamic extension of the RXR cistrome and identify the lipid-sensing enhancer sets responsible for the appearance of ligand-preferred gene signatures in alternatively polarized macrophages.
Collapse
Affiliation(s)
- Bence Daniel
- Sanford-Burnham-Prebys Medical Discovery Institute, Orlando, FL, USA.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ixchelt Cuaranta-Monroy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilard Poliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tristan T Hays
- Sanford-Burnham-Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Sascha Sauer
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany.,CU Systems Medicine, University of Würzburg, Würzburg, Germany.,Max Delbrück Center for Molecular Medicine (BIMSB and BIH), Berlin, Germany
| | | | - Laszlo Nagy
- Sanford-Burnham-Prebys Medical Discovery Institute, Orlando, FL, USA.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
49
|
Drareni K, Gautier JF, Venteclef N, Alzaid F. Transcriptional control of macrophage polarisation in type 2 diabetes. Semin Immunopathol 2019; 41:515-529. [PMID: 31049647 DOI: 10.1007/s00281-019-00748-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 01/09/2023]
Abstract
Type-2 diabetes (T2D) is considered today as an inflammatory disease. Inflammatory processes in T2D are orchestrated by macrophage activation in different organs. Macrophages undergo classical M1 pro-inflammatory or alternative M2 anti-inflammatory activation in response to tissue microenvironmental signals. These subsets of macrophages are characterised by their expression of cell surface markers, secreted cytokines and chemokines. Transcriptional regulation is central to the polarisation of macrophages, and several major pathways have been described as essential to promote the expression of specific genes, which dictate the functional polarisation of macrophages. In this review, we summarise the current knowledge of transcriptional control of macrophage polarisation and the role this plays in development of insulin resistance.
Collapse
Affiliation(s)
- Karima Drareni
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006, Paris, France
| | - Jean-François Gautier
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006, Paris, France.,Lariboisière Hospital, AP-HP, Diabetology Department, University of Paris Diderot, Paris, France
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006, Paris, France.
| | - Fawaz Alzaid
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006, Paris, France.
| |
Collapse
|
50
|
Leopold Wager CM, Arnett E, Schlesinger LS. Mycobacterium tuberculosis and macrophage nuclear receptors: What we do and don't know. Tuberculosis (Edinb) 2019; 116S:S98-S106. [PMID: 31060958 DOI: 10.1016/j.tube.2019.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a wide variety of cells and play a major role in lipid signaling. NRs are key regulators of immune and metabolic functions in macrophages and are linked to macrophage responses to microbial pathogens. Pathogens are also known to induce the expression of specific NRs to promote their own survival. In this review, we focus on the NRs recently shown to influence macrophage responses to Mycobacterium tuberculosis (M.tb), a significant cause of morbidity and mortality worldwide. We provide an overview of NR-controlled transcriptional activity and regulation of macrophage activation. We also discuss in detail the contribution of specific NRs to macrophage responses to M.tb, including influence on macrophage phenotype, cell signaling, and cellular metabolism. We pay particular attention to PPARγ since it is required for differentiation of alveolar macrophages, an important niche for M.tb, and its role during M.tb infection is becoming increasingly appreciated. Research into NRs and M.tb is still in its early stages, therefore continuing to advance our understanding of the complex interactions between M.tb and macrophage NRs may reveal the potential of NRs as pharmacological targets for the treatment of tuberculosis.
Collapse
|