1
|
Sorel N, Díaz-Pascual F, Bessot B, Sadek H, Mollet C, Chouteau M, Zahn M, Gil-Farina I, Tajer P, van Eggermond M, Berghuis D, Lankester AC, André I, Gabriel R, Cavazzana M, Pike-Overzet K, Staal FJT, Lagresle-Peyrou C. Restoration of T and B Cell Differentiation after RAG1 Gene Transfer in Human RAG1 Defective Hematopoietic Stem Cells. Biomedicines 2024; 12:1495. [PMID: 39062069 PMCID: PMC11275127 DOI: 10.3390/biomedicines12071495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recombinase-activating gene (RAG)-deficient SCID patients lack B and T lymphocytes due to the inability to rearrange immunoglobulin and T cell receptor genes. The two RAG genes act as a required dimer to initiate gene recombination. Gene therapy is a valid treatment alternative for RAG-SCID patients who lack a suitable bone marrow donor, but developing such therapy for RAG1/2 has proven challenging. Using a clinically approved lentiviral vector with a codon-optimized RAG1 gene, we report here preclinical studies using CD34+ cells from four RAG1-SCID patients. We used in vitro T cell developmental assays and in vivo assays in xenografted NSG mice. The RAG1-SCID patient CD34+ cells transduced with the RAG1 vector and transplanted into NSG mice led to restored human B and T cell development. Together with favorable safety data on integration sites, these results substantiate an ongoing phase I/II clinical trial for RAG1-SCID.
Collapse
Affiliation(s)
- Nataël Sorel
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | | | - Boris Bessot
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
| | - Hanem Sadek
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | - Chloé Mollet
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
| | - Myriam Chouteau
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | - Marco Zahn
- ProtaGene CGT GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Irene Gil-Farina
- ProtaGene CGT GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Parisa Tajer
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marja van Eggermond
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Dagmar Berghuis
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.B.); (A.C.L.)
| | - Arjan C. Lankester
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.B.); (A.C.L.)
| | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | - Richard Gabriel
- ProtaGene CGT GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, 75015 Paris, France;
- Imagine Institute UMR1163, Université Paris Cité, Sorbonne Paris Cité, 75015 Paris, France
| | - Kasrin Pike-Overzet
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, 75015 Paris, France;
| | - Frank J. T. Staal
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.B.); (A.C.L.)
| | - Chantal Lagresle-Peyrou
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
| |
Collapse
|
2
|
Goebel GA, de Assis CS, Cunha LAO, Minafra FG, Pinto JA. Survival After Hematopoietic Stem Cell Transplantation in Severe Combined Immunodeficiency (SCID): A Worldwide Review of the Prognostic Variables. Clin Rev Allergy Immunol 2024; 66:192-209. [PMID: 38689103 DOI: 10.1007/s12016-024-08993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
This study aims to perform an extensive review of the literature that evaluates various factors that affect the survival rates of patients with severe combined immunodeficiency (SCID) after hematopoietic stem cell transplantation (HSCT) in developed and developing countries. An extensive search of the literature was made in four different databases (PubMed, Embase, Scopus, and Web of Science). The search was carried out in December 2022 and updated in July 2023, and the terms such as "hematopoietic stem cell transplantation," "bone marrow transplant," "mortality," "opportunistic infections," and "survival" associated with "severe combined immunodeficiency" were sought based on the MeSH terms. The language of the articles was "English," and only articles published from 2000 onwards were selected. Twenty-three articles fulfilled the inclusion criteria for review and data extraction. The data collected corroborates that early HSCT, but above all, HSCT in patients without active infections, is related to better overall survival. The universal implementation of newborn screening for SCID will be a fundamental pillar for enabling most transplants to be carried out in this "ideal scenario" at an early age and free from infection. HSCT with an HLA-identical sibling donor is also associated with better survival rates, but this is the least common scenario. For this reason, transplantation with matched unrelated donors (MUD) and mismatched related donors (mMRD/Haploidentical) appear as alternatives. The results obtained with MUD are improving and show survival rates similar to those of MSD, as well as they do not require manipulation of the graft with expensive technologies. However, they still have high rates of complications after HSCT. Transplants with mMRD/Haplo are performed just in a few large centers because of the high costs of the technology to perform CD3/CD19 depletion and TCRαβ/CD19 depletion or CD34 + selection techniques in vitro. The new possibility of in vivo T cell depletion using post-transplant cyclophosphamide could also be a viable alternative for performing mMRD transplants in centers that do not have this technology, especially in developing countries.
Collapse
Affiliation(s)
- Gabriela Assunção Goebel
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 110, Belo Horizonte, Minas Gerais, Brazil.
| | - Cíntia Silva de Assis
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 110, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana Araújo Oliveira Cunha
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 110, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Gontijo Minafra
- Department of Pediatrics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jorge Andrade Pinto
- Department of Pediatrics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Biglari S, Moghaddam AS, Tabatabaiefar MA, Sherkat R, Youssefian L, Saeidian AH, Vahidnezhad F, Tsoi LC, Gudjonsson JE, Hakonarson H, Casanova JL, Béziat V, Jouanguy E, Vahidnezhad H. Monogenic etiologies of persistent human papillomavirus infections: A comprehensive systematic review. Genet Med 2024; 26:101028. [PMID: 37978863 PMCID: PMC10922824 DOI: 10.1016/j.gim.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Persistent human papillomavirus infection (PHPVI) causes cutaneous, anogenital, and mucosal warts. Cutaneous warts include common warts, Treeman syndrome, and epidermodysplasia verruciformis, among others. Although more reports of monogenic predisposition to PHPVI have been published with the development of genomic technologies, genetic testing is rarely incorporated into clinical assessments. To encourage broader molecular testing, we compiled a list of the various monogenic etiologies of PHPVI. METHODS We conducted a systematic literature review to determine the genetic, immunological, and clinical characteristics of patients with PHPVI. RESULTS The inclusion criteria were met by 261 of 40,687 articles. In 842 patients, 83 PHPVI-associated genes were identified, including 42, 6, and 35 genes with strong, moderate, and weak evidence for causality, respectively. Autosomal recessive inheritance predominated (69%). PHPVI onset age was 10.8 ± 8.6 years, with an interquartile range of 5 to 14 years. GATA2,IL2RG,DOCK8, CXCR4, TMC6, TMC8, and CIB1 are the most frequently reported PHPVI-associated genes with strong causality. Most genes (74 out of 83) belong to a catalog of 485 inborn errors of immunity-related genes, and 40 genes (54%) are represented in the nonsyndromic and syndromic combined immunodeficiency categories. CONCLUSION PHPVI has at least 83 monogenic etiologies and a genetic diagnosis is essential for effective management.
Collapse
Affiliation(s)
- Sajjad Biglari
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Youssefian
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amir Hossein Saeidian
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Hassan Vahidnezhad
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
4
|
Eissa H, Thakar MS, Shah AJ, Logan BR, Griffith LM, Dong H, Parrott RE, O'Reilly RJ, Dara J, Kapoor N, Forbes Satter L, Chandra S, Kapadia M, Chandrakasan S, Knutsen A, Jyonouchi SC, Molinari L, Rayes A, Ebens CL, Teira P, Dávila Saldaña BJ, Burroughs LM, Chaudhury S, Chellapandian D, Gillio AP, Goldman F, Malech HL, DeSantes K, Cuvelier GDE, Rozmus J, Quinones R, Yu LC, Broglie L, Aquino V, Shereck E, Moore TB, Vander Lugt MT, Mousallem TI, Oved JH, Dorsey M, Abdel-Azim H, Martinez C, Bleesing JH, Prockop S, Kohn DB, Bednarski JJ, Leiding J, Marsh RA, Torgerson T, Notarangelo LD, Pai SY, Pulsipher MA, Puck JM, Dvorak CC, Haddad E, Buckley RH, Cowan MJ, Heimall J. Posttransplantation late complications increase over time for patients with SCID: A Primary Immune Deficiency Treatment Consortium (PIDTC) landmark study. J Allergy Clin Immunol 2024; 153:287-296. [PMID: 37793572 PMCID: PMC11294800 DOI: 10.1016/j.jaci.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND The Primary Immune Deficiency Treatment Consortium (PIDTC) enrolled children in the United States and Canada onto a retrospective multicenter natural history study of hematopoietic cell transplantation (HCT). OBJECTIVE We investigated outcomes of HCT for severe combined immunodeficiency (SCID). METHODS We evaluated the chronic and late effects (CLE) after HCT for SCID in 399 patients transplanted from 1982 to 2012 at 32 PIDTC centers. Eligibility criteria included survival to at least 2 years after HCT without need for subsequent cellular therapy. CLE were defined as either conditions present at any time before 2 years from HCT that remained unresolved (chronic), or new conditions that developed beyond 2 years after HCT (late). RESULTS The cumulative incidence of CLE was 25% in those alive at 2 years, increasing to 41% at 15 years after HCT. CLE were most prevalent in the neurologic (9%), neurodevelopmental (8%), and dental (8%) categories. Chemotherapy-based conditioning was associated with decreased-height z score at 2 to 5 years after HCT (P < .001), and with endocrine (P < .001) and dental (P = .05) CLE. CD4 count of ≤500 cells/μL and/or continued need for immunoglobulin replacement therapy >2 years after transplantation were associated with lower-height z scores. Continued survival from 2 to 15 years after HCT was 90%. The presence of any CLE was associated with increased risk of late death (hazard ratio, 7.21; 95% confidence interval, 2.71-19.18; P < .001). CONCLUSION Late morbidity after HCT for SCID was substantial, with an adverse impact on overall survival. This study provides evidence for development of survivorship guidelines based on disease characteristics and treatment exposure for patients after HCT for SCID.
Collapse
Affiliation(s)
- Hesham Eissa
- Division of Pediatric Hematology-Oncology-BMT, University of Colorado, Aurora, Wash.
| | - Monica S Thakar
- Fred Hutchinson Cancer Center, Seattle, Wash; Department of Pediatrics, University of Washington, Seattle, Wash
| | - Ami J Shah
- Pediatrics [Hematology/Oncology/Stem Cell Transplantation and Regenerative Medicine], Stanford University/Lucille Packard Children's Hospital, Palo Alto, Calif
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wis
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Md
| | - Huaying Dong
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wis
| | | | - Richard J O'Reilly
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jasmeen Dara
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco School of Medicine and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Neena Kapoor
- Division of Hematology, Oncology and Blood and Marrow Transplant, Children's Hospital Los Angeles, Los Angeles, Calif
| | - Lisa Forbes Satter
- Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Malika Kapadia
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Mass
| | | | - Alan Knutsen
- St Louis University, Cardinal Glennon Children's Hospital, St Louis, Mo
| | - Soma C Jyonouchi
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | | | - Ahmad Rayes
- Division of Hematology, Oncology, Transplantation, and Immunology, Primary Children's Hospital, Huntsman Cancer Institute, Spense Fox Eccles School of Medicine at the University of Utah, Salt Lake City, Utah
| | - Christen L Ebens
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapy, University of Minnesota Masonic Children's Hospital, Minneapolis, Minn
| | - Pierre Teira
- Paediatric Haematology Oncology, Ste-Justine Hospital, Montreal, Canada
| | | | - Lauri M Burroughs
- Fred Hutchinson Cancer Center, Seattle, Wash; Department of Pediatrics, University of Washington, Seattle, Wash
| | - Sonali Chaudhury
- Hematology, Oncology, Neuro-oncology & Stem Cell Transplantation Division, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Deepak Chellapandian
- Center for Cell and Gene Therapy for Non-malignant Conditions, Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | - Alfred P Gillio
- Children's Cancer Institute, Hackensack University Medical Center, Hackensack, NJ
| | - Fredrick Goldman
- Division of Pediatric Hematology and Oncology and Bone Marrow Transplant, University of Alabama at Birmingham, Birmingham, Ala
| | | | - Kenneth DeSantes
- Division of Pediatric Hematology-Oncology & Bone Marrow Transplant, University of Wisconsin, American Family Children's Hospital, Madison, Wis
| | - Geoff D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, Winnipeg, Canada
| | - Jacob Rozmus
- Children's & Women's Health Centre of British Columbia, Vancouver, Canada
| | - Ralph Quinones
- Division of Pediatric Hematology-Oncology-BMT, University of Colorado, Aurora, Wash
| | - Lolie C Yu
- Division of Heme-Onc/HSCT, Children's Hospital/LSUHSC, New Orleans, La
| | - Larisa Broglie
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Medical College of Wisconsin, Milwaukee, Wis
| | - Victor Aquino
- Division of Pediatric Hematology and Oncology, The University of Texas Southwestern Medical Center, Dallas, Tex
| | - Evan Shereck
- Division of Pediatric Hematology/Oncology, Oregon Health and Science University, Portland, Ore
| | - Theodore B Moore
- Department of Pediatric Hematology-Oncology, Mattel Children's Hospital, University of California, Los Angeles, Calif
| | - Mark T Vander Lugt
- Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, Mich
| | | | - Joeseph H Oved
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Morna Dorsey
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco School of Medicine and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Hisham Abdel-Azim
- Division of Hematology, Oncology and Blood and Marrow Transplant, Children's Hospital Los Angeles, Los Angeles, Calif; Loma Linda University School of Medicine, Cancer Center, Children Hospital and Medical Center, Loma Linda, Calif
| | - Caridad Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| | - Jacob H Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Susan Prockop
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Mass
| | | | - Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Jennifer Leiding
- Orlando Health Arnold Palmer Hospital for Children, Orlando, Fla
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | | | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Md
| | - Sung-Yun Pai
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Md
| | - Michael A Pulsipher
- Division of Hematology, Oncology, Transplantation, and Immunology, Primary Children's Hospital, Huntsman Cancer Institute, Spense Fox Eccles School of Medicine at the University of Utah, Salt Lake City, Utah
| | - Jennifer M Puck
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco School of Medicine and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Christopher C Dvorak
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco School of Medicine and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Elie Haddad
- Department of Pediatrics and the Department of Microbiology, Immunology, and Infectious Diseases, University of Montreal, CHU Sainte-Justine, Montreal, Canada
| | | | - Morton J Cowan
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco School of Medicine and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Jennifer Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| |
Collapse
|
5
|
Yi ES, Ju HY, Cho HW, Lee JW, Sung KW, Koo HH, Kang ES, Ahn KM, Kim YJ, Yoo KH. Minimal dose of hematopoietic stem cell transplantation without myelosuppressive conditioning for T-B+NK- severe combined immunodeficiency. Clin Immunol 2023; 248:109269. [PMID: 36804471 DOI: 10.1016/j.clim.2023.109269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
We reviewed the medical records of five patients with T-B+NK- severe combined immunodeficiency (SCID) who received minimal dose allogeneic hematopoietic cell transplantation (HCT) (total nucleated cell count (TNC) lower than 1.0 × 108/kg). Patients were administered a median of 5.0 mL of bone marrow or peripheral blood without conditioning (in four) or with anti-thymocyte globulin alone (in one). Three patients received HCT from a matched sibling donor, one from unrelated donor, and one from familial mismatched donor. The median TNC and CD34+ cells were 0.54 (0.29-0.84) × 108/kg and 0.61 (0.35-0.84) × 106/kg, respectively. Engraftment was achieved in all. Total T cell, CD4+ cell, and CD8+ cell recovery was obtained within a year in four, and immunoglobulin replacement was discontinued in all. All patients survived, exhibiting stable donor chimerism. We obtained sufficient therapeutic effects with minimal dose transplantation without intensive conditioning in patients with T-B+NK- SCID.
Collapse
Affiliation(s)
- Eun Sang Yi
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Pediatrics, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee Young Ju
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Won Cho
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Won Lee
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ki Woong Sung
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hong Hoe Koo
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Suk Kang
- Departments of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kang Mo Ahn
- Division of Allergy and Immunology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yae-Jean Kim
- Division of Pediatric Infectious Diseases and Immunodeficiency, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keon Hee Yoo
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea; Cell & Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Klein OR, Bonfim C, Abraham A, Ruggeri A, Purtill D, Cohen S, Wynn R, Russell A, Sharma A, Ciccocioppo R, Prockop S, Boelens JJ, Bertaina A. Transplant for non-malignant disorders: an International Society for Cell & Gene Therapy Stem Cell Engineering Committee report on the role of alternative donors, stem cell sources and graft engineering. Cytotherapy 2023; 25:463-471. [PMID: 36710227 DOI: 10.1016/j.jcyt.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) is curative for many non-malignant disorders. As HSCT and supportive care technologies improve, this life-saving treatment may be offered to more and more patients. With the development of new preparative regimens, expanded alternative donor availability, and graft manipulation techniques, there are many options when choosing the best regimen for patients. Herein the authors review transplant considerations, transplant goals, conditioning regimens, donor choice, and graft manipulation strategies for patients with non-malignant disorders undergoing HSCT.
Collapse
Affiliation(s)
- Orly R Klein
- Division of Hematology, Oncology and Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA.
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pele Pequeno Principe Research Institute, Hospital Pequeno Principe, Curitiba, Brazil
| | - Allistair Abraham
- Center for Cancer and Immunology Research, Cell Enhancement and Technologies for Immunotherapy, Children's National Hospital, Washington, DC, USA
| | - Annalisa Ruggeri
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Duncan Purtill
- Department of Hematology, Fiona Stanley Hospital, Perth, Australia
| | - Sandra Cohen
- Université de Montréal and Maisonneuve Rosemont Hospital, Montréal, Canada
| | - Robert Wynn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Athena Russell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Policlinico G.B. Rossi and University of Verona, Verona, Italy
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Alice Bertaina
- Division of Hematology, Oncology and Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
7
|
De Ravin SS, Liu S, Sweeney CL, Brault J, Whiting-Theobald N, Ma M, Liu T, Choi U, Lee J, O'Brien SA, Quackenbush P, Estwick T, Karra A, Docking E, Kwatemaa N, Guo S, Su L, Sun Z, Zhou S, Puck J, Cowan MJ, Notarangelo LD, Kang E, Malech HL, Wu X. Lentivector cryptic splicing mediates increase in CD34+ clones expressing truncated HMGA2 in human X-linked severe combined immunodeficiency. Nat Commun 2022; 13:3710. [PMID: 35764638 PMCID: PMC9240040 DOI: 10.1038/s41467-022-31344-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
X-linked Severe Combined Immunodeficiency (SCID-X1) due to IL2RG mutations is potentially fatal in infancy where 'emergency' life-saving stem cell transplant may only achieve incomplete immune reconstitution following transplant. Salvage therapy SCID-X1 patients over 2 years old (NCT01306019) is a non-randomized, open-label, phase I/II clinical trial for administration of lentiviral-transduced autologous hematopoietic stem cells following busulfan (6 mg/kg total) conditioning. The primary and secondary objectives assess efficacy in restoring immunity and safety by vector insertion site analysis (VISA). In this ongoing study (19 patients treated), we report VISA in blood lineages from first eight treated patients with longer follow up found a > 60-fold increase in frequency of forward-orientated VIS within intron 3 of the High Mobility Group AT-hook 2 gene. All eight patients demonstrated emergence of dominant HMGA2 VIS clones in progenitor and myeloid lineages, but without disturbance of hematopoiesis. Our molecular analysis demonstrated a cryptic splice site within the chicken β-globin hypersensitivity 4 insulator element in the vector generating truncated mRNA transcripts from many transcriptionally active gene containing forward-oriented intronic vector insert. A two base-pair change at the splice site within the lentiviral vector eliminated splicing activity while retaining vector functional capability. This highlights the importance of functional analysis of lentivectors for cryptic splicing for preclinical safety assessment and a redesign of clinical vectors to improve safety.
Collapse
Affiliation(s)
- Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA.
| | - Siyuan Liu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Colin L Sweeney
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Julie Brault
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Narda Whiting-Theobald
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Michelle Ma
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Taylor Liu
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Janet Lee
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Sandra Anaya O'Brien
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Priscilla Quackenbush
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Tyra Estwick
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Anita Karra
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Ethan Docking
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Nana Kwatemaa
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Shuang Guo
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ling Su
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Zhonghe Sun
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Sheng Zhou
- Experimental Cell Therapeutics Lab, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jennifer Puck
- Division of Allergy Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, 94143, USA
| | - Morton J Cowan
- Division of Allergy Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, 94143, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Elizabeth Kang
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA.
| | - Xiaolin Wu
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Nicholson B, Goodman R, Day J, Worth A, Carpenter B, Sandford K, Morris EC, Burns SO, Ridout D, Titman P, Campbell M. Quality of Life and Social and Psychological Outcomes in Adulthood Following Allogeneic HSCT in Childhood for Inborn Errors of Immunity. J Clin Immunol 2022; 42:1451-1460. [PMID: 35723794 DOI: 10.1007/s10875-022-01286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Hematopoietic stem cell transplant (HSCT) is well established as a corrective treatment for many inborn errors of immunity (IEIs) presenting in childhood. Due to improved techniques, more transplants are undertaken and patients are living longer. However, long-term complications can significantly affect future health and quality of life. Previous research has focused on short-term medical outcomes and little is known about health or psychosocial outcomes in adulthood. OBJECTIVE This project aimed to ascertain the long-term social and psychological outcomes for adults who underwent HSCT for IEI during childhood. METHODS Adult patients, who had all undergone HSCT for IEI during childhood at two specialist immunology services at least 5 years previously, were invited to participate in the study. Questionnaires and practical tasks assessed their current functioning and circumstances. Information was also gathered from medical notes. Data was compared with population norms and a control group of participant-nominated siblings or friends. RESULTS Eighty-three patients and 46 matched controls participated in the study. Patients reported significantly better physical health-related quality of life than the general population norm, but significantly worse than matched controls. Patient's self-reported physical health status and the perceived impact of their physical health on everyday life were worse than matched controls and patients reported higher levels of anxiety and lower mood than the general population. For those where their IEI diagnosis was not associated with a learning disability, cognitive function was generally within the normal range. CONCLUSIONS Patients who have had a HSCT in childhood report mixed psychosocial outcomes in adulthood. More research is needed to establish screening protocols and targeted interventions to maximize holistic outcomes. CLINICAL IMPLICATIONS Screening for holistic needs and common mental health difficulties should be part of routine follow-up. Information should be provided to patients and families in order to support decision-making regarding progression to transplant and the early identification of any difficulties.
Collapse
Affiliation(s)
- Bethany Nicholson
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Rupert Goodman
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - James Day
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK.,UCL Institute of Immunity & Transplantation, London, UK
| | - Austen Worth
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ben Carpenter
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Emma C Morris
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK.,UCL Institute of Immunity & Transplantation, London, UK.,University College London Hospitals NHS Foundation Trust, London, UK
| | - Siobhan O Burns
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK.,UCL Institute of Immunity & Transplantation, London, UK
| | - Deborah Ridout
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Penny Titman
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Mari Campbell
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK. .,UCL Institute of Immunity & Transplantation, London, UK.
| |
Collapse
|
9
|
Fox TA, Houghton BC, Booth C. Gene Edited T Cell Therapies for Inborn Errors of Immunity. Front Genome Ed 2022; 4:899294. [PMID: 35783679 PMCID: PMC9244397 DOI: 10.3389/fgeed.2022.899294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Inborn errors of immunity (IEIs) are a heterogeneous group of inherited disorders of the immune system. Many IEIs have a severe clinical phenotype that results in progressive morbidity and premature mortality. Over 450 IEIs have been described and the incidence of all IEIs is 1/1,000–10,000 people. Current treatment options are unsatisfactory for many IEIs. Allogeneic haematopoietic stem cell transplantation (alloHSCT) is curative but requires the availability of a suitable donor and carries a risk of graft failure, graft rejection and graft-versus-host disease (GvHD). Autologous gene therapy (GT) offers a cure whilst abrogating the immunological complications of alloHSCT. Gene editing (GE) technologies allow the precise modification of an organisms’ DNA at a base-pair level. In the context of genetic disease, this enables correction of genetic defects whilst preserving the endogenous gene control machinery. Gene editing technologies have the potential to transform the treatment landscape of IEIs. In contrast to gene addition techniques, gene editing using the CRISPR system repairs or replaces the mutation in the DNA. Many IEIs are limited to the lymphoid compartment and may be amenable to T cell correction alone (rather than haematopoietic stem cells). T cell Gene editing has the advantages of higher editing efficiencies, reduced risk of deleterious off-target edits in terminally differentiated cells and less toxic conditioning required for engraftment of lymphocytes. Although most T cells lack the self-renewing property of HSCs, a population of T cells, the T stem cell memory compartment has long-term multipotent and self-renewal capacity. Gene edited T cell therapies for IEIs are currently in development and may offer a less-toxic curative therapy to patients affected by certain IEIs. In this review, we discuss the history of T cell gene therapy, developments in T cell gene editing cellular therapies before detailing exciting pre-clinical studies that demonstrate gene editing T cell therapies as a proof-of-concept for several IEIs.
Collapse
Affiliation(s)
- T. A. Fox
- UCL Institute of Immunity and Transplantation, University College London, London, United Kingdom
- Department of Clinical Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - B. C. Houghton
- Molecular and Cellular Immunology Section, UCL GOS Institute of Child Health, London, United Kingdom
| | - C. Booth
- Molecular and Cellular Immunology Section, UCL GOS Institute of Child Health, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital for Sick Children NHS Foundation Trust, London, United Kingdom
- *Correspondence: C. Booth,
| |
Collapse
|
10
|
Day JW, Elfeky R, Nicholson B, Goodman R, Pearce R, Fox TA, Worth A, Booth C, Veys P, Carpenter B, Hough R, Gaspar HB, Titman P, Ridout D, Workman S, Hernandes F, Sandford K, Laurence A, Campbell M, Burns SO, Morris EC. Retrospective, Landmark Analysis of Long-term Adult Morbidity Following Allogeneic HSCT for Inborn Errors of Immunity in Infancy and Childhood. J Clin Immunol 2022; 42:1230-1243. [PMID: 35579633 PMCID: PMC9537214 DOI: 10.1007/s10875-022-01278-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Purpose
Allogeneic hematopoietic stem cell transplant (HSCT) remains the treatment of choice for patients with inborn errors of immunity (IEI). There is little published medical outcome data assessing late medical complications following transition to adult care. We sought to document event-free survival (EFS) in transplanted IEI patients reaching adulthood and describe common late-onset medical complications and factors influencing EFS. Methods In this landmark analysis, 83 adults surviving 5 years or more following prior HSCT in childhood for IEI were recruited. The primary endpoint was event-free survival, defined as time post-first HSCT to graft failure, graft rejection, chronic infection, life-threatening or recurrent infections, malignancy, significant autoimmune disease, moderate to severe GVHD or major organ dysfunction. All events occurring less than 5 years post-HSCT were excluded. Results EFS was 51% for the whole cohort at a median of 20 years post HSCT. Multivariable analysis identified age at transplant and whole blood chimerism as independent predictors of long-term EFS. Year of HSCT, donor, conditioning intensity and underlying diagnosis had no significant impact on EFS. 59 events occurring beyond 5 years post-HSCT were documented in 37 patients (45% cohort). A total of 25 patients (30% cohort) experienced ongoing significant complications requiring active medical intervention at last follow-up. Conclusion Although most patients achieved excellent, durable immune reconstitution with infrequent transplant-related complications, very late complications are common and associated with mixed chimerism post-HSCT. Early intervention to correct mixed chimerism may improve long-term outcomes and adult health following HSCT for IEI in childhood. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-022-01278-6.
Collapse
Affiliation(s)
- James W Day
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK.,University College London Hospitals NHS Foundation Trust, London, UK
| | - Reem Elfeky
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
| | - Bethany Nicholson
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
| | - Rupert Goodman
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
| | | | - Thomas A Fox
- University College London Hospitals NHS Foundation Trust, London, UK.,UCL Institute of Immunity & Transplantation, London, UK
| | - Austen Worth
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Claire Booth
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, London, UK
| | - Paul Veys
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Ben Carpenter
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Rachael Hough
- University College London Hospitals NHS Foundation Trust, London, UK
| | - H Bobby Gaspar
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, London, UK
| | - Penny Titman
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Deborah Ridout
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sarita Workman
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
| | - Fernando Hernandes
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
| | | | - Arian Laurence
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK.,University College London Hospitals NHS Foundation Trust, London, UK
| | - Mari Campbell
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK.,UCL Institute of Immunity & Transplantation, London, UK
| | - Siobhan O Burns
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK.,UCL Institute of Immunity & Transplantation, London, UK
| | - Emma C Morris
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK. .,University College London Hospitals NHS Foundation Trust, London, UK. .,UCL Institute of Immunity & Transplantation, London, UK.
| |
Collapse
|
11
|
Cifaldi C, Rivalta B, Amodio D, Mattia A, Pacillo L, Di Cesare S, Chiriaco M, Ursu GM, Cotugno N, Giancotta C, Manno EC, Santilli V, Zangari P, Federica G, Palumbo G, Merli P, Palma P, Rossi P, Di Matteo G, Locatelli F, Finocchi A, Cancrini C. Clinical, Immunological, and Molecular Variability of RAG Deficiency: A Retrospective Analysis of 22 RAG Patients. J Clin Immunol 2022; 42:130-145. [PMID: 34664192 PMCID: PMC8821501 DOI: 10.1007/s10875-021-01130-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/29/2021] [Indexed: 11/05/2022]
Abstract
PURPOSE We described clinical, immunological, and molecular characterization within a cohort of 22 RAG patients focused on the possible correlation between clinical and genetic data. METHODS Immunological and genetic features were investigated by multiparametric flow cytometry and by Sanger or next generation sequencing (NGS) as appropriate. RESULTS Patients represented a broad spectrum of RAG deficiencies: SCID, OS, LS/AS, and CID. Three novel mutations in RAG1 gene and one in RAG2 were reported. The primary symptom at presentation was infections (81.8%). Infections and autoimmunity occurred together in the majority of cases (63.6%). Fifteen out of 22 (68.2%) patients presented autoimmune or inflammatory manifestations. Five patients experienced severe autoimmune cytopenia refractory to different lines of therapy. Total lymphocytes count was reduced or almost lacking in SCID group and higher in OS patients. B lymphocytes were variably detected in LS/AS and CID groups. Eighteen patients underwent HSCT permitting definitive control of autoimmune/hyperinflammatory manifestations in twelve of them (80%). CONCLUSION We reinforce the notion that different clinical phenotype can be found in patients with identical mutations even within the same family. Infections may influence genotype-phenotype correlation and function as trigger for immune dysregulation or autoimmune manifestations. Severe and early autoimmune refractory cytopenia is frequent and could be the first symptom of onset. Prompt recognition of RAG deficiency in patients with early onset of autoimmune/hyperinflammatory manifestations could contribute to the choice of a timely and specific treatment preventing the onset of other complications.
Collapse
Affiliation(s)
- Cristina Cifaldi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
| | - Beatrice Rivalta
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Algeri Mattia
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Silvia Di Cesare
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Maria Chiriaco
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Giorgiana Madalina Ursu
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Nicola Cotugno
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Emma C Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Galaverna Federica
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Giuseppe Palumbo
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paolo Palma
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paolo Rossi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Gigliola Di Matteo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Department of Pediatrics, Sapienza, University of Rome, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy.
| |
Collapse
|
12
|
Lankester AC, Neven B, Mahlaoui N, von Asmuth EGJ, Courteille V, Alligon M, Albert MH, Serra IB, Bader P, Balashov D, Beier R, Bertrand Y, Blanche S, Bordon V, Bredius RG, Cant A, Cavazzana M, Diaz-de-Heredia C, Dogu F, Ehlert K, Entz-Werle N, Fasth A, Ferrua F, Ferster A, Formankova R, Friedrich W, Gonzalez-Vicent M, Gozdzik J, Güngör T, Hoenig M, Ikinciogullari A, Kalwak K, Kansoy S, Kupesiz A, Lanfranchi A, Lindemans CA, Meisel R, Michel G, Miranda NAA, Moraleda J, Moshous D, Pichler H, Rao K, Sedlacek P, Slatter M, Soncini E, Speckmann C, Sundin M, Toren A, Vettenranta K, Worth A, Yeşilipek MA, Zecca M, Porta F, Schulz A, Veys P, Fischer A, Gennery AR. Hematopoietic cell transplantation in severe combined immunodeficiency: The SCETIDE 2006-2014 European cohort. J Allergy Clin Immunol 2021; 149:1744-1754.e8. [PMID: 34718043 DOI: 10.1016/j.jaci.2021.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Hematopoietic stem cell transplantation (HSCT) represents a curative treatment for patients with severe combined immunodeficiency (SCID), a group of monogenic immune disorders with an otherwise fatal outcome. OBJECTIVE We performed a comprehensive multicenter analysis of genotype-specific HSCT outcome, including detailed analysis of immune reconstitution (IR) and the predictive value for clinical outcome. METHODS HSCT outcome was studied in 338 patients with genetically confirmed SCID who underwent transplantation in 2006-2014 and who were registered in the SCETIDE registry. In a representative subgroup of 152 patients, data on IR and long-term clinical outcome were analyzed. RESULTS Two-year OS was similar with matched family and unrelated donors and better than mismatched donor HSCT (P < .001). The 2-year event-free survival (EFS) was similar in matched and mismatched unrelated donor and less favorable in mismatched related donor (MMRD) HSCT (P < .001). Genetic subgroups did not differ in 2-year OS (P = .1) and EFS (P = .073). In multivariate analysis, pretransplantation infections and use of MMRDs were associated with less favorable OS and EFS. With a median follow-up of 6.2 years (range, 2.0-11.8 years), 73 of 152 patients in the IR cohort were alive and well without Ig dependency. IL-2 receptor gamma chain/Janus kinase 3/IL-7 receptor-deficient SCID, myeloablative conditioning, matched donor HSCT, and naive CD4 T lymphocytes >0.5 × 10e3/μL at +1 year were identified as independent predictors of favorable clinical and immunologic outcome. CONCLUSION Recent advances in HSCT in SCID patients have resulted in improved OS and EFS in all genotypes and donor types. To achieve a favorable long-term outcome, treatment strategies should aim for optimal naive CD4 T lymphocyte regeneration.
Collapse
Affiliation(s)
- Arjan C Lankester
- Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands.
| | - Benedicte Neven
- Unité d'Immuno-hematologie et Rhumatologie Pédiatrique, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Université de Paris, Paris, France; Institut Imagine, INSERM UMR1163, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Paris, France
| | - Nizar Mahlaoui
- French National Reference Center for Primary Immunodeficiencies (CEREDIH) and European Registry for Stem Cell Transplantation for Primary Immunodeficiencies (SCETIDE), Hôpital Universitaire Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Erik G J von Asmuth
- Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Virginie Courteille
- French National Reference Center for Primary Immunodeficiencies (CEREDIH) and European Registry for Stem Cell Transplantation for Primary Immunodeficiencies (SCETIDE), Hôpital Universitaire Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Mikael Alligon
- French National Reference Center for Primary Immunodeficiencies (CEREDIH) and European Registry for Stem Cell Transplantation for Primary Immunodeficiencies (SCETIDE), Hôpital Universitaire Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Michael H Albert
- Dr von Haunersches University Children's Hospital, Munich, Germany
| | - Isabelle Badell Serra
- Hospital Clínic, Sant Creu i Sant Pau Hospital, Bone Marrow Transplantation Unit, Barcelona, Spain
| | - Peter Bader
- Department for Children and Adolescents Medicine, Division for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt, Germany
| | - Dmitry Balashov
- Department for Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Rita Beier
- Klinik für Pädiatrische Hämatologie und Onkologie, Hannover Medical School, Hannover, Germany
| | - Yves Bertrand
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon and Université Claude Bernard Lyon 1, Lyon, France
| | - Stephane Blanche
- Unité d'Immuno-hematologie et Rhumatologie Pédiatrique, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Victoria Bordon
- Department of Pediatric Hemato-oncology and Stem Cell Transplant, Ghent University Hospital, Ghent, Belgium
| | - Robbert G Bredius
- Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Cant
- Translational and Clinical Research Institute, Newcastle University, and the Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Marina Cavazzana
- Université de Paris, Paris, France; Paris Biotherapy Department, Necker Children's Hospital Assistance, Paris, France; Biotherapy Clinical Investigation Center, Assistance Publique Hopitaux de Paris, INSERM, Paris, France; Laboratory of Genomic Dynamics in the Immune System, Institut Imagine, INSERM UMR1163, Paris, France
| | - Cristina Diaz-de-Heredia
- Department of Pediatric Oncology and Hematology, and Hematopoietic Stem Cell Transplantation, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Figen Dogu
- Department of PIA and the BMT Unit, Ankara University, Ankara, Turkey
| | - Karoline Ehlert
- Department of Pediatric Hematology and Oncology, Universitätsklinikum Münster, Münster, Germany; Department of Pediatric Hematology and Oncology, University of Greifswald, Greifswald, Germany
| | - Natacha Entz-Werle
- Pediatric Onco-hematology Department-Pediatrics III, University Hospital of Strasbourg, Strasbourg, France
| | - Anders Fasth
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Francesca Ferrua
- Pediatric Immunohematology and Bone Marrow Transplantation Unit and the San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alina Ferster
- Department of Hemato-oncology, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | - Renata Formankova
- Department of Pediatric Hematology and Oncology, Teaching Hospital Motol, 2nd Medical School, Charles University Motol, Prague, Czech Republic
| | - Wilhelm Friedrich
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Marta Gonzalez-Vicent
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Hospital Infantil Universitario "Niño Jesus," Madrid, Spain
| | - Jolanta Gozdzik
- Department of Clinical Immunology and Transplantation, Jagiellonian University Medical College, Krakow, Poland
| | - Tayfun Güngör
- Department of Hematology, Oncology, Immunology, Gene Therapy and Stem Cell Transplantation, and Children's Research Center (CRC), University Children's Hospital, Zurich, Switzerland
| | - Manfred Hoenig
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | | | - Krzysztof Kalwak
- Department of Pediatric Hematology, Oncology, and BMT, Wroclaw Medical University, Wroclaw, Poland
| | - Savas Kansoy
- Department of Pediatric Hematology and Oncology, Ege University Hospital, Izmir, Turkey
| | - Alphan Kupesiz
- Department of Pediatrics, Hematology, and Oncology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Arnalda Lanfranchi
- Diagnostic Department, Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Clinical Chemistry Laboratory, ASST Spedali Civili, Brescia, Italy
| | - Caroline A Lindemans
- Department of Stem Cell Transplantation, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Pediatrics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Roland Meisel
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Division of Pediatric Stem Cell Therapy, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gerard Michel
- Service d'Hématologie Immunologie Oncologie Pédiatrique, CHU La Timone, Marseille, France
| | - Nuno A A Miranda
- BMT Unit, Instituto Português de Oncologia de Lisboa, Lisbon, Portugal
| | - Jose Moraleda
- Department of Hematology and Hemotherapy, Hospital Virgen de la Arrixaca-IMIB, Murcia, Spain
| | - Despina Moshous
- Unité d'Immuno-hematologie et Rhumatologie Pédiatrique, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Université de Paris, Paris, France; Laboratory of Genomic Dynamics in the Immune System, Institut Imagine, INSERM UMR1163, Paris, France
| | - Herbert Pichler
- Department of Stem Cell Transplantation, Children's Cancer Institute, St Anna Hospital, Vienna, Austria
| | - Kanchan Rao
- Great Ormond Street (GOS) Hospital for Children NHS Foundation Trust and University College London GOS Institute of Child Health, London, United Kingdom
| | - Petr Sedlacek
- Department of Pediatric Hematology and Oncology, Teaching Hospital Motol, 2nd Medical School, Charles University Motol, Prague, Czech Republic
| | - Mary Slatter
- Translational and Clinical Research Institute, Newcastle University, and the Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Elena Soncini
- Pediatric Oncohaematology and BMT Unit, Children's Hospital Brescia, Brescia, Italy
| | - Carsten Speckmann
- Department of Pediatric Hematology and Oncology, Center for Pediatrics and Adolescent Medicine, and Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Mikael Sundin
- Section of Pediatric Hematology, Immunology, and HCT, Astrid Lindgren Children's Hospital, Karolinska University Hospital, and Division of Pediatrics, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Amos Toren
- Paediatric Hemato-oncology and BMT, Sheba Medical Center, Tel-Hashomer, Israel
| | - Kim Vettenranta
- University of Helsinki and Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Austen Worth
- Great Ormond Street (GOS) Hospital for Children NHS Foundation Trust and University College London GOS Institute of Child Health, London, United Kingdom
| | - Mehmet A Yeşilipek
- Pediatric Hematology, Oncology, and Pediatric Stem Cell Transplantation Unit, Medicalpark Antalya & Göztepe Hospitals, Antalya, Turkey
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fulvio Porta
- Pediatric Oncohaematology and BMT Unit, Children's Hospital Brescia, Brescia, Italy
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Paul Veys
- Great Ormond Street (GOS) Hospital for Children NHS Foundation Trust and University College London GOS Institute of Child Health, London, United Kingdom
| | - Alain Fischer
- Unité d'Immuno-hematologie et Rhumatologie Pédiatrique, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Université de Paris, Paris, France
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, and the Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
13
|
El Fakih R, Lazarus HM, Muffly L, Altareb M, Aljurf M, Hashmi SK. Historical perspective and a glance into the antibody-based conditioning regimens: A new era in the horizon? Blood Rev 2021; 52:100892. [PMID: 34674852 DOI: 10.1016/j.blre.2021.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022]
Abstract
The hematopoietic cell transplantation practice has changed significantly over the years. More than 1500 centers around the globe are offering transplant for different types of diseases. This growth was driven by improving the efficacy and the safety of the procedure and the ability to use alternate donors. These improvements made the procedure feasible in virtually all patients in need for it. With the availability of novel therapies and targeted agents, we may be witnessing a new transplant-era. These agents may help to circumvent some of the remaining limitations of the procedure and open the doors for new indications. Herein, we review historical transplant milestones, the accomplishments that led to the modern transplant practice and we discuss the idea of minimal-intensity conditioning and the possibility to adopt chemotherapy and radiation-free preparative regimens in the near future.
Collapse
Affiliation(s)
- Riad El Fakih
- Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Hillard M Lazarus
- Division of Hematology-Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - Lori Muffly
- Stanford University, Blood and Marrow Transplant and Cellular therapy, Stanford, CA, USA
| | - Majed Altareb
- Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mahmoud Aljurf
- Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Shahrukh K Hashmi
- Department of Medicine, Sheikh Shakhbout Medical City, Abu Dhabi, UAE; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Single-Center Study of 72 Patients with Severe Combined Immunodeficiency: Clinical and Laboratory Features and Outcomes. J Clin Immunol 2021; 41:1563-1573. [PMID: 34114123 DOI: 10.1007/s10875-021-01062-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Severe combined immunodeficiency is an inborn error of immunity characterized by impairments in the numbers and functions of T and B lymphocytes due to various genetic causes, and if it remains untreated, patients succumb to infections during the first 2 years of life. PURPOSE AND METHODS This study reported retrospective data from 72 infants diagnosed with SCID including their major clinical features, HSCT characteristics, and outcomes over a 20-year period (1997-2017). RESULTS Sixty-one of 72 SCID patients in the study underwent HSCT from 1997 to 2017. Median ages at the time of diagnosis and transplantation were 3.5 months and 5 months, respectively. Consanguinity was present in 68% of the patients, and T - B - NK + phenotype was predominantly identified. The overall survival was 80.3% over a 20-year period. However, the patients transplanted during an active infection had a lower survival rate of 73.9% compared to 100% for patients transplanted infection-free or with a previous infection that had resolved. The survival rate was significantly higher among recipients of HLA-identical transplants (92.9%), compared to recipients of mismatched related transplants (70%). The overall survival increased from 50 (1997-2006) to 85% (2007-2017) during the last 10 years. CONCLUSIONS This is one of the largest single-center studies in Turkey with extensive experience about SCID patients. Early diagnosis of SCID patients before the onset of an infection and early transplantation are shown to be extremely important factors affecting the outcome and increasing the survival regardless of the donor type based on the results of this study.
Collapse
|
15
|
Demirtas D, Cagdas D, Turul Ozgur T, Kuskonmaz B, Uckan Cetinkaya D, Sanal O, Tezcan I. Long Term Follow-Up of the Patients with Severe Combined Immunodeficiency After Hematopoietic Stem Cell Transplantation: A Single-Center Study. Immunol Invest 2021; 51:739-747. [PMID: 33472463 DOI: 10.1080/08820139.2020.1869776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: We aimed to evaluate hematopoietic stem cell transplantation (HSCT) related outcomes of patients with severe combined immunodeficiency (SCID).Methods: We retrospectively collected data from SCID patients who were diagnosed, followed up and survived at least 2 years after HSCT.Results: Forty four SCID patients were included in the study. Median age of HSCT and follow-up period after HSCT were 7.1 months and 8.7 years, respectively. Human leukocyte antigen (HLA) identical donors were used in 77.3% (n = 34) of the patients (23 siblings, six fathers, two mothers, three extended family donors), HLA 1-2 mismatched family donors in 11.3% (n = 5), and haploidentical family donors in 11.3% (n = 5). CD3 and CD19 counts were normal in more than 90% and in 45.4% at last follow-up, respectively. Intravenous immunoglobulin (IVIG) could be stopped in 72.7% (n = 32) after HSCT. B+ SCID patients had better CD19 counts than B- (p < .001). T cell numbers, lymphocyte proliferation, IVIG need, immunoglobulin levels, antibody responses did not differ among B- and B+ immunophenotypes. Acute graft-versus-host disease (GVHD) was less in bone marrow transplanted patients (19.4%) than peripheral stem cell (58.3%) transplanted ones (p = .024). There was no correlation between age at transplantation and immune reconstitution. At the last follow-up, 70.2% and 78.3% of the patients had body weight and height above 3rd percentile, respectively.Conclusion: The immune reconstitution and the growth were normal in the majority of SCID patients after HSCT. It may be rational to use bone marrow instead of peripheral stem cell, as acute GVHD was less in bone marrow transplanted patients.
Collapse
Affiliation(s)
- Duygu Demirtas
- Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Cagdas
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tuba Turul Ozgur
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Baris Kuskonmaz
- Department of Pediatrics, Division of Hematology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Duygu Uckan Cetinkaya
- Department of Pediatrics, Division of Hematology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ozden Sanal
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
16
|
EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity. Bone Marrow Transplant 2021; 56:2052-2062. [PMID: 34226669 PMCID: PMC8410590 DOI: 10.1038/s41409-021-01378-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023]
|
17
|
Blanco E, Izotova N, Booth C, Thrasher AJ. Immune Reconstitution After Gene Therapy Approaches in Patients With X-Linked Severe Combined Immunodeficiency Disease. Front Immunol 2020; 11:608653. [PMID: 33329605 PMCID: PMC7729079 DOI: 10.3389/fimmu.2020.608653] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
X-linked severe immunodeficiency disease (SCID-X1) is an inherited, rare, and life-threating disease. The genetic origin is a defect in the interleukin 2 receptor γ chain (IL2RG) gene and patients are classically characterized by absence of T and NK cells, as well as presence of partially-functional B cells. Without any treatment the disease is usually lethal during the first year of life. The treatment of choice for these patients is hematopoietic stem cell transplantation, with an excellent survival rate (>90%) if an HLA-matched sibling donor is available. However, when alternative donors are used, the success and survival rates are often lower. Gene therapy has been developed as an alternative treatment initially using γ-retroviral vectors to correct the defective γ chain in the absence of pre-conditioning treatment. The results were highly promising in SCID-X1 infants, showing long-term T-cell recovery and clinical benefit, although NK and B cell recovery was less robust. However, some infants developed T-cell acute lymphoblastic leukemia after the gene therapy, due to vector-mediated insertional mutagenesis. Consequently, considerable efforts have been made to develop safer vectors. The most recent clinical trials using lentiviral vectors together with a low-dose pre-conditioning regimen have demonstrated excellent sustained T cell recovery, but also B and NK cells, in both children and adults. This review provides an overview about the different gene therapy approaches used over the last 20 years to treat SCID-X1 patients, particularly focusing on lymphoid immune reconstitution, as well as the developments that have improved the process and outcomes.
Collapse
Affiliation(s)
- Elena Blanco
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Natalia Izotova
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Adrian James Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| |
Collapse
|
18
|
Gennery AR. The challenges presented by haematopoietic stem cell transplantation in children with primary immunodeficiency. Br Med Bull 2020; 135:4-15. [PMID: 32676650 DOI: 10.1093/bmb/ldaa017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION OR BACKGROUND For many primary immunodeficiencies (PIDs), haematopoietic stem cell transplantation (HSCT) offers treatment to cure disease. However, patients with PID present a unique set of challenges when considering HSCT. SOURCES OF DATA Review of recent literature. AREAS OF AGREEMENT The most significant recent impact on successful outcome is introduction of newborn screening programmes for diagnosis of severe combined immunodeficiency-wider adoption of screening in an increasing number of countries will see further improvements. Other PIDs have better outcomes when treated earlier, before development of co-morbidities-early referral for consideration of HSCT is important. Evolution of conditioning regimens is improving short- and long-term toxicities-targeted busulfan and low-toxicity myeloablative treosulfan regimens deliver good survival with reduced short-term toxicities. AREAS OF CONTROVERSY The most radical development, still in clinical trials, is the use of mono-antibody-based conditioning, which eliminates the requirement for chemotherapy and is likely to become much more important in HSCT for non-malignant disease in the future. GROWING POINTS Multidisciplinary working for optimum care is essential. AREAS TIMELY FOR DEVELOPING RESEARCH International collaborations are important to learn about rare presentations and complications, and to formulate the most effective and safe treatment strategies.
Collapse
Affiliation(s)
- A R Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Newcastle upon Tyne NE1 4LP, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
19
|
Hoenig M, Roesler J, Seidel MG, Albert MH, Hauck F, Maecker-Kolhoff B, Eiz-Vesper B, Kleinschmidt K, Debatin KM, Jacobsen EM, Furlan I, Suttorp M, Schuetz C, Schulz AS. Matched Family Donor Lymphocyte Infusions as First Cellular Therapy for Patients with Severe Primary T Cell Deficiencies. Transplant Cell Ther 2020; 27:93.e1-93.e8. [PMID: 33022377 DOI: 10.1016/j.bbmt.2020.09.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
Patients with primary immunodeficiencies caused by severe defects in T cell immunity are at risk of acquiring life-threatening infections. Cellular therapies are necessary to establish normal T cell function and to allow for long-term survival. This is most commonly achieved by hematopoietic stem cell transplantation (HSCT), but the outcome of this procedure is impaired if active infections are present at the time of HSCT. Donor lymphocyte infusions (DLIs) are a well-established therapeutic strategy following HSCT to treat viral infections, improve donor cell engraftment, or achieve graft-versus-leukemia activity in malignant disease. Here we present a cohort of 6 patients with primary T cell deficiencies who received transfusions of unselected mature donor lymphocytes prior and not directly related to allogeneic HSCT. DLIs obtained from the peripheral blood of HLA-identical (10/10) family donors were transfused without prior conditioning to treat or prevent life-threatening infections. All patients are alive with a follow-up of 0.5 to 16.5 years after the initial T cell administration. Additional cellular therapies were administered in 5 of 6 patients at 0.8 to 15 months after the first DLI. Mild cutaneous graft-versus-host disease (GVHD, stage ≤2) was observed in 3 of 6 patients and resolved spontaneously. We provide evidence that unselected HLA-identical DLIs can effectively prevent or contribute to overcome infections with a limited risk for GVHD in T cell deficient patients. The T cell system established by this readily available source can provide T cell function for years and can serve as a bridge to additional cellular therapies or, in specific conditions, as definite treatment.
Collapse
Affiliation(s)
- Manfred Hoenig
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany.
| | - Joachim Roesler
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Markus G Seidel
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; German Centre for Infection Research (DZIF), Munich, Germany
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Katharina Kleinschmidt
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Regensburg, Germany
| | | | | | - Ingrid Furlan
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Meinolf Suttorp
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Medical Faculty, Pediatric Hematology-Oncology, TU Dresden, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ansgar S Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
20
|
Richards S, Gennery AR, Davies EG, Wong M, Shaw PJ, Peake J, Fraser C, Gray P, Brothers S, Sinclair J, Prestidge T, Preece K, Quinn P, Ramachandran S, Loh R, McLean-Tooke A, Mitchell R, Cole T. Diagnosis and management of severe combined immunodeficiency in Australia and New Zealand. J Paediatr Child Health 2020; 56:1508-1513. [PMID: 33099818 DOI: 10.1111/jpc.15158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/06/2023]
Abstract
This consensus document outlines the recommendations from the Australasian Society of Clinical Immunology and Allergy Transplantation and Primary Immunodeficiency group for the diagnosis and management of patients with severe combined immunodeficiency. It also provides a proposed framework for the early investigation, management and supportive care prior to haematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Stephanie Richards
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Andrew R Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - E Graham Davies
- Department of Immunology, Great Ormond Street Hospital, London, United Kingdom.,UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Melanie Wong
- Department of Allergy and Immunology, Children's Hospital Westmead, Sydney, New South Wales, Australia
| | - Peter J Shaw
- Bone Marrow Transplant Unit, Children's Hospital Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Jane Peake
- Department of Allergy and Immunology, Queensland Children's Hospital, Brisbane, Queensland, Australia.,Discipline of Paediatrics and Child Health, School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Chris Fraser
- Oncology Service, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Paul Gray
- Department of Immunology, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Shannon Brothers
- Department of Immunology and Allergy, Starship Children's Hospital, Auckland, New Zealand.,Newborn Metabolic Screening, Specialist Chemical Pathology Department, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Jan Sinclair
- Department of Immunology and Allergy, Starship Children's Hospital, Auckland, New Zealand
| | - Tim Prestidge
- Blood and Cancer Centre, Starship Children's Hospital, Auckland, New Zealand
| | - Kahn Preece
- Allergy and Immunology Department, John Hunter Children's Hospital, Newcastle, New South Wales, Australia
| | - Patrick Quinn
- Department of Allergy and Clinical Immunology, Women and Children's Hospital, Adelaide, South Australia, Australia.,Discipline of Paediatrics, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Shanti Ramachandran
- Department of Paediatric and Adolescent Oncology and Haematology, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Richard Loh
- Immunology Department, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Andrew McLean-Tooke
- Immunology Department, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Richard Mitchell
- School of Women and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Theresa Cole
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | | |
Collapse
|
21
|
Holzer U, Döring M, Eichholz T, Ebinger M, Queudeville M, Turkiewicz D, Schwarz K, Handgretinger R, Lang P, Toporski J. Matched versus Haploidentical Hematopoietic Stem Cell Transplantation as Treatment Options for Primary Immunodeficiencies in Children. Transplant Cell Ther 2020; 27:71.e1-71.e12. [PMID: 32966882 DOI: 10.1016/j.bbmt.2020.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
Primary immunodeficiencies (PIDs) are inherited disorders of the immune system with allogeneic hematopoietic stem cell transplantation (HSCT) as the only curative treatment in some of them. In case an HLA-matched donor is not available, HSCT from a haploidentical family donor may be considered. We compared the outcomes of HSCT from HLA-matched unrelated or related donors (MUDs or MRDs) and mismatched related haploidentical donors (MMRDs) in patients with a variety of PIDs in 2 centers. A total of 44 pediatric patients were evaluated. We reviewed the outcomes of 25 children who underwent transplantation with HLA-matched grafts (MRD, n = 13; MUD, n = 12) and 19 patients receiving haploidentical stem cells. Bone marrow (BM) was transplanted in 85% (MRD) and 75% (MUD) of the matched cohort and peripheral blood stem cells (PBSCs) in 15% (MRD), 25% (MUD), and 100% (MMRD). All but 9 patients (MRD, n = 6; MMRD, n = 3) with severe combined immunodeficiency (SCID) received a chemotherapy-based conditioning regimen. Immune reconstitution of T, B, and natural killer cells was comparable for all groups with an advantage of recipients of MRD grafts in early CD4 reconstitution. However, deaths due to viral infections occurred more often in the haploidentical cohort. The disease-free survival was 91.7% (MRD), 66.7% (MUD), and 62.7% (MMRD), respectively. Grade II to IV acute graft-versus-host disease (GVHD) occurred in 15% (MRD), 8% (MUD), and 21% (MMRD) of the patients. Only 1 patient had severe grade IV GVHD in the MRD group, whereas no grade >II GVHD was observed in the MUD or MMRD cohort. These data indicate that in the absence of a suitable HLA-identical family donor, haploidentical HSCT may be a viable option for patients with life-threatening disease and urgent need of HSCT.
Collapse
Affiliation(s)
- Ursula Holzer
- Children's Hospital, University of Tübingen, Tübingen, Germany.
| | - Michaela Döring
- Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Thomas Eichholz
- Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Martin Ebinger
- Children's Hospital, University of Tübingen, Tübingen, Germany
| | | | | | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg-Hessen, Ulm, Germany
| | | | - Peter Lang
- Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Jacek Toporski
- Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The most serious DNA damage, DNA double strand breaks (DNA-dsb), leads to mutagenesis, carcinogenesis or apoptosis if left unrepaired. Non-homologous end joining (NHEJ) is the principle repair pathway employed by mammalian cells to repair DNA-dsb. Several proteins are involved in this pathway, defects in which can lead to human disease. This review updates on the most recent information available for the specific diseases associated with the pathway. RECENT FINDINGS A new member of the NHEJ pathway, PAXX, has been identified, although no human disease has been associated with it. The clinical phenotypes of Artemis, DNA ligase 4, Cernunnos-XLF and DNA-PKcs deficiency have been extended. The role of haematopoietic stem cell transplantation, following reduced intensity conditioning chemotherapy, for many of these diseases is being advanced. In the era of newborn screening, urgent genetic diagnosis is necessary to correctly target appropriate treatment for patients with DNA-dsb repair disorders.
Collapse
Affiliation(s)
- Mary A Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Newcastle upon Tyne, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
23
|
Gabelli M, Veys P, Chiesa R. Current status of umbilical cord blood transplantation in children. Br J Haematol 2019; 190:650-683. [PMID: 31410846 DOI: 10.1111/bjh.16107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
The first umbilical cord blood (UCB) transplantation was performed 30 years ago. UCB transplantation (UCBT) is now widely used in children with malignant and non-malignant disorders who lack a matched family donor. UCBT affords a lower incidence of graft-versus-host disease compared to alternative stem cell sources, but also presents a slower immune recovery and a high risk of infections if serotherapy is not omitted or targeted within the conditioning regimen. The selection of UCB units with high cell content and good human leucocyte antigen match is essential to improve the outcome. Techniques, such as double UCBT, ex vivo stem cell expansion and intra-bone injection of UCB, have improved cord blood engraftment, but clinical benefit remains to be demonstrated. Cell therapies derived from UCB are under evaluation as potential novel strategies to reduce relapse and viral infections following transplantation. In recent years, improvements within haploidentical transplantation have reduced the overall use of UCBT as an alternative stem cell source; however, each may have its relative merits and disadvantages and tailored use of these alternative stem cell sources may be the optimal approach.
Collapse
Affiliation(s)
- Maria Gabelli
- Bone Marrow Transplantation, Great Ormond Street Hospital, London, UK
| | - Paul Veys
- Bone Marrow Transplantation, Great Ormond Street Hospital, London, UK
| | - Robert Chiesa
- Bone Marrow Transplantation, Great Ormond Street Hospital, London, UK
| |
Collapse
|
24
|
Gavrilova T. Considerations for hematopoietic stem cell transplantation in primary immunodeficiency disorders. World J Transplant 2019; 9:48-57. [PMID: 31392129 PMCID: PMC6682495 DOI: 10.5500/wjt.v9.i3.48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023] Open
Abstract
Primary immunodeficiency disorders (PIDs) result from inborn errors in immunity. Susceptibility to infections and oftentimes severe autoimmunity pose life-threatening risks to patients with these disorders. Hematopoietic cell transplant (HCT) remains the only curative option for many. Severe combined immunodeficiency disorders (SCID) most commonly present at the time of birth and typically require emergent HCT in the first few weeks of life. HCT poses an unusual challenge for PIDs. Donor source and conditioning regimen often impact the outcome of immune reconstitution after HCT in PIDs. The use of matched or unmatched, as well as related versus unrelated donor has resulted in variable outcomes for different subsets of PIDs. Additionally, there is significant variability in the success of engraftment even for a single patient’s lymphocyte subpopulations. While certain cell lines do well without a conditioning regimen, others will not reconstitute unless conditioning is used. The decision to proceed with a conditioning regimen in an already immunocompromised host is further complicated by the fact that alkylating agents should be avoided in radiosensitive PIDs. This manuscript reviews some of the unique elements of HCT in PIDs and evidence-based approaches to transplant in patients with these rare and challenging disorders.
Collapse
Affiliation(s)
- Tatyana Gavrilova
- Division of Allergy and Immunology, Montefiore Medical Center, Bronx, NY 10461, United States
| |
Collapse
|
25
|
Rožman P. How Could We Slow or Reverse the Human Aging Process and Extend the Healthy Life Span with Heterochronous Autologous Hematopoietic Stem Cell Transplantation. Rejuvenation Res 2019; 23:159-170. [PMID: 31203790 DOI: 10.1089/rej.2018.2164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The senescence of the immune system contributes considerably to the age-related diseases that are the main causes of death after the age of 65. In this study, we present an appealing option for the prevention of immune senescence and slowing or reversing the aging process, which can be achieved by heterochronous autologous hematopoietic stem cell transplantation (haHSCT), where healthy autologous bone marrow stem cells are collected from donors while young, cryopreserved and stored for a long period, and reinfused at a later time when indicated. After reinfusion and homing, these young HSCs could participate in normal hemato- and immunopoiesis and improve several immune functions by expanding the immune- as well as hematopoietic cell repertoire. Several animal studies have already confirmed the feasibility of this procedure, which extended the longevity of the treated animals. If translated to human medicine, haHSCT could prevent or mitigate age-related immune defects and extend the healthy life span. In this review, we describe the concept of haHSCT, recent studies that confirm its feasibility, and discuss the further research needed to translate this heterochronous methodology.
Collapse
Affiliation(s)
- Primož Rožman
- Immunohaematology Department, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
26
|
South E, Cox E, Meader N, Woolacott N, Griffin S. Strimvelis ® for Treating Severe Combined Immunodeficiency Caused by Adenosine Deaminase Deficiency: An Evidence Review Group Perspective of a NICE Highly Specialised Technology Evaluation. PHARMACOECONOMICS - OPEN 2019; 3:151-161. [PMID: 30334168 PMCID: PMC6533345 DOI: 10.1007/s41669-018-0102-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The Centre for Reviews and Dissemination and Centre for Health Economics Technology Assessment Group at the University of York was commissioned by the National Institute for Health and Care Excellence (NICE) Highly Specialised Technologies (HST) programme to act as the independent Evidence Review Group (ERG) for an appraisal of Strimvelis®, a gene therapy treatment for adenosine deaminase deficiency-severe combined immunodeficiency (ADA-SCID). This paper describes the manufacturing company's submission of clinical and economic evidence, the ERG's review and the resulting NICE guidance. For Strimvelis® compared with haematopoietic stem cell transplant (HSCT) from a matched unrelated donor (MUD) and HSCT from a haploidentical donor, the company base-case deterministic incremental cost-effectiveness ratios (ICERs) were £36,360 and £14,645 per quality-adjusted life-year (QALY) gained, respectively (using a discount rate of 1.5%). Although overall survival in patients receiving Strimvelis® was substantially higher than historical comparator data on HSCT from a MUD or haploidentical donor, the ERG was concerned that the estimated treatment benefit remained highly uncertain. The ERG critiqued some assumptions in the cost-effectiveness model, including that all patients return to general population mortality and morbidity after a successful procedure; that all patients receive a matched sibling donor following an unsuccessful engraftment; and that differences in wait times exist between the treatments. Incorporating a number of changes to the model, the ERG's base-case ICERs were £86,815 per QALY gained for Strimvelis® compared with HSCT from a MUD and £16,704 per QALY gained compared with HSCT from a haploidentical donor (using a discount rate of 1.5%). The ICER for Strimvelis® compared with HSCT from a MUD was highly sensitive to the difference in procedural mortality and could exceed NICE's £100,000 per QALY gained threshold for HSTs, if HSCT survival rates have improved since the most recent data. The evaluation committee concluded that the most plausible ICERs were lower than £100,000 per QALY gained and that Strimvelis® should be recommended for treatment of ADA-SCID where a matched related donor is unavailable.
Collapse
Affiliation(s)
- Emily South
- Centre for Reviews and Dissemination, University of York, York, YO10 5DD, UK.
| | - Edward Cox
- Centre for Health Economics, University of York, York, UK
| | - Nick Meader
- Centre for Reviews and Dissemination, University of York, York, YO10 5DD, UK
| | - Nerys Woolacott
- Centre for Reviews and Dissemination, University of York, York, YO10 5DD, UK
| | - Susan Griffin
- Centre for Health Economics, University of York, York, UK
| |
Collapse
|
27
|
Graft Versus Host Disease Following HLA-Matched Sibling Donor Compared with Matched Related Donor for Hematopoietic Stem Cell Transplantation for the Treatment of Severe Combined Immunodeficiency Disease. J Clin Immunol 2019; 39:414-420. [PMID: 31041574 DOI: 10.1007/s10875-019-00634-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/21/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND One of the limiting factors for successful hematopoietic stem cell transplantation (HSCT) is graft versus host disease (GVHD). The EBMT/ESID guidelines for HSCT in severe combined immunodeficiency (SCID) recommend no GVHD prophylaxis for a matched sibling donor (MSD). OBJECTIVE To determine the risk of GVHD in MSD HSCT for SCID patients compared to matched related donor (MRD). METHODS This retrospective cohort study compares MSD with MRD and the outcome of GVHD in all SCID patients who underwent HSCT between 1993 and 2013. All statistical analyses were done using IBM SPSS statistics software. RESULTS One hundred forty-five SCID patients underwent 152 HSCTs while 82 (54%) received GVHD prophylaxis. GVHD occurred in 48 patients (31.5%); 20/48 (42%) had GVHD prophylaxis compared to 28/48 (58%) that did not, P = 0.022. Acute GVHD occurred at a higher trend in MSD, 37/120 (30.8%), compared to MRD, 6/32 (18.8%), P = 0.17. We also analyzed the outcome according to the period of HSCT. The first period was 1993 to 2003, 48 HSCTs, 43 MSD, 5 MRD; all patients had GVHD prophylaxis, and there was no difference in GVHD. The second period was 2004 to 2013: of 104 HSCTs, 77 had MSD and 27 had MRD; GVHD prophylaxis was used in 22.1% of MSD and 63% of MRD, P = 0.000. GVHD was significantly higher in the MSD (40.2%) compared to MRD (18.5%) patients, P = 0.041. CONCLUSION GVHD prophylaxis in MSD transplant should be considered in SCID patients.
Collapse
|
28
|
Pillay BA, Avery DT, Smart JM, Cole T, Choo S, Chan D, Gray PE, Frith K, Mitchell R, Phan TG, Wong M, Campbell DE, Hsu P, Ziegler JB, Peake J, Alvaro F, Picard C, Bustamante J, Neven B, Cant AJ, Uzel G, Arkwright PD, Casanova JL, Su HC, Freeman AF, Shah N, Hickstein DD, Tangye SG, Ma CS. Hematopoietic stem cell transplant effectively rescues lymphocyte differentiation and function in DOCK8-deficient patients. JCI Insight 2019; 5:127527. [PMID: 31021819 DOI: 10.1172/jci.insight.127527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bi-allelic inactivating mutations in DOCK8 cause a combined immunodeficiency characterised by severe pathogen infections, eczema, allergies, malignancy and impaired humoral responses. These clinical features result from functional defects in most lymphocyte lineages. Thus, DOCK8 plays a key role in immune cell function. Hematopoietic stem cell transplantation (HSCT) is curative for DOCK8 deficiency. While previous reports have described clinical outcomes for DOCK8 deficiency following HSCT, the effect on lymphocyte reconstitution and function has not been investigated. Our study determined whether defects in lymphocyte differentiation and function in DOCK8-deficient patients were restored following HSCT. DOCK8-deficient T and B lymphocytes exhibited aberrant activation and effector function in vivo and in vitro. Frequencies of αβ T and MAIT cells were reduced while γδT cells were increased in DOCK8-deficient patients. HSCT improved, abnormal lymphocyte function in DOCK8-deficient patients. Elevated total and allergen-specific IgE in DOCK8-deficient patients decreased over time following HSCT. Our results document the extensive catalogue of cellular defects in DOCK8-deficient patients, and the efficacy of HSCT to correct these defects, concurrent with improvements in clinical phenotypes. Overall, our findings provide mechanisms at a functional cellular level for improvements in clinical features of DOCK8 deficiency post-HSCT, identify biomarkers that correlate with improved clinical outcomes, and inform the general dynamics of immune reconstitution in patients with monogenic immune disorders following HSCT.
Collapse
Affiliation(s)
- Bethany A Pillay
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Danielle T Avery
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Joanne M Smart
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Theresa Cole
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Sharon Choo
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Damien Chan
- Women and Children's Hosp==ital, Adelaide, South Australia, Australia
| | - Paul E Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Katie Frith
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Richard Mitchell
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Melanie Wong
- Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Dianne E Campbell
- Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Peter Hsu
- Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - John B Ziegler
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Jane Peake
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Frank Alvaro
- Pediatric Hematology, John Hunter Hospital, New Lambton, New South Wales, Australia
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine institut, Paris, France.,Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France.,Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jacinta Bustamante
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine institut, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Institut IMAGINE, Necker Medical School, University Paris Descartes Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Benedicte Neven
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Andrew J Cant
- Great North Children's Hospital, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle upon Tyne University, Newcastle upon Tyne, United Kingdom
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, United Kingdom
| | - Jean-Laurent Casanova
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Institut IMAGINE, Necker Medical School, University Paris Descartes Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, New York, New York, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | - Dennis D Hickstein
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Mamcarz E, Zhou S, Lockey T, Abdelsamed H, Cross SJ, Kang G, Ma Z, Condori J, Dowdy J, Triplett B, Li C, Maron G, Aldave Becerra JC, Church JA, Dokmeci E, Love JT, da Matta Ain AC, van der Watt H, Tang X, Janssen W, Ryu BY, De Ravin SS, Weiss MJ, Youngblood B, Long-Boyle JR, Gottschalk S, Meagher MM, Malech HL, Puck JM, Cowan MJ, Sorrentino BP. Lentiviral Gene Therapy Combined with Low-Dose Busulfan in Infants with SCID-X1. N Engl J Med 2019; 380:1525-1534. [PMID: 30995372 PMCID: PMC6636624 DOI: 10.1056/nejmoa1815408] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Allogeneic hematopoietic stem-cell transplantation for X-linked severe combined immunodeficiency (SCID-X1) often fails to reconstitute immunity associated with T cells, B cells, and natural killer (NK) cells when matched sibling donors are unavailable unless high-dose chemotherapy is given. In previous studies, autologous gene therapy with γ-retroviral vectors failed to reconstitute B-cell and NK-cell immunity and was complicated by vector-related leukemia. METHODS We performed a dual-center, phase 1-2 safety and efficacy study of a lentiviral vector to transfer IL2RG complementary DNA to bone marrow stem cells after low-exposure, targeted busulfan conditioning in eight infants with newly diagnosed SCID-X1. RESULTS Eight infants with SCID-X1 were followed for a median of 16.4 months. Bone marrow harvest, busulfan conditioning, and cell infusion had no unexpected side effects. In seven infants, the numbers of CD3+, CD4+, and naive CD4+ T cells and NK cells normalized by 3 to 4 months after infusion and were accompanied by vector marking in T cells, B cells, NK cells, myeloid cells, and bone marrow progenitors. The eighth infant had an insufficient T-cell count initially, but T cells developed in this infant after a boost of gene-corrected cells without busulfan conditioning. Previous infections cleared in all infants, and all continued to grow normally. IgM levels normalized in seven of the eight infants, of whom four discontinued intravenous immune globulin supplementation; three of these four infants had a response to vaccines. Vector insertion-site analysis was performed in seven infants and showed polyclonal patterns without clonal dominance in all seven. CONCLUSIONS Lentiviral vector gene therapy combined with low-exposure, targeted busulfan conditioning in infants with newly diagnosed SCID-X1 had low-grade acute toxic effects and resulted in multilineage engraftment of transduced cells, reconstitution of functional T cells and B cells, and normalization of NK-cell counts during a median follow-up of 16 months. (Funded by the American Lebanese Syrian Associated Charities and others; LVXSCID-ND ClinicalTrials.gov number, NCT01512888.).
Collapse
Affiliation(s)
- Ewelina Mamcarz
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Sheng Zhou
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Timothy Lockey
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Hossam Abdelsamed
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Shane J Cross
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Guolian Kang
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Zhijun Ma
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Jose Condori
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Jola Dowdy
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Brandon Triplett
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Chen Li
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Gabriela Maron
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Juan C Aldave Becerra
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Joseph A Church
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Elif Dokmeci
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - James T Love
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Ana C da Matta Ain
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Hedi van der Watt
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Xing Tang
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - William Janssen
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Byoung Y Ryu
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Suk See De Ravin
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Mitchell J Weiss
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Benjamin Youngblood
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Janel R Long-Boyle
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Stephen Gottschalk
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Michael M Meagher
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Harry L Malech
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Jennifer M Puck
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Morton J Cowan
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| | - Brian P Sorrentino
- From the Departments of Bone Marrow Transplantation and Cellular Therapy (E.M., B.T., W.J., S.G.), Hematology (S.Z., Z.M., J.C., J.D., X.T., B.Y.R., M.J.W., B.P.S.), Therapeutics Production and Quality (T.L., M.M.M.), Immunology (H.A., B.Y.), Pharmaceutical Sciences (S.J.C.), Biostatistics (G.K., C.L.), and Infectious Diseases (G.M.), St. Jude Children's Research Hospital, Memphis, TN; the Allergy and Clinical Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (J.C.A.B.); the Department of Pediatrics, Allergy-Immunology Division, Children's Hospital Los Angeles, Los Angeles (J.A.C.), and the Department of Pediatrics, Division of Pediatric Allergy-Immunology-Bone Marrow Transplantation, University of California, San Francisco (UCSF) Benioff Children's Hospital, San Francisco (J.R.L.-B., J.M.P., M.J.C.) - both in California; the Department of Pediatrics, Pediatric Allergy and Immunology, University of New Mexico, Albuquerque (E.D.); University of Oklahoma Health Sciences Center, Tulsa (J.T.L.); Departamento de Pediatria da Universidade de Taubaté, Conselho Nacional de Medicina, São Paulo (A.C.M.A.); Copperfield Childcare, Claremont, South Africa (H.W.); and the Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.S.D.R., H.L.M.)
| |
Collapse
|
30
|
Dvorak CC, Long-Boyle J, Dara J, Melton A, Shimano KA, Huang JN, Puck JM, Dorsey MJ, Facchino J, Chang CK, Cowan MJ. Low Exposure Busulfan Conditioning to Achieve Sufficient Multilineage Chimerism in Patients with Severe Combined Immunodeficiency. Biol Blood Marrow Transplant 2019; 25:1355-1362. [PMID: 30876930 DOI: 10.1016/j.bbmt.2019.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/08/2019] [Indexed: 11/17/2022]
Abstract
After allogeneic hematopoietic cell transplantation (HCT), the minimal myeloid chimerism required for full T and B cell reconstitution in patients with severe combined immunodeficiency (SCID) is unknown. We retrospectively reviewed our experience with low-exposure busulfan (cumulative area under the curve, 30 mg·hr/L) in 10 SCID patients undergoing either first or repeat HCT from unrelated or haploidentical donors. The median busulfan dose required to achieve this exposure was 5.9 mg/kg (range, 4.8 to 9.1). With a median follow-up of 4.5 years all patients survived, with 1 requiring an additional HCT. Donor myeloid chimerism was generally >90% at 1 month post-HCT, but in most patients it fell during the next 3 months, such that 1-year median myeloid chimerism was 14% (range, 2% to 100%). Six of 10 patients had full T and B cell reconstitution, despite myeloid chimerism as low as 3%. Three patients have not recovered B cell function at over 2 years post-HCT, 2 of them in the setting of treatment with rituximab for post-HCT autoimmunity. Low-exposure busulfan was well tolerated and achieved sufficient myeloid chimerism for full immune reconstitution in over 50% of patients. However, other factors beyond busulfan exposure may also play critical roles in determining long-term myeloid chimerism and full T and B cell reconstitution.
Collapse
Affiliation(s)
- Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California.
| | - Janel Long-Boyle
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California; Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California
| | - Jasmeen Dara
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - Alexis Melton
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - Kristin A Shimano
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California; Division of Pediatric Hematology and Oncology, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - James N Huang
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California; Division of Pediatric Hematology and Oncology, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - Jennifer M Puck
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - Morna J Dorsey
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - Janelle Facchino
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - Catherine K Chang
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - Morton J Cowan
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| |
Collapse
|
31
|
Mechanism-Based Precision Therapy for the Treatment of Primary Immunodeficiency and Primary Immunodysregulatory Diseases. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:761-773. [DOI: 10.1016/j.jaip.2018.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
|
32
|
Gennery AR, Lankester A. Long Term Outcome and Immune Function After Hematopoietic Stem Cell Transplantation for Primary Immunodeficiency. Front Pediatr 2019; 7:381. [PMID: 31616648 PMCID: PMC6768963 DOI: 10.3389/fped.2019.00381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
Transplantation techniques for patients with primary immunodeficiencies have improved so that survival from the procedure in many cases is >80%. However, long term complications may arise due to the use or not of conditioning agents. This may result in variable immune reconstitution, the long term effects of chemotherapy, particularly on fertility, and complications relating to the genetic disorder, unresolved by transplantation. For patients with severe combined immunodeficiency (SCID), long term T- and B-lymphocyte immune reconstitution is best achieved after pre-transplant chemotherapy. For patients who receive an unconditioned infusion of donor stem cells, the quality of immune reconstitution depends on the SCID genotype. Long term effects include chemotherapy-induced impaired fertility, and sequelae specific to the genotype. For patients with other primary immunodeficiencies, conditioning is required-sequelae related to direct effects of chemotherapy may be observed. Additional long term effects may be observed due to partial donor chimerism resulting in incomplete eradication of disease, and other geno-specific effects.
Collapse
Affiliation(s)
- Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Arjan Lankester
- Stem Cell Transplantation Program, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
33
|
|
34
|
Yi ES, Choi YB, Lee NH, Lee JW, Sung KW, Koo HH, Kang ES, Kim YJ, Yoo KH. Allogeneic Hematopoietic Cell Transplantation in Patients with Primary Immunodeficiencies in Korea: Eleven-Year Experience in a Single Center. J Clin Immunol 2018; 38:757-766. [PMID: 30151618 DOI: 10.1007/s10875-018-0542-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE We aimed to report our single-center experience of allogeneic hematopoietic cell transplantation (HCT), which has been the only curative option for certain patients with lethal primary immunodeficiencies (PIDs). METHODS We summarized the results of HCT performed for patients with PIDs for 11 consecutive years from 2006 to 2016 at Samsung Medical Center, Seoul, Korea. Twenty-six patients with PIDs received HCT. Most had chronic granulomatous disease (42.3%), Wiskott Aldrich syndrome (15.4%), or severe combined immunodeficiency (11.5%). RESULTS Nine patients (34.6%) received HCT during the former half period and 17 patients (65.4%) during the latter half period. Donor types were categorized as: matched sibling donor (n = 5), unrelated donor (n = 17), and familial mismatched donor (FMMD) (n = 4). Unrelated HCT and FMMD transplantation were increasingly performed in the latter half period compared to the first (5 vs. 16, P = 0.034). Five patients experienced initial engraftment failure, but all of them were eventually engrafted after additional HCTs. The 3-year probability of overall survival was 72.0%. Seven patients (26.9%) died, and the causes of death were bacterial sepsis (n = 4), pneumonia (n = 1), chronic graft-versus-host disease (GVHD) (n = 1), and diffuse alveolar hemorrhage (n = 1). Two patients with bacterial sepsis and a patient with pneumonia also had chronic GVHD. Unrelated HCT and use of methotrexate were associated with poor outcome. Complete chimerism was attained in 85.0% at 1 year after HCT. CONCLUSION PID candidates have been increasingly identified for allogeneic HCT in Korea, and the majority of them could be cured by HCT. Establishment of a systematic registry of PID patients for HCT is needed.
Collapse
Affiliation(s)
- Eun Sang Yi
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Pediatrics, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Young Bae Choi
- Department of Pediatrics, Chungbuk National University Hospital, Cheongju, South Korea
| | - Na Hee Lee
- Department of Pediatrics, Cha Bundang Medical Centre, Cha University, Seongnam, South Korea
| | - Ji Won Lee
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ki Woong Sung
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hong Hoe Koo
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun-Sook Kang
- Departments of laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yae-Jean Kim
- Division of Pediatric Infectious Diseases and Immunodeficiency, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Keon Hee Yoo
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea. .,Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea. .,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea.
| |
Collapse
|
35
|
B-cell differentiation and IL-21 response in IL2RG/JAK3 SCID patients after hematopoietic stem cell transplantation. Blood 2018; 131:2967-2977. [PMID: 29728406 DOI: 10.1182/blood-2017-10-809822] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplant (HSCT) typically results in donor T-cell engraftment and function in patients with severe combined immunodeficiency (SCID), but humoral immunity, particularly when using donors other than matched siblings, is variable. B-cell function after HSCT for SCID depends on the genetic cause, the use of pre-HSCT conditioning, and whether donor B-cell chimerism is achieved. Patients with defects in IL2RG or JAK3 undergoing HSCT without conditioning often have poor B-cell function post-HSCT, perhaps as a result of impairment of IL-21 signaling in host-derived B cells. To investigate the effect of pre-HSCT conditioning on B-cell function, and the relationship of in vitro B-cell function to clinical humoral immune status, we analyzed 48 patients with IL2RG/JAK3 SCID who were older than 2 years after HSCT with donors other than matched siblings. T follicular helper cells (TFH) developed in these patients with kinetics similar to healthy young children; thus, poor B-cell function could not be attributed to a failure of TFH development. In vitro differentiation of B cells into plasmablasts and immunoglobulin secretion in response to IL-21 strongly correlated with the use of conditioning, donor B-cell engraftment, freedom from immunoglobulin replacement, and response to tetanus vaccine. Patients receiving immunoglobulin replacement who had normal serum immunoglobulin M showed poor response to IL-21 in vitro, similar to those with low serum IgM. In vitro response of B cells to IL-21 may predict clinically relevant humoral immune function in patients with IL2RG/JAK3 SCID after HSCT.
Collapse
|
36
|
Laberko A, Gennery AR. Clinical considerations in the hematopoietic stem cell transplant management of primary immunodeficiencies. Expert Rev Clin Immunol 2018; 14:297-306. [PMID: 29589971 DOI: 10.1080/1744666x.2018.1459189] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Primary immunodeficiencies (PID) are genetic immune disorders causing increased predisposition to infections and autoimmunity. The only curative procedure is hematopoietic stem cell transplantation (HSCT), results from which have improved dramatically since 2000. Complications remain a serious issue, especially in HLA non-identical transplantation. In PID patients, persistent infection and autoimmunity with end-organ damage cause particular problems with approach to transplantation. This article examines these, emphasising approach to management and consequences. Areas covered: It is challenging to know which patients should be offered HSCT. As new diseases are discovered, data are required to determine natural history, and HSCT outcomes. Treatment of adults can be challenging, although HSCT outcomes are encouraging. New methods of T-lymphocyte depletion show results comparable to those of matched sibling donor transplants. New cellular therapies to treat viral infections show promising results, and immunomodulatory methods are successful in treating acute graft-versus-host disease. Expert commentary: New T-lymphocyte depletion methods are a paradigm shift in approach to HSCT for PID. In combination with new cellular approaches to treating viral infection, immunomodulatory approaches to acute graft-versus-host disease and better understanding of endothelial activation syndromes, survival approaches 90%. Widespread introduction of newborn screening for severe combined immunodeficiencies will improve survival further.
Collapse
Affiliation(s)
- Alexandra Laberko
- a Immunology and Hematopoietic Stem Cell Transplantation Department , Dmitry Rogachev National Center for Pediatric Hematology, Oncology and Immunology , Moscow , Russia
| | - Andrew R Gennery
- b Primary Immunodeficiency Group, Institute of Cellular Medicine , Newcastle University , Newcastle upon Tyne , UK.,c Paediatric Immunology + HSCT , Great North Children's Hospital , Newcastle upon Tyne , UK
| |
Collapse
|
37
|
Stirnadel-Farrant H, Kudari M, Garman N, Imrie J, Chopra B, Giannelli S, Gabaldo M, Corti A, Zancan S, Aiuti A, Cicalese MP, Batta R, Appleby J, Davinelli M, Ng P. Gene therapy in rare diseases: the benefits and challenges of developing a patient-centric registry for Strimvelis in ADA-SCID. Orphanet J Rare Dis 2018; 13:49. [PMID: 29625577 PMCID: PMC5889583 DOI: 10.1186/s13023-018-0791-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Strimvelis (autologous CD34+ cells transduced to express adenosine deaminase [ADA]) is the first ex vivo stem cell gene therapy approved by the European Medicines Agency (EMA), indicated as a single treatment for patients with ADA-severe combined immunodeficiency (ADA-SCID) who lack a suitable matched related bone marrow donor. Existing primary immunodeficiency registries are tailored to transplantation outcomes and do not capture the breadth of safety and efficacy endpoints required by the EMA for the long-term monitoring of gene therapies. Furthermore, for extended monitoring of Strimvelis, the young age of children treated, small patient numbers, and broad geographic distribution of patients all increase the risk of loss to follow-up before sufficient data have been collected. Establishing individual investigator sites would be impractical and uneconomical owing to the small number of patients from each location receiving Strimvelis. Results An observational registry has been established to monitor the safety and effectiveness of Strimvelis in up to 50 patients over a minimum of 15 years. To address the potential challenges highlighted above, data will be collected by a single investigator site at Ospedale San Raffaele (OSR), Milan, Italy, and entered into the registry via a central electronic platform. Patients/families and the patient’s local physician will also be able to submit healthcare information directly to the registry using a uniquely designed electronic platform. Data entry will be monitored by a Gene Therapy Registry Centre (funded by GlaxoSmithKline) who will ensure that necessary information is collected and flows between OSR, the patient/family and the patient’s local healthcare provider. Conclusion The Strimvelis registry sets a precedent for the safety monitoring of future gene therapies. A unique, patient-focused design has been implemented to address the challenges of long-term follow-up of patients treated with gene therapy for a rare disease. Strategies to ensure data completeness and patient retention in the registry will help fulfil pharmacovigilance requirements. Collaboration with partners is being sought to expand from a treatment registry into a disease registry. Using practical and cost-efficient approaches, the Strimvelis registry is hoped to encourage further innovation in registry design within orphan drug development.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Michela Gabaldo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Ambra Corti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Zancan
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | - Pauline Ng
- GlaxoSmithKline, Brentford, Middlesex, UK
| |
Collapse
|
38
|
De Ravin SS, Li L, Wu X, Choi U, Allen C, Koontz S, Lee J, Theobald-Whiting N, Chu J, Garofalo M, Sweeney C, Kardava L, Moir S, Viley A, Natarajan P, Su L, Kuhns D, Zarember KA, Peshwa MV, Malech HL. CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Sci Transl Med 2018; 9:9/372/eaah3480. [PMID: 28077679 DOI: 10.1126/scitranslmed.aah3480] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/09/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Abstract
Gene repair of CD34+ hematopoietic stem and progenitor cells (HSPCs) may avoid problems associated with gene therapy, such as vector-related mutagenesis and dysregulated transgene expression. We used CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-associated 9) to repair a mutation in the CYBB gene of CD34+ HSPCs from patients with the immunodeficiency disorder X-linked chronic granulomatous disease (X-CGD). Sequence-confirmed repair of >20% of HSPCs from X-CGD patients restored the function of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase and superoxide radical production in myeloid cells differentiated from these progenitor cells in vitro. Transplant of gene-repaired X-CGD HSPCs into NOD (nonobese diabetic) SCID (severe combined immunodeficient) γc-/- mice resulted in efficient engraftment and production of functional mature human myeloid and lymphoid cells for up to 5 months. Whole-exome sequencing detected no indels outside of the CYBB gene after gene correction. CRISPR-mediated gene editing of HSPCs may be applicable to other CGD mutations and other monogenic disorders of the hematopoietic system.
Collapse
Affiliation(s)
- Suk See De Ravin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Linhong Li
- MaxCyte Inc., Gaithersburg, MD 20878, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Uimook Choi
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Sherry Koontz
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Janet Lee
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Narda Theobald-Whiting
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Chu
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary Garofalo
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colin Sweeney
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Ling Su
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Douglas Kuhns
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kol A Zarember
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Harry L Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Slatter MA, Gennery AR. Hematopoietic cell transplantation in primary immunodeficiency - conventional and emerging indications. Expert Rev Clin Immunol 2018; 14:103-114. [PMID: 29300535 DOI: 10.1080/1744666x.2018.1424627] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Hematopoietic stem cell transplantation (HSCT) is an established curative treatment for many primary immunodeficiencies. Advances in donor selection, graft manipulation, conditioning and treatment of complications, mean that survival for many conditions is now around 90%. Next generation sequencing is identifying new immunodeficiencies, many of which are treatable with HSCT. Challenges remain however with short and long-term sequalae. This article reviews latest developments in HSCT for conventional primary immunodeficiencies and presents data on outcome for emerging diseases, Areas covered: This article reviews recently published literature detailing advances, particularly in conditioning regimens and new methods of T-lymphocyte depletion, as well as new information regarding approach and out come of transplanting patients with conventional primary immunodeficiencies. The article reviews data regarding transplant outcomes for newly described primary immunodeficiencies, particularly those associated with gain-of-function mutations. Expert commentary: New methods of graft manipulation have had significant impact on HSCT outcomes, with the range of PIDs treated using T-lymphocyte depletion significantly expanded. Outcomes for newly described diseases with variable phenotypes and clinical features, transplanted when the diagnosis was unknown are beginning to be described, and will improve as patients are identified earlier, and targeted therapies such as JAK inhibitors are used as a bridge to transplantation.
Collapse
Affiliation(s)
- Mary A Slatter
- a Institute of Cellular Medicine , Newcastle University , Newcastle Upon Tyne , UK.,b Paediatric Immunology and HSCT , Great North Children's Hospital , Newcastle Upon Tyne , UK
| | - Andrew R Gennery
- a Institute of Cellular Medicine , Newcastle University , Newcastle Upon Tyne , UK.,b Paediatric Immunology and HSCT , Great North Children's Hospital , Newcastle Upon Tyne , UK
| |
Collapse
|
40
|
Thakar MS, Hintermeyer MK, Gries MG, Routes JM, Verbsky JW. A Practical Approach to Newborn Screening for Severe Combined Immunodeficiency Using the T Cell Receptor Excision Circle Assay. Front Immunol 2017; 8:1470. [PMID: 29167668 PMCID: PMC5682299 DOI: 10.3389/fimmu.2017.01470] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/19/2017] [Indexed: 11/17/2022] Open
Abstract
Severe combined immunodeficiency (SCID) is a life-threatening condition of newborns and infants caused by defects in genes involved in T cell development. Newborn screening (NBS) for SCID using the T cell receptor excision circle (TREC) assay began in Wisconsin in 2008 and has been adopted or is being implemented by all states in 2017. It has been established that NBS using the TREC assay is extremely sensitive to detect SCID in the newborn period. Some controversies remain regarding how screening positives are handled by individual states, including when to perform confirmatory flow cytometry, what is the necessary diagnostic workup of patients, what infection prophylaxis measures should be taken, and when hematopoietic stem cell transplantation should occur. In addition, the TREC can also assay detect infants with T cell lymphopenia who are not severe enough to be considered SCID; management of these infants is also evolving.
Collapse
Affiliation(s)
- Monica S Thakar
- Department of Pediatrics, Divisions of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Miranda G Gries
- Department of Pediatrics, Divisions of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John M Routes
- Department of Pediatrics, Division of Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - James W Verbsky
- Department of Pediatrics, Division of Rheumatology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
41
|
Heimall J, Cowan MJ. Long term outcomes of severe combined immunodeficiency: therapy implications. Expert Rev Clin Immunol 2017; 13:1029-1040. [PMID: 28918671 PMCID: PMC6019104 DOI: 10.1080/1744666x.2017.1381558] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/15/2017] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Newborn screening has led to a better understanding of the prevalence of Severe Combined Immunodeficiency (SCID) overall and in terms of specific genotypes. Survival has improved following hematopoietic stem cell transplantation (HCT) with the best outcomes seen following use of a matched sibling donor. However, questions remain regarding the optimal alternative donor source, appropriate use of conditioning and the impact of these decisions on immune reconstitution and other late morbidities. Areas covered: The currently available literature reporting late effects after HCT for SCID and use of alternative therapies including enzyme replacement, alternative donors and gene therapy are reviewed. A literature search was performed on Pubmed and ClinicalTrials.gov using key words 'Severe Combined Immunodeficiency', 'SCID', 'hematopoietic stem cell transplant', 'conditioning', 'gene therapy', 'SCID newborn screening', 'TREC' and 'late effects'. Expert commentary: Newborn screening has dramatically changed the clinical presentation of newborn SCID. While the majority of patients with SCID survive HCT, data regarding late effects in these patients is limited and additional studies focused on genotype specific late effects are needed. Prospective studies aimed at minimizing the use of alkylating agents and reducing late effects beyond survival are needed. Gene therapy is being developed and will likely become a more commonly used treatment that will require separate consideration of survival and late effects.
Collapse
Affiliation(s)
- Jennifer Heimall
- Allergy/Immunology Attending Physician, Perelman School of Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Morton J. Cowan
- Allergy Immunology and Blood and Marrow Transplant Division, University of California San Francisco, Benioff Children’s Hospital, San Francisco, CA, USA
| |
Collapse
|
42
|
Caruthers C, Fernandes H, Shams A, Rodrigues J, Knutsen AP, Bhatla D. Outcomes for Umbilical Cord Blood Transplantation in Severe Combined Immunodeficiency Disorders: Ten-Year Experience. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2017; 30:171-180. [PMID: 35923009 DOI: 10.1089/ped.2017.0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The treatment of severe combined immunodeficiency (SCID) is immune reconstitution using hematopoietic stem cell (HSC) transplantation early in life. HLA-identical related donors are the preferred source of HSCs. Since sibling donors are available in <30% of patients, other sources of HSCs are considered-mismatched related donor, umbilical cord blood (UCB), and matched unrelated donor bone marrow. We report the outcome of 10 patients with SCID or combined immunodeficiency (CID) 10 years after UCB transplantation (UCBT) at our institution using a retrospective chart review. Eight patients were alive 10 years post-transplantation. This was the second transplant for 2 patients due to initial transplant engraftment failure. Immunologic reconstitution was demonstrated after transplant with presence of memory T cells at 3 months, naive T cells at 12 months, B cells at 3 months, and normal tetanus/diphtheria toxoid antibody responses at 2 years. Immune response remained robust 10 years post-transplantation. Eight patients developed stage I acute graft-versus-host disease (GvHD), 2 patients developed grades 2-4 GvHD, and 1 child developed chronic GvHD with bronchiolitis obliterans. UCB should be considered as an alternative HSC source for patients with SCID and CID because of its robust and sustained recovery of immune function, low risk of severe GvHD, and accessibility.
Collapse
Affiliation(s)
- Carrie Caruthers
- Division Allergy and Immunology, Department of Pediatrics, Saint Louis University, St. Louis, Missouri
| | - Hermina Fernandes
- Division of Hematology and Oncology, Department of Internal Medicine, Saint Louis University, St. Louis, Missouri
| | - Alireza Shams
- Department of Pathology, Saint Louis University, St. Louis, Missouri
| | - Jonathan Rodrigues
- Division Allergy and Immunology, Department of Pediatrics, Saint Louis University, St. Louis, Missouri
| | - Alan P Knutsen
- Division Allergy and Immunology, Department of Pediatrics, Saint Louis University, St. Louis, Missouri
| | - Deepika Bhatla
- Division of Hematology and Oncology, Department of Pediatrics, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
43
|
Heikamp E, Martinez C. 50 Years Ago in The Journal of Pediatrics: Thymic Dysplasia ("Swiss Agammaglobulinemia"). I. Graft Versus Host Reaction following Bone-Marrow Transfusion. J Pediatr 2017; 184:37. [PMID: 28434577 DOI: 10.1016/j.jpeds.2016.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Emily Heikamp
- Department of Pediatrics Baylor College of Medicine Houston, Texas
| | - Caridad Martinez
- Department of Pediatrics Baylor College of Medicine Houston, Texas
| |
Collapse
|
44
|
Dvorak CC, Patel K, Puck JM, Wahlstrom J, Dorsey MJ, Adams R, Facchino J, Cowan MJ. Unconditioned unrelated donor bone marrow transplantation for IL7Rα- and Artemis-deficient SCID. Bone Marrow Transplant 2017; 52:1036-1038. [PMID: 28436970 DOI: 10.1038/bmt.2017.74] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- C C Dvorak
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - K Patel
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - J M Puck
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - J Wahlstrom
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - M J Dorsey
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - R Adams
- The Center for Cancer &Blood Disorders, Blood and Marrow Transplantation Division, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - J Facchino
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - M J Cowan
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
45
|
Heimall J, Puck J, Buckley R, Fleisher TA, Gennery AR, Neven B, Slatter M, Haddad E, Notarangelo LD, Baker KS, Dietz AC, Duncan C, Pulsipher MA, Cowan MJ. Current Knowledge and Priorities for Future Research in Late Effects after Hematopoietic Stem Cell Transplantation (HCT) for Severe Combined Immunodeficiency Patients: A Consensus Statement from the Second Pediatric Blood and Marrow Transplant Consortium International Conference on Late Effects after Pediatric HCT. Biol Blood Marrow Transplant 2017; 23:379-387. [PMID: 28068510 PMCID: PMC5659271 DOI: 10.1016/j.bbmt.2016.12.619] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
Abstract
Severe combined immunodeficiency (SCID) is 1 of the most common indications for pediatric hematopoietic cell transplantation (HCT) in patients with primary immunodeficiency. Historically, SCID was diagnosed in infants who presented with opportunistic infections within the first year of life. With newborn screening (NBS) for SCID in most of the United States, the majority of infants with SCID are now diagnosed and treated in the first 3.5 months of life; however, in the rest of the world, the lack of NBS means that most infants with SCID still present with infections. The average survival for SCID patients who have undergone transplantation currently is >70% at 3 years after transplantation, although this can vary significantly based on multiple factors, including age and infection status at the time of transplantation, type of donor source utilized, manipulation of graft before transplantation, graft-versus-host disease prophylaxis, type of conditioning (if any) utilized, and underlying genotype of SCID. In at least 1 study of SCID patients who received no conditioning, long-term survival was 77% at 8.7 years (range out to 26 years) after transplantation. Although a majority of patients with SCID will engraft T cells without any conditioning therapy, depending on genotype, donor source, HLA match, and presence of circulating maternal cells, a sizable percentage of these will fail to achieve full immune reconstitution. Without conditioning, T cell reconstitution typically occurs, although not always fully, whereas B cell engraftment does not, leaving some molecular types of SCID patients with intrinsically defective B cells, in most cases, dependent on regular infusions of immunoglobulin. Because of this, many centers have used conditioning with alkylating agents including busulfan or melphalan known to open marrow niches in attempts to achieve B cell reconstitution. Thus, it is imperative that we understand the potential late effects of these agents in this patient population. There are also nonimmunologic risks associated with HCT for SCID that appear to be dependent upon the genotype of the patient. In this report, we have evaluated the published data on late effects and attempted to summarize the known risks associated with conditioning and alternative donor sources. These data, while informative, are also a clear demonstration that there is still much to be learned from the SCID population in terms of their post-HCT outcomes. This paper will summarize current findings and recommend further research in areas considered high priority. Specific guidelines regarding a recommended approach to long-term follow-up, including laboratory and clinical monitoring, will be forthcoming in a subsequent paper.
Collapse
Affiliation(s)
- Jennifer Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer Puck
- Department of Pediatrics, Allergy, Immunology, and Blood and Marrow Transplant Division, University of California San Francisco, San Francisco, California
| | - Rebecca Buckley
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Thomas A Fleisher
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland
| | - Andrew R Gennery
- Department of Paediatric Immunology, Newcastle upon Tyne, United Kingdom Institute of Cellular Medicine, Newcastle upon Tyne University, United Kingdom
| | - Benedicte Neven
- Department of Immunology, Bone Marrow Transplantation, Hopital Necker Enfants Malades, Paris, France
| | - Mary Slatter
- Department of Paediatric Immunology, Newcastle upon Tyne, United Kingdom Institute of Cellular Medicine, Newcastle upon Tyne University, United Kingdom
| | - Elie Haddad
- Department of Pediatrics, Department of Microbiology, Infection and Immunology, University of Montreal, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Luigi D Notarangelo
- Laboratory of Host Defenses, NIAID, National Institutes of Health, Bethesda, Maryland
| | - K Scott Baker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Andrew C Dietz
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California
| | - Christine Duncan
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Michael A Pulsipher
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California.
| | - Mort J Cowan
- Department of Pediatrics, Allergy, Immunology, and Blood and Marrow Transplant Division, University of California San Francisco, San Francisco, California
| |
Collapse
|
46
|
Dorsey MJ, Dvorak CC, Cowan MJ, Puck JM. Treatment of infants identified as having severe combined immunodeficiency by means of newborn screening. J Allergy Clin Immunol 2017; 139:733-742. [PMID: 28270365 PMCID: PMC5385855 DOI: 10.1016/j.jaci.2017.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/30/2022]
Abstract
Severe combined immunodeficiency (SCID) is characterized by severely impaired T-cell development and is fatal without treatment. Newborn screening (NBS) for SCID permits identification of affected infants before development of opportunistic infections and other complications. Substantial variation exists between treatment centers with regard to pretransplantation care, and transplantation protocols for NBS identified infants with SCID, as well as infants with other T-lymphopenic disorders detected by using NBS. We developed approaches to management based on the study of infants identified by means of NBS for SCID who received care at the University of California, San Francisco (UCSF). From August 2010 through October 2016, 32 patients with NBS-identified SCID and leaky SCID from California and other states were treated, and 42 patients with NBS-identified non-SCID T-cell lymphopenia were followed. Our center's approach supports successful outcomes; systematic review of our practice provides a framework for diagnosis and management, recognizing that more data will continue to shape best practices.
Collapse
Affiliation(s)
- Morna J Dorsey
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif.
| | - Christopher C Dvorak
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif
| | - Morton J Cowan
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif
| | - Jennifer M Puck
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif
| |
Collapse
|
47
|
Cowan MJ, Kiem HP. Devouring the Hematopoietic Stem Cell: Setting the Table for Marrow Cell Transplantation. Mol Ther 2016; 24:1892-1894. [PMID: 27916993 PMCID: PMC5154489 DOI: 10.1038/mt.2016.193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Morton J Cowan
- Allergy Immunology and Blood and Marrow Transplant Division, UCSF Benioff Children's Hospital, San Francisco, California, USA.
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center and University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
48
|
Punwani D, Kawahara M, Yu J, Sanford U, Roy S, Patel K, Carbonaro DA, Karlen AD, Khan S, Cornetta K, Rothe M, Schambach A, Kohn DB, Malech HL, McIvor RS, Puck JM, Cowan MJ. Lentivirus Mediated Correction of Artemis-Deficient Severe Combined Immunodeficiency. Hum Gene Ther 2016; 28:112-124. [PMID: 27611239 DOI: 10.1089/hum.2016.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During B and T lymphocyte maturation, V(D)J recombination is initiated by creation of DNA double-strand breaks. Artemis is an exonuclease essential for their subsequent repair by nonhomologous end-joining. Mutations in DCLRE1C, the gene encoding Artemis, cause T-B-NK+ severe combined immunodeficiency (ART-SCID) and also confer heightened sensitivity to ionizing radiation and alkylating chemotherapy. Although allogeneic hematopoietic cell transplantation can treat ART-SCID, conditioning regimens are poorly tolerated, leading to early mortality and/or late complications, including short stature, endocrinopathies, and dental aplasia. However, without alkylating chemotherapy as preconditioning, patients usually have graft rejection or limited T cell and no B cell recovery. Thus, addition of normal DCLRE1C cDNA to autologous hematopoietic stem cells is an attractive strategy to treat ART-SCID. We designed a self-inactivating lentivirus vector containing human Artemis cDNA under transcriptional regulation of the human endogenous Artemis promoter (AProArt). Fibroblasts from ART-SCID patients transduced with AProArt lentivirus showed correction of radiosensitivity. Mobilized peripheral blood CD34+ cells from an ART-SCID patient as well as hematopoietic stem cells from Artemis-deficient mice demonstrated restored T and B cell development following AProArt transduction. Murine hematopoietic cells transduced with AProArt exhibited no increase in replating potential in an in vitro immortalization assay, and analysis of AProArt lentivirus insertions showed no predilection for sites that could activate oncogenes. These efficacy and safety findings support institution of a clinical trial of gene addition therapy for ART-SCID.
Collapse
Affiliation(s)
- Divya Punwani
- 1 Department of Pediatrics, University of California School of Medicine and University of California San Francisco Benioff Children's Hospital , San Francisco, San Francisco, California
| | - Misako Kawahara
- 1 Department of Pediatrics, University of California School of Medicine and University of California San Francisco Benioff Children's Hospital , San Francisco, San Francisco, California
| | - Jason Yu
- 1 Department of Pediatrics, University of California School of Medicine and University of California San Francisco Benioff Children's Hospital , San Francisco, San Francisco, California
| | - Ukina Sanford
- 1 Department of Pediatrics, University of California School of Medicine and University of California San Francisco Benioff Children's Hospital , San Francisco, San Francisco, California
| | - Sushmita Roy
- 1 Department of Pediatrics, University of California School of Medicine and University of California San Francisco Benioff Children's Hospital , San Francisco, San Francisco, California
| | - Kiran Patel
- 1 Department of Pediatrics, University of California School of Medicine and University of California San Francisco Benioff Children's Hospital , San Francisco, San Francisco, California
| | - Denise A Carbonaro
- 2 Departments of Microbiology, Immunology and Molecular Genetics and Pediatrics, University of California Los Angeles , Los Angeles, California
| | - Andrea D Karlen
- 3 Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis, Minnesota
| | - Sara Khan
- 1 Department of Pediatrics, University of California School of Medicine and University of California San Francisco Benioff Children's Hospital , San Francisco, San Francisco, California
| | - Kenneth Cornetta
- 4 Department of Medical and Molecular Genetics, Indiana University, and the Indiana University Viral Production Facility, Indianapolis, Indiana
| | - Michael Rothe
- 5 Institute for Experimental Hematology, Hannover Medical School , Hannover, Germany
| | - Axel Schambach
- 5 Institute for Experimental Hematology, Hannover Medical School , Hannover, Germany
| | - Donald B Kohn
- 2 Departments of Microbiology, Immunology and Molecular Genetics and Pediatrics, University of California Los Angeles , Los Angeles, California
| | - Harry L Malech
- 6 Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, National Institutes of Health , Bethesda, Maryland
| | - R Scott McIvor
- 3 Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis, Minnesota
| | - Jennifer M Puck
- 1 Department of Pediatrics, University of California School of Medicine and University of California San Francisco Benioff Children's Hospital , San Francisco, San Francisco, California
| | - Morton J Cowan
- 1 Department of Pediatrics, University of California School of Medicine and University of California San Francisco Benioff Children's Hospital , San Francisco, San Francisco, California
| |
Collapse
|
49
|
John T, Walter JE, Schuetz C, Chen K, Abraham RS, Bonfim C, Boyce TG, Joshi AY, Kang E, Carvalho BTC, Mahajerin A, Nugent D, Puthenveetil G, Soni A, Su H, Cowan MJ, Notarangelo L, Buchbinder D. Unrelated Hematopoietic Cell Transplantation in a Patient with Combined Immunodeficiency with Granulomatous Disease and Autoimmunity Secondary to RAG Deficiency. J Clin Immunol 2016; 36:725-32. [PMID: 27539235 DOI: 10.1007/s10875-016-0326-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
The use of HLA-identical hematopoietic stem cell transplantation (HSCT) demonstrates overall survival rates greater than 75 % for T-B-NK+ severe combined immunodeficiency secondary to pathogenic mutation of recombinase activating genes 1 and 2 (RAG1/2). Limited data exist regarding the use of HSCT in patients with hypomorphic RAG variants marked by greater preservation of RAG activity and associated phenotypes such as granulomatous disease in combination with autoimmunity. We describe a 17-year-old with combined immunodeficiency and immune dysregulation characterized by granulomatous lung disease and autoimmunity secondary to compound heterozygous RAG mutations. A myeloablative reduced toxicity HSCT was completed using an unrelated bone marrow donor. With the increasing cases of immune dysregulation being discovered with hypomorphic RAG variants, the use of HSCT may advance to the forefront of treatment. This case serves to discuss indications of HSCT, approaches to preparative therapy, and the potential complications in this growing cohort of patients with immune dysregulation and RAG deficiency.
Collapse
Affiliation(s)
- Tami John
- Division of Hematology/Oncology, CHOC Children's Hospital, 1201 W. La Veta Avenue, Orange, CA, 92868, USA.
| | - Jolan E Walter
- Division of Immunology, MassGeneral Hospital for Children, 55 Fruit Street, Boston, MA, 02114, USA
| | - Catherina Schuetz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Karin Chen
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Utah School of Medicine, 81 Mario Capecchi Drive, Salt Lake City, UT, USA
| | - Roshini S Abraham
- Allergy and Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Carmem Bonfim
- Bone Marrow Transplantation Unit, Federal University of Paraná, Rua XV de Novembro, 1299 - Centro, Curitiba, PR, 80060-000, Brazil
| | - Thomas G Boyce
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Avni Y Joshi
- Allergy and Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Elizabeth Kang
- NIAID, National Institutes of Health, Building 10CRC, Room 5-3940, 10 Center Drive, MSC 1456, Bethesda, MD, 20892-9806, USA
| | | | - Arash Mahajerin
- Division of Hematology, CHOC Children's Hospital, 1201 W. La Veta Avenue, Orange, CA, 92868, USA
| | - Diane Nugent
- Division of Hematology, CHOC Children's Hospital, 1201 W. La Veta Avenue, Orange, CA, 92868, USA
| | - Geetha Puthenveetil
- Division of Hematology, CHOC Children's Hospital, 1201 W. La Veta Avenue, Orange, CA, 92868, USA
| | - Amit Soni
- Division of Hematology, CHOC Children's Hospital, 1201 W. La Veta Avenue, Orange, CA, 92868, USA
| | - Helen Su
- NIAID, National Institutes of Health, Building 10CRC, Room 5-3940, 10 Center Drive, MSC 1456, Bethesda, MD, 20892-9806, USA
| | - Morton J Cowan
- Department of Pediatrics, University of California, San Francisco, Box 1278, UCSF, San Francisco, CA, 94143, USA
| | - Luigi Notarangelo
- Division of Immunology, Children's Hospital Boston, Karp Building, Room 10217, 1 Blackfan Circle, Boston, MA, 02115, USA
| | - David Buchbinder
- Division of Hematology, CHOC Children's Hospital, 1201 W. La Veta Avenue, Orange, CA, 92868, USA
| |
Collapse
|
50
|
Griffith LM, Cowan MJ, Notarangelo LD, Kohn DB, Puck JM, Shearer WT, Burroughs LM, Torgerson TR, Decaluwe H, Haddad E. Primary Immune Deficiency Treatment Consortium (PIDTC) update. J Allergy Clin Immunol 2016; 138:375-85. [PMID: 27262745 PMCID: PMC4986691 DOI: 10.1016/j.jaci.2016.01.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/26/2015] [Accepted: 01/14/2016] [Indexed: 12/26/2022]
Abstract
The Primary Immune Deficiency Treatment Consortium (PIDTC) is a collaboration of 41 North American centers studying therapy for rare primary immune deficiency diseases (PIDs), including severe combined immune deficiency (SCID), Wiskott-Aldrich syndrome (WAS), and chronic granulomatous disease (CGD). An additional 3 European centers have partnered with the PIDTC to study CGD. Natural history protocols of the PIDTC analyze outcomes of treatment for rare PIDs in multicenter longitudinal retrospective, prospective, and cross-sectional studies. Since 2009, participating centers have enrolled more than 800 subjects on PIDTC protocols for SCID, and enrollment in the studies on WAS and CGD is underway. Four pilot projects have been funded, and 12 junior investigators have received fellowship awards. Important publications of the consortium describe the outcomes of hematopoietic cell transplantation for SCID during 2000-2009, diagnostic criteria for SCID, and the pilot project of newborn screening for SCID in the Navajo Nation. The PIDTC Annual Scientific Workshops provide an opportunity to strengthen collaborations with junior investigators, patient advocacy groups, and international colleagues. Funded by the National Institute of Allergy and Infectious Diseases and the Office of Rare Diseases Research, National Center for Advancing Translational Sciences, the PIDTC has recently received renewal for another 5 years. Here we review accomplishments of the group, projects underway, highlights of recent workshops, and challenges for the future.
Collapse
Affiliation(s)
- Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Morton J Cowan
- Division of Allergy/Immunology and Blood and Marrow Transplantation, Department of Pediatrics and UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif
| | - Luigi D Notarangelo
- Division of Immunology, Children's Hospital, and Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Donald B Kohn
- Departments of Microbiology, Immunology & Molecular Genetics and Pediatrics, University of California Los Angeles, Los Angeles, Calif
| | - Jennifer M Puck
- Division of Allergy/Immunology and Blood and Marrow Transplantation, Department of Pediatrics and UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif
| | - William T Shearer
- Pediatric Allergy & Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Lauri M Burroughs
- Pediatric Hematology/Oncology, Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, Wash
| | - Troy R Torgerson
- Pediatric Rheumatology, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Wash
| | - Hélène Decaluwe
- Pediatric Immunology and Pediatrics, Mother and Child Ste-Justine Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Elie Haddad
- Pediatric Immunology and Pediatrics, Mother and Child Ste-Justine Hospital, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|