1
|
Tsuji S, Kuramoto Y, Rajbhandari S, Takeda Y, Yamahara K, Yoshimura S. Intravenous administration of human amnion-derived mesenchymal stem cells improves gait and sensory function in mouse models of spinal cord injury. Front Cell Dev Biol 2024; 12:1464727. [PMID: 39324071 PMCID: PMC11422150 DOI: 10.3389/fcell.2024.1464727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Spinal cord injury (SCI) leads to severe disabilities and remains a significant social and economic challenge. Despite advances in medical research, there are still no effective treatments for SCI. Human amnion-derived mesenchymal stem cells (hAMSCs) have shown potential due to their anti-inflammatory and neuroprotective effects. This study evaluates the therapeutic potential of intravenously administered hAMSCs in SCI models. Methods Three days after induction of SCI with forceps calibrated with a 0.2 mm gap, hAMSCs or vehicle were administered intravenously. Up to 4 weeks of SCI induction, motor function was assessed by scores on the Basso Mouse Locomotor Scale (BMS) and the Basso-Beattie-Bresnahan Scale (BBB), and sensory function by hindlimb withdrawal reflex using von Frey filaments. Six weeks after SCI induction, gait function was assessed using three-dimensional motion analysis. Immunohistochemistry, polymerase chain reaction (PCR), flow cytometry, and ELISA assay were performed to clarify the mechanisms of functional improvement. Results The hAMSC treatment significantly improved sensory response and gait function. In the SCI site, immunohistochemistry showed a reduction in Iba1-positive cells and PCR revealed decreased TNFα and increased BDNF levels in the hAMSC-treated group. In assessing the systemic inflammatory response, hAMSC treatment reduced monocytic bone marrow-derived suppressor cells (M-MDSCs) and Ly6C-positive inflammatory macrophages in the bone marrow by flow cytometry and serum NO levels by ELISA assay. Discussion This study demonstrates the therapeutic potential of the hAMSC in SCI, with improvements in gait and sensory functions and reduced inflammation both locally and systemically. The findings support further investigation of the hAMSC as a potential treatment for SCI, focusing on their ability to modulate inflammation and promote neuroprotection.
Collapse
Affiliation(s)
- Shoichiro Tsuji
- Department of Neurosurgery, Hyogo Medical University, Hyogo, Japan
| | - Yoji Kuramoto
- Department of Neurosurgery, Hyogo Medical University, Hyogo, Japan
| | | | - Yuki Takeda
- Department of Neurosurgery, Hyogo Medical University, Hyogo, Japan
| | - Kenichi Yamahara
- Laboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, Hyogo, Japan
| | | |
Collapse
|
2
|
Zhang M, Wan Y, Han J, Li J, Gong H, Mu X. The clinical association of programmed death-1/PD-L1 axis, myeloid derived suppressor cells subsets and regulatory T cells in peripheral blood of stable COPD patients. PeerJ 2024; 12:e16988. [PMID: 38560459 PMCID: PMC10981408 DOI: 10.7717/peerj.16988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) have crucial immunosuppressive role in T cell dysfunction in various disease processes. However, the role of MDSCs and their impact on Tregs in COPD have not been fully understood. The aim of the present study is to investigate the immunomodulatory role of MDSCs and their potential impact on the expansion and function of Tregs in COPD patients. Methods Peripheral blood samples were collected to analyze circulating MDSCs, Tregs, PD-1/PD-L1 expression to assess the immunomodulatory role of MDSC and their potential impact on the expansion and function of Treg in COPD. A total of 54 COPD patients and 24 healthy individuals were enrolled in our study. Flow cytometric analyses were performed to identify granulocytic MDSCs (G-MDSCs), monocytic MDSCs (M-MDSCs), Tregs, and the expression of PD-1/PD-L1(L2) on MDSCs and Tregs in peripheral blood. Results Our results revealed a significantly higher percentage of G-MDSCs and M-MDSCs (p < 0.001) in COPD patients compared to the healthy controls. Additionally, a significantly higher proportion of peripheral blood Tregs was observed in COPD patients. Furthermore, an increased expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) on Tregs (p < 0.01) was detected in COPD patients. The expression of PD-1 on CD4+ Tcells and Tregs, but not CD8+Tcells, was found to be increased in patients with COPD compared to controls. Furthermore, an elevated expression of PD-L1 on M-MDSCs (p < 0.01) was also observed in COPD patients. A positive correlation was observed between the accumulation of M-MDSCs and Tregs in COPD patients. Additionally, the percentage of circulating M-MDSCs is positively associated with the level of PD-1 (r = 0.51, p < 0.0001) and CTLA-4 (r = 0.42, p = 0.0014) on Tregs in COPD. Conclusion The recruitment of MDSCs, accumulation of Tregs, and up-regulation of CTLA-4 on Treg in COPD, accompanied by an increased level of PD-1/PD-L1, suggest PD-1/PD-L1 axis may be potentially involved in MDSCs-induced the expansion and activation of Treg at least partially in COPD.
Collapse
Affiliation(s)
- Mingqiang Zhang
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yinghua Wan
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jie Han
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jun Li
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Haihong Gong
- Affiliated Hospital of Qingdao University Medical College, Department of Respiratory and Critical Care Medicine, Qingdao, China
| | - Xiangdong Mu
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Lu HN, Fu Z, Chen X, Yang MM, Chen YF, Yang LL. Shegan Mahuang Decoction May Reduce Airway Inflammation in Neutrophilic Asthmatic Mice by Improving the Mitochondrial Function of Bronchoalveolar Lavage Fluid Exosomes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2477510. [PMID: 36578267 PMCID: PMC9792254 DOI: 10.1155/2022/2477510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Asthma is a common pulmonary disease mainly caused by the infiltration of neutrophils. There is a limit to the therapeutic effects of the available asthma drugs on neutrophilic asthma. Shegan Mahuang Decoction (SMD) is one of the representative traditional Chinese medicine (TCM) prescriptions for asthma, and it can effectively relieve the clinical symptoms of patients. However, the effect of SMD on the treatment of neutrophilic asthma remains unknown. In this study, a mouse model of neutrophilic asthma induced by lipopolysaccharide (LPS)/ovalbumin (OVA) was established, and the effect of a modified SMD prescription on the model was evaluated. After treatment, SMD was demonstrated to be therapeutically effective on asthmatic mice via airway resistance detection and lung pathology and was able to affect cytokine levels in vivo. Further experiments verified that SMD regulated the expression of mitochondrial function proteins in bronchoalveolar lavage fluid (BALF) exosomes. The results demonstrate that SMD confers a therapeutic effect on a neutrophilic asthma mouse model, and it may reduce neutrophil airway inflammation by regulating myeloid-derived regulatory cell (MDRC) function and airway exosome mitochondrial function.
Collapse
Affiliation(s)
- Hui-na Lu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, Chongqing Key Laboratory of Pediatrics, China
- Department of Pediatrics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zhou Fu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, Chongqing Key Laboratory of Pediatrics, China
| | - Xia Chen
- Department of Pediatrics, 958 Hospital of Army PLA, Chongqing, China
| | - Ming-ming Yang
- Department of Pediatrics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yun-fang Chen
- Department of Pediatrics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Li-li Yang
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, Chongqing Key Laboratory of Pediatrics, China
| |
Collapse
|
4
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
5
|
Zissler UM, Jakwerth CA, Guerth F, Lewitan L, Rothkirch S, Davidovic M, Ulrich M, Oelsner M, Garn H, Schmidt‐Weber CB, Chaker AM. Allergen-specific immunotherapy induces the suppressive secretoglobin 1A1 in cells of the lower airways. Allergy 2021; 76:2461-2474. [PMID: 33528894 DOI: 10.1111/all.14756] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND While several systemic immunomodulatory effects of allergen-specific immunotherapy (AIT) have been discovered, local anti-inflammatory mechanisms in the respiratory tract are largely unknown. We sought to elucidate local and epithelial mechanisms underlying allergen-specific immunotherapy in a genome-wide approach. METHODS We induced sputum in hay fever patients and healthy controls during the pollen peak season and stratified patients by effective allergen immunotherapy or as untreated. Sputum was directly processed after induction and subjected to whole transcriptome RNA microarray analysis. Nasal secretions were analyzed for Secretoglobin1A1 (SCGB1A1) and IL-24 protein levels in an additional validation cohort at three defined time points during the 3-year course of AIT. Subsequently, RNA was extracted and subjected to an array-based whole transcriptome analysis. RESULTS Allergen-specific immunotherapy inhibited pro-inflammatory CXCL8, IL24, and CCL26mRNA expression, while SCGB1A1, IL7, CCL5, CCL23, and WNT5BmRNAs were induced independently of the asthma status and allergen season. In our validation cohort, local increase of SCGB1A1 occurred concomitantly with the reduction of local IL-24 in upper airways during the course of AIT. Additionally, SCGB1A1 was identified as a suppressor of epithelial gene expression. CONCLUSIONS Allergen-specific immunotherapy induces a yet unknown local gene expression footprint in the lower airways that on one hand appears to be a result of multiple regulatory pathways and on the other hand reveals SCGB1A1 as novel anti-inflammatory mediator of long-term allergen-specific therapeutic intervention in the local environment.
Collapse
Affiliation(s)
- Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Member of the Helmholtz I&I Initiative Munich Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
| | - Larissa Lewitan
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Sandra Rothkirch
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Miodrag Davidovic
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Moritz Ulrich
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Madlen Oelsner
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry Philipps University MarburgMedical FacultyMember of the German Center of Lung Research Marburg Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Member of the Helmholtz I&I Initiative Munich Germany
| | - Adam M. Chaker
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| |
Collapse
|
6
|
van Geffen C, Deißler A, Beer-Hammer S, Nürnberg B, Handgretinger R, Renz H, Hartl D, Kolahian S. Myeloid-Derived Suppressor Cells Dampen Airway Inflammation Through Prostaglandin E2 Receptor 4. Front Immunol 2021; 12:695933. [PMID: 34322123 PMCID: PMC8311661 DOI: 10.3389/fimmu.2021.695933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023] Open
Abstract
Emerging evidence suggests a mechanistic role for myeloid-derived suppressor cells (MDSCs) in lung diseases like asthma. Previously, we showed that adoptive transfer of MDSCs dampens lung inflammation in murine models of asthma through cyclooxygenase-2 and arginase-1 pathways. Here, we further dissected this mechanism by studying the role and therapeutic relevance of the downstream mediator prostaglandin E2 receptor 4 (EP4) in a murine model of asthma. We adoptively transferred MDSCs generated using an EP4 agonist in a murine model of asthma and studied the consequences on airway inflammation. Furthermore, pegylated human arginase-1 was used to model MDSC effector activities. We demonstrate that the selective EP4 agonist L-902,688 increased the number and suppressive activity of MDSCs through arginase-1 and nitric oxide synthase-2. These results showed that adoptive transfer of EP4-primed MDSCs, EP4 agonism alone or arginase-1 administration ameliorated lung inflammatory responses and histopathological changes in asthmatic mice. Collectively, our results provide evidence that MDSCs dampen airway inflammation in murine asthma through a mechanism involving EP4.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Dermatophagoides/immunology
- Arginase/metabolism
- Arginase/pharmacology
- Arthropod Proteins/immunology
- Asthma/immunology
- Asthma/metabolism
- Asthma/therapy
- Cells, Cultured
- Cytokines/metabolism
- Dinoprostone/pharmacology
- Disease Models, Animal
- Female
- Lung/drug effects
- Lung/immunology
- Lung/metabolism
- Mice, Inbred BALB C
- Myeloid-Derived Suppressor Cells/drug effects
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- Myeloid-Derived Suppressor Cells/transplantation
- Nitric Oxide Synthase Type II/metabolism
- Pneumonia/immunology
- Pneumonia/metabolism
- Pneumonia/therapy
- Pyroglyphidae/immunology
- Pyrrolidinones/pharmacology
- Receptors, Prostaglandin E, EP2 Subtype/agonists
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/agonists
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Signal Transduction
- Tetrazoles/pharmacology
- Mice
Collapse
Affiliation(s)
- Chiel van Geffen
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany
- Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Astrid Deißler
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy & Toxicology and Interfaculty Center of Pharmacogenomics & Drug Research (IZePhA), University Hospitals and Clinics, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy & Toxicology and Interfaculty Center of Pharmacogenomics & Drug Research (IZePhA), University Hospitals and Clinics, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Children’s University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany
- Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Dominik Hartl
- Department of Pediatrics I, Eberhard Karls University of Tübingen, Tübingen, Germany
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany
- Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
7
|
Huang F, Jia H, Zou Y, Yao Y, Deng Z. Exosomes: an important messenger in the asthma inflammatory microenvironment. J Int Med Res 2021; 48:300060520903220. [PMID: 32096421 PMCID: PMC7111029 DOI: 10.1177/0300060520903220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Feng Huang
- The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, China.,The Maternity and Child Care Hospital of Kunshan, Suzhou, China
| | - Haoyuan Jia
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yingfen Zou
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yongliang Yao
- The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, China.,The Maternity and Child Care Hospital of Kunshan, Suzhou, China
| | - Zhiyong Deng
- The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, China
| |
Collapse
|
8
|
Extracellular Vesicles and Asthma-More Than Just a Co-Existence. Int J Mol Sci 2021; 22:ijms22094984. [PMID: 34067156 PMCID: PMC8124625 DOI: 10.3390/ijms22094984] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous structures, which are secreted by almost every cell type analyzed so far. In addition to their importance for cell-cell communication under physiological conditions, EVs are also released during pathogenesis and mechanistically contribute to this process. Here we summarize their functional relevance in asthma, one of the most common chronic non-communicable diseases. Asthma is a complex persistent inflammatory disorder of the airways characterized by reversible airflow obstruction and, from a long-term perspective, airway remodeling. Overall, mechanistic studies summarized here indicate the importance of different subtypes of EVs and their variable cargoes in the functioning of the pathways underlying asthma, and show some interesting potential for the development of future therapeutic interventions. Association studies in turn demonstrate a good diagnostic potential of EVs in asthma.
Collapse
|
9
|
Chen Z, Zhang X, Lv S, Xing Z, Shi M, Li X, Chen M, Zuo S, Tao Y, Xiao G, Liu J, He Y. Treatment With Endothelin-A Receptor Antagonist BQ123 Attenuates Acute Inflammation in Mice Through T-Cell-Dependent Polymorphonuclear Myeloid-Derived Suppressor Cell Activation. Front Immunol 2021; 12:641874. [PMID: 33828553 PMCID: PMC8019801 DOI: 10.3389/fimmu.2021.641874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
The endothelin-A receptor antagonist BQ123 is an effective treatment agent for hypertension and obese cardiomyopathy. However, the role of BQ123 in controlling acute inflammatory diseases and its underlying mechanisms are not well understood. Here, we showed that BQ123 activated polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in mice and that the IL13/STAT6/Arg1 signaling pathway is involved in this process. Importantly, both treatment with BQ123 and the transfer of BQ123-induced PMN-MDSCs (BQ123-MDSCs) were effective in relieving inflammation, including dextran sulfate sodium (DSS)-induced colitis, papain-induced pneumonia, and concanavalin A (ConA)-induced hepatitis, in mice. The treatment effects were mediated by the attenuation of the inflammation associated with the accumulation of PMN-MDSCs in the colon, lung, and liver. However, concurrent injection of Gr1 agonistic antibody with BQ123 induced PMN-MDSC aggravated the observed acute inflammation. Interestingly, no remission of inflammation was observed in Rag2 knockout mice administered BQ123-MDSCs, but co-injection with CD3+ T cells significantly relieved acute inflammation. In summary, BQ123-induced PMN-MDSCs attenuated acute inflammation in a T cell-dependent manner, providing a novel potential strategy to prevent the occurrence of acute inflammation.
Collapse
Affiliation(s)
- Ziyang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaogang Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuaijun Lv
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhe Xing
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mengyu Shi
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiqi Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaowen Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yingxu Tao
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Gang Xiao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Jingping Liu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Yumei He
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Bartel S, Deshane J, Wilkinson T, Gabrielsson S. Extracellular Vesicles as Mediators of Cellular Cross Talk in the Lung Microenvironment. Front Med (Lausanne) 2020; 7:326. [PMID: 32850874 PMCID: PMC7417309 DOI: 10.3389/fmed.2020.00326] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/03/2020] [Indexed: 12/27/2022] Open
Abstract
The human lung is a complex tissue subdivided into several regions that differ in size, function, and resident cell types. Despite years of intensive research, we still do not fully understand the cross talk between these different regions and diverse cell populations in the lung and how this is altered in the development of chronic respiratory disease. The discovery of extracellular vesicles (EVs), small membrane vesicles released from cells for intercellular communication, has added another layer of complexity to cellular cross talk in the complex lung microenvironment. EVs from patients with chronic obstructive pulmonary disease, asthma, or sarcoidosis have been shown to carry microRNAs, proteins, and lipids that may contribute to inflammation or tissue degeneration. Here, we summarize the contribution of these small vesicles in the interplay of several different cell types in the lung microenvironment, with a focus on the development of chronic respiratory diseases. Although there are already many studies demonstrating the adverse effects of EVs in the diseased lung, we still have substantial knowledge gaps regarding the concrete role of EV involvement in lung disease, which should be addressed in future studies.
Collapse
Affiliation(s)
- Sabine Bartel
- Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jessy Deshane
- Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tom Wilkinson
- Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Susanne Gabrielsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway Remodeling in Asthma. Front Med (Lausanne) 2020; 7:191. [PMID: 32509793 PMCID: PMC7253669 DOI: 10.3389/fmed.2020.00191] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Asthma is an inflammatory disease of the airways that may result from exposure to allergens or other environmental irritants, resulting in bronchoconstriction, wheezing, and shortness of breath. The structural changes of the airways associated with asthma, broadly referred to as airway remodeling, is a pathological feature of chronic asthma that contributes to the clinical manifestations of the disease. Airway remodeling in asthma constitutes cellular and extracellular matrix changes in the large and small airways, epithelial cell apoptosis, airway smooth muscle cell proliferation, and fibroblast activation. These pathological changes in the airway are orchestrated by crosstalk of different cell types within the airway wall and submucosa. Environmental exposures to dust, chemicals, and cigarette smoke can initiate the cascade of pro-inflammatory responses that trigger airway remodeling through paracrine signaling and mechanostimulatory cues that drive airway remodeling. In this review, we explore three integrated and dynamic processes in airway remodeling: (1) initiation by epithelial cells; (2) amplification by immune cells; and (3) mesenchymal effector functions. Furthermore, we explore the role of inflammaging in the dysregulated and persistent inflammatory response that perpetuates airway remodeling in elderly asthmatics.
Collapse
Affiliation(s)
- Kenneth P Hough
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Miranda L Curtiss
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Trevor J Blain
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rui-Ming Liu
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer Trevor
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessy S Deshane
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor J Thannickal
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Lian M, Zhang J, Zhao L, Chen X, Peng Y, Wang Q, Chen S, Ma X. Interleukin-35 Regulates Immune Microenvironment of Autoimmune Hepatitis Through Inducing the Expansion of Myeloid-Derived Suppressor Cells. Front Immunol 2019; 10:2577. [PMID: 31787974 PMCID: PMC6854006 DOI: 10.3389/fimmu.2019.02577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/17/2019] [Indexed: 12/26/2022] Open
Abstract
Interleukin-35 (IL-35) is a novel anti-inflammatory cytokine of IL12 cytokine family, however, the role of IL-35 in patients with AIH and its effect on myeloid-derived suppressor cells (MDSCs) has not yet been analyzed. The expression of IL-35 subunits (p35 and EBI3) in liver tissues was quantified by immunochemistry and its correlation with clinical parameters was explored in patients with AIH. The expression of MDSCs and IL-35 receptor (gp130 and IL-12Rβ2) were analyzed using flow cytometry and confocal staining. Besides, we utilized in vitro culture to explore the role of IL-35 on MDSCs expansion and activation. We found that the elevated expression of both IL-35 subunits (EBI3 and p35) in liver tissue was positively associated with degrees of hepatic inflammatory and fibrosis in patients with AIH. Furthermore, the expression of EBI3 in liver was positively correlated with patient age, serum IgG levels and serum AST, and was negatively correlated with hemoglobin and albumin. Moreover, our results showed that ratio of MDSC in peripheral blood increased significantly in AIH patients as compared with healthy controls. Further study showed that CD33, a representative marker of MDSCs, co-localized well with gp130 and IL12Rβ2, suggesting MDSCs as target cell for IL-35. Consistently, MDSCs from AIH displayed a substantial higher abundance of gp130 and IL12Rβ2 and were expanded by IL-35 in vitro. IL-35-induced MDSCs showed a significant increase in Nitric oxide (NO) production but not reactive oxygen species (ROS). Conclusions: IL-35 might play an important role in AIH by regulating MDSCs and it could provide new insights into the therapy of AIH.
Collapse
Affiliation(s)
- Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Li Zhao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiang Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yanshen Peng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Shengliang Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
13
|
Guan Q, Yang B, Warrington RJ, Mink S, Kalicinsky C, Becker AB, Simons E, Peng Z. Myeloid-derived suppressor cells: Roles and relations with Th2, Th17, and Treg cells in asthma. Allergy 2019; 74:2233-2237. [PMID: 31006124 DOI: 10.1111/all.13829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Qingdong Guan
- Department of Pediatrics and Child Health University of Manitoba Winnipeg Manitoba Canada
- Department of Immunology University of Manitoba Winnipeg Manitoba Canada
- Department of Internal Medicine University of Manitoba Winnipeg Manitoba Canada
- Cellular Therapy LaboratoryCancerCare Manitoba Winnipeg Manitoba Canada
- Research Institute in Oncology and HematologyCancerCare Manitoba Winnipeg Manitoba Canada
| | - Bin Yang
- Department of Pediatrics and Child Health University of Manitoba Winnipeg Manitoba Canada
| | - Richard J. Warrington
- Department of Immunology University of Manitoba Winnipeg Manitoba Canada
- Department of Internal Medicine University of Manitoba Winnipeg Manitoba Canada
| | - Steven Mink
- Department of Internal Medicine University of Manitoba Winnipeg Manitoba Canada
| | | | - Allan B. Becker
- Department of Pediatrics and Child Health University of Manitoba Winnipeg Manitoba Canada
- Department of Immunology University of Manitoba Winnipeg Manitoba Canada
| | - Elinor Simons
- Department of Pediatrics and Child Health University of Manitoba Winnipeg Manitoba Canada
| | - Zhikang Peng
- Department of Pediatrics and Child Health University of Manitoba Winnipeg Manitoba Canada
- Department of Immunology University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
14
|
Pawelec G, Verschoor CP, Ostrand-Rosenberg S. Myeloid-Derived Suppressor Cells: Not Only in Tumor Immunity. Front Immunol 2019; 10:1099. [PMID: 31156644 PMCID: PMC6529572 DOI: 10.3389/fimmu.2019.01099] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Since the realization that immature myeloid cells are powerful modulators of the immune response, many studies on “myeloid-derived suppressor cells” (MDSCs) have documented their ability to promote tumor progression in melanoma and other cancers. Whether MDSCs are induced solely pathologically in tumorigenesis, or whether they also represent physiological immune control mechanisms, is not well-understood, but is particularly important in the light of ongoing attempts to block their activities in order to enhance anti-tumor immunity. Here, we briefly review studies which explore (1) how best to identify MDSCs in the context of cancer and how this compares to other conditions in humans; (2) what the suppressive mechanisms of MDSCs are and how to target them pharmacologically; (3) whether levels of MDSCs with various phenotypes are informative for clinical outcome not only in cancer but also other diseases, and (4) whether MDSCs are only found under pathological conditions or whether they also represent a physiological regulatory mechanism for the feedback control of immunity. Studies unequivocally document that MDSCs strongly influence cancer outcomes, but are less informative regarding their relevance to infection, autoimmunity, transplantation and aging, especially in humans. So far, the results of clinical interventions to reverse their negative effects in cancer have been disappointing; thus, developing differential approaches to modulate MSDCs in cancer and other diseases without unduly comprising any normal physiological function requires further exploration.
Collapse
Affiliation(s)
- Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Chris P Verschoor
- Health Sciences North Research Institute, Sudbury, ON, Canada.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Suzanne Ostrand-Rosenberg
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW This review will cover what is known regarding exosomes and allergy, and furthermore discuss novel mechanism of exosome-mediated immune modulation and metabolic regulation via the transfer of mitochondria. RECENT FINDINGS Exosomes are nano-sized extracellular vesicles (EVs) derived from the endosome that play a direct role in governing physiological and pathological conditions by transferring bioactive cargo such as proteins, enzymes, nucleic acids (miRNA, mRNA, DNA), and metabolites. Recent evidence suggest that exosomes may signal in autocrine but, most importantly, in paracrine and endocrine manner, being taken up by neighboring cells or carried to distant sites. Exosomes also mediate immunogenic responses, such as antigen presentation and inflammation. In asthma and allergy, exosomes facilitate cross-talk between immune and epithelial cells, and drive site-specific inflammation through the generation of pro-inflammatory mediators like leukotrienes. Recent studies suggest that myeloid cell-generated exosomes transfer mitochondria to lymphocytes. Exosomes are nano-sized mediators of the immune system which can modulate responses through antigen presentation, and the transfer of pro- and anti-inflammatory mediators. In addition to conventional mechanisms of immune modulation, exosomes may act as a novel courier of functional mitochondria that is capable of modulating the recipient cells bioenergetics, resulting in altered cellular responses. The transfer of mitochondria and modulation of bioenergetics may result in immune activation or dampening depending on the context.
Collapse
Affiliation(s)
- K P Hough
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, 1900 University Boulevard, THT-433, Birmingham, AL, 35294, USA
| | - J S Deshane
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, 1900 University Boulevard, THT-433, Birmingham, AL, 35294, USA.
| |
Collapse
|
16
|
Sendo S, Saegusa J, Morinobu A. Myeloid-derived suppressor cells in non-neoplastic inflamed organs. Inflamm Regen 2018; 38:19. [PMID: 30237829 PMCID: PMC6139938 DOI: 10.1186/s41232-018-0076-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are a highly heterogeneous population of immature myeloid cells with immunosuppressive function. Although their function in tumor-bearing conditions is well studied, less is known about the role of MDSCs in various organs under non-neoplastic inflammatory conditions. MAIN BODY MDSCs are divided into two subpopulations, G-MDSCs and M-MDSCs, and their distribution varies between organs. MDSCs negatively control inflammation in inflamed organs such as the lungs, joints, liver, kidneys, intestines, central nervous system (CNS), and eyes by suppressing T cells and myeloid cells. MDSCs also regulate fibrosis in the lungs, liver, and kidneys and help repair CNS injuries. MDSCs in organs are plastic and can differentiate into osteoclasts and tolerogenic dendritic cells according to the microenvironment under non-neoplastic inflammatory conditions. CONCLUSION This article summarizes recent findings about MDSCs under inflammatory conditions, especially with respect to their function and differentiation in specific organs.
Collapse
Affiliation(s)
- Sho Sendo
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Jun Saegusa
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
- Division of Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Akio Morinobu
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| |
Collapse
|
17
|
Liu ZQ, Feng Y, Mo LH, Zeng XH, Liu JQ, Xie RD, Liu ZG, Yang PC, Zhang GJ, Wu SD. Bcl2-like protein 12 plays a critical role in development of airway allergy through inducing aberrant T H2 polarization. J Allergy Clin Immunol 2018; 143:427-430.e8. [PMID: 30227178 DOI: 10.1016/j.jaci.2018.07.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 07/14/2018] [Accepted: 07/27/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Zhi-Qiang Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co, Ltd, Hangzhou, China; Research Center of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China; Longgang ENT Hospital and the Shenzhen ENT Institute, Shenzhen, China
| | - Ying Feng
- Hangzhou Zheda Dixun Biological Gene Engineering Co, Ltd, Hangzhou, China
| | - Li-Hua Mo
- Department of Pediatric Otolaryngology, Shenzhen Hospital of Southern Medical University, Shenzhen, China, and Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xian-Hai Zeng
- Research Center of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China
| | - Jiang-Qi Liu
- Research Center of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China; Longgang ENT Hospital and the Shenzhen ENT Institute, Shenzhen, China
| | - Rui-Di Xie
- Research Center of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China
| | - Zhi-Gang Liu
- Research Center of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China
| | - Ping-Chang Yang
- Research Center of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China.
| | | | - Shan-Dong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co, Ltd, Hangzhou, China.
| |
Collapse
|
18
|
Hough KP, Wilson LS, Trevor JL, Strenkowski JG, Maina N, Kim YI, Spell ML, Wang Y, Chanda D, Dager JR, Sharma NS, Curtiss M, Antony VB, Dransfield MT, Chaplin DD, Steele C, Barnes S, Duncan SR, Prasain JK, Thannickal VJ, Deshane JS. Unique Lipid Signatures of Extracellular Vesicles from the Airways of Asthmatics. Sci Rep 2018; 8:10340. [PMID: 29985427 PMCID: PMC6037776 DOI: 10.1038/s41598-018-28655-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/27/2018] [Indexed: 12/30/2022] Open
Abstract
Asthma is a chronic inflammatory disease process involving the conductive airways of the human lung. The dysregulated inflammatory response in this disease process may involve multiple cell-cell interactions mediated by signaling molecules, including lipid mediators. Extracellular vesicles (EVs) are lipid membrane particles that are now recognized as critical mediators of cell-cell communication. Here, we compared the lipid composition and presence of specific lipid mediators in airway EVs purified from the bronchoalveolar lavage (BAL) fluid of healthy controls and asthmatic subjects with and without second-hand smoke (SHS) exposure. Airway exosome concentrations were increased in asthmatics, and correlated with blood eosinophilia and serum IgE levels. Frequencies of HLA-DR+ and CD54+ exosomes were also significantly higher in asthmatics. Lipidomics analysis revealed that phosphatidylglycerol, ceramide-phosphates, and ceramides were significantly reduced in exosomes from asthmatics compared to the non-exposed control groups. Sphingomyelin 34:1 was more abundant in exosomes of SHS-exposed asthmatics compared to healthy controls. Our results suggest that chronic airway inflammation may be driven by alterations in the composition of lipid mediators within airway EVs of human subjects with asthma.
Collapse
Affiliation(s)
- Kenneth P Hough
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Landon S Wilson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer L Trevor
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John G Strenkowski
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Njeri Maina
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Young-Il Kim
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marion L Spell
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yong Wang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Diptiman Chanda
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jose Rodriguez Dager
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nirmal S Sharma
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Miranda Curtiss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Veena B Antony
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark T Dransfield
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David D Chaplin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad Steele
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven R Duncan
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeevan K Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessy S Deshane
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
19
|
Hough KP, Trevor JL, Strenkowski JG, Wang Y, Chacko BK, Tousif S, Chanda D, Steele C, Antony VB, Dokland T, Ouyang X, Zhang J, Duncan SR, Thannickal VJ, Darley-Usmar VM, Deshane JS. Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. Redox Biol 2018; 18:54-64. [PMID: 29986209 PMCID: PMC6031096 DOI: 10.1016/j.redox.2018.06.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation involving both innate and adaptive immune cells is implicated in the pathogenesis of asthma. Intercellular communication is essential for driving and resolving inflammatory responses in asthma. Emerging studies suggest that extracellular vesicles (EVs) including exosomes facilitate this process. In this report, we have used a range of approaches to show that EVs contain markers of mitochondria derived from donor cells which are capable of sustaining a membrane potential. Further, we propose that these participate in intercellular communication within the airways of human subjects with asthma. Bronchoalveolar lavage fluid of both healthy volunteers and asthmatics contain EVs with encapsulated mitochondria; however, the % HLA-DR+ EVs containing mitochondria and the levels of mitochondrial DNA within EVs were significantly higher in asthmatics. Furthermore, mitochondria are present in exosomes derived from the pro-inflammatory HLA-DR+ subsets of airway myeloid-derived regulatory cells (MDRCs), which are known regulators of T cell responses in asthma. Exosomes tagged with MitoTracker Green, or derived from MDRCs transduced with CellLight Mitochondrial GFP were found in recipient peripheral T cells using a co-culture system, supporting direct exosome-mediated cell-cell transfer. Importantly, exosomally transferred mitochondria co-localize with the mitochondrial network and generate reactive oxygen species within recipient T cells. These findings support a potential novel mechanism of cell-cell communication involving exosomal transfer of mitochondria and the bioenergetic and/or redox regulation of target cells.
Collapse
Affiliation(s)
- Kenneth P Hough
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer L Trevor
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John G Strenkowski
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yong Wang
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Balu K Chacko
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sultan Tousif
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Diptiman Chanda
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chad Steele
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Veena B Antony
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiaosen Ouyang
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianhua Zhang
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Steven R Duncan
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor M Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessy S Deshane
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
20
|
Zhang H, Lian M, Zhang J, Bian Z, Tang R, Miao Q, Peng Y, Fang J, You Z, Invernizzi P, Wang Q, Gershwin ME, Ma X. A functional characteristic of cysteine-rich protein 61: Modulation of myeloid-derived suppressor cells in liver inflammation. Hepatology 2018; 67:232-246. [PMID: 28777871 DOI: 10.1002/hep.29418] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/07/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023]
Abstract
UNLABELLED There is increasing awareness of the immunologic roles of liver mononuclear populations, including myeloid-derived suppressor cells (MDSCs). We took advantage of a large well-defined cohort of 148 patients with liver inflammation and 45 healthy controls to focus on the qualitative and quantitative characteristics of MDSCs. We investigated the frequency, phenotype, and functional capacities of MDSCs by using peripheral blood MDSCs in a cohort of 55 patients with primary biliary cholangitis (PBC), 40 with autoimmune hepatitis, 39 with chronic hepatitis B, 14 with nonalcoholic fatty liver disease, and 45 healthy controls. This was followed by a liver-targeted determination in 27 patients with PBC, 27 with autoimmune hepatitis, 20 with chronic hepatitis B, 14 with nonalcoholic fatty liver disease, and 6 controls. We then focused on mechanisms of this expansion with PBC as an example, using both ursodeoxycholic acid-naive and treated patients. HLA-DR-/low CD33+ CD11b+ CD14+ CD15- monocytic MDSCs were elevated in diseases characterized by liver inflammation compared to healthy controls. Using PBC as a focus, there was a significant correlation between levels of circulating MDSCs and disease-related biochemical markers (alkaline phosphatase, total bilirubin). We found higher amounts of MDSCs in patients with PBC who were responsive to ursodeoxycholic acid. MDSCs from PBC were found to manifest a potent immunosuppressive function. There was a significant correlation in the accumulation of hepatic MDSCs in the inflamed lesions of PBC with histologic changes, such as fibrosis. We also found that cysteine-rich protein 61 (CCN1), a highly expressed protein in impaired cholangiocytes and hepatocytes, contributes to MDSC expansion and MDSC inducible nitric oxide synthase-associated immune suppression. CONCLUSION CCN1 modulates expansion and a suppressive function of MDSCs. Our data highlight the potential functions of CCN1 on MDSCs and suggest therapeutic implications in inflammatory liver diseases. (Hepatology HEPATOLOGY 2018;67:232-246).
Collapse
Affiliation(s)
- Haiyan Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhaolian Bian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China.,Nantong Institute of Liver Disease, Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Nantong University, Jiangsu, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yanshen Peng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Pietro Invernizzi
- Program for Autoimmune Liver Diseases, International Center for Digestive Diseases, Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
21
|
Sharma NS, Wille KM, Athira S, Zhi D, Hough KP, Diaz-Guzman E, Zhang K, Kumar R, Rangarajan S, Eipers P, Wang Y, Srivastava RK, Rodriguez Dager JV, Athar M, Morrow C, Hoopes CW, Chaplin DD, Thannickal VJ, Deshane JS. Distal airway microbiome is associated with immunoregulatory myeloid cell responses in lung transplant recipients. J Heart Lung Transplant 2017; 37:S1053-2498(17)31898-3. [PMID: 28756121 PMCID: PMC5893420 DOI: 10.1016/j.healun.2017.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Long-term survival of lung transplant recipients (LTRs) is limited by the occurrence of bronchiolitis obliterans syndrome (BOS). Recent evidence suggests a role for microbiome alterations in the occurrence of BOS, although the precise mechanisms are unclear. In this study we evaluated the relationship between the airway microbiome and distinct subsets of immunoregulatory myeloid-derived suppressor cells (MDSCs) in LTRs. METHODS Bronchoalveolar lavage (BAL) and simultaneous oral wash and nasal swab samples were collected from adult LTRs. Microbial genomic DNA was isolated, 16S rRNA genes amplified using V4 primers, and polymerase chain reaction (PCR) products sequenced and analyzed. BAL MDSC subsets were enumerated using flow cytometry. RESULTS The oral microbiome signature differs from that of the nasal, proximal and distal airway microbiomes, whereas the nasal microbiome is closer to the airway microbiome. Proximal and distal airway microbiome signatures of individual subjects are distinct. We identified phenotypic subsets of MDSCs in BAL, with a higher proportion of immunosuppressive MDSCs in the proximal airways, in contrast to a preponderance of pro-inflammatory MDSCs in distal airways. Relative abundance of distinct bacterial phyla in proximal and distal airways correlated with particular airway MDSCs. Expression of CCAAT/enhancer binding protein (C/EBP)-homologous protein (CHOP), an endoplasmic (ER) stress sensor, was increased in immunosuppressive MDSCs when compared with pro-inflammatory MDSCs. CONCLUSIONS The nasal microbiome closely resembles the microbiome of the proximal and distal airways in LTRs. The association of distinct microbial communities with airway MDSCs suggests a functional relationship between the local microbiome and MDSC phenotype, which may contribute to the pathogenesis of BOS.
Collapse
Affiliation(s)
- Nirmal S Sharma
- Division of Pulmonary Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Keith M Wille
- Division of Pulmonary Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - S Athira
- Cognub Decision Solutions, Kerala, India
| | - Degui Zhi
- Division of Biostatistics, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kenneth P Hough
- Division of Pulmonary Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Enrique Diaz-Guzman
- Division of Pulmonary Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kui Zhang
- Division of Biostatistics, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ranjit Kumar
- Division of Biomedical Informatics, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sunad Rangarajan
- Division of Pulmonary Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter Eipers
- Division of Cell Developmental and Integrative Biology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yong Wang
- Division of Pulmonary Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ritesh K Srivastava
- Division of Dermatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jose Vicente Rodriguez Dager
- Division of Pulmonary Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohammad Athar
- Division of Dermatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Casey Morrow
- Division of Cell Developmental and Integrative Biology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Charles W Hoopes
- Division of Surgery, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David D Chaplin
- Division of Dermatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessy S Deshane
- Division of Pulmonary Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
22
|
Liu Y, Gunsten SP, Sultan DH, Luehmann HP, Zhao Y, Blackwell TS, Bollermann-Nowlis Z, Pan JH, Byers DE, Atkinson JJ, Kreisel D, Holtzman MJ, Gropler RJ, Combadiere C, Brody SL. PET-based Imaging of Chemokine Receptor 2 in Experimental and Disease-related Lung Inflammation. Radiology 2017; 283:758-768. [PMID: 28045644 PMCID: PMC5452886 DOI: 10.1148/radiol.2016161409] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose To characterize a chemokine receptor type 2 (CCR2)-binding peptide adapted for use as a positron emission tomography (PET) radiotracer for noninvasive detection of lung inflammation in a mouse model of lung injury and in human tissues from subjects with lung disease. Materials and Methods The study was approved by institutional animal and human studies committees. Informed consent was obtained from patients. A 7-amino acid CCR2 binding peptide (extracellular loop 1 inverso [ECL1i]) was conjugated to tetraazacyclododecane tetraacetic acid (DOTA) and labeled with copper 64 (64Cu) or fluorescent dye. Lung inflammation was induced with intratracheal administration of lipopolysaccharide (LPS) in wild-type (n = 19) and CCR2-deficient (n = 4) mice, and these mice were compared with wild-type mice given control saline (n = 5) by using PET performed after intravenous injection of 64Cu-DOTA-ECL1i. Lung immune cells and those binding fluorescently labeled ECL1i in vivo were detected with flow cytometry. Lung inflammation in tissue from subjects with nondiseased lungs donated for lung transplantation (n = 11) and those with chronic obstructive pulmonary disease (COPD) who were undergoing lung transplantation (n = 16) was evaluated for CCR2 with immunostaining and autoradiography (n = 6, COPD) with 64Cu-DOTA-ECL1i. Groups were compared with analysis of variance, the Mann-Whitney U test, or the t test. Results Signal on PET images obtained in mouse lungs after injury with LPS was significantly greater than that in the saline control group (mean = 4.43% of injected dose [ID] per gram of tissue vs 0.99% of injected dose per gram of tissue; P < .001). PET signal was significantly diminished with blocking studies using nonradiolabeled ECL1i in excess (mean = 0.63% ID per gram of tissue; P < .001) and in CCR2-deficient mice (mean = 0.39% ID per gram of tissue; P < .001). The ECL1i signal was associated with an elevated level of mouse lung monocytes. COPD lung tissue displayed significantly elevated CCR2 levels compared with nondiseased tissue (median = 12.8% vs 1.2% cells per sample; P = .002), which was detected with 64Cu-DOTA-ECL1i by using autoradiography. Conclusion 64Cu-DOTA-ECL1i is a promising tool for PET-based detection of CCR2-directed inflammation in an animal model and in human tissues as a step toward clinical translation. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Yongjian Liu
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Sean P. Gunsten
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Deborah H. Sultan
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Hannah P. Luehmann
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Yongfeng Zhao
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - T. Scott Blackwell
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Zachary Bollermann-Nowlis
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Jie-hong Pan
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Derek E. Byers
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Jeffrey J. Atkinson
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Daniel Kreisel
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Michael J. Holtzman
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Robert J. Gropler
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Christophe Combadiere
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Steven L. Brody
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| |
Collapse
|
23
|
Hough KP, Chanda D, Duncan SR, Thannickal VJ, Deshane JS. Exosomes in immunoregulation of chronic lung diseases. Allergy 2017; 72:534-544. [PMID: 27859351 DOI: 10.1111/all.13086] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2016] [Indexed: 12/15/2022]
Abstract
Exosomes are nano-sized, membrane-bound vesicles released from cells that transport cargo including DNA, RNA, and proteins, between cells as a form of intercellular communication. In addition to their role in intercellular communication, exosomes are beginning to be appreciated as agents of immunoregulation that can modulate antigen presentation, immune activation, suppression, and surveillance. This article summarizes how these multifaceted functions of exosomes may promote development and/or progression of chronic inflammatory lung diseases including asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. The potential of exosomes as a novel therapeutic is also discussed.
Collapse
Affiliation(s)
- K. P. Hough
- Department of Medicine; Division of Pulmonary, Allergy and Critical Care Medicine; University of Alabama at Birmingham; Birmingham AL USA
| | - D. Chanda
- Department of Medicine; Division of Pulmonary, Allergy and Critical Care Medicine; University of Alabama at Birmingham; Birmingham AL USA
| | - S. R. Duncan
- Department of Medicine; Division of Pulmonary, Allergy and Critical Care Medicine; University of Alabama at Birmingham; Birmingham AL USA
| | - V. J. Thannickal
- Department of Medicine; Division of Pulmonary, Allergy and Critical Care Medicine; University of Alabama at Birmingham; Birmingham AL USA
| | - J. S. Deshane
- Department of Medicine; Division of Pulmonary, Allergy and Critical Care Medicine; University of Alabama at Birmingham; Birmingham AL USA
| |
Collapse
|
24
|
Kolahian S, Öz HH, Zhou B, Griessinger CM, Rieber N, Hartl D. The emerging role of myeloid-derived suppressor cells in lung diseases. Eur Respir J 2016; 47:967-77. [PMID: 26846830 DOI: 10.1183/13993003.01572-2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are innate immune cells characterised by their potential to control T-cell responses and to dampen inflammation. While the role of MDSCs in cancer has been studied in depth, our understanding of their relevance for infectious and inflammatory disease conditions has just begun to evolve. Recent studies highlight an emerging and complex role for MDSCs in pulmonary diseases. In this review, we discuss the potential contribution of MDSCs as biomarkers and therapeutic targets in lung diseases, particularly lung cancer, tuberculosis, chronic obstructive pulmonary disease, asthma and cystic fibrosis.
Collapse
Affiliation(s)
- Saeed Kolahian
- Children's Hospital of the University of Tübingen, Pediatric Infectiology, Immunology & Cystic Fibrosis, Tübingen, Germany Dept of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hasan Halit Öz
- Children's Hospital of the University of Tübingen, Pediatric Infectiology, Immunology & Cystic Fibrosis, Tübingen, Germany
| | - Benyuan Zhou
- Children's Hospital of the University of Tübingen, Pediatric Infectiology, Immunology & Cystic Fibrosis, Tübingen, Germany
| | - Christoph M Griessinger
- Werner Siemens Imaging Center, Dept of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nikolaus Rieber
- Children's Hospital of the University of Tübingen, Pediatric Infectiology, Immunology & Cystic Fibrosis, Tübingen, Germany Dept of Pediatrics, Kinderklinik München Schwabing, Klinikum rechts der Isar, Technische Universität München, Munich Germany
| | - Dominik Hartl
- Children's Hospital of the University of Tübingen, Pediatric Infectiology, Immunology & Cystic Fibrosis, Tübingen, Germany
| |
Collapse
|