1
|
Levescot A, Cerf-Bensussan N. Loss of tolerance to dietary proteins: From mouse models to human model diseases. Immunol Rev 2024; 326:173-190. [PMID: 39295093 DOI: 10.1111/imr.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The critical importance of the immunoregulatory mechanisms, which prevent adverse responses to dietary proteins is demonstrated by the consequences of their failure in two common but distinct human pathological conditions, food allergy and celiac disease. The mechanisms of tolerance to dietary proteins have been extensively studied in mouse models but the extent to which the results in mice can be extrapolated to humans remains unclear. Here, after summarizing the mechanisms known to control oral tolerance in mouse models, we discuss how the monogenic immune disorders associated with food allergy on the one hand, and celiac disease, on the other hand, represent model diseases to gain insight into the key immunoregulatory pathways that control immune responses to food antigens in humans. The spectrum of monogenic disorders, in which the dysfunction of a single gene, is strongly associated with TH2-mediated food allergy suggests an important overlap between the mechanisms that regulate TH2 and IgE responses to food antigens in humans and mice. In contrast, celiac disease provides a unique example of the link between autoimmunity and loss of tolerance to a food antigen.
Collapse
Affiliation(s)
- Anais Levescot
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| | - Nadine Cerf-Bensussan
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Akdis CA, Akdis M, Boyd SD, Sampath V, Galli SJ, Nadeau KC. Allergy: Mechanistic insights into new methods of prevention and therapy. Sci Transl Med 2023; 15:eadd2563. [PMID: 36652536 DOI: 10.1126/scitranslmed.add2563] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the past few decades, the prevalence of allergic diseases has increased worldwide. Here, we review the etiology and pathophysiology of allergic diseases, including the role of the epithelial barrier, the immune system, climate change, and pollutants. Our current understanding of the roles of early life and infancy; diverse diet; skin, respiratory, and gut barriers; and microbiome in building immune tolerance to common environmental allergens has led to changes in prevention guidelines. Recent developments on the mechanisms involved in allergic diseases have been translated to effective treatments, particularly in the past 5 years, with additional treatments now in advanced clinical trials.
Collapse
Affiliation(s)
- Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos CH-7265, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos CH-7265, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos CH-7265, Switzerland
| | - Scott D Boyd
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA
| | - Stephen J Galli
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Pieniawska-Śmiech K, Pasternak G, Lewandowicz-Uszyńska A, Jutel M. Diagnostic Challenges in Patients with Inborn Errors of Immunity with Different Manifestations of Immune Dysregulation. J Clin Med 2022; 11:4220. [PMID: 35887984 PMCID: PMC9324612 DOI: 10.3390/jcm11144220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Inborn errors of immunity (IEI), formerly known as primary immunodeficiency disorders (PIDs), are inherited disorders caused by damaging germline variants in single genes, which result in increased susceptibility to infections and in allergic, autoimmune, autoinflammatory, nonmalignant lymphoproliferative, and neoplastic conditions. Along with well-known warning signs of PID, attention should be paid to signs of immune dysregulation, which seem to be equally important to susceptibility to infection in defining IEI. The modern diagnostics of IEI offer a variety of approaches but with some problems. The aim of this review is to discuss the diagnostic challenges in IEI patients in the context of an immune dysregulation background.
Collapse
Affiliation(s)
- Karolina Pieniawska-Śmiech
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
| | - Gerard Pasternak
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Aleksandra Lewandowicz-Uszyńska
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- ALL-MED Medical Research Institute, 53-201 Wroclaw, Poland
| |
Collapse
|
4
|
El-Sayed ZA, El-Ghoneimy DH, Ortega-Martell JA, Radwan N, Aldave JC, Al-Herz W, Al-Nesf MA, Condino-Neto A, Cole T, Eley B, Erwa NH, Espinosa-Padilla S, Faria E, Rosario Filho NA, Fuleihan R, Galal N, Garabedian E, Hintermeyer M, Imai K, Irani C, Kamal E, Kechout N, Klocperk A, Levin M, Milota T, Ouederni M, Paganelli R, Pignata C, Qamar FN, Quinti I, Qureshi S, Radhakrishnan N, Rezaei N, Routes J, Singh S, Siniah S, Abdel-Hakam Taha I, Tanno LK, Van Dort B, Volokha A, Sullivan K. Allergic manifestations of inborn errors of immunity and their impact on the diagnosis: A worldwide study. World Allergy Organ J 2022; 15:100657. [PMID: 35783543 PMCID: PMC9218584 DOI: 10.1016/j.waojou.2022.100657] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background Allergies have long been observed in Inborn Errors of Immunity (IEI) and might even be the first presentation resulting in delayed diagnosis or misdiagnosis in some cases. However, data on the prevalence of allergic diseases among IEI patients are limited and contradictory. Objective To provide a worldwide view of allergic diseases, across a broad spectrum of IEI, and their impact on the timely diagnosis of IEI. Methods This is a worldwide study, conceived by the World Allergy Organization (WAO) Inborn Errors of Immunity Committee. A questionnaire was developed and pilot-tested and was sent via email to collect data from 61 immunology centers known to treat pediatric and/or adult IEI patients in 41 countries. In addition, a query was submitted to The United States Immunodeficiency Network (USIDNET) at its website. Results Thirty centers in 23 countries caring for a total 8450 IEI patients responded. The USIDNET dataset included 2332 patients. Data from responders showed that a median (IQR) of 16.3% (10-28.8%) of patients experienced allergic diseases during the course of their IEI as follows: 3.6% (1.3-11.3%) had bronchial asthma, 3.6% (1.9-9.1%) atopic dermatitis, 3.0% (1.0-7.8%) allergic rhinitis, and 1.3% (0.5-3.3%) food allergy. As per the USIDNET data, the frequency of allergy among IEI patients was 68.8% (bronchial asthma in 46.9%). The percentage of IEI patients who presented initially with allergic disorders was 8% (5-25%) and diagnosis delay was reported in 7.5% (0.9-20.6%). Predominantly antibody deficiencies had the highest frequency of allergic disease followed by combined immunodeficiency with a frequency of 40.3% (19.2-62.5%) and 20.0% (10-32%) respectively. As per the data of centers, anaphylaxis occurred in 25/8450 patients (0.3%) whereas per USIDNET dataset, it occurred in 249/2332 (10.6%); drugs and food allergy were the main causes in both datasets. Conclusions This multinational study brings to focus the relation between allergic diseases and IEI. Major allergies do occur in IEI patients but were less frequent than the general population. Initial presentation with allergy could adversely affect the timely diagnosis of IEI. There is a need for policies to raise awareness and educate primary care and other referring specialties on the association of allergic diseases with IEI. This study provides a network among centers for future prospective studies in the field.
Collapse
Affiliation(s)
- Zeinab A. El-Sayed
- Pediatric Allergy, Immunology and Rheumatology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Dalia H. El-Ghoneimy
- Pediatric Allergy, Immunology and Rheumatology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | | | - Nesrine Radwan
- Pediatric Allergy, Immunology and Rheumatology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Juan C. Aldave
- Allergy and Clinical Immunology, Hospital Nacional Edgardo Rebagliati Martins, Peru
| | - Waleed Al-Herz
- Allergy and Clinical Immunology Unit, Pediatric Department, AlSabah Hospital, Faculty of Medicine, Kuwait University, Kuwait
| | - Maryam A. Al-Nesf
- Department of Pediatrics, Pulmonary Division- Allergy and Immunology Section, Qatar
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Theresa Cole
- Department of Allergy and Immunology- Royal Children's Hospital, Australia
| | - Brian Eley
- Paediatric Infectious Diseases Unit, Red Cross War Memorial Children's Hospital and the Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Nahla H.H. Erwa
- Allergy and Immunology Unit- Soba University Hospital and Faculty of Medicine, University of Khartoum, Sudan
| | | | - Emilia Faria
- Immunoallergy Department, Coimbra Hospital and University Centre (CHUC), Portugal
| | | | - Ramsay Fuleihan
- Pediatric Allergy, Immunology and Rheumatology, Columbia University Medical Center, New York, USA
| | - Nermeen Galal
- Department of Pediatrics- Division of Immunology, Cairo University, Egypt
| | | | - Mary Hintermeyer
- Department of Allergy and Clinical Immunology- Children's Hospital of Wisconsin, Medical College of Wisconsin, USA
| | - Kohsuke Imai
- Department of Pediatrics-Tokyo Medical and Dental University, Japan
| | - Carla Irani
- Department of Internal Medicine and Clinical Immunology, Hotel Dieu de France Hospital, Beirut, Lebanon
| | - Ebtihal Kamal
- Allergy and Immunology Unit- Soba University Hospital and Faculty of Medicine, University of Khartoum, Sudan
| | - Nadia Kechout
- Department of Immunology, Pasteur Institute of Algeria, Algeria
| | - Adam Klocperk
- Department of Immunology, University Hospital Motol and the 2nd Faculty of Medicine, Charles University, Czech Republic
| | - Michael Levin
- Division of Pediatric Allergy, University of Cape Town, South Africa
| | - Tomas Milota
- Department of Immunology, University Hospital Motol and the 2nd Faculty of Medicine, Charles University, Czech Republic
| | - Monia Ouederni
- Department of Pediatrics, Immuno-hematology and Stem Cell Transplantation- Bone Marrow Transplantation Center Tunisia
| | - Roberto Paganelli
- Department of Medicine and Sciences of Aging, University “G. D’Annunzio”, Chieti-Pescara – and YDA, Institute of Clinical Immunotherapy and Advanced Biological Treatments, Pescara, Italy
| | | | - Farah N. Qamar
- Department of Pediatrics and Child Health- Aga Khan University Hospital, Karachi, Pakistan
| | - Isabella Quinti
- Department of Molecular Medicine, PID Reference Centre, Sapienza University of Rome, Italy
| | - Sonia Qureshi
- Department of Pediatrics and Child Health- Aga Khan University Hospital, Karachi, Pakistan
| | - Nita Radhakrishnan
- Department of Pediatric Hematology Oncology, Super Specialty Pediatric Hospital and Post Graduate Teaching Institute Noida, Delhi NCR 201303, India
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - John Routes
- Department of Allergy and Clinical Immunology- Children's Hospital of Wisconsin, Medical College of Wisconsin, USA
| | - Surjit Singh
- Department of Pediatrics and Chief, Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sangeetha Siniah
- Hospital Tunku Azizah, Women and Children Hospital Kuala Lumpur, Malaysia
| | | | - Luciana K. Tanno
- Department of Pulmonology, Division of Allergy, University Hospital of Montpellier, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, UMR UA11, INSERM, University of Montpellier, Montpellier, France
- WHO Collaborating Centre on Classification Scientific Support, Montpellier, France
| | - Ben Van Dort
- Department of Allergy and Immunology- Royal Children's Hospital, Australia
| | - Alla Volokha
- Department of Pediatric Infectious Diseases and Immunology- Shupyk National Medical Academy of Postgraduate Education, Ukraine
| | | |
Collapse
|
5
|
Nelson RW, Geha RS, McDonald DR. Inborn Errors of the Immune System Associated With Atopy. Front Immunol 2022; 13:860821. [PMID: 35572516 PMCID: PMC9094424 DOI: 10.3389/fimmu.2022.860821] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Atopic disorders, including atopic dermatitis, food and environmental allergies, and asthma, are increasingly prevalent diseases. Atopic disorders are often associated with eosinophilia, driven by T helper type 2 (Th2) immune responses, and triggered by disrupted barrier function leading to abnormal immune priming in a susceptible host. Immune deficiencies, in contrast, occur with a significantly lower incidence, but are associated with greater morbidity and mortality. A subset of atopic disorders with eosinophilia and elevated IgE are associated with monogenic inborn errors of immunity (IEI). In this review, we discuss current knowledge of IEI that are associated with atopy and the lessons these immunologic disorders provide regarding the fundamental mechanisms that regulate type 2 immunity in humans. We also discuss further mechanistic insights provided by animal models.
Collapse
Affiliation(s)
- Ryan W Nelson
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Douglas R McDonald
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Serum Allergen-Specific IgE among Pediatric Patients with Primary Immunodeficiency. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9040466. [PMID: 35455510 PMCID: PMC9029572 DOI: 10.3390/children9040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
Background: Allergy is a clinical condition that reflects a deviated function of the immune system. The purpose of this study was to evaluate serum allergen-specific IgE (sIgE) along with clinical manifestations of allergy in patients with diagnosed primary immunodeficiency (PID). Methods: 72 patients, aged 1−17 years, diagnosed with PID and hospitalized between July 2020 and February 2021 were included in the study. Blood samples were obtained by venipuncture. sIgE (30 allergens), blood eosinophil count, as well as total IgE and IgG were measured and assessed in relation to a detailed medical examination. Results: Serum sIgE was detected in the blood of 50% of the patients in the study group, which significantly correlated (p < 0.0001) with clinical symptoms of allergy. During the period of the study, 61.1% of the patients showed symptoms of allergy, with 77.27% of them having tested positive for sIgE. The total IgE level was elevated in 18.06% of the patients and correlated with clinical symptoms of allergy (p = 0.004). An elevated total IgE level was not observed in children receiving immunoglobulin replacement therapy. Conclusion: The study showed that serum sIgE and total IgE together might be a plausible diagnostic tool for PID patients. However, for patients receiving immunoglobulin replacement therapy, the assessment of total IgE is not useful.
Collapse
|
7
|
Abstract
INTRODUCTION As the prevalence of food allergies (FA) increases worldwide, our understanding of its pathophysiology and risk factors is markedly expanding. In the past decades, an increasing number of genes have been linked to FA. Identification of such genes may help in predicting the genetic risk for FA development, age of onset, clinical manifestation, causative allergen(s), and possibly the optimal treatment strategies. Furthermore, identification of these genetic factors can help to understand the complex interactions between genes and the environment in predisposition to FA. AREAS COVERED We outline the recent important progress in determining genetic variants and disease-associated genes in IgE-mediated FA. We focused on the monogenic inborn errors of immunity (IEI) where FA is one of the clinical manifestations, emphasizing the genes and gene variants which were linked to FA with some of the most robust evidence. EXPERT OPINION Genetics play a significant role, either directly or along with environmental factors, in the development of FA. Since FA is a multifactorial disease, it is expected that multiple genes and genetic loci contribute to the risk for its development. Identification of the involved genes should contribute to the area of FA regarding pathogenesis, prediction, recognition, prognosis, prevention, and possibly therapeutic interventions.
Collapse
Affiliation(s)
- Yesim Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine University of California, Irvine, CA
| | - Sami Bahna
- Division of Basic and Clinical Immunology, Department of Medicine University of California, Irvine, CA
| |
Collapse
|
8
|
Cinicola BL, Pulvirenti F, Capponi M, Bonetti M, Brindisi G, Gori A, De Castro G, Anania C, Duse M, Zicari AM. Selective IgA Deficiency and Allergy: A Fresh Look to an Old Story. Medicina (B Aires) 2022; 58:medicina58010129. [PMID: 35056437 PMCID: PMC8781177 DOI: 10.3390/medicina58010129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/23/2023] Open
Abstract
Selective IgA deficiency (SIgAD) is the most common human primary immune deficiency (PID). It is classified as a humoral PID characterized by isolated deficiency of IgA (less than 7 mg/dL but normal serum IgG and IgM) in subjects greater than 4 years of age. Intrinsic defects in the maturation of B cells and a perturbation of Th cells and/or cytokine signals have been hypothesized to contribute to SIgAD pathogenesis. The genetic basis of IgA deficiency remains to be clarified. Patients with SIgAD can be either asymptomatic or symptomatic with clinical manifestations including allergy, autoimmunity and recurrent infections mainly of the respiratory and gastrointestinal tract. Studies analyzing allergy on SIgAD patients showed prevalence up to 84%, supporting in most cases the relationship between sIgAD and allergic disease. However, the prevalence of allergic disorders may be influenced by various factors. Thus, the question of whether allergy is more common in SIgAD patients compared to healthy subjects remains to be defined. Different hypotheses support an increased susceptibility to allergy in subjects with SIgAD. Recurrent infections due to loss of secretory IgA might have a role in the pathogenesis of allergy, and vice versa. Perturbation of microbiota also plays a role. The aim of this review is to examine the association between SIgAD and atopic disease and to update readers on advances over time at this important interface between allergy and SIgAD.
Collapse
Affiliation(s)
- Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| | - Federica Pulvirenti
- Primary Immune Deficiencies Unit, Department of Internal Medicine and Infectious Diseases, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy;
| | - Martina Capponi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
| | - Marta Bonetti
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
| | - Giulia Brindisi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Gori
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
| | - Giovanna De Castro
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
| | - Caterina Anania
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
| | - Marzia Duse
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
| | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
| |
Collapse
|
9
|
Alligon M, Mahlaoui N, Courteille V, Costes L, Afonso V, Randrianomenjanahary P, de Vergnes N, Ranohavimparany A, Vo D, Hafsa I, Bach P, Benoit V, Garcelon N, Fischer A. An appraisal of the frequency and severity of non-infectious manifestations in primary immunodeficiencies. A study of a national retrospective cohort of 1375 patients over 10 years. J Allergy Clin Immunol 2022; 149:2116-2125. [PMID: 35031273 DOI: 10.1016/j.jaci.2021.12.790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Non-infectious manifestations, i.e. allergy, autoimmunity/inflammation, lymphoproliferation and malignancies are known to be observed in many primary immunodeficiency diseases (PID) and to participate to their prognosis. OBJECTIVE In order to have a global view on their occurrence, we retrieved data from a retrospective cohort of 1375 patients included in the French national registry of PID (CEREDIH) for whom we had a 10-year follow-up since inclusion in the registry. METHODS These patients were followed for 10 years (2009-2018) by specialized centers in University Hospitals. This study shows that 20.1% of patients without prior curative therapy (n=1163) developed at least one manifestation (event) encompassing 277 events. RESULTS Autoimmune/inflammatory events (n=138) and malignancies (n=85) affected all age classes and virtually all PID diagnostic groups. They were associated with a risk of death that occurred in 14.2% of them (n=195), being found as causal in 43% of cases. Malignancies (OR: 5.62 [3.66 - 8.62]) and autoimmunity (OR: 1.9 [1.27 - 2.84]) were clearly identified as risk factors for lethality. Patients who underwent curative therapy (i.e. mostly allogeneic hematopoietic stem cell transplantation, a few cases of gene therapy or thymic transplantation) prior to the 10-year study period (n=212) had comparatively reduced but still detectable clinical manifestations (n=16) leading to death in 9.4% of them. CONCLUSION This study points to the frequency and severity of non-infectious manifestations in various PID groups across all age groups. These results warrant further prospective analysis to better assess their consequences and to adapt therapy, notably indication of curative therapy.
Collapse
Affiliation(s)
- Mickaël Alligon
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Nizar Mahlaoui
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Pediatric Immuno-Hematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Virginie Courteille
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurence Costes
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Veronica Afonso
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Randrianomenjanahary
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Nathalie de Vergnes
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anja Ranohavimparany
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Duy Vo
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Inès Hafsa
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Perrine Bach
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Vincent Benoit
- Université de Paris, Imagine Institute, Data Science Platform, INSERM UMR 1163, F-75015, Paris, France
| | - Nicolas Garcelon
- Université de Paris, Imagine Institute, Data Science Platform, INSERM UMR 1163, F-75015, Paris, France
| | - Alain Fischer
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Pediatric Immuno-Hematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France; Collège de France, Paris, France.
| | | |
Collapse
|
10
|
Veramendi‐Espinoza L, Rentería‐Valdiviezo CA, Díaz‐Subauste R, Aldave‐Becerra JC, Alva‐Lozada G, Becilli M, Locatelli F. Cow's milk allergy non-responsive to amino acid-based formula? A successful transplanted patient with immune dysregulation, polyendocrinopathy, enteropathy, and X-linked syndrome. Clin Case Rep 2021; 9:e04900. [PMID: 34631084 PMCID: PMC8491244 DOI: 10.1002/ccr3.4900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/06/2022] Open
Abstract
The wide variety of IPEX symptoms leads to diagnosis and treatment delay with fatal outcomes if left untreated before two first years of life. Cow's milk allergy non-responsive to amino acid-based formula must raise suspicion of this syndrome.
Collapse
Affiliation(s)
| | | | | | | | - Guisela Alva‐Lozada
- Allergy and Immunology DivisionHospital Nacional Edgardo Rebagliati MartinsLimaPeru
| | - Marco Becilli
- Department of Pediatric Hematology and OncologyOspedale Pediatrico Bambino GesùRomeItaly
| | - Franco Locatelli
- Department of Pediatric Hematology and OncologyOspedale Pediatrico Bambino GesùRomeItaly
| |
Collapse
|
11
|
Morawska I, Kurkowska S, Bębnowska D, Hrynkiewicz R, Becht R, Michalski A, Piwowarska-Bilska H, Birkenfeld B, Załuska-Ogryzek K, Grywalska E, Roliński J, Niedźwiedzka-Rystwej P. The Epidemiology and Clinical Presentations of Atopic Diseases in Selective IgA Deficiency. J Clin Med 2021; 10:3809. [PMID: 34501259 PMCID: PMC8432128 DOI: 10.3390/jcm10173809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Selective IgA deficiency (sIgAD) is the most common primary immunodeficiency disease (PID), with an estimated occurrence from about 1:3000 to even 1:150, depending on population. sIgAD is diagnosed in adults and children after the 4th year of age, with immunoglobulin A level below 0.07 g/L and normal levels of IgM and IgG. Usually, the disease remains undiagnosed throughout the patient's life, due to its frequent asymptomatic course. If symptomatic, sIgAD is connected to more frequent viral and bacterial infections of upper respiratory, urinary, and gastrointestinal tracts, as well as autoimmune and allergic diseases. Interestingly, it may also be associated with other PIDs, such as IgG subclasses deficiency or specific antibodies deficiency. Rarely sIgAD can evolve to common variable immunodeficiency disease (CVID). It should also be remembered that IgA deficiency may occur in the course of other conditions or result from their treatment. It is hypothesized that allergic diseases (e.g., eczema, rhinitis, asthma) are more common in patients diagnosed with this particular PID. Selective IgA deficiency, although usually mildly symptomatic, can be difficult for clinicians. The aim of the study is to summarize the connection between selective IgA deficiency and atopic diseases.
Collapse
Affiliation(s)
- Izabela Morawska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | - Sara Kurkowska
- Department of Nuclear Medicine, Pomeranian Medical University, Unii Lubelskiej 1 St., 71-252 Szczecin, Poland; (S.K.); (H.P.-B.); (B.B.)
| | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland; (D.B.); (R.H.)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland; (D.B.); (R.H.)
| | - Rafał Becht
- Clinical Department of Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University of Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Adam Michalski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | - Hanna Piwowarska-Bilska
- Department of Nuclear Medicine, Pomeranian Medical University, Unii Lubelskiej 1 St., 71-252 Szczecin, Poland; (S.K.); (H.P.-B.); (B.B.)
| | - Bożena Birkenfeld
- Department of Nuclear Medicine, Pomeranian Medical University, Unii Lubelskiej 1 St., 71-252 Szczecin, Poland; (S.K.); (H.P.-B.); (B.B.)
| | - Katarzyna Załuska-Ogryzek
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b St., 20-090 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | | |
Collapse
|
12
|
Lymphopenia, Lymphopenia-Induced Proliferation, and Autoimmunity. Int J Mol Sci 2021; 22:ijms22084152. [PMID: 33923792 PMCID: PMC8073364 DOI: 10.3390/ijms22084152] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Immune homeostasis is a tightly regulated system that is critical for defense against invasion by foreign pathogens and protection from self-reactivity for the survival of an individual. How the defects in this system might result in autoimmunity is discussed in this review. Reduced lymphocyte number, termed lymphopenia, can mediate lymphopenia-induced proliferation (LIP) to maintain peripheral lymphocyte numbers. LIP not only occurs in normal physiological conditions but also correlates with autoimmunity. Of note, lymphopenia is also a typical marker of immune aging, consistent with the fact that not only the autoimmunity increases in the elderly, but also autoimmune diseases (ADs) show characteristics of immune aging. Here, we discuss the types and rates of LIP in normal and autoimmune conditions, as well as the coronavirus disease 2019 in the context of LIP. Importantly, although the causative role of LIP has been demonstrated in the development of type 1 diabetes and rheumatoid arthritis, a two-hit model has suggested that the factors other than lymphopenia are required to mediate the loss of control over homeostasis to result in ADs. Interestingly, these factors may be, if not totally, related to the function/number of regulatory T cells which are key modulators to protect from self-reactivity. In this review, we summarize the important roles of lymphopenia/LIP and the Treg cells in various autoimmune conditions, thereby highlighting them as key therapeutic targets for autoimmunity treatments.
Collapse
|
13
|
Yokanovich LT, Newberry RD, Knoop KA. Regulation of oral antigen delivery early in life: Implications for oral tolerance and food allergy. Clin Exp Allergy 2021; 51:518-526. [PMID: 33403739 PMCID: PMC8743004 DOI: 10.1111/cea.13823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/19/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
The increasing incidence of food allergy remains a significant public health concern. Food allergy is partially due to a lack, or loss of tolerance to food allergens. Clinical outcomes surrounding early life practices, such as breastfeeding, antibiotic use and food allergen exposure, indicate the first year of life in children represents a unique time for shaping the immune system to reduce allergic outcomes. Animal models have identified distinctive aspects of when and where dietary antigens are delivered within the intestinal tract to promote oral tolerance prior to weaning. Additionally, animal models have identified contributions from maternal proteins from breast milk and bacterial products from the gut microbiota in regulating dietary antigen exposure and promoting oral tolerance, thus connecting decades of clinical observations on the benefits of breastfeeding, early food allergen introduction and antibiotic avoidance in the first year of life in reducing allergic outcomes. Here, we discuss how exposure to gut luminal antigens, including food allergens, is regulated in early life to generate protective tolerance and the implications of this process for preventing and treating food allergies.
Collapse
Affiliation(s)
| | - Rodney D. Newberry
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn A. Knoop
- Department of Immunology, Mayo Clinic, Rochester MN, USA
- Department of Pediatrics, Mayo Clinic, Rochester MN, USA
| |
Collapse
|
14
|
Smeekens JM, Johnson-Weaver BT, Hinton AL, Azcarate-Peril MA, Moran TP, Immormino RM, Kesselring JR, Steinbach EC, Orgel KA, Staats HF, Burks AW, Mucha PJ, Ferris MT, Kulis MD. Fecal IgA, Antigen Absorption, and Gut Microbiome Composition Are Associated With Food Antigen Sensitization in Genetically Susceptible Mice. Front Immunol 2021; 11:599637. [PMID: 33542716 PMCID: PMC7850988 DOI: 10.3389/fimmu.2020.599637] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/25/2020] [Indexed: 01/04/2023] Open
Abstract
Food allergy is a potentially fatal disease affecting 8% of children and has become increasingly common in the past two decades. Despite the prevalence and severe nature of the disease, the mechanisms underlying sensitization remain to be further elucidated. The Collaborative Cross is a genetically diverse panel of inbred mice that were specifically developed to study the influence of genetics on complex diseases. Using this panel of mouse strains, we previously demonstrated CC027/GeniUnc mice, but not C3H/HeJ mice, develop peanut allergy after oral exposure to peanut in the absence of a Th2-skewing adjuvant. Here, we investigated factors associated with sensitization in CC027/GeniUnc mice following oral exposure to peanut, walnut, milk, or egg. CC027/GeniUnc mice mounted antigen-specific IgE responses to peanut, walnut and egg, but not milk, while C3H/HeJ mice were not sensitized to any antigen. Naïve CC027/GeniUnc mice had markedly lower total fecal IgA compared to C3H/HeJ, which was accompanied by stark differences in gut microbiome composition. Sensitized CC027/GeniUnc mice had significantly fewer CD3+ T cells but higher numbers of CXCR5+ B cells and T follicular helper cells in the mesenteric lymph nodes compared to C3H/HeJ mice, which is consistent with their relative immunoglobulin production. After oral challenge to the corresponding food, peanut- and walnut-sensitized CC027/GeniUnc mice experienced anaphylaxis, whereas mice exposed to milk and egg did not. Ara h 2 was detected in serum collected post-challenge from peanut-sensitized mice, indicating increased absorption of this allergen, while Bos d 5 and Gal d 2 were not detected in mice exposed to milk and egg, respectively. Machine learning on the change in gut microbiome composition as a result of food protein exposure identified a unique signature in CC027/GeniUnc mice that experienced anaphylaxis, including the depletion of Akkermansia. Overall, these results demonstrate several factors associated with enteral sensitization in CC027/GeniUnc mice, including diminished total fecal IgA, increased allergen absorption and altered gut microbiome composition. Furthermore, peanuts and tree nuts may have inherent properties distinct from milk and eggs that contribute to allergy.
Collapse
Affiliation(s)
- Johanna M. Smeekens
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Food Allergy Initiative, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | | | - Andrew L. Hinton
- UNC Food Allergy Initiative, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, United States
| | - M. Andrea Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, United States
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, United States
| | - Timothy P. Moran
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Robert M. Immormino
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Janelle R. Kesselring
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Food Allergy Initiative, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Erin C. Steinbach
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Kelly A. Orgel
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Food Allergy Initiative, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Herman F. Staats
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - A. Wesley Burks
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Food Allergy Initiative, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Peter J. Mucha
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Mathematics and Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Martin T. Ferris
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Michael D. Kulis
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Food Allergy Initiative, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
15
|
Study of selective immunoglobulin A deficiency among Egyptian patients with food allergy. Cent Eur J Immunol 2021; 45:184-188. [PMID: 33456329 PMCID: PMC7792446 DOI: 10.5114/ceji.2020.97907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/12/2018] [Indexed: 11/17/2022] Open
Abstract
Introduction IgA deficiency is one of the commonest primary antibody deficiencies. Although many affected individuals could be asymptomatic, selected patients suffer from recurrent mucosal infections, allergies, and autoimmune diseases. Aim of the study To investigate the prevalence of IgA deficiency among Egyptian patients with food allergy. Material and methods We studied 100 patients (62 males, 38 females; mean age, 28.6 years) with multiple food allergies who were recruited on the basis of adequate immunological assessment by history, skin prick test, and confirmed by open challenge test as well as 50 healthy controls. Measurement of levels of IgE and IgA using ELISA technique were performed for all patients and controls. Results Deficiency of IgA was detected in 67% of patients with food allergy. Serum IgA levels were significantly lower among patients with food allergy (67.3 µg/ml; range, 56.7-72.0 µg/ml) as compared to healthy control (78.6 µg/ml; range, 72.8-84 µg/ml). Both IgA and IgE levels were not statistically different between patients with food allergy only and those with combined food and aeroallergen. Among food allergic group, serum IgA levels were inversely correlated with serum IgE levels (r = –0.314, p < 0.001). Conclusions Manifestations of atopy, such as food allergy might be a present feature before diagnosis of primary immune deficiency diseases as IgA deficiency.
Collapse
|
16
|
The Importance of Primary Immune Deficiency Registries: The United States Immunodeficiency Network Registry. Immunol Allergy Clin North Am 2020; 40:385-402. [PMID: 32654688 DOI: 10.1016/j.iac.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The importance of registries is vital for almost every human disease but crucial for rare disorders, where the centralized collection, organization, and quality check of data create a platform from where multiple analyses and scientific advances are possible. In this article, the authors review the creation of the United States Immunodeficiency Network registry, its role, and the numerous scientific achievements generated from the collective effort of many.
Collapse
|
17
|
Abstract
Primary atopic disorders describes a series of monogenic diseases that have allergy- or atopic effector–related symptoms as a substantial feature. The underlying pathogenic genetic lesions help illustrate fundamental pathways in atopy, opening up diagnostic and therapeutic options for further study in those patients, but ultimately for common allergic diseases as well. Key pathways affected in these disorders include T cell receptor and B cell receptor signaling, cytokine signaling, skin barrier function, and mast cell function, as well as pathways that have not yet been elucidated. While comorbidities such as classically syndromic presentation or immune deficiency are often present, in some cases allergy alone is the presenting symptom, suggesting that commonly encountered allergic diseases exist on a spectrum of monogenic and complex genetic etiologies that are impacted by environmental risk factors.
Collapse
Affiliation(s)
- Joshua D. Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
18
|
Abstract
Primary immunodeficiency disorders (PIDs) are genetic diseases that lead to increased susceptibility to infection. Hundreds of PIDs have now been described, but a select subset commonly presents in the neonatal period. Neonates, especially premature newborns, have relative immune immaturity that makes it challenging to differentiate PIDs from intrinsic immaturity. Nonetheless, early identification and appropriate management of PIDs are critical, and the neonatal clinician should be familiar with a range of PIDs and their presentations. The neonatal clinician should also be aware of the importance of consulting with an immunologist when a PID is suspected. The role of newborn screening for severe combined immunodeficiency, as well as the initial steps of laboratory evaluation for a PID should be familiar to those caring for neonates. Finally, it is important for providers to be familiar with the initial management steps that can be taken to reduce the risk of infection in affected patients.
Collapse
Affiliation(s)
- Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Chang C, Wu H, Lu Q. The Epigenetics of Food Allergy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:141-152. [PMID: 32445094 DOI: 10.1007/978-981-15-3449-2_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA.
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Sullivan KE. Chromosome 22q11.2 deletion syndrome and DiGeorge syndrome. Immunol Rev 2019; 287:186-201. [PMID: 30565249 DOI: 10.1111/imr.12701] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
Abstract
Chromosome 22q11.2 deletion syndrome is the most common microdeletion syndrome in humans. The effects are protean and highly variable, making a unified approach difficult. Nevertheless, commonalities have been identified and white papers with recommended evaluations and anticipatory guidance have been published. This review will cover the immune system in detail and discuss both the primary features and the secondary features related to thymic hypoplasia. A brief discussion of the other organ system involvement will be provided for context. The immune system, percolating throughout the body can impact the function of other organs through allergy or autoimmune disease affecting organs in deleterious manners. Our work has shown that the primary effect of thymic hypoplasia is to restrict T cell production. Subsequent homeostatic proliferation and perhaps other factors drive a Th2 polarization, most obvious in adulthood. This contributes to atopic risk in this population. Thymic hypoplasia also contributes to low regulatory T cells and this may be part of the overall increased risk of autoimmunity. Collectively, the effects are complex and often age-dependent. Future goals of improving thymic function or augmenting thymic volume may offer a direct intervention to ameliorate infections, atopy, and autoimmunity.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Murguia-Favela L. The Expanding Spectrum of Primary Immune Defects. Pediatr Ann 2019; 48:e489-e494. [PMID: 31830289 DOI: 10.3928/19382359-20191112-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This article presents the general pediatrician with a broad overview of the rapidly expanding spectrum of primary immune deficiencies, which are diseases that go beyond the classic description of increased susceptibility to infections and also those with predisposition to autoimmunity, malignancy, and immune dysregulation. Readers are guided through the three proposed categories under the umbrella term of primary immune deficiencies. These categories are lack of function, inappropriate surveillance and clearance, and inadequate control immune dysregulation. This article presents an illustrative distribution of the interrelated groups of immune disorders. [Pediatr Ann. 2019;48(12):e489-e494.].
Collapse
|
22
|
What is new in HIES? Recent insights from the interface of primary immune deficiency and atopy. Curr Opin Allergy Clin Immunol 2019; 18:445-452. [PMID: 30188342 DOI: 10.1097/aci.0000000000000481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Understanding the pathophysiology of monogenic primary immunodeficiency (PID) with atopic presentation has pivotal implications for intervention strategies and potentially wider polygenic atopic-related traits. This review will discuss advances in gene discovery arising from monogenic defects at the interface between PID and atopy, notably the hyper-IgE syndromes. RECENT FINDINGS Key molecular pathways underlying development of primary atopic diseases have recently been proposed. We test this classification through reviewing novel genes reported in the last 2 years and compare insights from pathway-analysis of genome-wide association studies (GWAS) of atopic-related traits.Growing access to next-generation sequencing (NGS) has resulted in a surge in gene discovery, highlighting the utility and some pitfalls of this approach in clinical practice. The variability of presenting phenotypes reveals important gene-dosage effects. This has important implications for therapeutic strategies such as protein stabilization and modulators of JAK-STAT or TH2-cytokine signalling. We also consider the therapeutic implications raised by CARD11 deficiency, and wider applications of NGS including polygenic risk score in atopy. SUMMARY Disorders presenting at the interface between PID and allergy are often difficult to diagnose, with serious consequences if missed. Application of NGS has already provided critical insights to pathways enabling targeted therapeutic interventions, and potential wider translation to polygenic disorders.
Collapse
|
23
|
Rivers E, Worth A, Thrasher AJ, Burns SO. How I manage patients with Wiskott Aldrich syndrome. Br J Haematol 2019; 185:647-655. [DOI: 10.1111/bjh.15831] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Elizabeth Rivers
- University College London Great Ormond Street Institute of Child Health LondonUK
- Great Ormond Street Hospital for Children NHS Foundation Trust LondonUK
| | - Austen Worth
- Great Ormond Street Hospital for Children NHS Foundation Trust LondonUK
| | - Adrian J. Thrasher
- University College London Great Ormond Street Institute of Child Health LondonUK
- Great Ormond Street Hospital for Children NHS Foundation Trust LondonUK
| | - Siobhan O. Burns
- Department of Immunology Royal Free London NHS Foundation Trust LondonUK
- University College London Institute of Immunity and Transplantation London UK
| |
Collapse
|
24
|
Bjelac JA, Blanch MB, Fernandez J. Allergic disease in patients with common variable immunodeficiency at a tertiary care referral center. Ann Allergy Asthma Immunol 2019; 120:90-92. [PMID: 29273136 DOI: 10.1016/j.anai.2017.09.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Jaclyn A Bjelac
- Department of Pediatric Allergy and Clinical Immunology, Cleveland Clinic, Cleveland, Ohio.
| | - Maria Barcena Blanch
- Department of Pediatric Allergy and Clinical Immunology, Cleveland Clinic, Cleveland, Ohio
| | - James Fernandez
- Department of Pediatric Allergy and Clinical Immunology, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
25
|
Differing Performance of the Warning Signs for Immunodeficiency in the Diagnosis of Pediatric Versus Adult Patients in a Two-Center Tertiary Referral Population. J Clin Immunol 2019; 39:90-98. [PMID: 30610441 DOI: 10.1007/s10875-018-0582-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Primary immunodeficiency (PID) represents disorders with a spectrum of clinical presentations. The medical community seeks clinical features to prompt evaluation for immunodeficiency given improved prognosis with early identification. We hoped to identify clinical characteristics that would improve the diagnostic accuracy of the widely disseminated Jeffrey Modell Foundation warning signs for immunodeficiency. METHODS We performed a retrospective chart review in a two-center North American cohort of patients with PID. Charts of 137 pediatric and 400 adult patients with PID were evaluated for the presence of these warning signs and compared to controls with normal preliminary biochemical immune evaluation. RESULTS Fewer than 45% of adults with PID presented with ≥ 2 warning signs, while diagnostic utility was improved in the pediatric population where the warning signs were found to be 64% sensitive. The warning signs found in a significantly increased proportion compared to controls differed for pediatric PID patients (recurrent pneumonia (OR 2.9, p < 0.001), failure to thrive (OR 2.1, p < 0.001), need for IV antibiotics (OR 2.1, p < 0.001), serious bacterial infection (OR 4.8, p < 0.001), recurrent otitis media (OR 1.5, p = 0.027)), versus adult PID patients (recurrent otitis media (OR 2.9, p < 0.001), recurrent sinusitis (OR 2.1, p < 0.001), diarrhea with weight loss (OR 2.2, p < 0.001), recurrent viral infection (OR 3.3 p < 0.001)). In evaluation for additional criteria to promote identification of immunodeficiency, linear regression models showed slightly improved diagnostic accuracy of the warning signs with the addition of autoimmunity in our pediatric PID cohort (8.7% v 2.8%, p < 0.001, ROC 0.58). Adult PID patients demonstrated atopy more frequently than controls (48.0% vs 40.3%, p = 0.011), while atopy was found to have a negative association with the presence of PID in the pediatric age group (OR 0.3, p < 0.01). No improvement in diagnostic accuracy of the warning signs was found with the addition of allergic disease, autoimmunity, or malignant and benign proliferative disease in the adult cohort. CONCLUSIONS We demonstrate poor diagnostic performance of warning signs for immunodeficiency in patients with PID in a retrospective chart review. Divergent warning signs of statistically significant diagnostic utility were found in pediatric versus adult patients. We suggest education of physicians on differing presentations of possible immunodeficiency between age groups, and expansion of the warning signs to include non-infectious comorbidities such as autoimmunity in pediatric patients.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The mechanisms underlying the overlap of, and relationship between, atopy and immunodeficiency are just beginning to be recognized, through the identification of novel genetic conditions and the reexamination of well known primary immunodeficiencies. The present review seeks both to frame the topic and to highlight the most recent literature combining allergy in the context of immunodeficiency. RECENT FINDINGS The true prevalence of atopic disorders in the setting of primary immunodeficiency as a whole is difficult to pinpoint, however there have been recent attempts to measure prevalence. Individual immunodeficiency disorders have been more carefully dissected for atopic disease and the mechanisms underlying the atopic phenotypic, whereas several newly described immune deficiencies because of single gene mutations are highly associated with atopic phenotypes. Finally, a number of novel genetic conditions with atopy being the primary feature, even in the absence of overt immune deficiency, have been described, providing instrumental clues into the diagnostic dilemmas these syndromes create. SUMMARY Defining and examining diseases with primary features of atopy and infection allow for a better understanding of the interplay between the two in rare disease, and hopefully sheds light on fundamental pathways involved in atopy and host defense in the general population.
Collapse
|
27
|
Jiménez-Saiz R, Patil SU. The Multifaceted B Cell Response in Allergen Immunotherapy. Curr Allergy Asthma Rep 2018; 18:66. [PMID: 30291463 DOI: 10.1007/s11882-018-0819-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While allergen immunotherapy (AIT) for IgE-mediated diseases holds curative potential, the considerable heterogeneity in clinical outcomes may relate to the complex mechanisms of tolerance. The regulation of humoral immunity by AIT contributes to the suppression of allergic responses. Recent findings have revealed novel roles for IgA and IgG antibodies in the induction of tolerance. These mechanisms synergize with their ability to block allergen-IgE binding and mediate inhibitory signaling of effector cells of the allergic response. In addition, the regulatory activity of B cells in AIT extends beyond IL-10 secretion and induction of IgG4. Here, we review the evolution of the B cell response during AIT with special emphasis on the novel protective mechanisms entailing humoral immunity.
Collapse
Affiliation(s)
- Rodrigo Jiménez-Saiz
- Department of Biochemistry and Molecular Biology, Chemistry School, Complutense University, Madrid, Spain
| | - Sarita U Patil
- Department of Medicine Division of Rheumatology, Allergy, and Immunology, Department of Pediatrics, Division of Allergy and Immunology, Food Allergy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
The Initiation of Th2 Immunity Towards Food Allergens. Int J Mol Sci 2018; 19:ijms19051447. [PMID: 29757238 PMCID: PMC5983584 DOI: 10.3390/ijms19051447] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 12/30/2022] Open
Abstract
In contrast with Th1 immune responses against pathogenic viruses and bacteria, the incipient events that generate Th2 responses remain less understood. One difficulty in the identification of universal operating principles stems from the diversity of entities against which cellular and molecular Th2 responses are produced. Such responses are launched against harmful macroscopic parasites and noxious substances, such as venoms, but also against largely innocuous allergens. This suggests that the established understanding about sense and recognition applied to Th1 responses may not be translatable to Th2 responses. This review will discuss processes and signals known to occur in Th2 responses, particularly in the context of food allergy. We propose that perturbations of homeostasis at barrier sites induced by external or internal subverters, which can activate or lower the threshold activation of the immune system, are the major requirement for allergic sensitization. Innate signals produced in the tissue under these conditions equip dendritic cells with a program that forms an adaptive Th2 response.
Collapse
|
29
|
Lyons JJ, Milner JD. Primary atopic disorders. J Exp Med 2018; 215:1009-1022. [PMID: 29549114 PMCID: PMC5881472 DOI: 10.1084/jem.20172306] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2018] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
Important insights from monogenic disorders into the immunopathogenesis of allergic diseases and reactions are discussed. Monogenic disorders have provided fundamental insights into human immunity and the pathogenesis of allergic diseases. The pathways identified as critical in the development of atopy range from focal defects in immune cells and epithelial barrier function to global changes in metabolism. A major goal of studying heritable single-gene disorders that lead to severe clinical allergic diseases is to identify fundamental pathways leading to hypersensitivity that can be targeted to provide novel therapeutic strategies for patients with allergic diseases, syndromic and nonsyndromic alike. Here, we review known single-gene disorders leading to severe allergic phenotypes in humans, discuss how the revealed pathways fit within our current understanding of the atopic diathesis, and propose how some pathways might be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
30
|
Weissler KA, Rasooly M, DiMaggio T, Bolan H, Cantave D, Martino D, Neeland MR, Tang MLK, Dang TD, Allen KJ, Frischmeyer-Guerrerio PA. Identification and analysis of peanut-specific effector T and regulatory T cells in children allergic and tolerant to peanut. J Allergy Clin Immunol 2018; 141:1699-1710.e7. [PMID: 29454004 DOI: 10.1016/j.jaci.2018.01.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/20/2017] [Accepted: 01/03/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Peanut allergy (PA) is potentially life-threatening and generally persists for life. Recent data suggest the skin might be an important route of initial sensitization to peanut, whereas early oral exposure to peanut is protective. In mice regulatory T (Treg) cells are central to the development of food tolerance, but their contribution to the pathogenesis of food allergy in human subjects is less clear. OBJECTIVE We sought to quantify and phenotype CD4+ peanut-specific effector T (ps-Teff) cells and peanut-specific regulatory T (ps-Treg) cells in children with and without PA or PS. METHODS ps-Teff and ps-Treg cells were identified from peripheral blood of children with PA, children with PS, and nonsensitized/nonallergic (NA) school-aged children and 1-year-old infants based on upregulation of CD154 or CD137, respectively, after stimulation with peanut extract. Expression of cytokines and homing receptors was evaluated by using flow cytometry. Methylation at the forkhead box protein 3 (FOXP3) locus was measured as a marker of Treg cell stability. RESULTS Differential upregulation of CD154 and CD137 efficiently distinguished ps-Teff and ps-Treg cells. A greater percentage of ps-Teff cells from infants with PA and infants with PS expressed the skin-homing molecule cutaneous lymphocyte antigen, suggesting activation after exposure through the skin, compared with NA infants. Although ps-Teff cells in both school-aged and infant children with PA produced primarily TH2 cytokines, a TH1-skewed antipeanut response was seen only in NA school-aged children. The frequency, homing receptor expression, and stability of ps-Treg cells in infants and school-aged children were similar, regardless of allergic status. CONCLUSIONS Exposure to peanut through the skin can prime the development of TH2 ps-Teff cells, which promote sensitization to peanut, despite the presence of normal numbers of ps-Treg cells.
Collapse
Affiliation(s)
- Katherine A Weissler
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Marjohn Rasooly
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Tom DiMaggio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Hyejeong Bolan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Daly Cantave
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - David Martino
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Melanie R Neeland
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Mimi L K Tang
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Australia; Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia
| | - Thanh D Dang
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Katrina J Allen
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Australia; Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia
| | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Food allergy likely arises from a complex interplay between environmental triggers and genetic susceptibility. Here, we review recent studies that have investigated the genetic pathways and mechanisms that may contribute to the pathogenesis of food allergy. RECENT FINDINGS A heritability component of food allergy has been observed in multiple studies. A number of monogenic diseases characterized by food allergy have elucidated pathways that may be important in pathogenesis. Several population-based genetic variants associated with food allergy have also been identified. The genetic mechanisms that play a role in the development of food allergy are heterogeneous and complex. Advances in our understanding of the genetics of food allergy, and how this predisposition interacts with environmental exposures to lead to disease, will improve our understanding of the key pathways leading to food allergy and inform more effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Cristina A Carter
- Vaccine Research Center, NIAID, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Pamela A Frischmeyer-Guerrerio
- Laboratory of Allergic Diseases, NIAID, National Institutes of Health, 10 Clinical Center Drive, Building 10, Room 11N240B, MSC 1889, Bethesda, MD, 20892, USA.
| |
Collapse
|
32
|
Clinical Manifestations and Pathophysiological Mechanisms of the Wiskott-Aldrich Syndrome. J Clin Immunol 2018. [PMID: 29086100 DOI: 10.1007/s10875-017-0453-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder originally described by Dr. Alfred Wiskott in 1937 and Dr. Robert Aldrich in 1954 as a familial disease characterized by infections, bleeding tendency, and eczema. Today, it is well recognized that the syndrome has a wide clinical spectrum ranging from mild, isolated thrombocytopenia to full-blown presentation that can be complicated by life-threatening hemorrhages, immunodeficiency, atopy, autoimmunity, and cancer. The pathophysiology of classic and emerging features is being elucidated by clinical studies, but remains incompletely defined, which hinders the application of targeted therapies. At the same time, progress of hematopoietic stem cell transplantation and gene therapy offer optimistic prospects for treatment options aimed at the replacement of the defective lymphohematopoietic system that have the potential to provide a cure for this rare and polymorphic disease.
Collapse
|
33
|
Clinical Manifestations and Pathophysiological Mechanisms of the Wiskott-Aldrich Syndrome. J Clin Immunol 2017; 38:13-27. [PMID: 29086100 DOI: 10.1007/s10875-017-0453-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder originally described by Dr. Alfred Wiskott in 1937 and Dr. Robert Aldrich in 1954 as a familial disease characterized by infections, bleeding tendency, and eczema. Today, it is well recognized that the syndrome has a wide clinical spectrum ranging from mild, isolated thrombocytopenia to full-blown presentation that can be complicated by life-threatening hemorrhages, immunodeficiency, atopy, autoimmunity, and cancer. The pathophysiology of classic and emerging features is being elucidated by clinical studies, but remains incompletely defined, which hinders the application of targeted therapies. At the same time, progress of hematopoietic stem cell transplantation and gene therapy offer optimistic prospects for treatment options aimed at the replacement of the defective lymphohematopoietic system that have the potential to provide a cure for this rare and polymorphic disease.
Collapse
|
34
|
Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG, Mebius RE, Macia L, Mackay CR. Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Rep 2017; 15:2809-24. [PMID: 27332875 DOI: 10.1016/j.celrep.2016.05.047] [Citation(s) in RCA: 432] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/02/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
The incidence of food allergies in western countries has increased dramatically in recent decades. Tolerance to food antigens relies on mucosal CD103(+) dendritic cells (DCs), which promote differentiation of regulatory T (Treg) cells. We show that high-fiber feeding in mice improved oral tolerance and protected from food allergy. High-fiber feeding reshaped gut microbial ecology and increased the release of short-chain fatty acids (SCFAs), particularly acetate and butyrate. High-fiber feeding enhanced oral tolerance and protected against food allergy by enhancing retinal dehydrogenase activity in CD103(+) DC. This protection depended on vitamin A in the diet. This feeding regimen also boosted IgA production and enhanced T follicular helper and mucosal germinal center responses. Mice lacking GPR43 or GPR109A, receptors for SCFAs, showed exacerbated food allergy and fewer CD103(+) DCs. Dietary elements, including fiber and vitamin A, therefore regulate numerous protective pathways in the gastrointestinal tract, necessary for immune non-responsiveness to food antigens.
Collapse
Affiliation(s)
- Jian Tan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Craig McKenzie
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | | | - Gera Goverse
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 HZ Amsterdam, the Netherlands
| | - Carola G Vinuesa
- Department of Pathogens and Immunity, John Curtin School of Medical Research, Australian National University, Building 131, Garran Road, Canberra, ACT 0200, Australia
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 HZ Amsterdam, the Netherlands
| | - Laurence Macia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Charles R Mackay
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
35
|
Fischer A, Provot J, Jais JP, Alcais A, Mahlaoui N. Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. J Allergy Clin Immunol 2017; 140:1388-1393.e8. [PMID: 28192146 DOI: 10.1016/j.jaci.2016.12.978] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/15/2016] [Accepted: 12/29/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Primary immunodeficiencies (PIDs) are inherited diseases associated with a considerable increase in susceptibility to infections. It is known that PIDs can also predispose to cancer and immune diseases, including allergy, autoimmunity, and inflammation. OBJECTIVE We aimed at determining the incidence of autoimmunity and inflammation in patients with PIDs. METHODS We have retrospectively screened 2183 consecutive cases of PID in the Centre de Référence Déficits Immunitaires Héréditaires registry (CEREDIH; the French national PID registry) for the occurrence of autoimmunity and inflammation. RESULTS One or more autoimmune and inflammatory complications were noted in 26.2% of patients, with a risk of onset throughout the patient's lifetime. The risk of autoimmune cytopenia was at least 120 times higher than in the general population, the risk of inflammatory bowel disease in children was 80 times higher, and the risk of other autoimmune manifestations was approximately 10 times higher. Remarkably, all types of PIDs were associated with a risk of autoimmune and inflammatory complications, although the greatest risk was associated with T-cell PIDs and common variable immunodeficiency. The occurrence of autoimmune disease is a negative prognostic factor for survival. CONCLUSIONS Our results provide the basis for a detailed prospective evaluation of autoimmunity and inflammation in the context of PIDs, with a view to accurately assessing these risks and describing the possible effect of medical intervention.
Collapse
Affiliation(s)
- Alain Fischer
- Centre de Référence Déficits Immunitaires Héréditaires (CEREDIH), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Unité d'Immuno-Hématologie et Rhumatologie pédiatrique, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; INSERM UMR 1163, Paris, France; Collège de France, Paris, France.
| | - Johan Provot
- Centre de Référence Déficits Immunitaires Héréditaires (CEREDIH), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Philippe Jais
- Centre de Référence Déficits Immunitaires Héréditaires (CEREDIH), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Université Paris Descartes, INSERM UMRS 1138 Team 22, Paris, France AP-HP, Hôpital Necker Enfants Malades, Biostatistics Unit, Paris, France
| | - Alexandre Alcais
- Centre de Référence Déficits Immunitaires Héréditaires (CEREDIH), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Paris, France
| | - Nizar Mahlaoui
- Centre de Référence Déficits Immunitaires Héréditaires (CEREDIH), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Unité d'Immuno-Hématologie et Rhumatologie pédiatrique, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Paris, France
| | | |
Collapse
|
36
|
Chinen J, Notarangelo LD, Shearer WT. Advances in clinical immunology in 2015. J Allergy Clin Immunol 2016; 138:1531-1540. [PMID: 27931534 PMCID: PMC5157931 DOI: 10.1016/j.jaci.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/02/2016] [Accepted: 10/07/2016] [Indexed: 12/17/2022]
Abstract
Advances in clinical immunology in the past year included the report of practice parameters for the diagnosis and management of primary immunodeficiencies to guide the clinician in the approach to these relatively uncommon disorders. We have learned of new gene defects causing immunodeficiency and of new phenotypes expanding the spectrum of conditions caused by genetic mutations such as a specific regulator of telomere elongation (RTEL1) mutation causing isolated natural killer cell deficiency and mutations in ras-associated RAB (RAB27) resulting in immunodeficiency without albinism. Advances in diagnosis included the increasing use of whole-exome sequencing to identify gene defects and the measurement of serum free light chains to identify secondary hypogammaglobulinemias. For several primary immunodeficiencies, improved outcomes have been reported after definitive therapy with hematopoietic stem cell transplantation and gene therapy.
Collapse
Affiliation(s)
- Javier Chinen
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex.
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - William T Shearer
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| |
Collapse
|
37
|
Lexmond WS, Goettel JA, Lyons JJ, Jacobse J, Deken MM, Lawrence MG, DiMaggio TH, Kotlarz D, Garabedian E, Sackstein P, Nelson CC, Jones N, Stone KD, Candotti F, Rings EH, Thrasher AJ, Milner JD, Snapper SB, Fiebiger E. FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. J Clin Invest 2016; 126:4030-4044. [PMID: 27643438 PMCID: PMC5096801 DOI: 10.1172/jci85129] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 08/16/2016] [Indexed: 12/26/2022] Open
Abstract
In addition to the infectious consequences of immunodeficiency, patients with Wiskott-Aldrich syndrome (WAS) often suffer from poorly understood exaggerated immune responses that result in autoimmunity and elevated levels of serum IgE. Here, we have shown that WAS patients and mice deficient in WAS protein (WASP) frequently develop IgE-mediated reactions to common food allergens. WASP-deficient animals displayed an adjuvant-free IgE-sensitization to chow antigens that was most pronounced for wheat and soy and occurred under specific pathogen-free as well as germ-free housing conditions. Conditional deletion of Was in FOXP3+ Tregs resulted in more severe Th2-type intestinal inflammation than that observed in mice with global WASP deficiency, indicating that allergic responses to food allergens are dependent upon loss of WASP expression in this immune compartment. While WASP-deficient Tregs efficiently contained Th1- and Th17-type effector differentiation in vivo, they failed to restrain Th2 effector responses that drive allergic intestinal inflammation. Loss of WASP was phenotypically associated with increased GATA3 expression in effector memory FOXP3+ Tregs, but not in naive-like FOXP3+ Tregs, an effect that occurred independently of increased IL-4 signaling. Our results reveal a Treg-specific role for WASP that is required for prevention of Th2 effector cell differentiation and allergic sensitization to dietary antigens.
Collapse
Affiliation(s)
- Willem S. Lexmond
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeremy A. Goettel
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan J. Lyons
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Justin Jacobse
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Marion M. Deken
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Monica G. Lawrence
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Thomas H. DiMaggio
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Daniel Kotlarz
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | - Paul Sackstein
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Celeste C. Nelson
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Nina Jones
- Clinical Research Directorate/Clinical Monitoring Research Program (CMRP), Leidos Biomedical Research Inc., National Cancer Institute (NCI) Campus at Frederick, Frederick, Maryland, USA
| | - Kelly D. Stone
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Fabio Candotti
- Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Edmond H.H.M. Rings
- Departments of Pediatrics, Erasmus University, Erasmus Medical Center, Rotterdam and Leiden University, University Medical Center Leiden, Leiden, Netherlands
| | - Adrian J. Thrasher
- Great Ormond Street Hospital NHS Trust, London and Institute of Child Health, University College London, London, United Kingdom
| | - Joshua D. Milner
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Scott B. Snapper
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Edda Fiebiger
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Arjona Aguilera C, Albarrán Planelles C, Tercedor Sánchez J. Trastornos genéticos con eccema moderado-grave refractario y elevación de inmunoglobulina E: diagnóstico diferencial. ACTAS DERMO-SIFILIOGRAFICAS 2016; 107:116-24. [DOI: 10.1016/j.ad.2015.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/12/2015] [Accepted: 09/19/2015] [Indexed: 02/06/2023] Open
|
39
|
Arjona Aguilera C, Albarrán Planelles C, Tercedor Sánchez J. Differential Diagnosis of Genetic Disorders Associated with Moderate to Severe Refractory Eczema and Elevated Immunoglobulin E. ACTAS DERMO-SIFILIOGRAFICAS 2016. [DOI: 10.1016/j.adengl.2016.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
Abstract
Dramatic elevations in the serum IgE level are seen both in polygenic allergic diseases such as atopic dermatitis and food allergy, and in a growing list of monogenic primary immune deficiencies (PIDs). Although the IgE produced in patients with PID has generally been considered to be driven by dysregulated IL-4 production and thus lack antigen specificity, in fact allergen-specific IgE can be detected by skin and serum testing in many of these patients. However, perhaps not surprisingly given the distinct immunologic pathways involved, the patterns of allergic disease and atopic sensitization vary widely between syndromes, leading to strikingly different clinical phenotypes.
Collapse
Affiliation(s)
- Monica G Lawrence
- University of Virginia Asthma and Allergic Diseases Center, PO Box 801355, Charlottesville, VA, 22908, USA.
| |
Collapse
|
41
|
Tsoumani M, Sharma V, Papadopoulos NG. Food-Induced Anaphylaxis Year in Review. CURRENT TREATMENT OPTIONS IN ALLERGY 2015. [DOI: 10.1007/s40521-015-0054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|