1
|
Nakamura AR, Yamamoto S, Chigusa Y, Mandai M, Mogami H. Infliximab treatment for Cronkhite-Canada syndrome in pregnancy: A case report. Case Rep Womens Health 2025; 46:e00706. [PMID: 40236588 PMCID: PMC11999527 DOI: 10.1016/j.crwh.2025.e00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Cronkhite-Canada syndrome (CCS) is a rare nonhereditary disorder characterized by gastrointestinal polyps and protein-losing enteropathy. While an increasing number of CCS cases have been reported worldwide, no documented cases involving pregnant patients could be found. Consequently, optimal management strategies for CCS during the preconception period and pregnancy remain unclear., The present report concerns the case of a 36-year-old woman with steroid-refractory CCS stabilized with gastrointestinal surgeries and infliximab, an anti-tumor necrosis factor-α (TNF-α) agent, who became pregnant. Infliximab was continued throughout pregnancy and postpartum. Despite persistent hypoalbuminemia, sh delivered a healthy infant weighing 2518 g vaginally at 38 weeks and 2 days without CCS exacerbation. Both the patient and her infant experienced an uneventful postpartum course. This case suggests that maintaining disease control with anti-TNF-α therapy in pregnant patients with CCS may contribute to optimizing maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Ayano Rosemary Nakamura
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shuji Yamamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Haruta Mogami
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
2
|
Hou J, Lu M, Guo J, Wu J, Wang C, Zhou PK, Ma T. DNA-PKcs, a player winding and dancing with RNA metabolism and diseases. Cell Mol Biol Lett 2025; 30:25. [PMID: 40038612 DOI: 10.1186/s11658-025-00703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a key kinase in the DNA repair process that responds to DNA damage caused by various factors and maintains genomic stability. However, DNA-PKcs is overexpressed in some solid tumors and is frequently associated with poor prognosis. DNA-PKcs was initially identified as a part of the transcription complex. In recent years, many studies have focused on its nonclassical functions, including transcriptional regulation, metabolism, innate immunity, and inflammatory response. Given the pleiotropic roles of DNA-PKcs in tumors, pharmacological inhibition of DNA-PK can exert antitumor effects and may serve as a potential target for tumor therapy in the future. This review summarizes several aspects of DNA-PKcs regulation of RNA metabolism, including its impact on transcriptional machinery, alternative splicing, and interaction with noncoding RNAs, and provides insights into DNA-PKcs beyond its DNA damage repair function.
Collapse
Affiliation(s)
- Jiabao Hou
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Jingwei Guo
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Chenyang Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Ping-Kun Zhou
- Beijing Key Laboratory for Radiobiology Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
3
|
Wang Z, Li K, Zhang X, Jiang F, Xu L. LINC00942 Accelerates Esophageal Cancer Progression by Raising PRKDC Through Interaction With PTBP1. J Biochem Mol Toxicol 2025; 39:e70220. [PMID: 40103322 DOI: 10.1002/jbt.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Aberrantly expressed LINC00942 is participated in the progression of several cancers. However, the function of LINC00942 in esophageal cancer (ESCA) is unclear. The objective of this study was to explore the effect of LINC00942 on ESCA and its possible molecular mechanisms. First, differentially expressed lncRNAs in ESCA were analyzed using GSE192662 microarray. catRAPID omics v2.1 was applied to predict the proteins that might interact with LINC00942. SDS-PAGE silver staining assay, RNA pull down, and RIP assay were utilized to validate proteins interacting with LINC00942. Then, RNA seq was applied to detect the downstream targets of PTBP1, and KEGG enrichment analysis was used to analyze the genes involved in proliferation and migration-related signaling pathways. In addition, CCK-8, EdU and transwell were used to detect the impact of LINC00942 on ESCA cell function. Bioinformatics revealed that LINC00942 was significantly overexpressed in ESCA. Patients in low-expression of LINC00942 had an obviously better prognosis. After LINC00942 knockdown, the proliferation and migration of TE-1 and OE19 were dramatically reduced. Subsequently, PTBP1 was found to interact with LINC00942, and PRKDC was a downstream target of PTBP1. Functional analysis showed that TE-1 and OE19 cell proliferation and migration were markedly elevated after LINC00942 overexpression, and knockdown of PRKDC significantly reversed this effect. Mechanistically, LINC00942 promoted PRKDC expression by interacting with PTBP1. In summary, LINC00942 facilitated the proliferation and migration of ESCA cells via binding to PTBP1 to promote PRKDC expression.
Collapse
Affiliation(s)
- Zhongqiu Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Kang Li
- Department of Radiology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xing Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
4
|
Sserwadda H, Lee JH, Lee BH, Jung S, Bang YJ, Cho BK, Nam HJ, Choi SJ, Gong JR, Choi HS, Jung CW, Chung H, Nam H, Kim ER, Kim HJ, Park CG, Kim YH. Superloaded Multiplexed scRNA-seq Data Preserves Primary Immune Cell Heterogeneity but Necessitates Stringent Doublet Removal. Immunol Invest 2025:1-17. [PMID: 39882751 DOI: 10.1080/08820139.2025.2457039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) has improved our ability to characterize rare cell populations. In practice, cells from different tissues or donors are simultaneously loaded onto the instrument (multiplexed) at the recommended (standard loading) or higher (superloading) numbers to save time and money. Although cost-effective, superloading can stymie computational analyses owing to high multiplet rates and sample complexity. METHODS We compared the effects of superloading on multiplexed single-cell gene expression and T cell receptor (TCR) data generated from human thymus and blood samples from different donors. RESULTS Minimal transcriptomic differences were observed between the data generated by either standard or superloading. Irrespective of the loading cell number, we found that over 50% of the T cells expressing multiple TCR chains were doublets. CONCLUSION Multiple samples can be run simultaneously without compromising data quality and subsequent analyses. However, an additional doublet removal step based on TCR configuration may improve the accuracy of T cell analysis.
Collapse
Affiliation(s)
- Henry Sserwadda
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jung Ho Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Brian H Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Sunyoung Jung
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Yoon Ji Bang
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Beom Keun Cho
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyo Jeong Nam
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - So-Jung Choi
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jeong-Ryeol Gong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hyun Seung Choi
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Chong Wook Jung
- Department of Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyeyeon Chung
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyunsung Nam
- Genomic Medicine Institute, Seoul National University, Seoul, South Korea
| | - Eung Re Kim
- Department of Thoracic and Cardiovascular Surgery, Sejong General Hospital, Bucheon, South Korea
| | - Hyun Je Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Genomic Medicine Institute, Seoul National University, Seoul, South Korea
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Dermatology, Seoul National University Hospital, Seoul, South Korea
- Transplantation Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
- Department of Basic Research, PB Immune Therapeutics Inc, Seoul, South Korea
| | - Chung-Gyu Park
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Transplantation Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
- Department of Basic Research, PB Immune Therapeutics Inc, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Seoul National University Hospital, Seoul, South Korea
| | - Yong-Hee Kim
- Transplantation Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
- Department of Basic Research, PB Immune Therapeutics Inc, Seoul, South Korea
| |
Collapse
|
5
|
Zhao Z, Attanasio C, Zong C, Pedano MS, Cadenas de Llano-Pérula M. How does orthodontic tooth movement influence the dental pulp? RNA-sequencing on human premolars. Int Endod J 2024; 57:1783-1801. [PMID: 39086033 DOI: 10.1111/iej.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVES The objective of this study is to analyse the gene expression profile of the dental pulp (DP) of human premolars subjected to 7 and 28 days of orthodontic force (OF) in vivo by using RNA sequencing. The maxillary and mandibular DP were additionally compared. METHODS Healthy patients requiring orthodontic premolar extractions were randomly assigned to one of the three groups: control (CG) where no OF was applied, 7 and 28 days, where premolars were extracted either 7 or 28 days after the application of a 50-100 g OF. Total RNA was extracted from the DP and analysed via RNA-seq. Differentially expressed genes (DEGs) were identified using a false discovery rate and fold change threshold of <0.05 and ≥1.5, respectively. Functional analysis was performed. RESULTS After 7 days of OF, pulp reaction indicates immune response, hypoxia, DNA damage and epigenetic regulation. After 28 days, cell adhesion, migration, organization and tissue repair are evident. The maxillary and mandibular pulp tissues react differently to OF. The maxilla exhibits minimal alterations, mostly related to immune response at 7 days and tissue repair at 28 days, whereas the mandible shows mostly DNA damage and epigenetic regulation at 7 days and return to the original state at 28 days. CONCLUSIONS This study demonstrates that the early reaction of the DP to OF is marked by immune response, hypoxia and DNA damage. In contrast, after 28 days, cell adhesion, migration, organization, tissue repair and dentine formation are observed. Maxillary and mandibular premolars react differently to OF: although the maxilla exhibits minimal alterations at both time points, the mandible mostly shows DNA damage, epigenetic regulation, and immune response at 7 days. These disparities could stem from different blood supplies or the lower maxillary bone density, potentially triggering faster biological changes. Our findings provide insights into the gene regulatory networks modulating DP response to OF.
Collapse
Affiliation(s)
- Zuodong Zhao
- Department of Oral Health Sciences-Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Catia Attanasio
- Laboratory of Gene Regulation and Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Chen Zong
- Department of Oral Health Sciences-Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Mariano Simón Pedano
- Department of Oral Health Sciences-Endodontics and BIOMAT - Biomaterials Research Group, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - María Cadenas de Llano-Pérula
- Department of Oral Health Sciences-Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Adelon J, Abolhassani H, Esenboga S, Fouyssac F, Cagdas D, Tezcan I, Kuskonmaz B, Cetinkaya D, Suarez F, Mahdaviani SA, Plassart S, Mathieu AL, Fabien N, Malcus C, Morfin-Sherpa F, Billaud G, Tusseau M, Benezech S, Walzer T, De Villartay JP, Bertrand Y, Belot A. Human DNA-dependent protein kinase catalytic subunit deficiency: A comprehensive review and update. J Allergy Clin Immunol 2024; 154:1300-1312. [PMID: 38977084 DOI: 10.1016/j.jaci.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has an essential role in the non-homologous end-joining pathway that repairs DNA double-strand breaks in V(D)J recombination involved in the expression of T- and B-cell receptors. Whereas homozygous mutations in Prkdc define the Scid mouse, a model that has been widely used in biology, human mutations in PRKDC are extremely rare and the disease spectrum has not been described so far. OBJECTIVES To provide an update on the genetics, clinical spectrum, immunological profile, and therapy of DNA-PKcs deficiency in human. METHODS The clinical, biological, and treatment data from the 6 cases published to date and from 1 new patient were obtained and analyzed. Rubella PCR was performed on available granuloma material. RESULTS We report on 7 patients; 6 patients displayed the autosomal recessive p.L3062R mutation in PRKDC-encoding DNA-PKcs. Atypical severe combined immunodeficiency with inflammatory lesions, granulomas, and autoimmunity was the predominant clinical manifestation (n = 5 of 7). Rubella viral strain was detected in the granuloma of 1 patient over the 2 tested. T-cell counts, including naive CD4+CD45RA+ T cells and T-cell function were low at diagnosis for 6 patients. For most patients with available values, naive CD4+CD45RA+ T cells decreased over time (n = 5 of 6). Hematopoietic stem cell transplantation was performed in 5 patients, of whom 4 are still alive without transplant-related morbidity. Sustained T- and B-cell reconstitution was observed, respectively, for 4 and 3 patients, after a median follow-up of 8 years (range 3-16 years). CONCLUSIONS DNA-PKcs deficiency mainly manifests as an inflammatory disease with granuloma and autoimmune features, along with severe infections.
Collapse
Affiliation(s)
- Jihane Adelon
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France.
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Saliha Esenboga
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Fanny Fouyssac
- Department of Pediatric Oncology, Children's Hospital, Nancy, France
| | - Deniz Cagdas
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Barıs Kuskonmaz
- Department of Pediatric Hematology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Duygu Cetinkaya
- Department of Pediatric Hematology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Felipe Suarez
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; INSERM UMR1163, Imagine Institut, Sorbonne Paris Cité, Paris, France; Department of Hematology, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France; Université Paris Cité, Paris, France
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Plassart
- Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France
| | - Anne-Laure Mathieu
- Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Nicole Fabien
- Department of Immunology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Benite, France
| | - Christophe Malcus
- Department of Immunology, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Florence Morfin-Sherpa
- Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France; Laboratoire Virologie et Pathologies humaines (VirPath),Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Geneviève Billaud
- Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France
| | - Maud Tusseau
- Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France; Service de Génétique, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Sarah Benezech
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Jean-Pierre De Villartay
- Laboratory "Genome Dynamics in the Immune System" INSERM UMR 1163, Imagine Institute, Université de Paris Cité, Paris, France
| | - Yves Bertrand
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Alexandre Belot
- Hospices Civils de Lyon, Lyon, France; Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France; Department of Pediatrics Nephrology, Rheumatology, and Dermatology, Hôpital Femme-Mère-Enfant, Bron, France.
| |
Collapse
|
7
|
Pascarella G, Conner KN, Goff NJ, Carninci P, Olive AJ, Meek K. Compared to other NHEJ factors, DNA-PK protein and RNA levels are markedly increased in all higher primates, but not in prosimians or other mammals. DNA Repair (Amst) 2024; 142:103737. [PMID: 39128395 PMCID: PMC11515020 DOI: 10.1016/j.dnarep.2024.103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
The DNA dependent protein kinase (DNA-PK) initiates non-homologous recombination (NHEJ), the predominate DNA double-strand break (DSBR) pathway in higher vertebrates. It has been known for decades that the enzymatic activity of DNA-PK [that requires its three component polypeptides, Ku70, Ku80 (that comprise the DNA-end binding Ku heterodimer), and the catalytic subunit (DNA-PKcs)] is present in humans at 10-50 times the level observed in other mammals. Here, we show that the high level of DNA-PKcs protein expression appears evolutionarily in mammals between prosimians and higher primates. Moreover, the RNAs encoding the three component polypeptides of DNA-PK are present at similarly high levels in hominids, new-, and old-world monkeys, but expression of these RNAs in prosimians is ∼5-50 fold less, analogous to the levels observed in other non-primate species. This is reminiscent of the appearance of Alu repeats in primate genomes -- abundant in higher primates, but present at much lower density in prosimians. Alu repeats are well-known for their capacity to promote non-allelic homologous recombination (NAHR) a process known to be inhibited by DNA-PK. Nanopore sequence analyses of cultured cells proficient or deficient in DNA-PK revealed an increase of inter-chromosomal translocations caused by NAHR. Although the high levels of DNA-PK in primates may have many functions, we posit that high levels of DNA-PK may function to restrain deleterious NAHR events between Alu elements.
Collapse
Affiliation(s)
| | - Kayla N Conner
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA
| | - Noah J Goff
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA; Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan; Human Technopole, Milan, Italy
| | - Andrew J Olive
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA
| | - Katheryn Meek
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA; Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
8
|
Gall A, Bosticardo M, Ma S, Chen K, Amini K, Pala F, Delmonte OM, Wenger T, Bamshad M, Sleasman J, Blessing M, van Oers NSC, Notarangelo LD, de la Morena MT. Case report: Artificial thymic organoids facilitate clinical decisions for a patient with a TP63 variant and severe persistent T cell lymphopenia. Front Immunol 2024; 15:1438383. [PMID: 39364398 PMCID: PMC11448704 DOI: 10.3389/fimmu.2024.1438383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Pathogenic variants in the transcription factor TP63 are associated with clinically overlapping syndromes including ectrodactyly-ectodermal dysplasia clefting (EEC) and ankyloblepharon-ectodermal defects-cleft lip/palate (AEC). T cell lymphopenia has rarely been described in individuals with TP63 variants and the cause of the T cell defect is unclear. Here, we present a case of a female infant born with TP63-related syndrome and profound T cell lymphopenia, first uncovered through newborn screening. Flow cytometry analysis revealed low CD4+ naïve T cells and nearly absent CD8+ T cells with intact B and NK cell compartments. A de novo heterozygous pathogenic variant c.1040 G>A (C347Y) in exon 8 of TP63 was identified. An artificial thymic organoid system, to assess the intrinsic ability of the patient's hematopoietic cells to develop into T cells, was performed twice using separate peripheral blood samples. Ex vivo T cell differentiation was evident with the artificial organoid system, suggesting that a thymic stromal cell defect may be the cause of the T cell lymphopenia. Consistent with this, interrogation of publicly available data indicated that TP63 expression in the human thymus is restricted to thymic epithelial cells. Based on these data, congenital athymia was suspected and the patient received an allogenic cultured thymus tissue implant (CTTI). This is the first report of suspected congenital athymia and attempted treatment with CTTI associated with TP63 variant. At 9 months post-implant, peripheral lymphocyte analysis revealed measurable T cell receptor excision circles and presence of CD4+ recent thymic emigrants suggestive of early thymopoiesis. She will continue regular monitoring to ensure restoration of T cell immunity.
Collapse
Affiliation(s)
- Alevtina Gall
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stacey Ma
- Division of Allergy and Infectious Diseases, Department of Internal Medicine, University of Washington, Seattle, WA, United States
| | - Karin Chen
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tara Wenger
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Michael Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, United States
| | - John Sleasman
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Matthew Blessing
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Nicolai S. C. van Oers
- Department of Immunology, Pediatrics and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - M. Teresa de la Morena
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| |
Collapse
|
9
|
Fekrvand S, Abolhassani H, Rezaei N. An overview of early genetic predictors of IgA deficiency. Expert Rev Mol Diagn 2024; 24:715-727. [PMID: 39087770 DOI: 10.1080/14737159.2024.2385521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEIs) refer to a heterogeneous category of diseases with defects in the number and/or function of components of the immune system. Immunoglobulin A (IgA) deficiency is the most prevalent IEI characterized by low serum level of IgA and normal serum levels of IgG and/or IgM. Most of the individuals with IgA deficiency are asymptomatic and are only identified through routine laboratory tests. Others may experience a wide range of clinical features including mucosal infections, allergies, and malignancies as the most important features. IgA deficiency is a multi-complex disease, and the exact pathogenesis of it is still unknown. AREAS COVERED This review compiles recent research on genetic and epigenetic factors that may contribute to the development of IgA deficiency. These factors include defects in B-cell development, IgA class switch recombination, synthesis, secretion, and the long-term survival of IgA switched memory B cells and plasma cells. EXPERT OPINION A better and more comprehensive understanding of the cellular pathways involved in IgA deficiency could lead to personalized surveillance and potentially curative strategies for affected patients, especially those with severe symptoms.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
10
|
Erman B, Aba U, Ipsir C, Pehlivan D, Aytekin C, Cildir G, Cicek B, Bozkurt C, Tekeoglu S, Kaya M, Aydogmus C, Cipe F, Sucak G, Eltan SB, Ozen A, Barıs S, Karakoc-Aydiner E, Kıykım A, Karaatmaca B, Kose H, Uygun DFK, Celmeli F, Arikoglu T, Ozcan D, Keskin O, Arık E, Aytekin ES, Cesur M, Kucukosmanoglu E, Kılıc M, Yuksek M, Bıcakcı Z, Esenboga S, Ayvaz DÇ, Sefer AP, Guner SN, Keles S, Reisli I, Musabak U, Demirbas ND, Haskologlu S, Kilic SS, Metin A, Dogu F, Ikinciogulları A, Tezcan I. Genetic Evaluation of the Patients with Clinically Diagnosed Inborn Errors of Immunity by Whole Exome Sequencing: Results from a Specialized Research Center for Immunodeficiency in Türkiye. J Clin Immunol 2024; 44:157. [PMID: 38954121 PMCID: PMC11219406 DOI: 10.1007/s10875-024-01759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Molecular diagnosis of inborn errors of immunity (IEI) plays a critical role in determining patients' long-term prognosis, treatment options, and genetic counseling. Over the past decade, the broader utilization of next-generation sequencing (NGS) techniques in both research and clinical settings has facilitated the evaluation of a significant proportion of patients for gene variants associated with IEI. In addition to its role in diagnosing known gene defects, the application of high-throughput techniques such as targeted, exome, and genome sequencing has led to the identification of novel disease-causing genes. However, the results obtained from these different methods can vary depending on disease phenotypes or patient characteristics. In this study, we conducted whole-exome sequencing (WES) in a sizable cohort of IEI patients, consisting of 303 individuals from 21 different clinical immunology centers in Türkiye. Our analysis resulted in likely genetic diagnoses for 41.1% of the patients (122 out of 297), revealing 52 novel variants and uncovering potential new IEI genes in six patients. The significance of understanding outcomes across various IEI cohorts cannot be overstated, and we believe that our findings will make a valuable contribution to the existing literature and foster collaborative research between clinicians and basic science researchers.
Collapse
Affiliation(s)
- Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey.
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey.
| | - Umran Aba
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Canberk Ipsir
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Damla Pehlivan
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Caner Aytekin
- Pediatric Immunology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Begum Cicek
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ceren Bozkurt
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Sidem Tekeoglu
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Melisa Kaya
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Cigdem Aydogmus
- Department of Pediatric Allergy and Clinical Immunology, University of Health Sciences, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Funda Cipe
- Department of Pediatric Allergy and Clinical Immunology, Altinbas University School of Medicine, Istanbul, Turkey
| | - Gulsan Sucak
- Medical Park Bahçeşehir Hospital, Clinic of Hematology and Transplantation, İstanbul, Turkey
| | - Sevgi Bilgic Eltan
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Barıs
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kıykım
- Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Betul Karaatmaca
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Hulya Kose
- Department of Pediatric Immunology, Diyarbakir Children Hospital, Diyarbakır, Turkey
| | - Dilara Fatma Kocacık Uygun
- Division of Allergy Immunology, Department of Pediatrics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Fatih Celmeli
- Republic of Turkey Ministry of Health Antalya Training and Research Hospital Pediatric Immunology and Allergy Diseases, Antalya, Turkey
| | - Tugba Arikoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Dilek Ozcan
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Balcali Hospital, Cukurova University, Adana, Turkey
| | - Ozlem Keskin
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Arık
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Soyak Aytekin
- Department of Pediatric Allergy and Immunology, Etlik City Hospital, Ankara, Turkey
| | - Mahmut Cesur
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ercan Kucukosmanoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Kılıc
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Firat, Elazığ, Turkey
| | - Mutlu Yuksek
- Department of Pediatric Immunology and Allergy, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Zafer Bıcakcı
- Department of Pediatric Hematology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Saliha Esenboga
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Deniz Çagdaş Ayvaz
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Asena Pınar Sefer
- Department of Pediatric Allergy and Immunology, Şanlıurfa Training and Research Hospital, Şanlıurfa, Turkey
| | - Sukrü Nail Guner
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ugur Musabak
- Department of Immunology and Allergy, Baskent University School of Medicine, Ankara, Turkey
| | - Nazlı Deveci Demirbas
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology-Rheumatology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Translational Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ayse Metin
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aydan Ikinciogulları
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
11
|
Wu J, Song L, Lu M, Gao Q, Xu S, Zhou P, Ma T. The multifaceted functions of DNA-PKcs: implications for the therapy of human diseases. MedComm (Beijing) 2024; 5:e613. [PMID: 38898995 PMCID: PMC11185949 DOI: 10.1002/mco2.613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA-dependent protein kinase (DNA-PK), catalytic subunit, also known as DNA-PKcs, is complexed with the heterodimer Ku70/Ku80 to form DNA-PK holoenzyme, which is well recognized as initiator in the nonhomologous end joining (NHEJ) repair after double strand break (DSB). During NHEJ, DNA-PKcs is essential for both DNA end processing and end joining. Besides its classical function in DSB repair, DNA-PKcs also shows multifaceted functions in various biological activities such as class switch recombination (CSR) and variable (V) diversity (D) joining (J) recombination in B/T lymphocytes development, innate immunity through cGAS-STING pathway, transcription, alternative splicing, and so on, which are dependent on its function in NHEJ or not. Moreover, DNA-PKcs deficiency has been proven to be related with human diseases such as neurological pathogenesis, cancer, immunological disorder, and so on through different mechanisms. Therefore, it is imperative to summarize the latest findings about DNA-PKcs and diseases for better targeting DNA-PKcs, which have shown efficacy in cancer treatment in preclinical models. Here, we discuss the multifaceted roles of DNA-PKcs in human diseases, meanwhile, we discuss the progresses of DNA-PKcs inhibitors and their potential in clinical trials. The most updated review about DNA-PKcs will hopefully provide insights and ideas to understand DNA-PKcs associated diseases.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Liwei Song
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Mingjun Lu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Qing Gao
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Shaofa Xu
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Teng Ma
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| |
Collapse
|
12
|
Liu W, Wu Y, Ma R, Zhu X, Wang R, He L, Shu M. Multi-omics analysis of a case of congenital microtia reveals aldob and oxidative stress associated with microtia etiology. Orphanet J Rare Dis 2024; 19:218. [PMID: 38802922 PMCID: PMC11129396 DOI: 10.1186/s13023-024-03149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/27/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Microtia is reported to be one of the most common congenital craniofacial malformations. Due to the complex etiology and the ethical barrier of embryonic study, the precise mechanisms of microtia remain unclear. Here we report a rare case of microtia with costal chondrodysplasia based on bioinformatics analysis and further verifications on other sporadic microtia patients. RESULTS One hundred fourteen deleterious insert and deletion (InDel) and 646 deleterious SNPs were screened out by WES, candidate genes were ranked in descending order according to their relative impact with microtia. Label-free proteomic analysis showed that proteins significantly different between the groups were related with oxidative stress and energy metabolism. By real-time PCR and immunohistochemistry, we further verified the candidate genes between other sporadic microtia and normal ear chondrocytes, which showed threonine aspartase, cadherin-13, aldolase B and adiponectin were significantly upregulated in mRNA levels but were significantly lower in protein levels. ROS detection and mitochondrial membrane potential (∆ Ψ m) detection proved that oxidative stress exists in microtia chondrocytes. CONCLUSIONS Our results not only spot new candidate genes by WES and label-free proteomics, but also speculate for the first time that metabolism and oxidative stress may disturb cartilage development and this might become therapeutic targets and potential biomarkers with clinical usefulness in the future.
Collapse
Affiliation(s)
- Wenbo Liu
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yi Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiao Tong University Medical College, Xi'an, Shaanxi, China
| | - Xinxi Zhu
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Rui Wang
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Lin He
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Maoguo Shu
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
13
|
Yang K, Jeltema D, Yan N. Innate immune sensing of macromolecule homeostasis. Adv Immunol 2024; 161:17-51. [PMID: 38763701 DOI: 10.1016/bs.ai.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The innate immune system uses a distinct set of germline-encoded pattern recognition receptors to recognize molecular patterns initially thought to be unique to microbial invaders, named pathogen-associated molecular patterns. The concept was later further developed to include similar molecular patterns originating from host cells during tissue damage, known as damage-associated molecular patterns. However, recent advances in the mechanism of monogenic inflammatory diseases have highlighted a much more expansive repertoire of cellular functions that are monitored by innate immunity. Here, we summarize several examples in which an innate immune response is triggered when homeostasis of macromolecule in the cell is disrupted in non-infectious or sterile settings. These ever-growing sensing mechanisms expand the repertoire of innate immune recognition, positioning it not only as a key player in host defense but also as a gatekeeper of cellular homeostasis. Therapeutics inspired by these advances to restore cellular homeostasis and correct the immune system could have far-reaching implications.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
14
|
Singh I, Kanichery A, Kotimoole CN, Modi PK, Prasad TSK, Hoti SL. Unpacking Immune Modulation as a Site of Therapeutics Innovation for Nematode Parasite Wuchereria bancrofti: A Temporal Quantitative Phosphoproteomics Profiling of Macrophage Migration Inhibitory Factor 2. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:125-137. [PMID: 38527276 DOI: 10.1089/omi.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Nematode infections are common in both humans and livestock, with major adverse planetary health and economic impacts. Wuchereria bancrofti is a parasitic nematode that causes lymphatic filariasis, a neglected tropical disease that can lead to severe disability and deformity worldwide. For the long-term survival of the bancroftian parasites in the host, a complex immune invasion strategy is involved through immunomodulation. Therefore, immunomodulation can serve as a site of research and innovation for molecular targets. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine crucial to the host antimicrobial alarm system and stress response. Interestingly, the nematode parasite W. bancrofti also produces two homologs of MIF (Wba-MIF1 and 2). Using a mass spectrometry-based phosphoproteomics approach, we report new findings on the immunomodulatory effect and signaling mechanism of Wba-MIF2 in macrophage cells. Accordingly, we observed 1201 phosphorylated sites on 467 proteins. Out of the 1201 phosphorylated sites, 1075, 117, and 9 were found on serine (S), threonine (T), and tyrosine (Y) residues, respectively. Our bioinformatics analysis led to identification of major pathways, including spliceosomes, T cell receptor signaling pathway, Th17 differentiation pathway, interleukin-17 signaling pathway, and insulin signaling pathway upon Wba-MIF2 treatment. Wba-MIF2 treatment also enriched CDK4, CDK1, and DNAPK kinases. The comparison of the signaling pathway of Wba-MIF2 with that of human-MIF suggests both share similar signaling pathways. These findings collectively offer new insights into the role and mechanism of Wba-MIF2 as an immunomodulator and inform future diagnostics and drug discovery research for W. bancrofti.
Collapse
Affiliation(s)
- Ishwar Singh
- Department of Neglected Tropical Diseases and Translational Research, ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
- Department of the Interdisciplinary Science, KLE Academy of Higher Education and Research, (Deemed to be University), Belagavi, Karnataka, India
| | - Anagha Kanichery
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Sugeerappa Laxamannappa Hoti
- Department of Neglected Tropical Diseases and Translational Research, ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
| |
Collapse
|
15
|
Hristova DB, Oliveira M, Wagner E, Melcher A, Harrington KJ, Belot A, Ferguson BJ. DNA-PKcs is required for cGAS/STING-dependent viral DNA sensing in human cells. iScience 2024; 27:108760. [PMID: 38269102 PMCID: PMC10805666 DOI: 10.1016/j.isci.2023.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/21/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
To mount an efficient interferon response to virus infection, intracellular pattern recognition receptors (PRRs) sense viral nucleic acids and activate anti-viral gene transcription. The mechanisms by which intracellular DNA and DNA viruses are sensed are relevant not only to anti-viral innate immunity, but also to autoinflammation and anti-tumour immunity through the initiation of sterile inflammation by self-DNA recognition. The PRRs that directly sense and respond to viral or damaged self-DNA function by signaling to activate interferon regulatory factor (IRF)-dependent type one interferon (IFN-I) transcription. We and others have previously defined DNA-dependent protein kinase (DNA-PK) as an essential component of the DNA-dependent anti-viral innate immune system. Here, we show that DNA-PK is essential for cyclic GMP-AMP synthase (cGAS)- and stimulator of interferon genes (STING)-dependent IFN-I responses in human cells during stimulation with exogenous DNA and infection with DNA viruses.
Collapse
Affiliation(s)
- Dayana B. Hristova
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Marisa Oliveira
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Emma Wagner
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Alan Melcher
- The Institute of Cancer Research, London SW7 3RP, UK
| | | | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard, Lyon, France
| | - Brian J. Ferguson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
16
|
Michaud SA, Pětrošová H, Sinclair NJ, Kinnear AL, Jackson AM, McGuire JC, Hardie DB, Bhowmick P, Ganguly M, Flenniken AM, Nutter LMJ, McKerlie C, Smith D, Mohammed Y, Schibli D, Sickmann A, Borchers CH. Multiple reaction monitoring assays for large-scale quantitation of proteins from 20 mouse organs and tissues. Commun Biol 2024; 7:6. [PMID: 38168632 PMCID: PMC10762018 DOI: 10.1038/s42003-023-05687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Mouse is the mammalian model of choice to study human health and disease due to its size, ease of breeding and the natural occurrence of conditions mimicking human pathology. Here we design and validate multiple reaction monitoring mass spectrometry (MRM-MS) assays for quantitation of 2118 unique proteins in 20 murine tissues and organs. We provide open access to technical aspects of these assays to enable their implementation in other laboratories, and demonstrate their suitability for proteomic profiling in mice by measuring normal protein abundances in tissues from three mouse strains: C57BL/6NCrl, NOD/SCID, and BALB/cAnNCrl. Sex- and strain-specific differences in protein abundances are identified and described, and the measured values are freely accessible via our MouseQuaPro database: http://mousequapro.proteincentre.com . Together, this large library of quantitative MRM-MS assays established in mice and the measured baseline protein abundances represent an important resource for research involving mouse models.
Collapse
Affiliation(s)
- Sarah A Michaud
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada.
| | - Helena Pětrošová
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Nicholas J Sinclair
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Andrea L Kinnear
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Angela M Jackson
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Jamie C McGuire
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Darryl B Hardie
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Pallab Bhowmick
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Milan Ganguly
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Ann M Flenniken
- The Center for Phenogenomics, Toronto, ON, Canada
- Sinai Health Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Lauryl M J Nutter
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Derek Smith
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Yassene Mohammed
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - David Schibli
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC, Canada.
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
17
|
Li H, Zhang Y, Zhang B, Chen D. A novel PRKDC mutation caused B lymphocytes V(D)J rearrangement disorder in the SLE-DAH like symptoms patient. Pediatr Rheumatol Online J 2023; 21:84. [PMID: 37580814 PMCID: PMC10424403 DOI: 10.1186/s12969-023-00840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/05/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Analyzed the clinical features and treatment process of the patient suffering from immunodeficiency with systemic lupus erythematosus(SLE)-like syndrome in a novel mutation of PRKDC. CASE PRESENTATION The patient had multiple positive auto-antibodies, chest CT and bronchoscopy showed Diffuse alveolar hemorrhage(DAH), and psychiatric symptoms showed brain atrophy by magnetic resonance imaging (MRI). Whole exon sequencing showed that novel complex heterozygous mutations of PRKDC gene (C. 1777 - 710_1777-709INSA (IVS16/IC16), C.1337T > A(p.Phe446Tyr). The mature B cell (CD19 + CD27 + CD38 dimIgD IgM-) were absent. The treatment of high-dose methylprednisolone (MP) and cyclophosphamide(CTX) can quickly relieve the symptoms of the patient. CONCLUSION We described the case of an infant immunodeficiency with SLE like-syndrome, which may cause by PRKDC mutation, treated successfully with high-dose MP and CTX.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Rd, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yawen Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Rd, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Biyun Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Rd, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dehui Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Rd, Guangzhou, 510120, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Klapp V, Álvarez-Abril B, Leuzzi G, Kroemer G, Ciccia A, Galluzzi L. The DNA Damage Response and Inflammation in Cancer. Cancer Discov 2023; 13:1521-1545. [PMID: 37026695 DOI: 10.1158/2159-8290.cd-22-1220] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/27/2023] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Genomic stability in normal cells is crucial to avoid oncogenesis. Accordingly, multiple components of the DNA damage response (DDR) operate as bona fide tumor suppressor proteins by preserving genomic stability, eliciting the demise of cells with unrepairable DNA lesions, and engaging cell-extrinsic oncosuppression via immunosurveillance. That said, DDR sig-naling can also favor tumor progression and resistance to therapy. Indeed, DDR signaling in cancer cells has been consistently linked to the inhibition of tumor-targeting immune responses. Here, we discuss the complex interactions between the DDR and inflammation in the context of oncogenesis, tumor progression, and response to therapy. SIGNIFICANCE Accumulating preclinical and clinical evidence indicates that DDR is intimately connected to the emission of immunomodulatory signals by normal and malignant cells, as part of a cell-extrinsic program to preserve organismal homeostasis. DDR-driven inflammation, however, can have diametrically opposed effects on tumor-targeting immunity. Understanding the links between the DDR and inflammation in normal and malignant cells may unlock novel immunotherapeutic paradigms to treat cancer.
Collapse
Affiliation(s)
- Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Beatriz Álvarez-Abril
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Sandra and Edward Meyer Cancer Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| |
Collapse
|
19
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
20
|
Taffoni C, Marines J, Chamma H, Guha S, Saccas M, Bouzid A, Valadao AC, Maghe C, Jardine J, Park MK, Polak K, De Martino M, Vanpouille‐Box C, Del Rio M, Gongora C, Gavard J, Bidère N, Song MS, Pineau D, Hugnot J, Kissa K, Fontenille L, Blanchet FP, Vila IK, Laguette N. DNA damage repair kinase DNA-PK and cGAS synergize to induce cancer-related inflammation in glioblastoma. EMBO J 2023; 42:e111961. [PMID: 36574362 PMCID: PMC10068334 DOI: 10.15252/embj.2022111961] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Cytosolic DNA promotes inflammatory responses upon detection by the cyclic GMP-AMP (cGAMP) synthase (cGAS). It has been suggested that cGAS downregulation is an immune escape strategy harnessed by tumor cells. Here, we used glioblastoma cells that show undetectable cGAS levels to address if alternative DNA detection pathways can promote pro-inflammatory signaling. We show that the DNA-PK DNA repair complex (i) drives cGAS-independent IRF3-mediated type I Interferon responses and (ii) that its catalytic activity is required for cGAS-dependent cGAMP production and optimal downstream signaling. We further show that the cooperation between DNA-PK and cGAS favors the expression of chemokines that promote macrophage recruitment in the tumor microenvironment in a glioblastoma model, a process that impairs early tumorigenesis but correlates with poor outcome in glioblastoma patients. Thus, our study supports that cGAS-dependent signaling is acquired during tumorigenesis and that cGAS and DNA-PK activities should be analyzed concertedly to predict the impact of strategies aiming to boost tumor immunogenicity.
Collapse
Affiliation(s)
- Clara Taffoni
- IGH, Université de Montpellier, CNRSMontpellierFrance
| | - Johanna Marines
- IGH, Université de Montpellier, CNRSMontpellierFrance
- Azelead©MontpellierFrance
| | - Hanane Chamma
- IGH, Université de Montpellier, CNRSMontpellierFrance
| | | | | | - Amel Bouzid
- IGH, Université de Montpellier, CNRSMontpellierFrance
| | | | - Clément Maghe
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'AngersNantesFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Jane Jardine
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'AngersNantesFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Mi Kyung Park
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | | | - Mara De Martino
- Department of Radiation Oncology, Weill Cornell MedicineNew YorkNYUSA
| | | | - Maguy Del Rio
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, ICMMontpellierFrance
| | - Celine Gongora
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, ICMMontpellierFrance
| | - Julie Gavard
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'AngersNantesFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
- Institut de Cancérologie de l'Ouest (ICO)Saint‐HerblainFrance
| | - Nicolas Bidère
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'AngersNantesFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Min Sup Song
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Donovan Pineau
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERMMontpellierFrance
| | - Jean‐Philippe Hugnot
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERMMontpellierFrance
| | - Karima Kissa
- Université de Montpellier, CNRS UMR 5235MontpellierFrance
| | | | - Fabien P Blanchet
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRSMontpellierFrance
| | | | | |
Collapse
|
21
|
Liu Q, Li R, Wu H, Liang Z. A novel cuproptosis-related gene model predicts outcomes and treatment responses in pancreatic adenocarcinoma. BMC Cancer 2023; 23:226. [PMID: 36894917 PMCID: PMC9999523 DOI: 10.1186/s12885-023-10678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Cuproptosis is recently emerging as a hot spot in cancer research. However, its role in pancreatic adenocarcinoma (PAAD) has not yet been clarified. This study aimed to explore the prognostic and therapeutic implications of cuproptosis-related genes in PAAD. METHODS Two hundred thirteen PAAD samples from the International Cancer Genome Consortium (ICGC) were split into training and validation sets in the ratio of 7:3. The Cox regression analyses generated a prognostic model using the ICGC cohort for training (n = 152) and validation (n = 61). The model was externally tested on the Gene Expression Omnibus (GEO) (n = 80) and The Cancer Genome Atlas (TCGA) datasets (n = 176). The clinical characteristics, molecular mechanisms, immune landscape, and treatment responses in model-defined subgroups were explored. The expression of an independent prognostic gene TSC22D2 was confirmed by public databases, real-time quantitative PCR (RT-qPCR), western blot (WB), and immunohistochemistry (IHC). RESULTS A prognostic model was established based on three cuproptosis-related genes (TSC22D2, C6orf136, PRKDC). Patients were stratified into high- and low-risk groups using the risk score based on this model. PAAD patients in the high-risk group had a worse prognosis. The risk score was statistically significantly correlated with most clinicopathological characteristics. The risk score based on this model was an independent predictor of overall survival (OS) (HR = 10.7, p < 0.001), and was utilized to create a scoring nomogram with excellent prognostic value. High-risk patients had a higher TP53 mutation rate and a superior response to multiple targeted therapies and chemotherapeutic drugs, but might obtain fewer benefits from immunotherapy. Moreover, elevated TSC22D2 expression was discovered to be an independent prognostic predictor for OS (p < 0.001). Data from public databases and our own experiments showed that TSC22D2 expression was significantly higher in pancreatic cancer tissues/cells compared to normal tissues/cells. CONCLUSION This novel model based on cuproptosis-related genes provided a robust biomarker for predicting the prognosis and treatment responses of PAAD. The potential roles and underlying mechanisms of TSC22D2 in PAAD need further explored.
Collapse
Affiliation(s)
- Qixian Liu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ruiyu Li
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Zhiyong Liang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| |
Collapse
|
22
|
Salman Roghani R, De Castro J, Ajumobi AB. Clinical and Endoscopic Response to Anti-Tumor Necrosis Factor-Alpha Antibody Therapy in a Patient With Cronkhite-Canada Syndrome. J Investig Med High Impact Case Rep 2023; 11:23247096231179451. [PMID: 37278538 PMCID: PMC10265369 DOI: 10.1177/23247096231179451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 06/07/2023] Open
Abstract
Cronkhite-Canada syndrome (CCS) is an acquired polyposis syndrome with gastrointestinal and extraintestinal manifestations. Given its rarity and lack of standard treatment, diagnosis and treatment are challenging. Steroid therapy and nutritional support are conventional treatments. There is no consensus on management of steroid-refractory cases. Here, we report the diagnosis and treatment course of a 54-year-old Asian male with CCS, whose initial treatment with prednisone 60 mg a day led to partial response and disease flare up during prednisone tapering. The use of infliximab and azathioprine led to promising remission of his symptoms.
Collapse
Affiliation(s)
| | | | - Adewale B. Ajumobi
- Eisenhower Health, Rancho Mirage, CA, USA
- University of California, Riverside, USA
| |
Collapse
|
23
|
Novotny JP, Mariño-Enríquez A, Fletcher JA. Targeting DNA-PK. Cancer Treat Res 2023; 186:299-312. [PMID: 37978142 PMCID: PMC11870302 DOI: 10.1007/978-3-031-30065-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
This chapter explores the multifaceted roles of DNA-PK with particular focus on its functions in non-homologous end-joining (NHEJ) DNA repair. DNA-PK is the primary orchestrator of NHEJ but also regulates other biologic processes. The growing understanding of varied DNA-PK biologic roles highlights new avenues for cancer treatment. However, these multiple roles also imply challenges, particularly in combination therapies, with perhaps a higher risk of clinical toxicities than was previously envisioned. These considerations underscore the need for compelling and innovative strategies to accomplish effective clinical translation.
Collapse
|
24
|
Sacco KA, Gazzin A, Notarangelo LD, Delmonte OM. Granulomatous inflammation in inborn errors of immunity. Front Pediatr 2023; 11:1110115. [PMID: 36891233 PMCID: PMC9986611 DOI: 10.3389/fped.2023.1110115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 02/22/2023] Open
Abstract
Granulomas have been defined as inflammatory infiltrates formed by recruitment of macrophages and T cells. The three-dimensional spherical structure typically consists of a central core of tissue resident macrophages which may merge into multinucleated giant cells surrounded by T cells at the periphery. Granulomas may be triggered by infectious and non-infectious antigens. Cutaneous and visceral granulomas are common in inborn errors of immunity (IEI), particularly among patients with chronic granulomatous disease (CGD), combined immunodeficiency (CID), and common variable immunodeficiency (CVID). The estimated prevalence of granulomas in IEI ranges from 1%-4%. Infectious agents causing granulomas such Mycobacteria and Coccidioides presenting atypically may be 'sentinel' presentations for possible underlying immunodeficiency. Deep sequencing of granulomas in IEI has revealed non-classical antigens such as wild-type and RA27/3 vaccine-strain Rubella virus. Granulomas in IEI are associated with significant morbidity and mortality. The heterogeneity of granuloma presentation in IEI presents challenges for mechanistic approaches to treatment. In this review, we discuss the main infectious triggers for granulomas in IEI and the major forms of IEI presenting with 'idiopathic' non-infectious granulomas. We also discuss models to study granulomatous inflammation and the impact of deep-sequencing technology while searching for infectious triggers of granulomatous inflammation. We summarize the overarching goals of management and highlight the therapeutic options reported for specific granuloma presentations in IEI.
Collapse
Affiliation(s)
- Keith A Sacco
- Department of Pulmonology, Section of Allergy-Immunology, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Andrea Gazzin
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, United States
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, United States
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Biosensors for the detection of protein kinases: Recent progress and challenges. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Loza Canales SM, Bravo Puccio FG, Del Solar Chacaltana MA, Feria Saldaña KH, León AV, Tico Chayña JR. Multisystemic tuberculosis with skin involvement in a patient with compromised cellular immunity suggestive of primary immunodeficiency. JAAD Case Rep 2022; 30:79-82. [DOI: 10.1016/j.jdcr.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Tesolin P, Bertinetto FE, Sonaglia A, Cappellani S, Concas MP, Morgan A, Ferrero NM, Zabotti A, Gasparini P, Amoroso A, Quartuccio L, Girotto G. High Throughput Genetic Characterisation of Caucasian Patients Affected by Multi-Drug Resistant Rheumatoid or Psoriatic Arthritis. J Pers Med 2022; 12:jpm12101618. [PMID: 36294757 PMCID: PMC9605087 DOI: 10.3390/jpm12101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Rheumatoid and psoriatic arthritis (RA and PsA) are inflammatory rheumatic disorders characterised by a multifactorial etiology. To date, the genetic contributions to the disease onset, severity and drug response are not clearly defined, and despite the development of novel targeted therapies, ~10% of patients still display poor treatment responses. We characterised a selected cohort of eleven non-responder patients aiming to define the genetic contribution to drug resistance. An accurate clinical examination of the patients was coupled with several high-throughput genetic testing, including HLA typing, SNPs-array and Whole Exome Sequencing (WES). The analyses revealed that all the subjects carry very rare HLA phenotypes which contain HLA alleles associated with RA development (e.g., HLA-DRB1*04, DRB1*10:01 and DRB1*01). Additionally, six patients also carry PsA risk alleles (e.g., HLA-B*27:02 and B*38:01). WES analysis and SNPs-array revealed 23 damaging variants with 18 novel “drug-resistance” RA/PsA candidate genes. Eight patients carry likely pathogenic variants within common genes (CYP21A2, DVL1, PRKDC, ORAI1, UGT2B17, MSR1). Furthermore, “private” damaging variants were identified within 12 additional genes (WNT10A, ABCB7, SERPING1, GNRHR, NCAPD3, CLCF1, HACE1, NCAPD2, ESR1, SAMHD1, CYP27A1, CCDC88C). This multistep approach highlighted novel RA/PsA candidate genes and genotype-phenotype correlations potentially useful for clinicians in selecting the best therapeutic strategy.
Collapse
Affiliation(s)
- Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Francesca Eleonora Bertinetto
- Department of Medical Sciences, University of Turin, and Immunogenetic and Transplant Biology Service, University Hospital “Città della Salute e della Scienza”, 10124 Turin, Italy
| | - Arianna Sonaglia
- Division of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, 33100 Udine, Italy
| | - Stefania Cappellani
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
- Correspondence: ; Tel.: +39-0403785539
| | - Anna Morgan
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| | - Norma Maria Ferrero
- Department of Medical Sciences, University of Turin, and Immunogenetic and Transplant Biology Service, University Hospital “Città della Salute e della Scienza”, 10124 Turin, Italy
| | - Alen Zabotti
- Division of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, 33100 Udine, Italy
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, and Immunogenetic and Transplant Biology Service, University Hospital “Città della Salute e della Scienza”, 10124 Turin, Italy
| | - Luca Quartuccio
- Division of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, 33100 Udine, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| |
Collapse
|
28
|
Albayrak MGB, Simsek T, Kasap M, Akpinar G, Canturk NZ, Guler SA. Tissue proteome analysis revealed an association between cancer, immune system response, and the idiopathic granulomatous mastitis. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:238. [PMID: 36175807 DOI: 10.1007/s12032-022-01845-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
Idiopathic Granulomatous Mastitis (IGM) is a disease that clinically mimics breast cancers with symptoms of pain, edema, erythema, nipple discharge, nipple retraction, and fistula. Although IGM is considered to be formed by autoimmune responses or infections, the molecular mechanism behind formation and progress is unknown. Therefore, in this study, we aimed to investigate molecular mechanisms underlying IGM formation, progress, and recurrence by monitoring the changes at the proteome level. Protein extracts prepared from IGM (n = 15) and within-control tissues (n = 15) were subjected to nHPLC followed by LC-MS/MS proteomic analysis. Label-free quantitation analysis revealed that sixty differentially regulated between the two groups. Those proteins were classified based on their role in metabolic pathways using bioinformatics tools. Based on DAVID analysis, 16 of the differently regulated proteins were associated with the immune system, while 17 proteins were involved in cancer metabolism. STRING analysis showed that five of the differentially regulated proteins were associated with combined immune deficiency which were PNP, TAP1, ITGAL, PRKDC, and PTPRC while the other proteins were involved in insulin response and neutrophil degranulation. This study is one of the very few studies that investigated the changes in protein expressions of IGM tissues compared to controls. For the first time, we have shown the relationship of IGM with the immune system at the protein level and also underlined the cancer-like behavior of the disease. Furthermore, the proteins that were pointed out as combined immune deficiency-related proteins may have value as diagnostic markers for idiopathic granulomatous mastitis although further studies are needed to shed more light on the pathogenesis of the disease.
Collapse
Affiliation(s)
| | - Turgay Simsek
- Department of General Surgery, Medical School, Kocaeli University, 41001, Kocaeli, Turkey
| | - Murat Kasap
- Department of Medical Biology, Medical School, Kocaeli University, 41001, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Medical School, Kocaeli University, 41001, Kocaeli, Turkey.
| | - Nuh Zafer Canturk
- Department of General Surgery, Medical School, Kocaeli University, 41001, Kocaeli, Turkey
| | - Sertac Ata Guler
- Department of General Surgery, Medical School, Kocaeli University, 41001, Kocaeli, Turkey
| |
Collapse
|
29
|
Pala F, Notarangelo LD, Bosticardo M. Inborn errors of immunity associated with defects of thymic development. Pediatr Allergy Immunol 2022; 33:e13832. [PMID: 36003043 PMCID: PMC11077434 DOI: 10.1111/pai.13832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022]
Abstract
The main function of the thymus is to support the establishment of a wide repertoire of T lymphocytes capable of eliminating foreign pathogens, yet tolerant to self-antigens. Thymocyte development in the thymus is dependent on the interaction with thymic stromal cells, a complex mixture of cells comprising thymic epithelial cells (TEC), mesenchymal and endothelial cells. The exchange of signals between stromal cells and thymocytes is referred to as "thymic cross-talk". Genetic defects affecting either side of this interaction result in defects in thymic development that ultimately lead to a decreased output of T lymphocytes to the periphery. In the present review, we aim at providing a summary of inborn errors of immunity (IEI) characterized by T-cell lymphopenia due to defects of the thymic stroma, or to hematopoietic-intrinsic defects of T-cell development, with a special focus on recently discovered disorders. Additionally, we review the novel diagnostic tools developed to discover and study new genetic causes of IEI due to defects in thymic development. Finally, we discuss therapeutic approaches to correct thymic defects that are currently available, in addition to potential novel therapies that could be applied in the future.
Collapse
Affiliation(s)
- Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Yang X, Yang F, Lan L, Wen N, Li H, Sun X. Potential value of PRKDC as a therapeutic target and prognostic biomarker in pan-cancer. Medicine (Baltimore) 2022; 101:e29628. [PMID: 35801800 PMCID: PMC9259106 DOI: 10.1097/md.0000000000029628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND While protein kinase, DNA-activated, catalytic subunit (PRKDC) plays an important role in double-strand break repair to retain genomic stability, there is still no pan-cancer analysis based on large clinical information on the relationship between PRKDC and different tumors. For the first time, this research used numerous databases to perform a pan-cancer review for PRKDC to explore the possible mechanism of PRKDC in the etiology and outcomes in various tumors. METHODS PRKDC's expression profile and prognostic significance in pan-cancer were investigated based on various databases and online platforms, including TIMER2, GEPIA2, cBioPortal, CPTAC, and SangerBox. We applied the TIMER to identified the interlink of PRKDC and the immune infiltration in assorted tumors, and the SangerBox online platform was adopted to find out the relevance between PRKDC and immune checkpoint genes, tumor mutation burden, and microsatellite instability in tumors. GeneMANIA tool was employed to create a protein-protein interaction analysis, gene set enrichment analysis was conducted to performed gene enrichment analysis. RESULTS Overall, tumor tissue presented a higher degree of PRKDC expression than adjacent normal tissue. Meanwhile, patients with high PRKDC expression have a worse prognosis. PRKDC mutations were present in almost all The Cancer Genome Atlas tumors and might lead to a better survival prognosis. The PRKDC expression level was shown a positive correlation with tumor-infiltrating immune cells. PRKDC high expression cohorts were enriched in "cell cycle" "oocyte meiosis" and "RNA-degradation" signaling pathways. CONCLUSIONS This study revealed the potential value of PRKDC in tumor immunology and as a therapeutic target and prognostic biomarker in pan-cancer.
Collapse
Affiliation(s)
- Xiawei Yang
- Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Feng Yang
- Department of Gynocology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Liugen Lan
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory for Transplantation Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ning Wen
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory for Transplantation Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Haibin Li
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory for Transplantation Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xuyong Sun
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory for Transplantation Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
31
|
Wang Y, Abolhassani H, Hammarström L, Pan-Hammarström Q. SARS-CoV-2 infection in patients with inborn errors of immunity due to DNA repair defects. Acta Biochim Biophys Sin (Shanghai) 2022; 54:836-846. [PMID: 35713311 PMCID: PMC9827799 DOI: 10.3724/abbs.2022071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with inborn errors of immunity (IEI) during the current Coronavirus disease 2019 (COVID-19) pandemic is still limited. Proper DNA repair machinery is required for the development of the adaptive immune system, which provides specific and long-term protection against SARS-CoV-2. This review highlights the impact of SARS-CoV-2 infections on IEI patients with DNA repair disorders and summarizes susceptibility risk factors, pathogenic mechanisms, clinical manifestations and management strategies of COVID-19 in this special patient population.
Collapse
|
32
|
Fournier B, Mahlaoui N, Moshous D, de Villartay JP. Inborn errors of immunity caused by defects in the DNA damage response pathways: Importance of minimizing treatment-related genotoxicity. Pediatr Allergy Immunol 2022; 33:e13820. [PMID: 35754136 PMCID: PMC9327728 DOI: 10.1111/pai.13820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022]
Abstract
Several primary immunodeficiencies are caused by defects in the general DNA repair machinery as exemplified by the T-B- radiosensitive SCID condition owing to impaired resolution of programmed DNA double-strand breaks introduced by RAG1/2 during V(D)J recombination. The genome instability generally associated with these conditions results in an increased propensity to develop malignancies requiring genotoxic-based anti-cancer treatments. Moreover, the extent of immune deficiency often calls for hematopoietic stem cell transplantation as a definitive treatment, also requiring genotoxic-based conditioning regimen prior to transplantation. In both cases, the underlying general DNA repair defect may result in catastrophic iatrogenic consequences. It is, therefore, of paramount importance to assess the functionality of the DNA repair apparatus prior to any genotoxic treatment when the exact molecular cause of the disease is unknown. For this purpose, two simple assays can be used on patients derived peripheral blood lymphocytes: (1) the PROMIDISα biomarker, based on the next-generation sequencing analysis of the TCRα repertoire, will highlight specific signatures of DNA repair deficiencies; (2) direct analysis of the sensitivity of peripheral lymphocytes to ionizing radiation will formally identify patients at risk to develop toxicity toward genotoxic-based treatments.
Collapse
Affiliation(s)
- Benjamin Fournier
- Pediatric Hematology-Immunology and Rheumatology Department, APHP-Centre Université de Paris (CUP), Necker Hospital, Paris, France
| | - Nizar Mahlaoui
- Pediatric Hematology-Immunology and Rheumatology Department, APHP-Centre Université de Paris (CUP), Necker Hospital, Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Despina Moshous
- Pediatric Hematology-Immunology and Rheumatology Department, APHP-Centre Université de Paris (CUP), Necker Hospital, Paris, France.,Laboratory "Genome Dynamics in the Immune System" INSERM UMR 1163, Imagine Institute, Université de Paris Cité, Paris, France
| | - Jean-Pierre de Villartay
- Laboratory "Genome Dynamics in the Immune System" INSERM UMR 1163, Imagine Institute, Université de Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
33
|
Abstract
Although hematopoietic stem cells (HSCs) in the bone marrow are in a state of quiescence, they harbor the self-renewal capacity and the pluripotency to differentiate into mature blood cells when needed, which is key to maintain hematopoietic homeostasis. Importantly, HSCs are characterized by their long lifespan ( e. g., up to 60 months for mice), display characteristics of aging, and are vulnerable to various endogenous and exogenous genotoxic stresses. Generally, DNA damage in HSCs is endogenous, which is typically induced by reactive oxygen species (ROS), aldehydes, and replication stress. Mammalian cells have evolved a complex and efficient DNA repair system to cope with various DNA lesions to maintain genomic stability. The repair machinery for DNA damage in HSCs has its own characteristics. For instance, the Fanconi anemia (FA)/BRCA pathway is particularly important for the hematopoietic system, as it can limit the damage caused by DNA inter-strand crosslinks, oxidative stress, and replication stress to HSCs to prevent FA occurrence. In addition, HSCs prefer to utilize the classical non-homologous end-joining pathway, which is essential for the V(D)J rearrangement in developing lymphocytes and is involved in double-strand break repair to maintain genomic stability in the long-term quiescent state. In contrast, the base excision repair pathway is less involved in the hematopoietic system. In this review, we summarize the impact of various types of DNA damage on HSC function and review our knowledge of the corresponding repair mechanisms and related human genetic diseases.
Collapse
|
34
|
Niewolik D, Schwarz K. Physical ARTEMIS:DNA-PKcs interaction is necessary for V(D)J recombination. Nucleic Acids Res 2022; 50:2096-2110. [PMID: 35150269 PMCID: PMC8887466 DOI: 10.1093/nar/gkac071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
The nuclease ARTEMIS and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are involved in the repair of physiological and pathogenic DNA double strand breaks. Both proteins are indispensable for the hairpin-opening activity in V(D)J recombination and therefore essential for the adaptive immune response. ARTEMIS and DNA-PKcs interact, however experimental evidence for in vivo significance is missing. We demonstrate that mutations abolishing this protein-protein interaction affect nuclease function. In DNA-PKcs, mutation L3062R impairs the physical interaction with ARTEMIS and was previously identified as pathogenic variant, resulting in radiosensitive severe combined immunodeficiency. In ARTEMIS, specific mutations in two conserved regions affect interaction with DNA-PKcs. In combination they impair V(D)J recombination activity, independent of ARTEMIS autoinhibitory self-interaction between the ARTEMIS C-terminus and the N-terminal nuclease domain. We describe small fragments from both proteins, capable of interaction with the corresponding full-length partner proteins: In DNA-PKcs 42 amino acids out of FAT region 2 (PKcs3041-3082) can mediate interaction with ARTEMIS. In the nuclease we have defined 26 amino acids (ARM378-403) as minimal DNA-PKcs interacting fragment. The exact mapping of the ARTEMIS:DNA-PKcs interaction may pave the way for the design of specific inhibitors targeting the repair of DNA double strand breaks.
Collapse
Affiliation(s)
- Doris Niewolik
- Institute for Transfusion Medicine, University of Ulm, Ulm 89081, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm 89081, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Ulm 89081, Germany
| |
Collapse
|
35
|
Ye Z, Shi Y, Lees-Miller SP, Tainer JA. Function and Molecular Mechanism of the DNA Damage Response in Immunity and Cancer Immunotherapy. Front Immunol 2021; 12:797880. [PMID: 34970273 PMCID: PMC8712645 DOI: 10.3389/fimmu.2021.797880] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is an organized network of multiple interwoven components evolved to repair damaged DNA and maintain genome fidelity. Conceptually the DDR includes damage sensors, transducer kinases, and effectors to maintain genomic stability and accurate transmission of genetic information. We have recently gained a substantially improved molecular and mechanistic understanding of how DDR components are interconnected to inflammatory and immune responses to stress. DDR shapes both innate and adaptive immune pathways: (i) in the context of innate immunity, DDR components mainly enhance cytosolic DNA sensing and its downstream STimulator of INterferon Genes (STING)-dependent signaling; (ii) in the context of adaptive immunity, the DDR is needed for the assembly and diversification of antigen receptor genes that is requisite for T and B lymphocyte development. Imbalances between DNA damage and repair impair tissue homeostasis and lead to replication and transcription stress, mutation accumulation, and even cell death. These impacts from DDR defects can then drive tumorigenesis, secretion of inflammatory cytokines, and aberrant immune responses. Yet, DDR deficiency or inhibition can also directly enhance innate immune responses. Furthermore, DDR defects plus the higher mutation load in tumor cells synergistically produce primarily tumor-specific neoantigens, which are powerfully targeted in cancer immunotherapy by employing immune checkpoint inhibitors to amplify immune responses. Thus, elucidating DDR-immune response interplay may provide critical connections for harnessing immunomodulatory effects plus targeted inhibition to improve efficacy of radiation and chemotherapies, of immune checkpoint blockade, and of combined therapeutic strategies.
Collapse
Affiliation(s)
- Zu Ye
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
36
|
Zhao Q, Wongpoomchai R, Chariyakornkul A, Xiao Z, Pilapong C. Identification of Gene-Set Signature in Early-Stage Hepatocellular Carcinoma and Relevant Immune Characteristics. Front Oncol 2021; 11:740484. [PMID: 34745960 PMCID: PMC8570321 DOI: 10.3389/fonc.2021.740484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Background The incidence of hepatocellular carcinoma (HCC) is rising worldwide, and there is limited therapeutic efficacy due to tumor microenvironment heterogeneity and difficulty in early-stage screening. This study aimed to develop and validate a gene set-based signature for early-stage HCC (eHCC) patients and further explored specific marker dysregulation mechanisms as well as immune characteristics. Methods We performed an integrated bioinformatics analysis of genomic, transcriptomic, and clinical data with three independent cohorts. We systematically reviewed the crosstalk between specific genes, tumor prognosis, immune characteristics, and biological function in the different pathological stage samples. Univariate and multivariate survival analyses were performed in The Cancer Genome Atlas (TCGA) patients with survival data. Diethylnitrosamine (DEN)-induced HCC in Wistar rats was employed to verify the reliability of the predictions. Results We identified a Cluster gene that potentially segregates patients with eHCC from non-tumor, through integrated analysis of expression, overall survival, immune cell characteristics, and biology function landscapes. Immune infiltration analysis showed that lower infiltration of specific immune cells may be responsible for significantly worse prognosis in HCC (hazard ratio, 1.691; 95% CI: 1.171–2.441; p = 0.012), such as CD8 Tem and cytotoxic T cells (CTLs) in eHCC. Our results identified that Cluster C1 signature presented a high accuracy in predicting CD8 Tem and CTL immune cells (receiver operating characteristic (ROC) = 0.647) and cancerization (ROC = 0.946) in liver. As a central member of Cluster C1, overexpressed PRKDC was associated with the higher genetic alteration in eHCC than advanced-stage HCC (aHCC), which was also connected to immune cell-related poor prognosis. Finally, the predictive outcome of Cluster C1 and PRKDC alteration in DEN-induced eHCC rats was also confirmed. Conclusions As a tumor prognosis-relevant gene set-based signature, Cluster C1 showed an effective approach to predict cancerization of eHCC and its related immune characteristics with considerable clinical value.
Collapse
Affiliation(s)
- Qijie Zhao
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Chalermchai Pilapong
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
37
|
Biomarkers of DNA Damage Response Enable Flow Cytometry-Based Diagnostic to Identify Inborn DNA Repair Defects in Primary Immunodeficiencies. J Clin Immunol 2021; 42:286-298. [PMID: 34716846 PMCID: PMC8821069 DOI: 10.1007/s10875-021-01156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/11/2021] [Indexed: 11/03/2022]
Abstract
DNA damage is a constant event in every cell caused by exogenous factors such as ultraviolet and ionizing radiation (UVR/IR) and intercalating drugs, or endogenous metabolic and replicative stress. Proteins of the DNA damage response (DDR) network sense DNA lesions and induce cell cycle arrest, DNA repair, and apoptosis. Genetic defects of DDR or DNA repair proteins can be associated with immunodeficiency, bone marrow failure syndromes, and cancer susceptibility. Although various diagnostic tools are available to evaluate DNA damage, their quality to identify DNA repair deficiencies differs enormously and depends on affected pathways. In this study, we investigated the DDR biomarkers γH2AX (Ser139), p-ATM (Ser1981), and p-CHK2 (Thr68) using flow cytometry on peripheral blood cells obtained from patients with combined immunodeficiencies due to non-homologous end-joining (NHEJ) defects and ataxia telangiectasia (AT) in response to low-dose IR. Significantly reduced induction of all three markers was observed in AT patients compared to controls. However, delayed downregulation of γH2AX was found in patients with NHEJ defects. In contrast to previous reports of DDR in cellular models, these biomarkers were not sensitive enough to identify ARTEMIS deficiency with sufficient reliability. In summary, DDR biomarkers are suitable for diagnosing NHEJ defects and AT, which can be useful in neonates with abnormal TREC levels (T cell receptor excision circles) identified by newborn screening. We conclude that DDR biomarkers have benefits and some limitations depending on the underlying DNA repair deficiency.
Collapse
|
38
|
Chen Y, Li Y, Xiong J, Lan B, Wang X, Liu J, Lin J, Fei Z, Zheng X, Chen C. Role of PRKDC in cancer initiation, progression, and treatment. Cancer Cell Int 2021; 21:563. [PMID: 34702253 PMCID: PMC8547028 DOI: 10.1186/s12935-021-02229-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/24/2021] [Indexed: 01/29/2023] Open
Abstract
The PRKDC gene encodes the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) protein. DNA-PKcs plays an important role in nonhomologous end joining (NHEJ) of DNA double-strand breaks (DSBs) and is also closely related to the establishment of central immune tolerance and the maintenance of chromosome stability. The occurrence and development of different types of tumors and the results of their treatment are also influenced by DNA-PKcs, and it may also predict the results of radiotherapy, chemotherapy, and therapy with immune checkpoint inhibitors (ICIs). Here, we discuss and review the structure and mechanism of action of PRKDC and DNA-PKcs and their relationship with cancer.
Collapse
Affiliation(s)
- Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yi Li
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jiani Xiong
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Bin Lan
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Shanghai Center for Systems Biomedicine Research, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefeng Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
| | - Jun Liu
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Zhaodong Fei
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Xiaobin Zheng
- Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Chuanben Chen
- Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China. .,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China. .,Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
39
|
Delmonte OM, Bergerson JRE, Kawai T, Kuehn HS, McDermott DH, Cortese I, Zimmermann MT, Dobbs AK, Bosticardo M, Fink D, Majumdar S, Palterer B, Pala F, Dsouza NR, Pouzolles M, Taylor N, Calvo KR, Daley SR, Velez D, Agharahimi A, Myint-Hpu K, Dropulic LK, Lyons JJ, Holland SM, Freeman AF, Ghosh R, Similuk MB, Niemela JE, Stoddard J, Kuhns DB, Urrutia R, Rosenzweig SD, Walkiewicz MA, Murphy PM, Notarangelo LD. SASH3 variants cause a novel form of X-linked combined immunodeficiency with immune dysregulation. Blood 2021; 138:1019-1033. [PMID: 33876203 PMCID: PMC8462359 DOI: 10.1182/blood.2020008629] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterile alpha motif (SAM) and Src homology-3 (SH3) domain-containing 3 (SASH3), also called SH3-containing lymphocyte protein (SLY1), is a putative adaptor protein that is postulated to play an important role in the organization of signaling complexes and propagation of signal transduction cascades in lymphocytes. The SASH3 gene is located on the X-chromosome. Here, we identified 3 novel SASH3 deleterious variants in 4 unrelated male patients with a history of combined immunodeficiency and immune dysregulation that manifested as recurrent sinopulmonary, cutaneous, and mucosal infections and refractory autoimmune cytopenias. Patients exhibited CD4+ T-cell lymphopenia, decreased T-cell proliferation, cell cycle progression, and increased T-cell apoptosis in response to mitogens. In vitro T-cell differentiation of CD34+ cells and molecular signatures of rearrangements at the T-cell receptor α (TRA) locus were indicative of impaired thymocyte survival. These patients also manifested neutropenia and B-cell and natural killer (NK)-cell lymphopenia. Lentivirus-mediated transfer of the SASH3 complementary DNA-corrected protein expression, in vitro proliferation, and signaling in SASH3-deficient Jurkat and patient-derived T cells. These findings define a new type of X-linked combined immunodeficiency in humans that recapitulates many of the abnormalities reported in mice with Sly1-/- and Sly1Δ/Δ mutations, highlighting an important role of SASH3 in human lymphocyte function and survival.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/immunology
- Child, Preschool
- Chromosomes, Human, X/genetics
- Chromosomes, Human, X/immunology
- Genetic Loci
- Humans
- Jurkat Cells
- Killer Cells, Natural/immunology
- Lymphopenia/genetics
- Lymphopenia/immunology
- Male
- Mice
- Mice, Knockout
- Mutation
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- X-Linked Combined Immunodeficiency Diseases/genetics
- X-Linked Combined Immunodeficiency Diseases/immunology
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hye Sun Kuehn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Irene Cortese
- Neuroimmunology Clinic, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Michael T Zimmermann
- Division of Research, Genomics Sciences & Precision Medicine Center, Milwaukee, WI
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI
| | - A Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Danielle Fink
- Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Boaz Palterer
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nikita R Dsouza
- Division of Research, Genomics Sciences & Precision Medicine Center, Milwaukee, WI
| | - Marie Pouzolles
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Naomi Taylor
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Institut de Genetique Moleculaire de Montpellier, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5535, Universite de Montpellier, Montpellier, France
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Stephen R Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Daniel Velez
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Anahita Agharahimi
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Katherine Myint-Hpu
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | - Jonathan J Lyons
- Division of Intramural Research, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD and
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Rajarshi Ghosh
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Morgan B Similuk
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Julie E Niemela
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Jennifer Stoddard
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Douglas B Kuhns
- Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Raul Urrutia
- Division of Research, Genomics Sciences & Precision Medicine Center, Milwaukee, WI
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Magdalena A Walkiewicz
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
40
|
Lees-Miller JP, Cobban A, Katsonis P, Bacolla A, Tsutakawa SE, Hammel M, Meek K, Anderson DW, Lichtarge O, Tainer JA, Lees-Miller SP. Uncovering DNA-PKcs ancient phylogeny, unique sequence motifs and insights for human disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:87-108. [PMID: 33035590 PMCID: PMC8021618 DOI: 10.1016/j.pbiomolbio.2020.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/12/2020] [Accepted: 09/29/2020] [Indexed: 01/26/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a key member of the phosphatidylinositol-3 kinase-like (PIKK) family of protein kinases with critical roles in DNA-double strand break repair, transcription, metastasis, mitosis, RNA processing, and innate and adaptive immunity. The absence of DNA-PKcs from many model organisms has led to the assumption that DNA-PKcs is a vertebrate-specific PIKK. Here, we find that DNA-PKcs is widely distributed in invertebrates, fungi, plants, and protists, and that threonines 2609, 2638, and 2647 of the ABCDE cluster of phosphorylation sites are highly conserved amongst most Eukaryotes. Furthermore, we identify highly conserved amino acid sequence motifs and domains that are characteristic of DNA-PKcs relative to other PIKKs. These include residues in the Forehead domain and a novel motif we have termed YRPD, located in an α helix C-terminal to the ABCDE phosphorylation site loop. Combining sequence with biochemistry plus structural data on human DNA-PKcs unveils conserved sequence and conformational features with functional insights and implications. The defined generally progressive DNA-PKcs sequence diversification uncovers conserved functionality supported by Evolutionary Trace analysis, suggesting that for many organisms both functional sites and evolutionary pressures remain identical due to fundamental cell biology. The mining of cancer genomic data and germline mutations causing human inherited disease reveal that robust DNA-PKcs activity in tumors is detrimental to patient survival, whereas germline mutations compromising function are linked to severe immunodeficiency and neuronal degeneration. We anticipate that these collective results will enable ongoing DNA-PKcs functional analyses with biological and medical implications.
Collapse
Affiliation(s)
- James P Lees-Miller
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Alexander Cobban
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Panagiotis Katsonis
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, And Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA
| | - Dave W Anderson
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Olivier Lichtarge
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
41
|
Matsumoto Y, Asa ADDC, Modak C, Shimada M. DNA-Dependent Protein Kinase Catalytic Subunit: The Sensor for DNA Double-Strand Breaks Structurally and Functionally Related to Ataxia Telangiectasia Mutated. Genes (Basel) 2021; 12:genes12081143. [PMID: 34440313 PMCID: PMC8394720 DOI: 10.3390/genes12081143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) is composed of a DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Ku70/Ku80 heterodimer. DNA-PK is thought to act as the “sensor” for DNA double-stranded breaks (DSB), which are considered the most deleterious type of DNA damage. In particular, DNA-PKcs and Ku are shown to be essential for DSB repair through nonhomologous end joining (NHEJ). The phenotypes of animals and human individuals with defective DNA-PKcs or Ku functions indicate their essential roles in these developments, especially in neuronal and immune systems. DNA-PKcs are structurally related to Ataxia–telangiectasia mutated (ATM), which is also implicated in the cellular responses to DSBs. DNA-PKcs and ATM constitute the phosphatidylinositol 3-kinase-like kinases (PIKKs) family with several other molecules. Here, we review the accumulated knowledge on the functions of DNA-PKcs, mainly based on the phenotypes of DNA-PKcs-deficient cells in animals and human individuals, and also discuss its relationship with ATM in the maintenance of genomic stability.
Collapse
|
42
|
Kreins AY, Bonfanti P, Davies EG. Current and Future Therapeutic Approaches for Thymic Stromal Cell Defects. Front Immunol 2021; 12:655354. [PMID: 33815417 PMCID: PMC8012524 DOI: 10.3389/fimmu.2021.655354] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Inborn errors of thymic stromal cell development and function lead to impaired T-cell development resulting in a susceptibility to opportunistic infections and autoimmunity. In their most severe form, congenital athymia, these disorders are life-threatening if left untreated. Athymia is rare and is typically associated with complete DiGeorge syndrome, which has multiple genetic and environmental etiologies. It is also found in rare cases of T-cell lymphopenia due to Nude SCID and Otofaciocervical Syndrome type 2, or in the context of genetically undefined defects. This group of disorders cannot be corrected by hematopoietic stem cell transplantation, but upon timely recognition as thymic defects, can successfully be treated by thymus transplantation using cultured postnatal thymic tissue with the generation of naïve T-cells showing a diverse repertoire. Mortality after this treatment usually occurs before immune reconstitution and is mainly associated with infections most often acquired pre-transplantation. In this review, we will discuss the current approaches to the diagnosis and management of thymic stromal cell defects, in particular those resulting in athymia. We will discuss the impact of the expanding implementation of newborn screening for T-cell lymphopenia, in combination with next generation sequencing, as well as the role of novel diagnostic tools distinguishing between hematopoietic and thymic stromal cell defects in facilitating the early consideration for thymus transplantation of an increasing number of patients and disorders. Immune reconstitution after the current treatment is usually incomplete with relatively common inflammatory and autoimmune complications, emphasizing the importance for improving strategies for thymus replacement therapy by optimizing the current use of postnatal thymus tissue and developing new approaches using engineered thymus tissue.
Collapse
Affiliation(s)
- Alexandra Y. Kreins
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Paola Bonfanti
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, London, United Kingdom
- Institute of Immunity & Transplantation, University College London, London, United Kingdom
| | - E. Graham Davies
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
43
|
Kumar V. The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Front Immunol 2021; 11:624597. [PMID: 33643304 PMCID: PMC7905024 DOI: 10.3389/fimmu.2020.624597] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
The immune system has evolved to protect the host from the pathogens and allergens surrounding their environment. The immune system develops in such a way to recognize self and non-self and develops self-tolerance against self-proteins, nucleic acids, and other larger molecules. However, the broken immunological self-tolerance leads to the development of autoimmune or autoinflammatory diseases. Pattern-recognition receptors (PRRs) are expressed by immunological cells on their cell membrane and in the cytosol. Different Toll-like receptors (TLRs), Nod-like receptors (NLRs) and absent in melanoma-2 (AIM-2)-like receptors (ALRs) forming inflammasomes in the cytosol, RIG (retinoic acid-inducible gene)-1-like receptors (RLRs), and C-type lectin receptors (CLRs) are some of the PRRs. The DNA-sensing receptor cyclic GMP–AMP synthase (cGAS) is another PRR present in the cytosol and the nucleus. The present review describes the role of ALRs (AIM2), TLR9, and cGAS in recognizing the host cell DNA as a potent damage/danger-associated molecular pattern (DAMP), which moves out to the cytosol from its housing organelles (nucleus and mitochondria). The introduction opens with the concept that the immune system has evolved to recognize pathogens, the idea of horror autotoxicus, and its failure due to the emergence of autoimmune diseases (ADs), and the discovery of PRRs revolutionizing immunology. The second section describes the cGAS-STING signaling pathway mediated cytosolic self-DNA recognition, its evolution, characteristics of self-DNAs activating it, and its role in different inflammatory conditions. The third section describes the role of TLR9 in recognizing self-DNA in the endolysosomes during infections depending on the self-DNA characteristics and various inflammatory diseases. The fourth section discusses about AIM2 (an ALR), which also binds cytosolic self-DNA (with 80–300 base pairs or bp) that inhibits cGAS-STING-dependent type 1 IFN generation but induces inflammation and pyroptosis during different inflammatory conditions. Hence, this trinity of PRRs has evolved to recognize self-DNA as a potential DAMP and comes into action to guard the cellular galaxy. However, their dysregulation proves dangerous to the host and leads to several inflammatory conditions, including sterile-inflammatory conditions autoinflammatory and ADs.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St. Lucia, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| |
Collapse
|
44
|
Marx A, Yamada Y, Simon-Keller K, Schalke B, Willcox N, Ströbel P, Weis CA. Thymus and autoimmunity. Semin Immunopathol 2021; 43:45-64. [PMID: 33537838 PMCID: PMC7925479 DOI: 10.1007/s00281-021-00842-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
The thymus prevents autoimmune diseases through mechanisms that operate in the cortex and medulla, comprising positive and negative selection and the generation of regulatory T-cells (Tregs). Egress from the thymus through the perivascular space (PVS) to the blood is another possible checkpoint, as shown by some autoimmune/immunodeficiency syndromes. In polygenic autoimmune diseases, subtle thymic dysfunctions may compound genetic, hormonal and environmental cues. Here, we cover (a) tolerance-inducing cell types, whether thymic epithelial or tuft cells, or dendritic, B- or thymic myoid cells; (b) tolerance-inducing mechanisms and their failure in relation to thymic anatomic compartments, and with special emphasis on human monogenic and polygenic autoimmune diseases and the related thymic pathologies, if known; (c) polymorphisms and mutations of tolerance-related genes with an impact on positive selection (e.g. the gene encoding the thymoproteasome-specific subunit, PSMB11), promiscuous gene expression (e.g. AIRE, PRKDC, FEZF2, CHD4), Treg development (e.g. SATB1, FOXP3), T-cell migration (e.g. TAGAP) and egress from the thymus (e.g. MTS1, CORO1A); (d) myasthenia gravis as the prototypic outcome of an inflamed or disordered neoplastic ‘sick thymus’.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Yosuke Yamada
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, Bezirkskrankenhaus, University of Regensburg, 93042, Regensburg, Germany
| | - Nick Willcox
- Neurosciences Group, Nuffield Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttigen, 37075, Göttingen, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
45
|
Sun X, Liu T, Zhao J, Xia H, Xie J, Guo Y, Zhong L, Li M, Yang Q, Peng C, Rouvet I, Belot A, Shu HB, Feng P, Zhang J. DNA-PK deficiency potentiates cGAS-mediated antiviral innate immunity. Nat Commun 2020; 11:6182. [PMID: 33273464 PMCID: PMC7712783 DOI: 10.1038/s41467-020-19941-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Upon sensing cytosolic DNA, the enzyme cGAS induces innate immune responses that underpin anti-microbial defenses and certain autoimmune diseases. Missense mutations of PRKDC encoding the DNA-dependent protein kinase (DNA-PK) catalytic subunit (DNA-PKcs) are associated with autoimmune diseases, yet how DNA-PK deficiency leads to increased immune responses remains poorly understood. In this study, we report that DNA-PK phosphorylates cGAS and suppresses its enzymatic activity. DNA-PK deficiency reduces cGAS phosphorylation and promotes antiviral innate immune responses, thereby potently restricting viral replication. Moreover, cells isolated from DNA-PKcs-deficient mice or patients carrying PRKDC missense mutations exhibit an inflammatory gene expression signature. This study provides a rational explanation for the autoimmunity of patients with missense mutations of PRKDC, and suggests that cGAS-mediated immune signaling is a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Xiaona Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Ting Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jun Zhao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Hansong Xia
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Orthopaedics, 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Jun Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yu Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Li Zhong
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Mi Li
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Qing Yang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Cheng Peng
- Department of Burns and Plastic Surgery, 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Isabelle Rouvet
- Hospices Civils de Lyon, Centre de Biotechnologie Cellulaire et Biothèque, Bron, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
- National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases (RAISE), Lyon, France
- Hospices Civils de Lyon, Paediatric Nephrology, Rheumatology, Dermatology Unit, Mother and Children University Hospital, Bron, France
| | - Hong-Bing Shu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| | - Junjie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
| |
Collapse
|
46
|
Chen Y, Li Y, Guan Y, Huang Y, Lin J, Chen L, Li J, Chen G, Pan LK, Xia X, Xu N, Chang L, Guo Z, Pan J, Yi X, Chen C. Prevalence of PRKDC mutations and association with response to immune checkpoint inhibitors in solid tumors. Mol Oncol 2020; 14:2096-2110. [PMID: 32502294 PMCID: PMC7463346 DOI: 10.1002/1878-0261.12739] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Predictive biomarkers of response to immune checkpoint inhibitors (ICI) help to identify cancer patients who will benefit from immunotherapy. Protein kinase, DNA-activated, catalytic subunit (PRKDC) is an important gene for DNA double-strand break (DSB) repair and central T-cell tolerance. We aimed to investigate the association between PRKDC mutations and tumor mutation burden (TMB), tumor microenvironment (TME), and response to ICI. Whole-exome sequencing data of 4023 solid tumor samples from the Cancer Genome Atlas (TCGA) and panel-based sequencing data of 3877 solid tumor samples from Geneplus-Beijing, China, were used to analyze the TMB. The mRNA expression data of 3541 solid tumor samples from TCGA were used to explore the effect of PRKDC mutations on the TME. Four ICI-treated cohorts were analyzed for verifying the correlation between PRKDC mutations and the response to ICI. In both the TCGA and Geneplus datasets, we found that the TMB in PRKDC mutation samples was significantly higher than in PRKDC wild-type samples (P < 0.05 and P < 0.0001, respectively). Further, TCGA datasets showed that PRKDC mutation samples were associated with a significantly increased expression of CD8+ T cells, NK cells, immune checkpoint, chemokines, etc. compared to PRKDC wild-type samples (P < 0.05). In ICI-treated cohorts, we also found the PRKDC mutations were associated with increased survival (median PFS, not reached vs. 6.8 months, HR, 0.2893; 95% CI, 0.1255-0.6672; P = 0.0650, Hellmann cohort; median OS, 1184 days vs. 250 days, HR, 0.5126; 95% CI, 0.2715-0.9679; P = 0.1020, Allen cohort), and the increase was significant in multivariate analysis (HR, 0.361; 95% CI, 0.155-0.841; P = 0.018, Allen cohort; HR, 0.240 95% CI, 0.058-0.998; P = 0.050, Hellmann cohort). In summary, we found that PRKDC mutation often appeared to co-exist with deficiency in some other DNA damage repair mechanism and is nonetheless one of the important factors associated with increased TMB, inflamed TME, and better response to ICI.
Collapse
Affiliation(s)
- Yu Chen
- Department of Medical OncologyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
- Cancer Bio‐immunotherapy CenterFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Translational Cancer MedicineFuzhouChina
| | - Yi Li
- Department of RadiotherapyFujian Cancer Hospital & Fujian Medical University Cancer HospitalFuzhouChina
| | | | - Yingying Huang
- Department of RadiotherapyFujian Cancer Hospital & Fujian Medical University Cancer HospitalFuzhouChina
| | - Jing Lin
- Department of Medical OncologyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
- Cancer Bio‐immunotherapy CenterFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Translational Cancer MedicineFuzhouChina
| | - Lizhu Chen
- Department of Medical OncologyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
- Cancer Bio‐immunotherapy CenterFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Translational Cancer MedicineFuzhouChina
| | - Jin Li
- Geneplus‐Beijing InstituteBeijingChina
| | - Gang Chen
- Fujian Provincial Key Laboratory of Translational Cancer MedicineFuzhouChina
- Department of PathologyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
| | - Leong Kin Pan
- CCIC GroupKuok Kim (Macao) Medical Center IIIChina
- Hui Xian Medical CenterMacaoChina
| | | | - Ning Xu
- Department of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | | | - Zengqing Guo
- Department of Medical OncologyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
- Cancer Bio‐immunotherapy CenterFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Translational Cancer MedicineFuzhouChina
| | - Jianji Pan
- Cancer Bio‐immunotherapy CenterFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Translational Cancer MedicineFuzhouChina
- Department of RadiotherapyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
| | - Xin Yi
- Geneplus‐Beijing InstituteBeijingChina
| | - Chuanben Chen
- Cancer Bio‐immunotherapy CenterFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Translational Cancer MedicineFuzhouChina
- Department of RadiotherapyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The most serious DNA damage, DNA double strand breaks (DNA-dsb), leads to mutagenesis, carcinogenesis or apoptosis if left unrepaired. Non-homologous end joining (NHEJ) is the principle repair pathway employed by mammalian cells to repair DNA-dsb. Several proteins are involved in this pathway, defects in which can lead to human disease. This review updates on the most recent information available for the specific diseases associated with the pathway. RECENT FINDINGS A new member of the NHEJ pathway, PAXX, has been identified, although no human disease has been associated with it. The clinical phenotypes of Artemis, DNA ligase 4, Cernunnos-XLF and DNA-PKcs deficiency have been extended. The role of haematopoietic stem cell transplantation, following reduced intensity conditioning chemotherapy, for many of these diseases is being advanced. In the era of newborn screening, urgent genetic diagnosis is necessary to correctly target appropriate treatment for patients with DNA-dsb repair disorders.
Collapse
Affiliation(s)
- Mary A Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Newcastle upon Tyne, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
48
|
Savchenko RR, Vasilyev SA, Fishman VS, Sukhikh ES, Sukhikh LG, Murashkina AA, Lebedev IN. Effect of the THBS1 Gene Knockout on the Radiation-Induced Cellular Response in a Model System In Vitro. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420050129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Oral fecal microbiota transplant for recurrent Clostridium difficile in pediatric autoimmune enteropathy. Eur J Gastroenterol Hepatol 2019; 31:1602-1603. [PMID: 31688252 DOI: 10.1097/meg.0000000000001548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
50
|
Kharrati-Koopaee H, Ebrahimie E, Dadpasand M, Niazi A, Esmailizadeh A. Genomic analysis reveals variant association with high altitude adaptation in native chickens. Sci Rep 2019; 9:9224. [PMID: 31239472 PMCID: PMC6592930 DOI: 10.1038/s41598-019-45661-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 03/12/2019] [Indexed: 01/10/2023] Open
Abstract
Native chickens are endangered genetic resources that are kept by farmers for different purposes. Native chickens distributed in a wide range of altitudes, have developed adaptive mechanisms to deal with hypoxia. For the first time, we report variants associated with high-altitude adaptation in Iranian native chickens by whole genome sequencing of lowland and highland chickens. We found that these adaptive variants are involved in DNA repair, organs development, immune response and histone binding. Amazingly, signature selection analysis demonstrated that differential variants are adaptive in response to hypoxia and are not due to other evolutionary pressures. Cellular component analysis of variants showed that mitochondrion is the most important organelle for hypoxia adaptation. A total of 50 variants was detected in mtDNA for highland and lowland chickens. High-altitude associated with variant discovery highlighted the importance of COX3, a gene involved in cell respiration, in hypoxia adaptation. The results of study suggest that MIR6644-2 is involved in hypoxia and high-altitude adaptations by regulation of embryo development. Finally, 3877 novel SNVs including the mtDNA ones, were submitted to EBI (PRJEB24944). Whole-genome sequencing and variant discovery of native chickens provided novel insights about adaptation mechanisms and highlights the importance of valuable genomic variants in chickens.
Collapse
Affiliation(s)
| | - Esmaeil Ebrahimie
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran.
- The University of Adelaide, School of Animal and Veterinary Sciences, Adelaide, South Australia, Australia.
- School of Information Technology and Mathematical Science, Division of Information Technology, Engineering and the Environment, University of South Australia, South Australia, Adelaide, Australia.
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia.
| | - Mohammad Dadpasand
- Department of Animal science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences No. 32 Jiaochang Donglu, Kunming, Yunnan, 650223, P.R. China.
- Department of Animal science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|