1
|
Zhou Q, Zhang L, Dong Y, Wang Y, Zhang B, Zhou S, Huang Q, Wu T, Chen G. The role of SARS-CoV-2-mediated NF-κB activation in COVID-19 patients. Hypertens Res 2024; 47:375-384. [PMID: 37872376 PMCID: PMC10838770 DOI: 10.1038/s41440-023-01460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
The SARS-CoV-2 pandemic, now in its third year, has had a profound impact on public health and economics all over the world. Different populations showed varied susceptibility to this virus and mortality after infection. Clinical and laboratory data revealed that the uncontrolled inflammatory response plays an important role in their poor outcome. Herein, we summarized the role of NF-κB activation during SARS-CoV-2 invasion and replication, particularly the angiotensin-converting enzyme 2 (ACE2)-mediated NF-κB activation. Then we summarized the COVID-19 drugs' impact on NF-κB activation and their problems. A favorable prognosis is linked with timely treatment with NF-κB activation inhibitors, such as TNFα, IL-1β, and IL-6 monoclonal antibodies. However, further clinical researches are still required to clarify the time window, dosage of administration, contraindication, and potential side effects of these drugs, particularly for COVID-19 patients with hypertension, hyperglycemia, diabetes, or other chronic diseases.
Collapse
Affiliation(s)
- Qiaoqiao Zhou
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
| | - Lei Zhang
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Environmental Purification Material Science and Engineering Technology Research Center, Hubei University of Education, Wuhan, 430205, China
| | - Yanming Dong
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuan Wang
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Bin Zhang
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
| | - Shiyi Zhou
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
| | - Qing Huang
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Environmental Purification Material Science and Engineering Technology Research Center, Hubei University of Education, Wuhan, 430205, China
| | - Tian Wu
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Environmental Purification Material Science and Engineering Technology Research Center, Hubei University of Education, Wuhan, 430205, China
| | - Gongxuan Chen
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China.
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China.
- Hubei Environmental Purification Material Science and Engineering Technology Research Center, Hubei University of Education, Wuhan, 430205, China.
| |
Collapse
|
2
|
Baronio M, Gazzurelli L, Rezzola S, Rossi S, Tessarin G, Marinoni M, Salpietro A, Fiore M, Moratto D, Chiarini M, Badolato R, Parolini S, Tabellini G, Lougaris V. CARD11 dominant negative mutation leads to altered human Natural Killer cell homeostasis. Immunobiology 2023; 228:152381. [PMID: 37086690 DOI: 10.1016/j.imbio.2023.152381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
Dominant negative mutations in CARD11 have been reported in patients with immune dysregulation, severe atopic features, and variable T cell alterations. Data on Natural killer (NK) cells from affected patients are lacking. We report on a 12-year-old boy with severe atopic dermatitis, food induced anaphylaxis and hypogammaglobulinemia harbouring a novel de novo heterozygous variant c.169G > A; p.Glu57Lys in CARD11. The dominant negative effect of this mutation was confirmed on both CD4+ and CD8+. CTLA4+Foxp3+CD4+ Tregs were severely reduced. Patient's NK cells showed reduced expression of NKp46, NKG2D and CD69. Patient's CD56bright NK cells showed in vitro impaired production of IFN-γ. Steady state pS6 levels on patient's NK cells were increased and remained elevated upon IL2 + IL12 + IL18 overnight stimulation. Overall, the effect of CARD11 mutation on mTORC1 differs between T and NK cells. These findings may explain the increased susceptibility to viral infections and the reduced immune surveillance in affected patients.
Collapse
Affiliation(s)
- Manuela Baronio
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Luisa Gazzurelli
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Stefano Rossi
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Giulio Tessarin
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Maddalena Marinoni
- Paediatric Department, ASST-Sette Laghi, "F. Del Ponte" Hospital, Varese, Italy
| | - Annamaria Salpietro
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Michele Fiore
- Primary Care Pediatrician, Local unit ASL3 "genovese", Genova, Italy
| | - Daniele Moratto
- Flow Cytometry Laboratory, Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| | - Marco Chiarini
- Flow Cytometry Laboratory, Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| | - Raffaele Badolato
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Vassilios Lougaris
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy.
| |
Collapse
|
3
|
Al-Tamemi S, Alhinai Z, Al-Rahbi N, Al-Abdawani R, Al-Yazidi L, Al-Shekaili J, Al-Kindi M, Al-Maawali A. BCL10 loss-of-function novel mutation leading to atypical severe combined immunodeficiency. Clin Immunol 2022; 241:109067. [PMID: 35750252 DOI: 10.1016/j.clim.2022.109067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) is characterized by severe, early-onset infection in infants. B-cell lymphoma/leukemia (BCL) 10 defects causing SCID have been reported previously in two patients. MATERIAL & METHODS A seven-month-old female infant was admitted with bilateral pneumonia requiring ventilatory support. She had a history of recurrent infections starting from four months of age. The patient was investigated for primary immunodeficiency. RESULTS Immunological investigations revealed hypogammaglobulinemia with normal CD4 and CD8 lymphocyte counts, while a lymphocyte proliferation assay showed absent response to phytohemagglutinin stimulation, thereby establishing the diagnosis of an atypical form of SCID. Genetic testing revealed a homozygous mutation in the BCL10 gene, with both parents demonstrating a heterozygous state (NM_003921.5:c.271A>C:p.[Thr91Pro]). The patient died before bone marrow transplantation due to severe disseminated adenovirus disease. Conclusion We report the first patient from the Middle East with a novel homozygous mutation in the BCL10 gene causing SCID.
Collapse
Affiliation(s)
- Salem Al-Tamemi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman.
| | - Zaid Alhinai
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Najwa Al-Rahbi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Raghad Al-Abdawani
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Laila Al-Yazidi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Jalila Al-Shekaili
- Department of Microbiology & Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Mahmood Al-Kindi
- Department of Microbiology & Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Almundher Al-Maawali
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman; Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
4
|
Olbrich P, Ortiz Aljaro P, Freeman AF. Eosinophilia Associated With Immune Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1140-1153. [PMID: 35227935 DOI: 10.1016/j.jaip.2022.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The differential diagnosis of eosinophilia is broad and includes infections, malignancies, and atopy as well as inborn errors of immunity (IEI). Certain types of IEIs are known to be associated with elevated numbers of eosinophils and frequently elevated serum IgE, whereas for others the degree and frequency of eosinophilia are less established. The molecular defects underlying IEI are heterogeneous and affect different pathways, which highlights the complex regulations of this cell population within the immune system. In this review, we list and discuss clinical manifestations and therapies of immune deficiency or immune dysregulation disorders associated with peripheral blood or tissue eosinophilia with or without raised IgE levels. We present illustrative case vignettes for the most common entities and propose a diagnostic algorithm aiming to help physicians systematically to evaluate patients with eosinophilia and suspicion of an underlying IEI.
Collapse
Affiliation(s)
- Peter Olbrich
- Sección Infectología, Reumatología e Inmunología Pediátrica, UGC de Pediatría, Hospital Universitario Virgen del Rocío, Seville, Spain; Laboratorio de Alteraciones Congénitas de la Inmunidad, Laboratorio 205, Instituto de Biomedicina de Sevilla, Seville, Spain; Departamento de Farmacología, Pediatría y Radiología, Facultad de Medicina, Universidad de Sevilla, Spain.
| | - Pilar Ortiz Aljaro
- Servicio de Inmunología, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Seville, Spain
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| |
Collapse
|
5
|
Liu X, Jiang B, Hao H, Liu Z. CARD9 Signaling, Inflammation, and Diseases. Front Immunol 2022; 13:880879. [PMID: 35432375 PMCID: PMC9005907 DOI: 10.3389/fimmu.2022.880879] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Caspase-recruitment domain 9 (CARD9) protein is expressed in many cells especially in immune cells, and is critically involved in the function of the innate and adaptive immune systems through extensive interactions between CARD9 and other signaling molecules including NF-κB and MAPK. CARD9-mediated signaling plays a central role in regulating inflammatory responses and oxidative stress through the productions of important cytokines and chemokines. Abnormalities of CARD9 and CARD9 signaling or CARD9 mutations or polymorphism are associated with a variety of pathological conditions including infections, inflammation, and autoimmune disorders. This review focuses on the function of CARD9 and CARD9-mediated signaling pathways, as well as interactions with other important signaling molecules in different cell types and the relations to specific disease conditions including inflammatory diseases, infections, tumorigenesis, and cardiovascular pathologies.
Collapse
Affiliation(s)
- Xuanyou Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bimei Jiang
- Department of Pathophysiology, Central South University, Changsha, China
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
6
|
Phuna ZX, Madhavan P. A CLOSER LOOK AT THE MYCOBIOME IN ALZHEIMER'S DISEASE: FUNGAL SPECIES, PATHOGENESIS AND TRANSMISSION. Eur J Neurosci 2022; 55:1291-1321. [DOI: 10.1111/ejn.15599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi Xin Phuna
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University Malaysia Subang Jaya Selangor
| | - Priya Madhavan
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University Malaysia Subang Jaya Selangor
| |
Collapse
|
7
|
Garcia-Solis B, Van Den Rym A, Pérez-Caraballo JJ, Al-Ayoubi A, Alazami AM, Lorenzo L, Cubillos-Zapata C, López-Collazo E, Pérez-Martínez A, Allende LM, Markle J, Fernández-Arquero M, Sánchez-Ramón S, Recio MJ, Casanova JL, Mohammed R, Martinez-Barricarte R, Pérez de Diego R. Clinical and Immunological Features of Human BCL10 Deficiency. Front Immunol 2021; 12:786572. [PMID: 34868072 PMCID: PMC8633570 DOI: 10.3389/fimmu.2021.786572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
The CARD-BCL10-MALT1 (CBM) complex is critical for the proper assembly of human immune responses. The clinical and immunological consequences of deficiencies in some of its components such as CARD9, CARD11, and MALT1 have been elucidated in detail. However, the scarcity of BCL10 deficient patients has prevented gaining detailed knowledge about this genetic disease. Only two patients with BCL10 deficiency have been reported to date. Here we provide an in-depth description of an additional patient with autosomal recessive complete BCL10 deficiency caused by a nonsense mutation that leads to a loss of expression (K63X). Using mass cytometry coupled with unsupervised clustering and machine learning computational methods, we obtained a thorough characterization of the consequences of BCL10 deficiency in different populations of leukocytes. We showed that in addition to the near absence of memory B and T cells previously reported, this patient displays a reduction in NK, γδT, Tregs, and TFH cells. The patient had recurrent respiratory infections since early childhood, and showed a family history of lethal severe infectious diseases. Fortunately, hematopoietic stem-cell transplantation (HSCT) cured her. Overall, this report highlights the importance of early genetic diagnosis for the management of BCL10 deficient patients and HSCT as the recommended treatment to cure this disease.
Collapse
Affiliation(s)
- Blanca Garcia-Solis
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Jareb J Pérez-Caraballo
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States.,Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Abdulwahab Al-Ayoubi
- Department of Pediatrics, King Saud Medical City Children's Hospital, Riyadh, Saudi Arabia
| | - Anas M Alazami
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Carolina Cubillos-Zapata
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Center for Biomedical Research Network, CIBEres, Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Paediatric Oncology, Haematopoietic Stem Cell Transplantation, Cell Therapy, Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, La Paz University Hospital, Madrid, Spain.,Department of Paediatric Haemato-Oncology and Stem Cell Transplantation, La Paz University Hospital, Madrid, Spain
| | - Luis M Allende
- Department of Immunology, 12 de Octubre Hospital, Research Insitute imas12, Complutense University, Madrid, Spain
| | - Janet Markle
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States.,Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Miguel Fernández-Arquero
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain.,Clinical Immunology Department, San Carlos Clinical Hospital, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain.,Clinical Immunology Department, San Carlos Clinical Hospital, Madrid, Spain
| | - Maria J Recio
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States.,Imagine Institute, University Paris Descartes, Paris, France.,Howard Hughes Medical Institute, New York, NY, United States
| | - Reem Mohammed
- Department of Pediatrics, Division of Allergy & Immunology King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Rubén Martinez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States.,Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| |
Collapse
|
8
|
CARD9 Expression Pattern, Gene Dosage, and Immunodeficiency Phenotype Revisited. J Clin Immunol 2021; 42:336-349. [PMID: 34791587 PMCID: PMC10108093 DOI: 10.1007/s10875-021-01173-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND CARD9 deficiency is an autosomal recessive primary immunodeficiency underlying increased susceptibility to fungal infection primarily presenting as invasive CNS Candida and/or cutaneous/invasive dermatophyte infections. More recently, a rare heterozygous dominant negative CARD9 variant c.1434 + 1G > C was reported to be protective from inflammatory bowel disease. OBJECTIVE We studied two siblings carrying homozygous CARD9 variants (c.1434 + 1G > C) and born to heterozygous asymptomatic parents. One sibling was asymptomatic and the other presented with candida esophagitis, upper respiratory infections, hypogammaglobulinemia, and low class-switched memory B cells. METHODS AND RESULTS The CARD9 c.1434 + 1G > C variant generated two mutant transcripts confirmed by mRNA and protein expression: an out-of-frame c.1358-1434 deletion/ ~ 55 kDa protein (CARD9Δex.11) and an in-frame c.1417-1434 deletion/ ~ 61 kDa protein (CARD9Δ18 nt.). Neither transcript was able to form a complete/functional CBM complex, which includes TRIM62. Based on the index patient's CVID-like phenotype, CARD9 expression was tested and detected in lymphocytes and monocytes from humans and mice. The functional impact of different CARD9 mutations and gene dosage conditions was evaluated in heterozygous and homozygous c.1434 + 1 G > C members of the index family, and in WT (two WT alleles), haploinsufficiency (one WT, one null allele), and null (two null alleles) individuals. CARD9 gene dosage impacted lymphocyte and monocyte functions including cytokine generation, MAPK activation, T-helper commitment, transcription, plasmablast differentiation, and immunoglobulin production in a differential manner. CONCLUSIONS CARD9 exon 11 integrity is critical to CBM complex function. CARD9 is expressed and affects particular T and B cell functions in a gene dosage-dependent manner, which in turn may contribute to the phenotype of CARD9 deficiency.
Collapse
|
9
|
Abstract
Inflammatory bowel disease (IBD) is a life-threatening and chronic inflammatory disease of gastrointestinal tissue, with complex pathogenesis. Current research on IBD has mainly focused on bacteria; however, the role of fungi in IBD is largely unknown due to the incomplete annotation of fungi in current genomic databases. With the development of molecular techniques, the gut mycobiome has been found to have great diversity. In addition, increasing evidence has shown intestinal mycobiome plays an important role in the physiological and pathological processes of IBD. In this review, we will systemically introduce the recent knowledge about multi-dimensional fungal dysbiosis associated with IBD, the interactions between fungus and bacteria, the role of fungi in inflammation in IBD, and highlight recent advances in the potential therapeutic role of fungus in IBD, which may hold the keys to develop new predictive, therapeutic or prognostic approaches in IBD.
Collapse
Affiliation(s)
- Sui Wang
- Laboratory of Translational Gastroenterology, Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu-Rong Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education (Peking University), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yan-Bo Yu
- Department of Gastroenterology, Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
CARD10 cleavage by MALT1 restricts lung carcinoma growth in vivo. Oncogenesis 2021; 10:32. [PMID: 33824280 PMCID: PMC8024357 DOI: 10.1038/s41389-021-00321-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
CARD-CC complexes involving BCL10 and MALT1 are major cellular signaling hubs. They govern NF-κB activation through their scaffolding properties as well as MALT1 paracaspase function, which cleaves substrates involved in NF-κB regulation. In human lymphocytes, gain-of-function defects in this pathway lead to lymphoproliferative disorders. CARD10, the prototypical CARD-CC protein in non-hematopoietic cells, is overexpressed in several cancers and has been associated with poor prognosis. However, regulation of CARD10 remains poorly understood. Here, we identified CARD10 as the first MALT1 substrate in non-hematopoietic cells and showed that CARD10 cleavage by MALT1 at R587 dampens its capacity to activate NF-κB. Preventing CARD10 cleavage in the lung tumor A549 cell line increased basal levels of IL-6 and extracellular matrix components in vitro, and led to increased tumor growth in a mouse xenograft model, suggesting that CARD10 cleavage by MALT1 might be a built-in mechanism controlling tumorigenicity.
Collapse
|
11
|
Chen X, Zhang H, Wang X, Shao Z, Li Y, Zhao G, Liu F, Liu B, Zheng Y, Chen T, Zheng H, Zhang L, Gao C. OTUD1 Regulates Antifungal Innate Immunity through Deubiquitination of CARD9. THE JOURNAL OF IMMUNOLOGY 2021; 206:1832-1843. [PMID: 33789983 DOI: 10.4049/jimmunol.2001253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
CARD9 is an essential adaptor protein in antifungal innate immunity mediated by C-type lectin receptors. The activity of CARD9 is critically regulated by ubiquitination; however, the deubiquitinases involved in CARD9 regulation remain incompletely understood. In this study, we identified ovarian tumor deubiquitinase 1 (OTUD1) as an essential regulator of CARD9. OTUD1 directly interacted with CARD9 and cleaved polyubiquitin chains from CARD9, leading to the activation of the canonical NF-κB and MAPK pathway. OTUD1 deficiency impaired CARD9-mediated signaling and inhibited the proinflammatory cytokine production following fungal stimulation. Importantly, Otud1 -/- mice were more susceptible to fungal infection than wild-type mice in vivo. Collectively, our results identify OTUD1 as an essential regulatory component for the CARD9 signaling pathway and antifungal innate immunity through deubiquitinating CARD9.
Collapse
Affiliation(s)
- Xiaorong Chen
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Honghai Zhang
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Xueer Wang
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Zhugui Shao
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Yanqi Li
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Guimin Zhao
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Tian Chen
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China; and
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, People's Republic of China
| | - Lei Zhang
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China;
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China;
| |
Collapse
|
12
|
Doron I, Leonardi I, Li XV, Fiers WD, Semon A, Bialt-DeCelie M, Migaud M, Gao IH, Lin WY, Kusakabe T, Puel A, Iliev ID. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 2021; 184:1017-1031.e14. [PMID: 33548172 PMCID: PMC7936855 DOI: 10.1016/j.cell.2021.01.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Antibodies mediate natural and vaccine-induced immunity against viral and bacterial pathogens, whereas fungi represent a widespread kingdom of pathogenic species for which neither vaccine nor neutralizing antibody therapies are clinically available. Here, using a multi-kingdom antibody profiling (multiKAP) approach, we explore the human antibody repertoires against gut commensal fungi (mycobiota). We identify species preferentially targeted by systemic antibodies in humans, with Candida albicans being the major inducer of antifungal immunoglobulin G (IgG). Fungal colonization of the gut induces germinal center (GC)-dependent B cell expansion in extraintestinal lymphoid tissues and generates systemic antibodies that confer protection against disseminated C. albicans or C. auris infection. Antifungal IgG production depends on the innate immunity regulator CARD9 and CARD9+CX3CR1+ macrophages. In individuals with invasive candidiasis, loss-of-function mutations in CARD9 are associated with impaired antifungal IgG responses. These results reveal an important role of gut commensal fungi in shaping the human antibody repertoire through CARD9-dependent induction of host-protective antifungal IgG.
Collapse
Affiliation(s)
- Itai Doron
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Irina Leonardi
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xin V Li
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - William D Fiers
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexa Semon
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Meghan Bialt-DeCelie
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Iris H Gao
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Woan-Yu Lin
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Takato Kusakabe
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065 USA; University of Paris, Imagine Institute, 75015 Paris, France
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
13
|
Zhang Y, Li R, Wang X. Monogenetic causes of fungal disease: recent developments. Curr Opin Microbiol 2020; 58:75-86. [DOI: 10.1016/j.mib.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 01/12/2023]
|
14
|
Al-Rasheed B, Alazami AM, Al-Mousa H. Phenoidentical HLA-Related Hematopoietic Stem Cell Transplant Without Conditioning to Reconstitute a Patient with a Putative Loss-of-Function CARD11 Mutation. J Clin Immunol 2020; 40:1163-1165. [PMID: 32815076 DOI: 10.1007/s10875-020-00846-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Bashayer Al-Rasheed
- Pediatric Allergy & Clinical Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, MBC 58, P.O.Box 3354, Riyadh, 11211, Saudi Arabia
| | - Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hamoud Al-Mousa
- Pediatric Allergy & Clinical Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, MBC 58, P.O.Box 3354, Riyadh, 11211, Saudi Arabia. .,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
15
|
Wang Y, Zhang D, Hou Y, Shen S, Wang T. The adaptor protein CARD9, from fungal immunity to tumorigenesis. Am J Cancer Res 2020; 10:2203-2225. [PMID: 32905547 PMCID: PMC7471374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023] Open
Abstract
The adaptor protein CARD9 is in charge of mediating signals from PRRs of myeloid cells to downstream transcription factor NF-κB. CARD9 plays an indispensable role in innate immunity. Both mice and humans with CARD9 deficiency show increased susceptibility to fungal and bacterial infections. CARD9 signaling not only activates but also shapes adaptive immune responses. The role of this molecule in tumor progression is increasingly being revealed. Our early study found that CARD9 is associated with the development of colon cancer and functions as a regulator of antitumor immunity. In this review, we focus on the upstream and downstream signaling pathways of CARD9, then we summarize the immunological recognition and responses induced by CARD9 signaling. Furthermore, we review the function of CARD9 in multiple aspects of host immunity, ranging from fungal immunity to tumorigenesis.
Collapse
Affiliation(s)
- Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
| | - Di Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
- Jiangsu Key Laboratory of Molecular MedicineNanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
- Jiangsu Key Laboratory of Molecular MedicineNanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
- Jiangsu Key Laboratory of Molecular MedicineNanjing, China
| |
Collapse
|
16
|
Yang DH, Guo T, Yuan ZZ, Lei C, Ding SZ, Yang YF, Tan ZP, Luo H. Mutant CARD10 in a family with progressive immunodeficiency and autoimmunity. Cell Mol Immunol 2020; 17:782-784. [PMID: 32238915 DOI: 10.1038/s41423-020-0423-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dan-Hui Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, 410011, China
| | - Ting Guo
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, 410011, China
| | - Zhuang-Zhuang Yuan
- School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Cheng Lei
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, 410011, China
| | - Shui-Zi Ding
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, 410011, China
| | - Yi-Feng Yang
- Clinical Center for Gene Diagnosis and Therapy, Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhi-Ping Tan
- Clinical Center for Gene Diagnosis and Therapy, Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| | - Hong Luo
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China. .,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
17
|
Puel A. Human inborn errors of immunity underlying superficial or invasive candidiasis. Hum Genet 2020; 139:1011-1022. [PMID: 32124012 DOI: 10.1007/s00439-020-02141-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
Abstract
Candida species, including C. albicans in particular, can cause superficial or invasive disease, often in patients with known acquired immunodeficiencies or iatrogenic conditions. The molecular and cellular basis of these infections in patients with such risk factors remained largely elusive, until the study of inborn errors of immunity clarified the basis of the corresponding inherited and "idiopathic" infections. Superficial candidiasis, also known as chronic mucocutaneous candidiasis (CMC), can be caused by inborn errors of IL-17 immunity. Invasive candidiasis can be caused by inborn errors of CARD9 immunity. In this chapter, we review both groups of inborn errors of immunity, and discuss the contribution of these studies to the deciphering of the critical mechanisms of anti-Candida immunity in patients with other conditions.
Collapse
Affiliation(s)
- Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Necker Branch, 75015, Paris, France. .,Imagine Institute, Paris University, 75015, Paris, France. .,St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, Rockefeller Branch, New York, NY, 10065, USA.
| |
Collapse
|
18
|
Van Den Rym A, Taur P, Martinez-Barricarte R, Lorenzo L, Puel A, Gonzalez-Navarro P, Pandrowala A, Gowri V, Safa A, Toledano V, Cubillos-Zapata C, López-Collazo E, Vela M, Pérez-Martínez A, Sánchez-Ramón S, Recio MJ, Casanova JL, Desai MM, Perez de Diego R. Human BCL10 Deficiency due to Homozygosity for a Rare Allele. J Clin Immunol 2020; 40:388-398. [PMID: 32008135 DOI: 10.1007/s10875-020-00760-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/23/2020] [Indexed: 12/30/2022]
Abstract
In 2014, a child with broad combined immunodeficiency (CID) who was homozygous for a private BCL10 allele was reported to have complete inherited human BCL10 deficiency. In the present study, we report a new BCL10 mutation in another child with CID who was homozygous for a BCL10 variant (R88X), previously reported as a rare allele in heterozygosis (minor allele frequency, 0.000003986). The mutant allele was a loss-of-expression and loss-of-function allele. As with the previously reported patient, this patient had complete BCL10 deficiency. The clinical phenotype shared features, such as respiratory infections, but differed from that of the previous patient that he did not develop significant gastroenteritis episodes or chronic colitis. Cellular and immunological phenotypes were similar to those of the previous patient. TLR4, TLR2/6, and Dectin-1 responses were found to depend on BCL10 in fibroblasts, and final maturation of T cell and B cell maturation into memory cells was affected. Autosomal-recessive BCL10 deficiency should therefore be considered in children with CID.
Collapse
Affiliation(s)
- Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Prasad Taur
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Rubén Martinez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015, Paris, France
- Imagine Institute, University Paris Descartes, 75015, Paris, France
| | - Pablo Gonzalez-Navarro
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Ambreen Pandrowala
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Vijaya Gowri
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Amin Safa
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040, Madrid, Spain
| | - Victor Toledano
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Center for Biomedical Research Network, CIBEres, Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
| | - Maria Vela
- Translational Research in Paediatric Oncology, Haematopoietic Stem Cell Transplantation, Cell Therapy, INGEMM-IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Paediatric Oncology, Haematopoietic Stem Cell Transplantation, Cell Therapy, INGEMM-IdiPAZ, La Paz University Hospital, Madrid, Spain
- Department of Paediatric Haemato-oncology and Stem Cell Transplantation, La Paz University Hospital, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Clinical Immunology Department, San Carlos Clinical Hospital, 28040, Madrid, Spain
| | - Maria J Recio
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040, Madrid, Spain
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015, Paris, France
- Imagine Institute, University Paris Descartes, 75015, Paris, France
- Paediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015, Paris, France
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Mukesh M Desai
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Rebeca Perez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain.
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain.
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain.
| |
Collapse
|
19
|
Loh JT, Xu S, Huo JX, Kim SSY, Wang Y, Lam KP. Dok3-protein phosphatase 1 interaction attenuates Card9 signaling and neutrophil-dependent antifungal immunity. J Clin Invest 2019; 129:2717-2729. [PMID: 31180338 DOI: 10.1172/jci126341] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/25/2019] [Indexed: 12/29/2022] Open
Abstract
Invasive fungal infection is a serious health threat with high morbidity and mortality. Current antifungal drugs only demonstrate partial success in improving prognosis. Furthermore, mechanisms regulating host defense against fungal pathogens remain elusive. Here, we report that the downstream of kinase 3 (Dok3) adaptor negatively regulates antifungal immunity in neutrophils. Our data revealed that Dok3 deficiency increased phagocytosis, proinflammatory cytokine production, and netosis in neutrophils, thereby enhancing mutant mouse survival against systemic infection with a lethal dose of the pathogenic fungus Candida albicans. Biochemically, Dok3 recruited protein phosphatase 1 (PP1) to dephosphorylate Card9, an essential player in innate antifungal defense, to dampen downstream NF-κB and JNK activation and immune responses. Thus, Dok3 suppresses Card9 signaling, and disrupting Dok3-Card9 interaction or inhibiting PP1 activity represents therapeutic opportunities to develop drugs to combat candidaemia.
Collapse
Affiliation(s)
- Jia Tong Loh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore
| | - Shengli Xu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jian Xin Huo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore
| | - Susana Soo-Yeon Kim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.,Department of Biochemistry and
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,School of Biological Sciences, College of Science, Nanyang Technological University, Singapore
| |
Collapse
|
20
|
Monteiro JT, Schön K, Ebbecke T, Goethe R, Ruland J, Baumgärtner W, Becker SC, Lepenies B. The CARD9-Associated C-Type Lectin, Mincle, Recognizes La Crosse Virus (LACV) but Plays a Limited Role in Early Antiviral Responses against LACV. Viruses 2019; 11:v11030303. [PMID: 30917612 PMCID: PMC6466035 DOI: 10.3390/v11030303] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
La Crosse virus (LACV) is a mosquito-transmitted arbovirus and the main cause of virus-mediated neurological diseases in children. To date, little is known about the role of C-type lectin receptors (CLRs)—an important class of pattern recognition receptors—in LACV recognition. DC-SIGN remains the only well-described CLR that recognizes LACV. In this study, we investigated the role of additional CLR/LACV interactions. To this end, we applied a flow-through chromatography method for the purification of LACV to perform an unbiased high-throughput screening of LACV with a CLR-hFc fusion protein library. Interestingly, the CARD9-associated CLRs Mincle, Dectin-1, and Dectin-2 were identified to strongly interact with LACV. Since CARD9 is a common adaptor protein for signaling via Mincle, Dectin-1, and Dectin-2, we performed LACV infection of Mincle−/− and CARD9−/− DCs. Mincle−/− and CARD9−/− DCs produced less amounts of proinflammatory cytokines, namely IL-6 and TNF-α, albeit no reduction of the LACV titer was observed. Together, novel CLR/LACV interactions were identified; however, the Mincle/CARD9 axis plays a limited role in early antiviral responses against LACV.
Collapse
Affiliation(s)
- João T Monteiro
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Kathleen Schön
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
- Institute for Parasitology and & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Tim Ebbecke
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany.
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675 Munich, Germany.
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Stefanie C Becker
- Institute for Parasitology and & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Bernd Lepenies
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
21
|
Limon JJ, Tang J, Li D, Wolf AJ, Michelsen KS, Funari V, Gargus M, Nguyen C, Sharma P, Maymi VI, Iliev ID, Skalski JH, Brown J, Landers C, Borneman J, Braun J, Targan SR, McGovern DPB, Underhill DM. Malassezia Is Associated with Crohn's Disease and Exacerbates Colitis in Mouse Models. Cell Host Microbe 2019; 25:377-388.e6. [PMID: 30850233 DOI: 10.1016/j.chom.2019.01.007] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/19/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
Inflammatory bowel disease (IBD) is characterized by alterations in the intestinal microbiota and altered immune responses to gut microbiota. Evidence is accumulating that IBD is influenced by not only commensal bacteria but also commensal fungi. We characterized fungi directly associated with the intestinal mucosa in healthy people and Crohn's disease patients and identified fungi specifically abundant in patients. One of these, the common skin resident fungus Malassezia restricta, is also linked to the presence of an IBD-associated polymorphism in the gene for CARD9, a signaling adaptor important for anti-fungal defense. M. restricta elicits innate inflammatory responses largely through CARD9 and is recognized by Crohn's disease patient anti-fungal antibodies. This yeast elicits strong inflammatory cytokine production from innate cells harboring the IBD-linked polymorphism in CARD9 and exacerbates colitis via CARD9 in mouse models of disease. Collectively, these results suggest that targeting specific commensal fungi may be a therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Jose J Limon
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jie Tang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dalin Li
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrea J Wolf
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kathrin S Michelsen
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vince Funari
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew Gargus
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher Nguyen
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Purnima Sharma
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Viviana I Maymi
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Iliyan D Iliev
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joseph H Skalski
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jordan Brown
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Carol Landers
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - James Borneman
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephan R Targan
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dermot P B McGovern
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David M Underhill
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Gonzalez-Granado LI, Ruiz-García R, Blas-Espada J, Moreno-Villares JM, Germán-Diaz M, López-Nevado M, Paz-Artal E, Toldos O, Rodriguez-Gil Y, de Inocencio J, Domínguez-Pinilla N, Allende LM. Acquired and Innate Immunity Impairment and Severe Disseminated Mycobacterium genavense Infection in a Patient With a NF-κB1 Deficiency. Front Immunol 2019; 9:3148. [PMID: 30761159 PMCID: PMC6362422 DOI: 10.3389/fimmu.2018.03148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/20/2018] [Indexed: 11/29/2022] Open
Abstract
Background: NF-κB1 is a master regulator of both acquired and innate responses. NFKB1 loss-of-function mutations elicit a wide clinical phenotype with asymptomatic individuals at one end of the spectrum and patients with common variable immunodeficiency, combined immunodeficiency or autoinflammation at the other. Impairment of acquired and innate immunity and disseminated Mycobacterium genavense infection expands the clinical and immunological phenotype of NF-κB1 deficiency. Objective: Functional and molecular characterization of a patient with a novel phenotype of NF-κB1 deficiency. Methods: Circulating T, B, dendritic cell subsets and innate or unconventional T-cells were quantified. The cytokine production in stimulated whole blood samples was assessed and molecular characterization by next generation sequencing and gene expression assays were also performed. Results: We report a patient presenting with features of combined immunodeficiency (CID) and disseminated Mycobacterium genavense infection. Sequencing of genomic DNA identified a novel synonymous mutation (c.705G > A) in NFKB1 gene which resulted in exon 8 skipping and haploinsufficiency of the NF-κB1 subunit p50. The susceptibility to atypical mycobacterial infection has not been previously reported and may be the result of a dendritic cell deficiency. A selective deficiency of circulating follicular helper T (cTFH) cells responsible for mediating the differentiation of naive B cells into memory and plasma cells was also present in the patient. It could affect the maturation of innate or unconventional T cells where NF-κB1 could also be involved. Conclusion: These findings showed that the role of NF-κB1 in humans could be critical for the development of acquired and innate immunity and further highlights the role of human T cells in anti-mycobacterial immunity.
Collapse
Affiliation(s)
- Luis Ignacio Gonzalez-Granado
- Primary Immunodeficiencies Unit, Department of Pediatrics, School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain.,Research Institute Hospital 12 Octubre (I+12), Madrid, Spain
| | - Raquel Ruiz-García
- Research Institute Hospital 12 Octubre (I+12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
| | - Javier Blas-Espada
- Research Institute Hospital 12 Octubre (I+12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
| | - José Manuel Moreno-Villares
- Pediatric Nutrition, Pediatrics, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Marta Germán-Diaz
- Pediatric Nutrition, Pediatrics, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Marta López-Nevado
- Research Institute Hospital 12 Octubre (I+12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Research Institute Hospital 12 Octubre (I+12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, Complutense University of Madrid, Madrid, Spain.,Immunology Department, University San Pablo CEU, Madrid, Spain
| | - Oscar Toldos
- Pathology Department, University Hospital 12 de Octubre, Madrid, Spain
| | | | - Jaime de Inocencio
- Pediatric Rheumatology Unit, Department of Pediatrics, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Nerea Domínguez-Pinilla
- Research Institute Hospital 12 Octubre (I+12), Madrid, Spain.,Pediatric Hematology and Oncology, Hospital Virgen de la Salud, Toledo, Spain
| | - Luis M Allende
- Research Institute Hospital 12 Octubre (I+12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
23
|
An allosteric MALT1 inhibitor is a molecular corrector rescuing function in an immunodeficient patient. Nat Chem Biol 2019; 15:304-313. [PMID: 30692685 DOI: 10.1038/s41589-018-0222-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/06/2018] [Indexed: 12/24/2022]
Abstract
MALT1 paracaspase is central for lymphocyte antigen-dependent responses including NF-κB activation. We discovered nanomolar, selective allosteric inhibitors of MALT1 that bind by displacing the side chain of Trp580, locking the protease in an inactive conformation. Interestingly, we had previously identified a patient homozygous for a MALT1 Trp580-to-serine mutation who suffered from combined immunodeficiency. We show that the loss of tryptophan weakened interactions between the paracaspase and C-terminal immunoglobulin MALT1 domains resulting in protein instability, reduced protein levels and functions. Upon binding of allosteric inhibitors of increasing potency, we found proportionate increased stabilization of MALT1-W580S to reach that of wild-type MALT1. With restored levels of stable MALT1 protein, the most potent of the allosteric inhibitors rescued NF-κB and JNK signaling in patient lymphocytes. Following compound washout, MALT1 substrate cleavage was partly recovered. Thus, a molecular corrector rescues an enzyme deficiency by substituting for the mutated residue, inspiring new potential precision therapies to increase mutant enzyme activity in other deficiencies.
Collapse
|
24
|
Double-strand break repair through homologous recombination in autosomal-recessive BCL10 deficiency. J Allergy Clin Immunol 2019; 143:1931-1934.e1. [PMID: 30660642 DOI: 10.1016/j.jaci.2018.12.1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 11/23/2022]
|
25
|
Rare copy number variants in the genome of Chinese female children and adolescents with Turner syndrome. Biosci Rep 2019; 39:BSR20181305. [PMID: 30530863 PMCID: PMC6328875 DOI: 10.1042/bsr20181305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 01/15/2023] Open
Abstract
Turner syndrome (TS) is a congenital disease caused by complete or partial loss of one X chromosome. Low bone mineral status is a major phenotypic characteristic of TS that can not be fully explained by X chromosome loss, suggesting other autosomal-linked mutations may also exist. Therefore, the present study aimed to detect potential genetic mutations in TS through examination of copy number variation (CNV). Seventeen patients with TS and 15 healthy volunteer girls were recruited. Array-based comparative genomic hybridization (a-CGH) was performed on whole blood genomic DNA (gDMA) from the 17 TS patients and 15 healthy volunteer girls to identify potential CNVs. The abnormal CNV of one identified gene (CARD11) was verified by quantitative PCR. All cases diagnosed had TS based on genotype examination and physical characteristics, including short stature and premature ovarian failure. Three rare CNVs, located individually at 7p22.3, 7p22.2, and Xp22.33, where six genes (TTYH3, AMZ1, GNA12, BC038729, CARD11, and SHOX (stature homeobox)) are located, were found in TS patients. Quantitative PCR confirmed the CNV of CARD11 in the genome of TS patients. Our results indicate that CARD11 gene is one of the mutated genes involved in TS disease. However, this CNV is rare and its contribution to TS phenotype requires further study.
Collapse
|
26
|
De Bruyne M, Hoste L, Bogaert DJ, Van den Bossche L, Tavernier SJ, Parthoens E, Migaud M, Konopnicki D, Yombi JC, Lambrecht BN, van Daele S, Alves de Medeiros AK, Brochez L, Beyaert R, De Baere E, Puel A, Casanova JL, Goffard JC, Savvides SN, Haerynck F, Staal J, Dullaers M. A CARD9 Founder Mutation Disrupts NF-κB Signaling by Inhibiting BCL10 and MALT1 Recruitment and Signalosome Formation. Front Immunol 2018; 9:2366. [PMID: 30429846 PMCID: PMC6220056 DOI: 10.3389/fimmu.2018.02366] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Inherited CARD9 deficiency constitutes a primary immunodeficiency predisposing uniquely to chronic and invasive fungal infections. Certain mutations are shown to negatively impact CARD9 protein expression and/or NF-κB activation, but the underlying biochemical mechanism remains to be fully understood. Objectives: To investigate a possible founder origin of a known CARD9 R70W mutation in five families of Turkish origin. To explore the biochemical mechanism of immunodeficiency by R70W CARD9. Methods: We performed haplotype analysis using microsatellite markers and SNPs. We designed a model system exploiting a gain-of-function (GOF) CARD9 L213LI mutant that triggers constitutive NF-κB activation, analogous to an oncogenic CARD11 mutant, to study NF-κB signaling and signalosome formation. We performed reporter assays, immunoprecipitation and confocal imaging on HEK cells overexpressing different CARD9 variants. Results: We identified a common haplotype, thus providing evidence for a common Turkish founder. CARD9 R70W failed to activate NF-κB and abrogated NF-κB activation by WT CARD9 and by GOF CARD9. Notably, R70W CARD9 also exerted negative effects on NF-κB activation by CARD10, CARD11, and CARD14. Consistent with the NF-κB results, the R70W mutation prevented GOF CARD9 to pull down the signalosome partner proteins BCL10 and MALT1. This reflected into drastic reduction of BCL10 filamentous assemblies in a cellular context. Indeed, structural analysis revealed that position R70 in CARD9 maps at the putative interface between successive CARD domains in CARD9 filaments. Conclusions: The R70W mutation in CARD9 prevents NF-κB activation by inhibiting productive interactions with downstream BCL10 and MALT1, necessary for assembly of the filamentous CARD9-BCL10-MALT1 signalosome.
Collapse
Affiliation(s)
- Marieke De Bruyne
- Primary Immunodeficiency Research Lab, Department of Pulmonary Medicine, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Levi Hoste
- Primary Immunodeficiency Research Lab, Department of Pulmonary Medicine, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Delfien J Bogaert
- Primary Immunodeficiency Research Lab, Department of Pulmonary Medicine, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Lien Van den Bossche
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Simon J Tavernier
- Primary Immunodeficiency Research Lab, Department of Pulmonary Medicine, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Eef Parthoens
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,VIB Bioimaging Core, VIB, Ghent, Belgium
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Medical School, Imagine Institute, Paris Descartes University, Paris, France
| | - Deborah Konopnicki
- Infectious Diseases Department, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean Cyr Yombi
- Department of Internal Medicine and Infectious Diseases, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Sabine van Daele
- Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | | | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Medical School, Imagine Institute, Paris Descartes University, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Medical School, Imagine Institute, Paris Descartes University, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, United States; Pediatric Hematology-Immunology Unit, Necker Hospital, New York, NY, United States
| | | | - Savvas N Savvides
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Lab, Department of Pulmonary Medicine, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Melissa Dullaers
- Primary Immunodeficiency Research Lab, Department of Pulmonary Medicine, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
27
|
Israel L, Mellett M. Clinical and Genetic Heterogeneity of CARD14 Mutations in Psoriatic Skin Disease. Front Immunol 2018; 9:2239. [PMID: 30386326 PMCID: PMC6198054 DOI: 10.3389/fimmu.2018.02239] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/10/2018] [Indexed: 01/14/2023] Open
Abstract
The CARD: BCL10: MALT1 (CBM) complex is an essential signaling node for maintaining both innate and adaptive immune responses. CBM complex components have gained considerable interest due to the dramatic effects of associated mutations in causing severe lymphomas, immunodeficiencies, carcinomas and inflammatory disease. While MALT1 and BCL10 are ubiquitous proteins, the CARD-containing proteins differ in their tissue expression. CARD14 is primarily expressed in keratinocytes. The CARD14-BCL10-MALT1 complex is activated by upstream pathogen-associated molecular pattern-recognition in vitro, highlighting a potentially crucial role in innate immune defense at the epidermal barrier. Recent findings have demonstrated how CARD14 orchestrates activation of the NF-κB and MAPK signaling pathways via recruitment of BCL10 and MALT1, leading to the upregulation of pro-inflammatory genes encoding IL-36γ, IL-8, Ccl20 and anti-microbial peptides. Following the identification of CARD14 gain-of function mutations as responsible for the psoriasis susceptibility locus PSORS2, the past years have witnessed a large volume of case reports and association studies describing CARD14 variants as causal or predisposing to a wide range of inflammatory skin disorders. Recent publications of mouse models also helped to better understand the physiological contribution of CARD14 to psoriasis pathogenesis. In this review, we summarize the clinical, genetic and functional aspects of human and murine CARD14 mutations and their contribution to psoriatic disease pathogenesis.
Collapse
Affiliation(s)
- Laura Israel
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
28
|
Bedsaul JR, Carter NM, Deibel KE, Hutcherson SM, Jones TA, Wang Z, Yang C, Yang YK, Pomerantz JL. Mechanisms of Regulated and Dysregulated CARD11 Signaling in Adaptive Immunity and Disease. Front Immunol 2018; 9:2105. [PMID: 30283447 PMCID: PMC6156143 DOI: 10.3389/fimmu.2018.02105] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023] Open
Abstract
CARD11 functions as a key signaling scaffold that controls antigen-induced lymphocyte activation during the adaptive immune response. Somatic mutations in CARD11 are frequently found in Non-Hodgkin lymphoma, and at least three classes of germline CARD11 mutations have been described as the basis for primary immunodeficiency. In this review, we summarize our current understanding of how CARD11 signals, how its activity is regulated, and how mutations bypass normal regulation to cause disease.
Collapse
Affiliation(s)
- Jacquelyn R Bedsaul
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole M Carter
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katelynn E Deibel
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shelby M Hutcherson
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tyler A Jones
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhaoquan Wang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chao Yang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yong-Kang Yang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Bucciol G, Moens L, Bosch B, Bossuyt X, Casanova JL, Puel A, Meyts I. Lessons learned from the study of human inborn errors of innate immunity. J Allergy Clin Immunol 2018; 143:507-527. [PMID: 30075154 DOI: 10.1016/j.jaci.2018.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
Innate immunity contributes to host defense through all cell types and relies on their shared germline genetic background, whereas adaptive immunity operates through only 3 main cell types, αβ T cells, γδ T cells, and B cells, and relies on their somatic genetic diversification of antigen-specific responses. Human inborn errors of innate immunity often underlie infectious diseases. The range and nature of infections depend on the mutated gene, the deleteriousness of the mutation, and other ill-defined factors. Most known inborn errors of innate immunity to infection disrupt the development or function of leukocytes other than T and B cells, but a growing number of inborn errors affect cells other than circulating and tissue leukocytes. Here we review inborn errors of innate immunity that have been recently discovered or clarified. We highlight the immunologic implications of these errors.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Leen Moens
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium
| | - Barbara Bosch
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Xavier Bossuyt
- Experimental Laboratory Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, INSERM U1163, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Isabelle Meyts
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
30
|
Danis J, Göblös A, Gál B, Sulák A, Farkas K, Török D, Varga E, Korom I, Kemény L, Széll M, Bata-Csörgö Z, Nagy N. Nuclear Factor κB Activation in a Type V Pityriasis Rubra Pilaris Patient Harboring Multiple CARD14 Variants. Front Immunol 2018; 9:1564. [PMID: 30018619 PMCID: PMC6037727 DOI: 10.3389/fimmu.2018.01564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Pityriasis rubra pilaris (PRP) is a rare papulosquamous skin disorder, which is phenotypically related to psoriasis. Some familial PRP cases show autosomal dominant inheritance due to CARD14 mutations leading to increased nuclear factor κB (NFκB) activation. Moreover, CARD14 polymorphisms have also been implicated in sporadic PRP. A Hungarian PRP patient with childhood onset disease showing worsening of the symptoms in adulthood with poor therapeutic response underwent genetic screening for the CARD14 gene, revealing four genetic variants (rs117918077, rs2066964, rs28674001, and rs11652075). To confirm that the identified genetic variants would result in altered NFκB activity in the patient, functional studies were carried out. Immunofluorescent staining of the NFκB p65 subunit and NFκB-luciferase reporter assay demonstrated significantly increased NFκB activity in skin samples and keratinocytes from the PRP patient compared to healthy samples. Characterization of the cytokine profile of the keratinocytes and peripheral blood mononuclear cells demonstrated that the higher NFκB activation in PRP cells induces enhanced responses to inflammatory stimuli. These higher inflammatory reactions could not be explained solely by the observed CARD14 or other inflammation-related gene variants (determined by whole exome sequencing). Thus our study indicates the importance of investigations on other genetic factors related to PRP and their further functional characterization to bring us closer to the understanding of cellular and molecular background of disease pathogenesis.
Collapse
Affiliation(s)
- Judit Danis
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - Anikó Göblös
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - Brigitta Gál
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Adrienn Sulák
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - Katalin Farkas
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - Dóra Török
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - Erika Varga
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Irma Korom
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - Márta Széll
- MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary.,Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Bata-Csörgö
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - Nikoletta Nagy
- MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary.,Department of Medical Genetics, University of Szeged, Szeged, Hungary
| |
Collapse
|
31
|
Nunes-Santos CDJ, Rosenzweig SD. Bacille Calmette-Guerin Complications in Newly Described Primary Immunodeficiency Diseases: 2010-2017. Front Immunol 2018; 9:1423. [PMID: 29988375 PMCID: PMC6023996 DOI: 10.3389/fimmu.2018.01423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
Bacille Calmette–Guerin (BCG) vaccine is widely used as a prevention strategy against tuberculosis. BCG is a live vaccine, usually given early in life in most countries. While safe to most recipients, it poses a risk to immunocompromised patients. Several primary immunodeficiency diseases (PIDD) have been classically associated with complications related to BCG vaccine. However, a number of new inborn errors of immunity have been described lately in which little is known about adverse reactions following BCG vaccination. The aim of this review is to summarize the existing data on BCG-related complications in patients diagnosed with PIDD described since 2010. When BCG vaccination status or complications were not specifically addressed in those manuscripts, we directly contacted the corresponding authors for further clarification. We also analyzed data on other mycobacterial infections in these patients. Based on our analysis, around 8% of patients with gain-of-function mutations in STAT1 had mycobacterial infections, including localized complications in 3 and disseminated disease in 4 out of 19 BCG-vaccinated patients. Localized BCG reactions were also frequent in activated PI3Kδ syndrome type 1 (3/10) and type 2 (2/18) vaccinated children. Also, of note, no BCG-related complications have been described in either CTLA4 or LRBA protein-deficient patients; and not enough information on BCG-vaccinated NFKB1 or NFKB2-deficient patients was available to drive any conclusions about these diseases. Despite the high prevalence of environmental mycobacterial infections in GATA2-deficient patients, only one case of BCG reaction has been reported in a patient who developed disseminated disease. In conclusion, BCG complications could be expected in some particular, recently described PIDD and it remains a preventable risk factor for pediatric PIDD patients.
Collapse
Affiliation(s)
- Cristiane de Jesus Nunes-Santos
- Faculdade de Medicina, Instituto da Crianca, Universidade de São Paulo, São Paulo, Brazil.,Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
32
|
Boutboul D, Kuehn HS, Van de Wyngaert Z, Niemela JE, Callebaut I, Stoddard J, Lenoir C, Barlogis V, Farnarier C, Vely F, Yoshida N, Kojima S, Kanegane H, Hoshino A, Hauck F, Lhermitte L, Asnafi V, Roehrs P, Chen S, Verbsky JW, Calvo KR, Husami A, Zhang K, Roberts J, Amrol D, Sleaseman J, Hsu AP, Holland SM, Marsh R, Fischer A, Fleisher TA, Picard C, Latour S, Rosenzweig SD. Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Invest 2018; 128:3071-3087. [PMID: 29889099 DOI: 10.1172/jci98164] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/17/2018] [Indexed: 01/20/2023] Open
Abstract
Ikaros/IKZF1 is an essential transcription factor expressed throughout hematopoiesis. IKZF1 is implicated in lymphocyte and myeloid differentiation and negative regulation of cell proliferation. In humans, somatic mutations in IKZF1 have been linked to the development of B cell acute lymphoblastic leukemia (ALL) in children and adults. Recently, heterozygous germline IKZF1 mutations have been identified in patients with a B cell immune deficiency mimicking common variable immunodeficiency. These mutations demonstrated incomplete penetrance and led to haploinsufficiency. Herein, we report 7 unrelated patients with a novel early-onset combined immunodeficiency associated with de novo germline IKZF1 heterozygous mutations affecting amino acid N159 located in the DNA-binding domain of IKZF1. Different bacterial and viral infections were diagnosed, but Pneumocystis jirovecii pneumonia was reported in all patients. One patient developed a T cell ALL. This immunodeficiency was characterized by innate and adaptive immune defects, including low numbers of B cells, neutrophils, eosinophils, and myeloid dendritic cells, as well as T cell and monocyte dysfunctions. Notably, most T cells exhibited a naive phenotype and were unable to evolve into effector memory cells. Functional studies indicated these mutations act as dominant negative. This defect expands the clinical spectrum of human IKZF1-associated diseases from somatic to germline, from haploinsufficient to dominant negative.
Collapse
Affiliation(s)
- David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Paris, France
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Zoé Van de Wyngaert
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Julie E Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Isabelle Callebaut
- Centre National de la Recherche Scientifique UMR 7590, Sorbonne Universities, University Pierre et Marie Curie-Paris 6-MNHN-IRD-IUC, Paris, France
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Paris, France
| | - Vincent Barlogis
- Department of Paediatric Haematology-Oncology, La Timone Hospital, Marseille, France
| | - Catherine Farnarier
- Assistance Publique - Hôpitaux de Marseille (APHM) Hôpital Timone Enfants, Service d'Immunologie - Marseille Immunopôle, Marseille, France
| | - Frédéric Vely
- Aix Marseille University, APHM, CNRS, Inserm, Centre d'Immunologie de Marseille-Luminy (CIML), Hôpital Timone Enfants, Service d'Immunologie - Marseille Immunopôle, Marseille, France
| | - Nao Yoshida
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fabian Hauck
- Department of Pediatric Immunology and Rheumatology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Ludovic Lhermitte
- University Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Inserm 1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (APHP), Necker-Enfants Malades Hospital, Paris, France
| | - Vahid Asnafi
- University Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Inserm 1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (APHP), Necker-Enfants Malades Hospital, Paris, France
| | - Philip Roehrs
- Levine Children's Hospital, Carolinas Healthcare System, Charlotte, North Carolina, USA
| | - Shaoying Chen
- Department of Pediatrics, Division of Rheumatology, Medical College of Wisconsin, Madison, Wisconsin, USA
| | - James W Verbsky
- Department of Pediatrics, Division of Rheumatology, Medical College of Wisconsin, Madison, Wisconsin, USA
| | - Katherine R Calvo
- Hematology section, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Ammar Husami
- Division of Human Genetics and Division of Immune Deficiency and Bone Marrow Transplant, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Kejian Zhang
- Division of Human Genetics and Division of Immune Deficiency and Bone Marrow Transplant, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Joseph Roberts
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - David Amrol
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - John Sleaseman
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Amy P Hsu
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Rebecca Marsh
- Division of Human Genetics and Division of Immune Deficiency and Bone Marrow Transplant, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, APHP, Paris, France.,Collège de France, Paris, France
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Paris, France.,Centre d'Etude des Déficits Immunitaires, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Paris, France
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Drummond RA, Lionakis MS. Candidiasis of the Central Nervous System in Neonates and Children with Primary Immunodeficiencies. CURRENT FUNGAL INFECTION REPORTS 2018; 12:92-97. [PMID: 30393511 DOI: 10.1007/s12281-018-0316-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose of Review Candida infections of the central nervous system (CNS) are a life-threatening complication of invasive infections that most often affect vulnerable groups of patients, including neonates and children with primary immunodeficiency disorders (PID). Here, we review the currently known risk factors for CNS candidiasis, focusing predominantly on the PID caused by biallelic mutations in CARD9. Recent Findings How the CNS is protected itself against fungal invasion is poorly understood. CARD9 promotes neutrophil recruitment and function, and is the only molecule shown to be critical for protection against CNS candidiasis in humans thus far. Summary Fundamental insights into the pathogenesis of CNS candidiasis gained from studying rare CARD9-deficient patients has significant implications for other patients at risk for this disease, such as CARD9-sufficient neonates. These findings will be important for the development of adjunctive immune-based therapies, which are urgently needed to tackle the global burden of invasive fungal diseases.
Collapse
Affiliation(s)
- Rebecca A Drummond
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda MD, USA
| |
Collapse
|
34
|
Alazami AM, Al-Helale M, Alhissi S, Al-Saud B, Alajlan H, Monies D, Shah Z, Abouelhoda M, Arnaout R, Al-Dhekri H, Al-Numair NS, Ghebeh H, Sheikh F, Al-Mousa H. Novel CARMIL2 Mutations in Patients with Variable Clinical Dermatitis, Infections, and Combined Immunodeficiency. Front Immunol 2018; 9:203. [PMID: 29479355 PMCID: PMC5811477 DOI: 10.3389/fimmu.2018.00203] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
Combined immunodeficiencies are a heterogeneous collection of primary immune disorders that exhibit defects in T cell development or function, along with impaired B cell activity even in light of normal B cell maturation. CARMIL2 (RLTPR) is a protein involved in cytoskeletal organization and cell migration, which also plays a role in CD28 co-signaling of T cells. Mutations in this protein have recently been reported to cause a novel primary immunodeficiency disorder with variable phenotypic presentations. Here, we describe seven patients from three unrelated, consanguineous multiplex families that presented with dermatitis, esophagitis, and recurrent skin and chest infections with evidence of combined immunodeficiency. Through the use of whole exome sequencing and autozygome-guided analysis, we uncovered two mutations not previously reported (p.R50T and p.L846Sfs) in CARMIL2. Real-time PCR analysis revealed that the biallelic frameshift mutation is under negative selection, likely due to nonsense-mediated RNA decay and leading to loss of detectable protein upon immunoblotting. Protein loss was also observed for the missense mutation, and 3D modeling suggested a disturbance in structural stability due to an increase in the electrostatic energy for the affected amino acid and surrounding residues. Immunophenotyping revealed that patient Treg counts were significantly depressed, and that CD4+ T cells were heavily skewed towards the naïve status. CD3/CD28 signaling impairment was evidenced by reduced proliferative response to stimulation. This work broadens the allelic heterogeneity associated with CARMIL2 and highlights a deleterious missense alteration located outside the leucine-rich repeat of the protein, where all other missense mutations have been reported to date.
Collapse
Affiliation(s)
- Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Maryam Al-Helale
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Safa Alhissi
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Bandar Al-Saud
- Department of Pediatrics, Allergy and Immunology Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Huda Alajlan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Zeeshan Shah
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Rand Arnaout
- Department of Medicine, Allergy and Immunology Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Alfaisal University, Riyadh, Saudi Arabia
| | - Hasan Al-Dhekri
- Department of Pediatrics, Allergy and Immunology Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nouf S Al-Numair
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hazem Ghebeh
- Alfaisal University, Riyadh, Saudi Arabia.,Stem Cell & Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Farrukh Sheikh
- Department of Medicine, Allergy and Immunology Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hamoud Al-Mousa
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Department of Pediatrics, Allergy and Immunology Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Roth S, Bergmann H, Jaeger M, Yeroslaviz A, Neumann K, Koenig PA, Prazeres da Costa C, Vanes L, Kumar V, Johnson M, Menacho-Márquez M, Habermann B, Tybulewicz VL, Netea M, Bustelo XR, Ruland J. Vav Proteins Are Key Regulators of Card9 Signaling for Innate Antifungal Immunity. Cell Rep 2017; 17:2572-2583. [PMID: 27926862 PMCID: PMC5177621 DOI: 10.1016/j.celrep.2016.11.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/26/2016] [Accepted: 11/01/2016] [Indexed: 02/03/2023] Open
Abstract
Fungal infections are major causes of morbidity and mortality, especially in immunocompromised individuals. The innate immune system senses fungal pathogens through Syk-coupled C-type lectin receptors (CLRs), which signal through the conserved immune adaptor Card9. Although Card9 is essential for antifungal defense, the mechanisms that couple CLR-proximal events to Card9 control are not well defined. Here, we identify Vav proteins as key activators of the Card9 pathway. Vav1, Vav2, and Vav3 cooperate downstream of Dectin-1, Dectin-2, and Mincle to engage Card9 for NF-κB control and proinflammatory gene transcription. Although Vav family members show functional redundancy, Vav1/2/3−/− mice phenocopy Card9−/− animals with extreme susceptibility to fungi. In this context, Vav3 is the single most important Vav in mice, and a polymorphism in human VAV3 is associated with susceptibility to candidemia in patients. Our results reveal a molecular mechanism for CLR-mediated Card9 regulation that controls innate immunity to fungal infections. Vav proteins control CLR-mediated inflammatory responses CLR-induced NF-κB activation is regulated by Vav proteins Vav/Card9 signaling is critical for antifungal host defense
Collapse
Affiliation(s)
- Susanne Roth
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany; Chirurgische Klinik, Universitätsklinikum Heidelberg, Ruprecht-Karls-Universität, 69120 Heidelberg, Germany
| | - Hanna Bergmann
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Martin Jaeger
- Department of Medicine, Radboud University, Medical Centre, 6500 HB Nijmegen, the Netherlands; Radboud Center for Infectious Diseases, 6500 HB Nijmegen, the Netherlands
| | - Assa Yeroslaviz
- Max Planck Institute of Biochemistry, Research Group Computational Biology, 82152 Martinsried, Germany
| | - Konstantin Neumann
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Paul-Albert Koenig
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Clarissa Prazeres da Costa
- Institut für Medizinische Mikrobiologie, Immunologie, und Hygiene, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | | | - Vinod Kumar
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, the Netherlands
| | - Melissa Johnson
- Duke University Medical Center, Duke Box 102359, Durham, NC 27710, USA
| | | | - Bianca Habermann
- Max Planck Institute of Biochemistry, Research Group Computational Biology, 82152 Martinsried, Germany
| | - Victor L Tybulewicz
- Francis Crick Institute, London NW1 1AT, UK; Department of Medicine, Imperial College, London W12 0NN, UK
| | - Mihai Netea
- Department of Medicine, Radboud University, Medical Centre, 6500 HB Nijmegen, the Netherlands
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; Centro de Investigacion Biomedica en Red-Oncologia, Carlos III Health Institute, Spain
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
36
|
Klei LR, Hu D, Panek R, Alfano DN, Bridwell RE, Bailey KM, Oravecz-Wilson KI, Concel VJ, Hess EM, Van Beek M, Delekta PC, Gu S, Watkins SC, Ting AT, Gough PJ, Foley KP, Bertin J, McAllister-Lucas LM, Lucas PC. MALT1 Protease Activation Triggers Acute Disruption of Endothelial Barrier Integrity via CYLD Cleavage. Cell Rep 2017; 17:221-232. [PMID: 27681433 DOI: 10.1016/j.celrep.2016.08.080] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 07/14/2016] [Accepted: 08/23/2016] [Indexed: 12/26/2022] Open
Abstract
Microvascular endothelial cells maintain a tight barrier to prevent passage of plasma and circulating immune cells into the extravascular tissue compartment, yet endothelial cells respond rapidly to vasoactive substances, including thrombin, allowing transient paracellular permeability. This response is a cornerstone of acute inflammation, but the mechanisms responsible are still incompletely understood. Here, we demonstrate that thrombin triggers MALT1 to proteolytically cleave cylindromatosis (CYLD). Fragmentation of CYLD results in microtubule disruption and a cascade of events leading to endothelial cell retraction and an acute permeability response. This finding reveals an unexpected role for the MALT1 protease, which previously has been viewed mostly as a driver of pro-inflammatory NF-κB signaling in lymphocytes. Thus, MALT1 not only promotes immune cell activation but also acutely regulates endothelial cell biology, actions that together facilitate tissue inflammation. Pharmacologic inhibition of MALT1 may therefore have synergistic impact by targeting multiple disparate steps in the overall inflammatory response.
Collapse
Affiliation(s)
- Linda R Klei
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Dong Hu
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Robert Panek
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Danielle N Alfano
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Rachel E Bridwell
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Kelly M Bailey
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Vincent J Concel
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Emily M Hess
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Matthew Van Beek
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Phillip C Delekta
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shufang Gu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Adrian T Ting
- Immunology Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19406, USA
| | - Kevin P Foley
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19406, USA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19406, USA
| | - Linda M McAllister-Lucas
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Peter C Lucas
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
37
|
Dadi H, Jones TA, Merico D, Sharfe N, Ovadia A, Schejter Y, Reid B, Sun M, Vong L, Atkinson A, Lavi S, Pomerantz JL, Roifman CM. Combined immunodeficiency and atopy caused by a dominant negative mutation in caspase activation and recruitment domain family member 11 (CARD11). J Allergy Clin Immunol 2017; 141:1818-1830.e2. [PMID: 28826773 DOI: 10.1016/j.jaci.2017.06.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Combined immunodeficiency (CID) is a T-cell defect frequently presenting with recurrent infections, as well as associated immune dysregulation manifesting as autoimmunity or allergic inflammation. OBJECTIVE We sought to identify the genetic aberration in 4 related patients with CID, early-onset asthma, eczema, and food allergies, as well as autoimmunity. METHODS We performed whole-exome sequencing, followed by Sanger confirmation, assessment of the genetic variant effect on cell signaling, and evaluation of the resultant immune function. RESULTS A heterozygous novel c.C88T 1-bp substitution resulting in amino acid change R30W in caspase activation and recruitment domain family member 11 (CARD11) was identified by using whole-exome sequencing and segregated perfectly to family members with severe atopy only but was not found in healthy subjects. We demonstrate that the R30W mutation results in loss of function while also exerting a dominant negative effect on wild-type CARD11. The CARD11 defect altered the classical nuclear factor κB pathway, resulting in poor in vitro T-cell responses to mitogens and antigens caused by reduced secretion of IFN-γ and IL-2. CONCLUSION Unlike patients with biallelic mutations in CARD11 causing severe CID, the R30W defect results in a less profound yet prominent susceptibility to infections, as well as multiorgan atopy and autoimmunity.
Collapse
Affiliation(s)
- Harjit Dadi
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tyler A Jones
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Md
| | | | - Nigel Sharfe
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adi Ovadia
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yael Schejter
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brenda Reid
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark Sun
- Deep Genomics, Toronto, Ontario, Canada
| | - Linda Vong
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adelle Atkinson
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Sasson Lavi
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
38
|
Boisson B, Puel A, Picard C, Casanova JL. Human IκBα Gain of Function: a Severe and Syndromic Immunodeficiency. J Clin Immunol 2017; 37:397-412. [PMID: 28597146 DOI: 10.1007/s10875-017-0400-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/01/2017] [Indexed: 02/05/2023]
Abstract
Germline heterozygous gain-of-function (GOF) mutations of NFKBIA, encoding IκBα, cause an autosomal dominant (AD) form of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID). Fourteen unrelated patients have been reported since the identification of the first case in 2003. All mutations enhanced the inhibitory activity of IκBα, by preventing its phosphorylation on serine 32 or 36 and its subsequent degradation. The mutation certainly or probably occurred de novo in 13 patients, whereas it was inherited from a parent with somatic mosaicism in one patient. Eleven mutations, belonging to two groups, were identified: (i) missense mutations affecting S32, S36, or neighboring residues (8 mutations, 11 patients) and (ii) nonsense mutations upstream from S32 associated with the reinitiation of translation downstream from S36 (3 mutations, 3 patients). Thirteen patients had developmental features of EDA, the severity and nature of which differed between cases. All patient cells tested displayed impaired NF-κB-mediated responses to the stimulation of various surface receptors involved in cell-intrinsic (fibroblasts), innate (monocytes), and adaptive (B and T cells) immunity, including TLRs, IL-1Rs, TNFRs, TCR, and BCR. All patients had profound B-cell deficiency. Specific immunological features, found in some, but not all patients, included a lack of peripheral lymph nodes, lymphocytosis, dysfunctional α/β T cells, and a lack of circulating γ/δ T cells. The patients had various pyogenic, mycobacterial, fungal, and viral severe infections. Patients with a missense mutation tended to display more severe phenotypes, probably due to higher levels of GOF proteins. In the absence of hematopoietic stem cell transplantation (HSCT), this condition cause death before the age of 1 year (one child). Two survivors have been on prophylaxis (at 9 and 22 years). Six children died after HSCT. Five survived, four of whom have been on prophylaxis (3 to 21 years post HSCT), whereas one has been well with no prophylaxis. Heterozygous GOF mutations in IκBα underlie a severe and syndromic immunodeficiency, the interindividual variability of which might partly be ascribed to the dichotomy of missense and nonsense mutations, and the hematopoietic component of which can be rescued by HSCT.
Collapse
Affiliation(s)
- Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France. .,Imagine Institute, Paris Descartes University, Paris, France.
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France.,Study Center for Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
39
|
Deficiency in Mucosa-associated Lymphoid Tissue Lymphoma Translocation 1: A Novel Cause of IPEX-Like Syndrome. J Pediatr Gastroenterol Nutr 2017; 64:378-384. [PMID: 27253662 DOI: 10.1097/mpg.0000000000001262] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Early-onset inflammatory bowel diseases can result from a wide spectrum of rare mendelian disorders. Early molecular diagnosis is crucial in defining treatment and in improving life expectancy. Herein we aimed at defining the mechanism of an immunodeficiency-polyendrocrinopathy and enteropathy-X-linked (IPEX)-like disease combined with a severe immunodeficiency in 2 siblings born from distantly related parents. METHODS Whole exome sequencing was performed on blood-extracted genomic DNA from the 2 affected children and their parents on the genomic platform of Institut IMAGINE. Candidate gene mutation was identified using the in-house software PolyWeb and confirmed by Sanger sequencing. Protein expression was determined by western blot. Flow cytometry was used to assess consequences of the mutation on lymphocyte phenotype and nuclear factor-kappa B (NF-κB) activation at diagnosis and after treatment by hematopoietic stem cell transplantation. RESULTS We identified a homozygous missense mutation in mucosa-associated lymphoid tissue lymphoma translocation 1 gene (MALT1), which precluded protein expression. In keeping with the known function of MALT1, NF-κB-dependent lymphocyte activation was severely impaired. Moreover, there was a drastic reduction in Forkhead box P3 (FOXP3) regulatory T cells accounting for the IPEX-like phenotype. Following identification of the mutation, both children received hematopoietic stem cell transplantation, which permitted full clinical recovery. Immunological workup at 6 and 12 months after transplantation showed normal NF-κB activation and correction of regulatory T cells frequency. CONCLUSIONS Along with FOXP3, interleukin 2 receptor alpha chain (IL2RA), and cytotoxic T-lymphocyte protein 4 precursor (CTLA-4) mutations, MALT1 deficiency should now be considered as a possible cause of IPEX-like syndrome associated with immunodeficiency that can be cured by hematopoietic stem cell transplantation.
Collapse
|
40
|
Messina JA, Maziarz EK, Spec A, Kontoyiannis DP, Perfect JR. Disseminated Cryptococcosis With Brain Involvement in Patients With Chronic Lymphoid Malignancies on Ibrutinib. Open Forum Infect Dis 2017; 4:ofw261. [PMID: 28480254 PMCID: PMC5413986 DOI: 10.1093/ofid/ofw261] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/07/2016] [Indexed: 11/13/2022] Open
Abstract
We report 2 cases of disseminated cryptococcosis with central nervous system involvement in patients with chronic lymphoid malignancies occurring within 1 month of starting on ibrutinib. Characteristically, in both cases, no inflammation was seen in the cerebrospinal fluid. Central nervous system mycoses should be considered as a potential complication of ibrutinib.
Collapse
Affiliation(s)
- Julia A Messina
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Andrej Spec
- Division of Infectious Disease, Washington University, St. Louis, Missouri
| | | | - John R Perfect
- Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
41
|
Ginster S, Bardet M, Unterreiner A, Malinverni C, Renner F, Lam S, Freuler F, Gerrits B, Voshol J, Calzascia T, Régnier CH, Renatus M, Nikolay R, Israël L, Bornancin F. Two Antagonistic MALT1 Auto-Cleavage Mechanisms Reveal a Role for TRAF6 to Unleash MALT1 Activation. PLoS One 2017; 12:e0169026. [PMID: 28052131 PMCID: PMC5214165 DOI: 10.1371/journal.pone.0169026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/09/2016] [Indexed: 11/18/2022] Open
Abstract
The paracaspase MALT1 has arginine-directed proteolytic activity triggered by engagement of immune receptors. Recruitment of MALT1 into activation complexes is required for MALT1 proteolytic function. Here, co-expression of MALT1 in HEK293 cells, either with activated CARD11 and BCL10 or with TRAF6, was used to explore the mechanism of MALT1 activation at the molecular level. This work identified a prominent self-cleavage site of MALT1 isoform A (MALT1A) at R781 (R770 in MALT1B) and revealed that TRAF6 can activate MALT1 independently of the CBM. Intramolecular cleavage at R781/R770 removes a C-terminal TRAF6-binding site in both MALT1 isoforms, leaving MALT1B devoid of the two key interaction sites with TRAF6. A previously identified auto-proteolysis site of MALT1 at R149 leads to deletion of the death-domain, thereby abolishing interaction with BCL10. By using MALT1 isoforms and cleaved fragments thereof, as well as TRAF6 WT and mutant forms, this work shows that TRAF6 induces N-terminal auto-proteolytic cleavage of MALT1 at R149 and accelerates MALT1 protein turnover. The MALT1 fragment generated by N-terminal self-cleavage at R149 was labile and displayed enhanced signaling properties that required an intact K644 residue, previously shown to be a site for mono-ubiquitination of MALT1. Conversely, C-terminal self-cleavage at R781/R770 hampered the ability for self-cleavage at R149 and stabilized MALT1 by hindering interaction with TRAF6. C-terminal self-cleavage had limited impact on MALT1A but severely reduced MALT1B proteolytic and signaling functions. It also abrogated NF-κB activation by N-terminally cleaved MALT1A. Altogether, this study provides further insights into mechanisms that regulate the scaffolding and activation cycle of MALT1. It also emphasizes the reduced functional capacity of MALT1B as compared to MALT1A.
Collapse
Affiliation(s)
- Stefanie Ginster
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Maureen Bardet
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Adeline Unterreiner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Claire Malinverni
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Florian Renner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Stephen Lam
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Felix Freuler
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Bertran Gerrits
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Johannes Voshol
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Thomas Calzascia
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Catherine H. Régnier
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Rainer Nikolay
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Laura Israël
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Frédéric Bornancin
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
- * E-mail:
| |
Collapse
|
42
|
Dinauer MC. Primary immune deficiencies with defects in neutrophil function. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:43-50. [PMID: 27913461 PMCID: PMC6142438 DOI: 10.1182/asheducation-2016.1.43] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Immune deficiencies resulting from inherited defects in neutrophil function have revealed important features of the innate immune response. Although sharing an increased susceptibility to bacterial and fungal infections, these disorders each have distinctive features in their clinical manifestations and characteristic microbial pathogens. This review provides an update on several genetic disorders with impaired neutrophil function, their pathogenesis, and treatment strategies. These include chronic granulomatous disease, which results from inactivating mutations in the superoxide-generating nicotinamide dinucleotide phosphate oxidase. Superoxide-derived oxidants play an important role in the control of certain bacterial and fungal species, and also contribute to the regulation of inflammation. Also briefly summarized are updates on leukocyte adhesion deficiency, including the severe periodontal disease characteristic of this disorder, and a new immune deficiency associated with defects in caspase recruitment domain-containing protein 9, an adaptor protein that regulates signaling in neutrophils and other myeloid cells, leading to invasive fungal disease.
Collapse
Affiliation(s)
- Mary C Dinauer
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
43
|
Chinen J, Notarangelo LD, Shearer WT. Advances in clinical immunology in 2015. J Allergy Clin Immunol 2016; 138:1531-1540. [PMID: 27931534 PMCID: PMC5157931 DOI: 10.1016/j.jaci.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/02/2016] [Accepted: 10/07/2016] [Indexed: 12/17/2022]
Abstract
Advances in clinical immunology in the past year included the report of practice parameters for the diagnosis and management of primary immunodeficiencies to guide the clinician in the approach to these relatively uncommon disorders. We have learned of new gene defects causing immunodeficiency and of new phenotypes expanding the spectrum of conditions caused by genetic mutations such as a specific regulator of telomere elongation (RTEL1) mutation causing isolated natural killer cell deficiency and mutations in ras-associated RAB (RAB27) resulting in immunodeficiency without albinism. Advances in diagnosis included the increasing use of whole-exome sequencing to identify gene defects and the measurement of serum free light chains to identify secondary hypogammaglobulinemias. For several primary immunodeficiencies, improved outcomes have been reported after definitive therapy with hematopoietic stem cell transplantation and gene therapy.
Collapse
Affiliation(s)
- Javier Chinen
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex.
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - William T Shearer
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| |
Collapse
|
44
|
Wang X, van de Veerdonk FL, Netea MG. Basic Genetics and Immunology of Candida Infections. Infect Dis Clin North Am 2016; 30:85-102. [PMID: 26897063 DOI: 10.1016/j.idc.2015.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Candida infections can cause superficial and invasive disease. Several essential mechanisms underlying the pathogenesis of these infections were known for some time, such as neutropenia predisposing to invasive disease, and CD4 lymphopenia causing increased susceptibility to mucosal candidiasis. However, the development of novel genetic screening techniques has led to several new insights in the genetics and immunology of candida infections. This article highlights novel insights in the pathogenesis of mucocutaneous and invasive candidiasis that have been identified in recent years.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Department of Dermatology, Peking University First Hospital, Xishiku Street 8, Xicheng District, Beijing 10034, China
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Radboud Center for Infectious Diseases (RCI), Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Radboud Center for Infectious Diseases (RCI), Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands.
| |
Collapse
|
45
|
Yang YK, Yang C, Chan W, Wang Z, Deibel KE, Pomerantz JL. Molecular Determinants of Scaffold-induced Linear Ubiquitinylation of B Cell Lymphoma/Leukemia 10 (Bcl10) during T Cell Receptor and Oncogenic Caspase Recruitment Domain-containing Protein 11 (CARD11) Signaling. J Biol Chem 2016; 291:25921-25936. [PMID: 27777308 DOI: 10.1074/jbc.m116.754028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/11/2016] [Indexed: 11/06/2022] Open
Abstract
The activation of NF-κB downstream of T cell receptor (TCR) engagement is a key signaling step required for normal lymphocyte function during the adaptive immune response. During TCR signaling, the adaptor protein Bcl10 is inducibly recruited to the CARD11 scaffold protein as part of a multicomponent complex that induces IκB kinase (IKK) activity and NF-κB activation. Here, we show that a consequence of this recruitment is the TCR-induced conjugation of Bcl10 with linear-linked polyubiquitin chains to generate the signaling intermediate Lin(Ub)n-Bcl10, which is required for the association of Bcl10 with the NEMO subunit of the IKK complex. The TCR-induced generation of Lin(Ub)n-Bcl10 requires Bcl10 lysines 17, 31, and 63, CARD11, MALT1, and the HOIP subunit of the linear ubiquitin chain assembly complex (LUBAC) but not the HOIP accessory protein SHARPIN. CARD11 promotes signal-induced Lin(Ub)n-Bcl10 generation by co-recruiting Bcl10 with HOIP, thereby bringing substrate to enzyme. The CARD11-HOIP interaction is rendered TCR-inducible by the four autoinhibitory repressive elements in the CARD11 inhibitory domain and involves the CARD11 coiled-coil domain and two independent regions of HOIP. Interestingly, oncogenic CARD11 variants associated with diffuse large B cell lymphoma spontaneously induce Lin(Ub)n-Bcl10 production to extents that correlate with their abilities to activate NF-κB and with their enhanced abilities to bind HOIP and Bcl10. Our results define molecular determinants that control the production of Lin(Ub)n-Bcl10, an important signaling intermediate in TCR and oncogenic CARD11 signaling.
Collapse
Affiliation(s)
- Yong-Kang Yang
- From the Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Chao Yang
- From the Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Waipan Chan
- From the Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Zhaoquan Wang
- From the Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Katelynn E Deibel
- From the Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Joel L Pomerantz
- From the Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
46
|
Wang Y, Ma CS, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, Payne K, Crestani E, Roncagalli R, Belkadi A, Kerner G, Lorenzo L, Deswarte C, Chrabieh M, Patin E, Vincent QB, Müller-Fleckenstein I, Fleckenstein B, Ailal F, Quintana-Murci L, Fraitag S, Alyanakian MA, Leruez-Ville M, Picard C, Puel A, Bustamante J, Boisson-Dupuis S, Malissen M, Malissen B, Abel L, Hovnanian A, Notarangelo LD, Jouanguy E, Tangye SG, Béziat V, Casanova JL. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med 2016; 213:2413-2435. [PMID: 27647349 PMCID: PMC5068239 DOI: 10.1084/jem.20160576] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/17/2016] [Indexed: 12/24/2022] Open
Abstract
In two complementary papers, Casanova, Malissen, and collaborators report the discovery of human RLTPR deficiency, the first primary immunodeficiency of the human CD28 pathway in T cells. Together, the two studies highlight the important and largely (but not completely) overlapping roles of RLTPR in T and B cells of humans and mice. Combined immunodeficiency (CID) refers to inborn errors of human T cells that also affect B cells because of the T cell deficit or an additional B cell–intrinsic deficit. In this study, we report six patients from three unrelated families with biallelic loss-of-function mutations in RLTPR, the mouse orthologue of which is essential for CD28 signaling. The patients have cutaneous and pulmonary allergy, as well as a variety of bacterial and fungal infectious diseases, including invasive tuberculosis and mucocutaneous candidiasis. Proportions of circulating regulatory T cells and memory CD4+ T cells are reduced. Their CD4+ T cells do not respond to CD28 stimulation. Their CD4+ T cells exhibit a "Th2" cell bias ex vivo and when cultured in vitro, contrasting with the paucity of "Th1," "Th17," and T follicular helper cells. The patients also display few memory B cells and poor antibody responses. This B cell phenotype does not result solely from the T cell deficiency, as the patients’ B cells fail to activate NF-κB upon B cell receptor (BCR) stimulation. Human RLTPR deficiency is a CID affecting at least the CD28-responsive pathway in T cells and the BCR-responsive pathway in B cells.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Yun Ling
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Aziz Bousfiha
- Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, King Hassan II University, Casablanca 20100, Morocco
| | - Yildiz Camcioglu
- Division of Infectious Diseases, Clinical Immunology, and Allergy, Department of Pediatrics, Cerrahpaşa Medical Faculty, Istanbul University, 34452 Istanbul, Turkey
| | - Serge Jacquot
- Immunology Unit, Rouen University Hospital, 76031 Rouen, France.,Institut National de la Santé et de la Recherche Médicale U905, Institute for Research and Innovation in Biomedicine, Rouen Normandy University, 76183 Rouen, France
| | - Kathryn Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Elena Crestani
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115
| | | | - Aziz Belkadi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique URA 3012, 75015 Paris, France
| | - Quentin B Vincent
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Ingrid Müller-Fleckenstein
- Institute of Clinical and Molecular Virology, University of Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, University of Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Fatima Ailal
- Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, King Hassan II University, Casablanca 20100, Morocco
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique URA 3012, 75015 Paris, France
| | - Sylvie Fraitag
- Department of Pathology, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Marie-Alexandra Alyanakian
- Immunology Unit, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Marianne Leruez-Ville
- Virology Laboratory, Paris Descartes University, Sorbonne Paris Cité-EA 36-20, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Marie Malissen
- Center for Immunology Marseille-Luminy, 13288 Marseille, France
| | | | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases: from Disease Mechanism to Therapies, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France .,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065.,Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| |
Collapse
|
47
|
Sánchez-Ramón S, Dhalla F, Chapel H. Challenges in the Role of Gammaglobulin Replacement Therapy and Vaccination Strategies for Hematological Malignancy. Front Immunol 2016; 7:317. [PMID: 27597852 PMCID: PMC4993076 DOI: 10.3389/fimmu.2016.00317] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/05/2016] [Indexed: 12/13/2022] Open
Abstract
Patients with chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) are prone to present with antibody production deficits associated with recurrent or severe bacterial infections that might benefit from human immunoglobulin (Ig) (IVIg/SCIg) replacement therapy. However, the original IVIg trial data were done before modern therapies were available, and the current indications do not take into account the shift in the immune situation of current treatment combinations and changes in the spectrum of infections. Besides, patients affected by other B cell malignancies present with similar immunodeficiency and manifestations while they are not covered by the current IVIg indications. A potential beneficial strategy could be to vaccinate patients at monoclonal B lymphocytosis and monoclonal gammopathy of undetermined significance stages (for CLL and MM, respectively) or at B-cell malignancy diagnosis, when better antibody responses are attained. We have to re-emphasize the need for assessing and monitoring specific antibody responses; these are warranted to select adequately those patients for whom early intervention with prophylactic anti-infective therapy and/or IVIg is preferred. This review provides an overview of the current scenario, with a focus on prevention of infection in patients with hematological malignancies and the role of Ig replacement therapy.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Microbiology I, Complutense University School of Medicine, Madrid, Spain
| | - Fatima Dhalla
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Clinical Immunology, John Radcliffe Hospital, Headington, Oxford, UK
| | - Helen Chapel
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Clinical Immunology, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
48
|
Drummond RA, Lionakis MS. Mechanistic Insights into the Role of C-Type Lectin Receptor/CARD9 Signaling in Human Antifungal Immunity. Front Cell Infect Microbiol 2016; 6:39. [PMID: 27092298 PMCID: PMC4820464 DOI: 10.3389/fcimb.2016.00039] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022] Open
Abstract
Human CARD9 deficiency is an autosomal recessive primary immunodeficiency disorder caused by biallelic mutations in the gene CARD9, which encodes a signaling protein that is found downstream of many C-type lectin receptors (CLRs). CLRs encompass a large family of innate recognition receptors, expressed predominantly by myeloid and epithelial cells, which bind fungal carbohydrates and initiate antifungal immune responses. Accordingly, human CARD9 deficiency is associated with the spontaneous development of persistent and severe fungal infections that primarily localize to the skin and subcutaneous tissue, mucosal surfaces and/or central nervous system (CNS). In the last 3 years, more than 15 missense and nonsense CARD9 mutations have been reported which associate with the development of a wide spectrum of fungal infections caused by a variety of fungal organisms. The mechanisms by which CARD9 provides organ-specific protection against these fungal infections are now emerging. In this review, we summarize recent immunological and clinical advances that have provided significant mechanistic insights into the pathogenesis of human CARD9 deficiency. We also discuss how genetic mutations in CARD9-coupled receptors (Dectin-1, Dectin-2) and CARD9-binding partners (MALT1, BCL10) affect human antifungal immunity relative to CARD9 deficiency, and we highlight major understudied research questions which merit future investigation.
Collapse
Affiliation(s)
- Rebecca A Drummond
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
49
|
Negative Regulation of CARD11 Signaling and Lymphoma Cell Survival by the E3 Ubiquitin Ligase RNF181. Mol Cell Biol 2015; 36:794-808. [PMID: 26711259 DOI: 10.1128/mcb.00876-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/15/2015] [Indexed: 12/23/2022] Open
Abstract
NF-κB activation downstream of antigen receptor engagement is a highly regulated event required for lymphocyte activation during the adaptive immune response. The pathway is often dysregulated in lymphoma, leading to constitutive NF-κB activity that supports the aberrant proliferation of transformed lymphocytes. To identify novel regulators of antigen receptor signaling to NF-κB, we developed bioluminescence resonance energy transfer-based interaction cloning (BRIC), a screening strategy that can detect protein-protein interactions in live mammalian cells in a high-throughput manner. Using this strategy, we identified the RING finger protein RNF181 as an interactor of CARD11, a key signaling scaffold in the antigen receptor pathway. We present evidence that RNF181 functions as an E3 ubiquitin ligase to inhibit antigen receptor signaling to NF-κB downstream of CARD11. The levels of the obligate signaling protein Bcl10 are reduced by RNF181 even prior to signaling, and Bcl10 can serve as a substrate for RNF181 E3 ligase activity in vitro. Furthermore, RNF181 limits the proliferation of human diffuse large B cell lymphoma cells that depend upon aberrant CARD11 signaling to NF-κB for growth and survival in culture. Our results define a new regulatory checkpoint that can modulate the output of CARD11 signaling to NF-κB in both normal and transformed lymphocytes.
Collapse
|