1
|
Khan F, Judge EP, Das JP, White D, Ingram C, Keane MP, Butler MW. Effects of Active Chronic Cigarette-Smoke Exposure on Circulating Fibrocytes. Lung 2024; 202:431-440. [PMID: 38935158 PMCID: PMC11272705 DOI: 10.1007/s00408-024-00720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE This study aimed to evaluate the hypothesis that active smoking impacts upon mediators and abundance of circulating fibrocyte cells in smoking-related disease characterised by fibrosis. METHODS Flow cytometry and enzyme-linked immunosorbent assays were used to investigate blood from five patient groups: healthy never-smokers, healthy current smokers, stable chronic obstructive pulmonary disease (COPD) active smokers, idiopathic pulmonary fibrosis (IPF) never-smokers, and IPF active smokers. RESULTS A significant inverse dose-response relationship was observed in healthy smokers among cumulative smoking burden (pack-years) and fibrocyte abundance (p = 0.006, r = -0.86). Among serum profibrotic fibrocyte chemokines measured, CCL18 rose significantly alongside fibrocyte numbers in all five subject groups, while having an inverse dose-response relationship with pack-year burden in healthy smokers (p = 0.003, r = -0.89). In IPF, CCL2 rose in direct proportion to fibrocyte abundance irrespective of smoking status but had lower serum levels in those currently smoking (p = < 0.001). For the study population, CXCL12 was decreased in pooled current smokers versus never-smokers (p = 0.03). CONCLUSION The suppressive effect of current, as distinct from former, chronic smoking on circulating fibrocyte abundance in healthy smokers, and modulation of regulatory chemokine levels by active smoking may have implications for future studies of fibrocytes in smoking-related lung diseases as a potential confounding variable.
Collapse
Affiliation(s)
- Faheem Khan
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
- University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin P Judge
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Jeeban P Das
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Daniel White
- University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Michael P Keane
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
- University College Dublin, Belfield, Dublin 4, Ireland
| | - Marcus W Butler
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
- University College Dublin, Belfield, Dublin 4, Ireland.
- Education & Research Centre, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
| |
Collapse
|
2
|
Buschur KL, Pottinger TD, Vogel-Claussen J, Powell CA, Aguet F, Allen NB, Ardlie K, Bluemke DA, Durda P, Hermann EA, Hoffman EA, Lima JA, Liu Y, Malinsky D, Manichaikul A, Motahari A, Post WS, Prince MR, Rich SS, Rotter JI, Smith BM, Tracy RP, Watson K, Winther HB, Lappalainen T, Barr RG. Peripheral Blood Mononuclear Cell Gene Expression Associated with Pulmonary Microvascular Perfusion: The Multi-Ethnic Study of Atherosclerosis Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2024; 21:884-894. [PMID: 38335160 PMCID: PMC11160125 DOI: 10.1513/annalsats.202305-417oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/09/2024] [Indexed: 02/12/2024] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) and emphysema are associated with endothelial damage and altered pulmonary microvascular perfusion. The molecular mechanisms underlying these changes are poorly understood in patients, in part because of the inaccessibility of the pulmonary vasculature. Peripheral blood mononuclear cells (PBMCs) interact with the pulmonary endothelium. Objectives: To test the association between gene expression in PBMCs and pulmonary microvascular perfusion in COPD. Methods: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study recruited two independent samples of COPD cases and controls with ⩾10 pack-years of smoking history. In both samples, pulmonary microvascular blood flow, pulmonary microvascular blood volume, and mean transit time were assessed on contrast-enhanced magnetic resonance imaging, and PBMC gene expression was assessed by microarray. Additional replication was performed in a third sample with pulmonary microvascular blood volume measures on contrast-enhanced dual-energy computed tomography. Differential expression analyses were adjusted for age, gender, race/ethnicity, educational attainment, height, weight, smoking status, and pack-years of smoking. Results: The 79 participants in the discovery sample had a mean age of 69 ± 6 years, 44% were female, 25% were non-White, 34% were current smokers, and 66% had COPD. There were large PBMC gene expression signatures associated with pulmonary microvascular perfusion traits, with several replicated in the replication sets with magnetic resonance imaging (n = 47) or dual-energy contrast-enhanced computed tomography (n = 157) measures. Many of the identified genes are involved in inflammatory processes, including nuclear factor-κB and chemokine signaling pathways. Conclusions: PBMC gene expression in nuclear factor-κB, inflammatory, and chemokine signaling pathways was associated with pulmonary microvascular perfusion in COPD, potentially offering new targetable candidates for novel therapies.
Collapse
Affiliation(s)
| | | | - Jens Vogel-Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Francois Aguet
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Norrina B. Allen
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kristin Ardlie
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - David A. Bluemke
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | | | - Eric A. Hoffman
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - João A.C. Lima
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - Yongmei Liu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Amin Motahari
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Wendy S. Post
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | | | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Benjamin M. Smith
- Department of Medicine
- Research Institute, McGill University Health Center, Montreal, Québec, Canada
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Karol Watson
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Hinrich B. Winther
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Tuuli Lappalainen
- Department of Biostatistics
- Department of Systems Biology, Columbia University Medical Center, New York, New York
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
3
|
Xue H, Chen Q, Lan X, Xu H, Yang H, Lin C, Xue Q, Xie B. Preventing CXCL12 elevation helps to reduce acute exacerbation of COPD in individuals co-existing type-2 diabetes: A bioinformatics and clinical pharmacology study. Int Immunopharmacol 2024; 132:111894. [PMID: 38569426 DOI: 10.1016/j.intimp.2024.111894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
AIMS To investigate the immunology shared mechanisms underlying chronic obstructive pulmonary disease (COPD) and type 2 diabetes mellitus (T2DM) and examine the impact of anti-diabetic drugs on acute exacerbation of COPD (AECOPD). METHODS We analyzed GSE76925, GSE76894, GSE37768, and GSE25724 to identify differentially expressed genes. Hub-genes were identified through protein-protein interaction network analysis and evaluated by the receiver operating characteristic curve. CXCL12 emerged as a robust biomarker, and its correlation with lung function and CD8+ T cells were further quantified and validated. The activated signaling pathways were inferred through Gene set enrichment analysis (GSEA). The retrospective clinical analysis was executed to identify the influence of dipeptidyl peptidase-4 inhibitors (DPP-4i) on CXCL12 and evaluate the drug's efficacy in AECOPD. RESULTS The significant up-regulation of CXCL12 expression in patients with two diseases were revealed. CXCL12 exhibited a negative correlation with pulmonary function (r = -0.551, p < 0.05). Consistent with analysis in GSE76925 and GSE76894, the positive correlation between the proportion of CD8+ T cells was demonstrated(r=0.469, p<0.05). GSEA identified "cytokines interaction" as an activated signaling pathway, and the clinical study revealed the correlation between CXCL12 and IL-6 (r=0.668, p<0.05). In patients with COPD and T2DM, DDP-4i treatment exhibited significantly higher serum CXCL12, compared to GLP-1RA. Analysis of 187 COPD patients with T2DM indicated that the DPP-4i group had a higher frequency of AECOPD compared to the GLP-1RA group (OR 1.287, 95%CI [1.018-2.136]). CONCLUSIONS CXCL12 may represent a therapeutic target for COPD and T2DM. GLP-1RA treatment may be associated with lower CXCL12 levels and a lower risk of AECOPD compared to DPP-4i treatment. CLINICAL TRIAL REGISTRATION China Clinical Trial Registration Center(ChiCTR2200055611).
Collapse
Affiliation(s)
- Hong Xue
- Provincial School of Clinical Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Qianshun Chen
- Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Thoracic Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Xiuyan Lan
- Provincial School of Clinical Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Hang Xu
- Provincial School of Clinical Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Haitao Yang
- Provincial School of Clinical Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Changjian Lin
- Provincial School of Clinical Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Qing Xue
- The Third Clinical Medical College, Fujian Medical University, Ningde Municipal Hospital, Ningde 352100, Fujian, China; Ningde Municipal Hospital of Ningde Normal University, Ningde 352100, Fujian, China.
| | - Baosong Xie
- Provincial School of Clinical Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China.
| |
Collapse
|
4
|
Chaudary N, Hill RP, Milosevic M. Targeting the CXCL12/CXCR4 pathway to reduce radiation treatment side effects. Radiother Oncol 2024; 194:110194. [PMID: 38447871 DOI: 10.1016/j.radonc.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
High precision, image-guided radiotherapy (RT) has increased the therapeutic ratio, enabling higher tumor and lower normal tissue doses, leading to improved patient outcomes. Nevertheless, some patients remain at risk of developing serious side effects.In many clinical situations, the radiation tolerance of normal tissues close to the target volume limits the dose that can safely be delivered and thus the potential for tumor control and cure. This is particularly so in patients being re-treated for tumor progression or a second primary tumor within a previous irradiated volume, scenarios that are becoming more frequent in clinical practice.Various normal tissue 'radioprotective' drugs with the potential to reduce side effects have been studied previously. Unfortunately, most have failed to impact clinical practice because of lack of therapeutic efficacy, concern about concurrent tumor protection or excessive drug-related toxicity. This review highlights the evidence indicating that targeting the CXCL12/CXCR4 pathway can mitigate acute and late RT-induced injury and reduce treatment side effects in a manner that overcomes these previous translational challenges. Pre-clinical studies involving a broad range of normal tissues commonly affected in clinical practice, including skin, lung, the gastrointestinal tract and brain, have shown that CXCL12 signalling is upregulated by RT and attracts CXCR4-expressing inflammatory cells that exacerbate acute tissue injury and late fibrosis. These studies also provide convincing evidence that inhibition of CXCL12/CXCR4 signalling during or after RT can reduce or prevent RT side effects, warranting further evaluation in clinical studies. Greater dialogue with the pharmaceutical industry is needed to prioritize the development and availability of CXCL12/CXCR4 inhibitors for future RT studies.
Collapse
Affiliation(s)
- Naz Chaudary
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Richard P Hill
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Milosevic
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Jimenez SA, Piera-Velazquez S. Cellular Transdifferentiation: A Crucial Mechanism of Fibrosis in Systemic Sclerosis. Curr Rheumatol Rev 2024; 20:388-404. [PMID: 37921216 DOI: 10.2174/0115733971261932231025045400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 11/04/2023]
Abstract
Systemic Sclerosis (SSc) is a systemic autoimmune disease of unknown etiology with a highly complex pathogenesis that despite extensive investigation is not completely understood. The clinical and pathologic manifestations of the disease result from three distinct processes: 1) Severe and frequently progressive tissue fibrosis causing exaggerated and deleterious accumulation of interstitial collagens and other extracellular matrix molecules in the skin and various internal organs; 2) extensive fibroproliferative vascular lesions affecting small arteries and arterioles causing tissue ischemic alterations; and 3) cellular and humoral immunity abnormalities with the production of numerous autoantibodies, some with very high specificity for SSc. The fibrotic process in SSc is one of the main causes of disability and high mortality of the disease. Owing to its essentially universal presence and the severity of its clinical effects, the mechanisms involved in the development and progression of tissue fibrosis have been extensively investigated, however, despite intensive investigation, the precise molecular mechanisms have not been fully elucidated. Several recent studies have suggested that cellular transdifferentiation resulting in the phenotypic conversion of various cell types into activated myofibroblasts may be one important mechanism. Here, we review the potential role that cellular transdifferentiation may play in the development of severe and often progressive tissue fibrosis in SSc.
Collapse
Affiliation(s)
- Sergio A Jimenez
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia 19107, USA
| | - Sonsoles Piera-Velazquez
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia 19107, USA
| |
Collapse
|
6
|
Yu D, Xiang Y, Gou T, Tong R, Xu C, Chen L, Zhong L, Shi J. New therapeutic approaches against pulmonary fibrosis. Bioorg Chem 2023; 138:106592. [PMID: 37178650 DOI: 10.1016/j.bioorg.2023.106592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Pulmonary fibrosis is the end-stage change of a large class of lung diseases characterized by the proliferation of fibroblasts and the accumulation of a large amount of extracellular matrix, accompanied by inflammatory damage and tissue structure destruction, which also shows the normal alveolar tissue is damaged and then abnormally repaired resulting in structural abnormalities (scarring). Pulmonary fibrosis has a serious impact on the respiratory function of the human body, and the clinical manifestation is progressive dyspnea. The incidence of pulmonary fibrosis-related diseases is increasing year by year, and no curative drugs have appeared so far. Nevertheless, research on pulmonary fibrosis have also increased in recent years, but there are no breakthrough results. Pathological changes of pulmonary fibrosis appear in the lungs of patients with coronavirus disease 2019 (COVID-19) that have not yet ended, and whether to improve the condition of patients with COVID-19 by means of the anti-fibrosis therapy, which are the questions we need to address now. This review systematically sheds light on the current state of research on fibrosis from multiple perspectives, hoping to provide some references for design and optimization of subsequent drugs and the selection of anti-fibrosis treatment plans and strategies.
Collapse
Affiliation(s)
- Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Xiang
- College of Medicine, University of Electronic Science and Technology, Chengdu 610072, China
| | - Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
7
|
Yao X, Chen Q, Wang X, Liu X, Zhang L. IL-25 induces airway remodeling in asthma by orchestrating the phenotypic changes of epithelial cell and fibrocyte. Respir Res 2023; 24:212. [PMID: 37635231 PMCID: PMC10463650 DOI: 10.1186/s12931-023-02509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Previous studies have shown that IL-25 levels are increased in patients with asthma with fixed airflow limitation (FAL). However, the mechanism by which IL-25 contributes to airway remodeling and FAL remains unclear. Here, we hypothesized that IL-25 facilitates pro-fibrotic phenotypic changes in bronchial epithelial cells (BECs) and circulating fibrocytes (CFs), orchestrates pathological crosstalk from BECs to CFs, and thereby contributes to airway remodeling and FAL. METHODS Fibrocytes from asthmatic patients with FAL and chronic asthma murine models were detected using flow cytometry, multiplex staining and multispectral imaging analysis. The effect of IL-25 on BECs and CFs and on the crosstalk between BECs and CFs was determined using cell culture and co-culture systems. RESULTS We found that asthmatic patients with FAL had higher numbers of IL-25 receptor (i.e., IL-17RB)+-CFs, which were negatively correlated with forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC). The number of airway IL-17RB+-fibrocytes was significantly increased in ovalbumin (OVA)- and IL-25-induced asthmatic mice versus the control subjects. BECs stimulated with IL-25 exhibited an epithelial-mesenchymal transition (EMT)-like phenotypic changes. CFs stimulated with IL-25 produced high levels of extracellular matrix (ECM) proteins and connective tissue growth factors (CTGF). These profibrotic effects of IL-25 were partially blocked by the PI3K-AKT inhibitor LY294002. In the cell co-culture system, OVA-challenged BECs facilitated the migration and expression of ECM proteins and CTGF in CFs, which were markedly blocked using an anti-IL-17RB antibody. CONCLUSION These results suggest that IL-25 may serve as a potential therapeutic target for asthmatic patients with FAL.
Collapse
Affiliation(s)
- Xiujuan Yao
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No.2, Xinanhuan Road, Yizhuang District, Beijing, 100176, China
| | - Qinglin Chen
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No.2, Xinanhuan Road, Yizhuang District, Beijing, 100176, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery of Ministry of Education of China, Beijing Institute of Otolaryngology, No. 17, Hougou Hutong, Dongcheng District, Beijing, 100005, China
| | - Xiaofang Liu
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No.2, Xinanhuan Road, Yizhuang District, Beijing, 100176, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Otolaryngology Head and Neck Surgery of Ministry of Education of China, Beijing Institute of Otolaryngology, No. 17, Hougou Hutong, Dongcheng District, Beijing, 100005, China.
| |
Collapse
|
8
|
Eyraud E, Maurat E, Sac-Epée JM, Henrot P, Zysman M, Esteves P, Trian T, Dupuy JW, Leipold A, Saliba AE, Begueret H, Girodet PO, Thumerel M, Hustache-Castaing R, Marthan R, Levet F, Vallois P, Contin-Bordes C, Berger P, Dupin I. Short-range interactions between fibrocytes and CD8 + T cells in COPD bronchial inflammatory response. eLife 2023; 12:RP85875. [PMID: 37494277 PMCID: PMC10371228 DOI: 10.7554/elife.85875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Bronchi of chronic obstructive pulmonary disease (COPD) are the site of extensive cell infiltration, allowing persistent contact between resident cells and immune cells. Tissue fibrocytes interaction with CD8+ T cells and its consequences were investigated using a combination of in situ, in vitro experiments and mathematical modeling. We show that fibrocytes and CD8+ T cells are found in the vicinity of distal airways and that potential interactions are more frequent in tissues from COPD patients compared to those of control subjects. Increased proximity and clusterization between CD8+ T cells and fibrocytes are associated with altered lung function. Tissular CD8+ T cells from COPD patients promote fibrocyte chemotaxis via the CXCL8-CXCR1/2 axis. Live imaging shows that CD8+ T cells establish short-term interactions with fibrocytes, that trigger CD8+ T cell proliferation in a CD54- and CD86-dependent manner, pro-inflammatory cytokines production, CD8+ T cell cytotoxic activity against bronchial epithelial cells and fibrocyte immunomodulatory properties. We defined a computational model describing these intercellular interactions and calibrated the parameters based on our experimental measurements. We show the model's ability to reproduce histological ex vivo characteristics, and observe an important contribution of fibrocyte-mediated CD8+ T cell proliferation in COPD development. Using the model to test therapeutic scenarios, we predict a recovery time of several years, and the failure of targeting chemotaxis or interacting processes. Altogether, our study reveals that local interactions between fibrocytes and CD8+ T cells could jeopardize the balance between protective immunity and chronic inflammation in the bronchi of COPD patients.
Collapse
Affiliation(s)
- Edmée Eyraud
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
| | - Elise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
| | - Jean-Marc Sac-Epée
- Univ-Lorraine, Institut Elie Cartan de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Pauline Henrot
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Maeva Zysman
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
| | - Jean-William Dupuy
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
| | - Alexander Leipold
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Hugues Begueret
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Pierre-Olivier Girodet
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Matthieu Thumerel
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Romain Hustache-Castaing
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Roger Marthan
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Florian Levet
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, Bordeaux, France
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | - Pierre Vallois
- Univ-Lorraine, Institut Elie Cartan de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Cécile Contin-Bordes
- CNRS, UMR5164 ImmunoConcEpT, Université de Bordeaux, Bordeaux, France
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Bordeaux, France
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Isabelle Dupin
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
| |
Collapse
|
9
|
Dupin I, Eyraud E, Maurat É, Sac-Épée JM, Vallois P. Probabilistic cellular automata modelling of intercellular interactions in airways: complex pattern formation in patients with chronic obstructive pulmonary disease. J Theor Biol 2023; 564:111448. [PMID: 36878400 DOI: 10.1016/j.jtbi.2023.111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent lung disease characterized by chronic inflammation and tissue remodeling possibly induced by unusual interactions between fibrocytes and CD8+ T lymphocytes in the peribronchial area. To investigate this phenomenon, we developed a probabilistic cellular automata type model where the two types of cells follow simple local interaction rules taking into account cell death, proliferation, migration and infiltration. We conducted a rigorous mathematical analysis using multiscale experimental data obtained in control and disease conditions to estimate the model's parameters accurately. The simulation of the model is straightforward to implement, and two distinct patterns emerged that we can analyse quantitatively. In particular, we show that the change in fibrocyte density in the COPD condition is mainly the consequence of their infiltration into the lung during exacerbations, suggesting possible explanations for experimental observations in normal and COPD tissue. Our integrated approach that combines a probabilistic cellular automata model and experimental findings will provide further insights into COPD in future studies.
Collapse
Affiliation(s)
- Isabelle Dupin
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France.
| | - Edmée Eyraud
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France
| | - Élise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France
| | | | - Pierre Vallois
- Université de Lorraine, CNRS, Inria, IECL., F-54000 Nancy, France
| |
Collapse
|
10
|
Henrot P, Blervaque L, Dupin I, Zysman M, Esteves P, Gouzi F, Hayot M, Pomiès P, Berger P. Cellular interplay in skeletal muscle regeneration and wasting: insights from animal models. J Cachexia Sarcopenia Muscle 2023; 14:745-757. [PMID: 36811134 PMCID: PMC10067506 DOI: 10.1002/jcsm.13103] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 02/24/2023] Open
Abstract
Skeletal muscle wasting, whether related to physiological ageing, muscle disuse or to an underlying chronic disease, is a key determinant to quality of life and mortality. However, cellular basis responsible for increased catabolism in myocytes often remains unclear. Although myocytes represent the vast majority of skeletal muscle cellular population, they are surrounded by numerous cells with various functions. Animal models, mostly rodents, can help to decipher the mechanisms behind this highly dynamic process, by allowing access to every muscle as well as time-course studies. Satellite cells (SCs) play a crucial role in muscle regeneration, within a niche also composed of fibroblasts and vascular and immune cells. Their proliferation and differentiation is altered in several models of muscle wasting such as cancer, chronic kidney disease or chronic obstructive pulmonary disease (COPD). Fibro-adipogenic progenitor cells are also responsible for functional muscle growth and repair and are associated in disease to muscle fibrosis such as in chronic kidney disease. Other cells have recently proven to have direct myogenic potential, such as pericytes. Outside their role in angiogenesis, endothelial cells and pericytes also participate to healthy muscle homoeostasis by promoting SC pool maintenance (so-called myogenesis-angiogenesis coupling). Their role in chronic diseases muscle wasting has been less studied. Immune cells are pivotal for muscle repair after injury: Macrophages undergo a transition from the M1 to the M2 state along with the transition between the inflammatory and resolutive phase of muscle repair. T regulatory lymphocytes promote and regulate this transition and are also able to activate SC proliferation and differentiation. Neural cells such as terminal Schwann cells, motor neurons and kranocytes are notably implicated in age-related sarcopenia. Last, newly identified cells in skeletal muscle, such as telocytes or interstitial tenocytes could play a role in tissular homoeostasis. We also put a special focus on cellular alterations occurring in COPD, a chronic and highly prevalent respiratory disease mainly linked to tobacco smoke exposure, where muscle wasting is strongly associated with increased mortality, and discuss the pros and cons of animal models versus human studies in this context. Finally, we discuss resident cells metabolism and present future promising leads for research, including the use of muscle organoids.
Collapse
Affiliation(s)
- Pauline Henrot
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Pessac, France.,CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Léo Blervaque
- PhyMedExp, INSERM-CNRS-Montpellier University, Montpellier, France
| | - Isabelle Dupin
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Pessac, France
| | - Maéva Zysman
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Pessac, France.,CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Pauline Esteves
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Pessac, France
| | - Fares Gouzi
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, Montpellier, France
| | - Maurice Hayot
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, INSERM-CNRS-Montpellier University, Montpellier, France
| | - Patrick Berger
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Pessac, France.,CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| |
Collapse
|
11
|
Zarog M, O’Leary P, Kiernan M, Bolger J, Tibbitts P, Coffey S, Byrnes G, Peirce C, Dunne C, Coffey C. Circulating fibrocyte percentage and neutrophil-lymphocyte ratio are accurate biomarkers of uncomplicated and complicated appendicitis: a prospective cohort study. Int J Surg 2023; 109:343-351. [PMID: 37093074 PMCID: PMC10389644 DOI: 10.1097/js9.0000000000000234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/09/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND There is increasing evidence that uncomplicated appendicitis (UA) may be treated nonoperatively in cases of UA. This study aimed to evaluate and compare the diagnostic accuracy of circulating fibrocyte percentage (CFP), white blood cell count, C-reactive protein, and neutrophil-lymphocyte ratio (NLR) in diagnosing uncomplicated and complicated appendicitis. MATERIALS AND METHODS Eighty consecutive adult patients presenting with suspected appendicitis were recruited in a cohort-based prospective study between June 2015 and February 2016 at University Hospital Limerick in Ireland. Peripheral venous samples were obtained at the presentation. Clinical, biochemical, radiological, and histopathological parameters were recorded. The CFP was determined by dual-staining for CD45 and collagen-I using flow cytometry analysis and correlated with histopathological diagnoses. RESULTS Of the 46 patients who underwent appendicectomy, 34 (73.9%) had histologically proven acute appendicitis. A comparison of the diagnostic accuracy of biomarkers demonstrated the CFP had the highest diagnostic accuracy for UA (area under the curve=0.83, sensitivity=72.7%, specificity=83.3%, P=0.002). The NLR had the highest diagnostic accuracy in relation to complicated appendicitis (area under the curve=0.84, sensitivity=75.5%, specificity=83.3%, P=0.005). CONCLUSIONS CFP and NLR are accurate biomarkers of UA and complicated appendicitis.
Collapse
|
12
|
Dupin I, Henrot P, Abohalaka R, Maurat E, Eyraud E, Esteves P, Zysman M, Campagnac M, Dubreuil M, Cardouat G, Bouchet C, Ousova O, Trian T, Freund-Michel V, Berger P. Targeting CXCR4 as a therapeutic strategy to improve outcomes in a mouse model of early chronic obstructive pulmonary disease (COPD). Rev Mal Respir 2023. [DOI: 10.1016/j.rmr.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
13
|
Wu X, Qian L, Zhao H, Lei W, Liu Y, Xu X, Li J, Yang Z, Wang D, Zhang Y, Zhang Y, Tang R, Yang Y, Tian Y. CXCL12/CXCR4: An amazing challenge and opportunity in the fight against fibrosis. Ageing Res Rev 2023; 83:101809. [PMID: 36442720 DOI: 10.1016/j.arr.2022.101809] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
Fibrosis is a pathological process caused by abnormal wound healing response, which often leads to excessive deposition of extracellular matrix, distortion of organ architecture, and loss of organ function. Aging is an important risk factor for the development of organ fibrosis. C-X-C receptor 4 (CXCR4) is the predominant chemokine receptor on fibrocytes, C-X-C motif ligand 12 (CXCL12) is the only ligand of CXCR4. Accumulated evidence have confirmed that CXCL12/CXCR4 can be involved in multiple pathological mechanisms in fibrosis, such as inflammation, immunity, epithelial-mesenchymal transition, and angiogenesis. In addition, CXCL12/CXCR4 have also been shown to improve fibrosis levels in many organs including the heart, liver, lung and kidney; thus, they are promising targets for anti-fibrotic therapy. Notably, inhibitors of CXCL12 or CXCR4 also play an important role in various fibrosis-related diseases. In summary, this review systematically summarizes the role of CXCL12/CXCR4 in fibrosis, and this information is of great significance for understanding CXCL12/CXCR4. This will also contribute to the design of further studies related to CXCL12/CXCR4 and fibrosis, and shed light on potential therapies for fibrosis.
Collapse
Affiliation(s)
- Xue Wu
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Lu Qian
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Wangrui Lei
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanqing Liu
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaoling Xu
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Jiawen Li
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Du Wang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuchen Zhang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ran Tang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yang Yang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| | - Ye Tian
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
14
|
Broens B, Duitman JW, Zwezerijnen GJC, Nossent EJ, van der Laken CJ, Voskuyl AE. Novel tracers for molecular imaging of interstitial lung disease: A state of the art review. Autoimmun Rev 2022; 21:103202. [PMID: 36150433 DOI: 10.1016/j.autrev.2022.103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Interstitial lung disease is an overarching term for a wide range of disorders characterized by inflammation and/or fibrosis in the lungs. Most prevalent forms, among others, include idiopathic pulmonary fibrosis (IPF) and connective tissue disease associated interstitial lung disease (CTD-ILD). Currently, only disease modifying treatment options are available for IPF and progressive fibrotic CTD-ILD, leading to reduction or stabilization in the rate of lung function decline at best. Management of these patients would greatly advance if we identify new strategies to improve (1) early detection of ILD, (2) predicting ILD progression, (3) predicting response to therapy and (4) understanding pathophysiology. Over the last years, positron emission tomography (PET) and single photon emission computed tomography (SPECT) have emerged as promising molecular imaging techniques to improve ILD management. Both are non-invasive diagnostic tools to assess molecular characteristics of an individual patient with the potential to apply personalized treatment. In this review, we encompass the currently available pre-clinical and clinical studies on molecular imaging with PET and SPECT in IPF and CTD-ILD. We provide recommendations for potential future clinical applications of these tracers and directions for future research.
Collapse
Affiliation(s)
- Bo Broens
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Rheumatology and Clinical Immunology, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Infection & Immunity, Inflammatory diseases, Amsterdam, the Netherlands.
| | - Jan-Willem Duitman
- Amsterdam Infection & Immunity, Inflammatory diseases, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Experimental Immunology (EXIM), Meibergdreef 9, Amsterdam, the Netherlands.
| | - Gerben J C Zwezerijnen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands.
| | - Esther J Nossent
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, the Netherlands..
| | - Conny J van der Laken
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Rheumatology and Clinical Immunology, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Infection & Immunity, Inflammatory diseases, Amsterdam, the Netherlands.
| | - Alexandre E Voskuyl
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Rheumatology and Clinical Immunology, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Infection & Immunity, Inflammatory diseases, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Peng W, Kepsch A, Kracht TO, Hasan H, Wijayarathna R, Wahle E, Pleuger C, Bhushan S, Günther S, Kauerhof AC, Planinić A, Fietz D, Schuppe HC, Wygrecka M, Loveland KL, Ježek D, Meinhardt A, Hedger MP, Fijak M. Activin A and CCR2 regulate macrophage function in testicular fibrosis caused by experimental autoimmune orchitis. Cell Mol Life Sci 2022; 79:602. [PMID: 36434305 PMCID: PMC9700630 DOI: 10.1007/s00018-022-04632-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Experimental autoimmune-orchitis (EAO), a rodent model of chronic testicular inflammation and fibrosis, replicates pathogenic changes seen in some cases of human spermatogenic disturbances. During EAO, increased levels of pro-inflammatory and pro-fibrotic mediators such as TNF, CCL2, and activin A are accompanied by infiltration of leukocytes into the testicular parenchyma. Activin A levels correlate with EAO severity, while elevated CCL2 acting through its receptor CCR2 mediates leukocyte trafficking and recruits macrophages. CCR2 + CXCR4 + macrophages producing extracellular matrix proteins contribute widely to fibrogenesis. Furthermore, testicular macrophages (TMs) play a critical role in organ homeostasis. Therefore, we aimed to investigate the role of the activin A/CCL2-CCR2/macrophage axis in the development of testicular fibrosis. Following EAO induction, we observed lower levels of organ damage, collagen deposition, and leukocyte infiltration (including fibronectin+, collagen I+ and CXCR4+ TMs) in Ccr2-/- mice than in WT mice. Furthermore, levels of Il-10, Ccl2, and the activin A subunit Inhba mRNAs were lower in Ccr2-/- EAO testes. Notably, fibronectin+ TMs were also present in biopsies from patients with impaired spermatogenesis and fibrotic alterations. Overexpression of the activin A antagonist follistatin reduced tissue damage and collagen I+ TM accumulation in WT EAO testes, while treating macrophages with activin A in vitro increased the expression of Ccr2, Fn1, Cxcr4, and Mmp2 and enhanced migration along a CCL2 gradient; these effects were abolished by follistatin. Taken together, our data indicate that CCR2 and activin A promote fibrosis during testicular inflammation by regulating macrophage function. Inhibition of CCR2 or activin A protects against damage progression, offering a promising avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Wei Peng
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Artem Kepsch
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Till O Kracht
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Hiba Hasan
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Rukmali Wijayarathna
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Eva Wahle
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Christiane Pleuger
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - A Christine Kauerhof
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Ana Planinić
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Daniela Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany
| | - Hans-Christian Schuppe
- Department of Urology, Paediatric Urology and Andrology, Justus Liebig University of Giessen, Giessen, Germany
| | - Małgorzata Wygrecka
- Center for Infection and Genomics of the Lung, German Center for Lung Research, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Kate L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Davor Ježek
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Mark P Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
16
|
Henrot P, Eyraud E, Maurat E, Point S, Cardouat G, Quignard JF, Esteves P, Trian T, Girodet PO, Marthan R, Zysman M, Berger P, Dupin I. Muscarinic receptor M3 activation promotes fibrocytes contraction. Front Pharmacol 2022; 13:939780. [PMID: 36147316 PMCID: PMC9485632 DOI: 10.3389/fphar.2022.939780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022] Open
Abstract
Fibrocytes are monocyte-derived cells able to differentiate into myofibroblasts-like cells. We have previously shown that they are increased in the bronchi of Chronic Obstructive Pulmonary Disease (COPD) patients and associated to worse lung function. COPD is characterized by irreversible airflow obstruction, partly due to an increased cholinergic environment. Our goal was to investigate muscarinic signalling in COPD fibrocytes. Fibrocytes were isolated from 16 patients with COPD's blood and presence of muscarinic M3 receptor was assessed at the transcriptional and protein levels. Calcium signalling and collagen gels contraction experiments were performed in presence of carbachol (cholinergic agonist) ± tiotropium bromide (antimuscarinic). Expression of M3 receptor was confirmed by Western blot and flow cytometry in differentiated fibrocytes. Immunocytochemistry showed the presence of cytoplasmic and membrane-associated pools of M3. Stimulation with carbachol elicited an intracellular calcium response in 35.7% of fibrocytes. This response was significantly blunted by the presence of tiotropium bromide: 14.6% of responding cells (p < 0.0001). Carbachol induced a significant contraction of fibrocytes embedded in collagen gels (13.6 ± 0.3% versus 2.5 ± 4.1%; p < 0.0001), which was prevented by prior tiotropium bromide addition (4.1 ± 2.7% of gel contraction; p < 0.0001). Finally, M3-expressing fibrocytes were also identified in situ in the peri-bronchial area of COPD patients' lungs, and there was a tendency to an increased density compared to healthy patient's lungs. In conclusion, around 1/3 of COPD patients' fibrocytes express a functional muscarinic M3 receptor. Cholinergic-induced fibrocyte contraction might participate in airway diameter reduction and subsequent increase of airflow resistance in patients with COPD. The inhibition of these processes could participate to the beneficial effects of muscarinic antagonists for COPD treatment.
Collapse
Affiliation(s)
- Pauline Henrot
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Pessac, France
| | - Edmée Eyraud
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Pessac, France
| | - Elise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Pessac, France
| | - Sophie Point
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Pessac, France
| | - Guillaume Cardouat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Pessac, France
| | - Jean-François Quignard
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Pessac, France
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Pessac, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Pessac, France
| | - Pierre-Olivier Girodet
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Pessac, France
| | - Roger Marthan
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Pessac, France
| | - Maéva Zysman
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Pessac, France
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Pessac, France
| | - Isabelle Dupin
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Pessac, France
| |
Collapse
|
17
|
Qiu H, Zhang X, Qi J, Zhang J, Tong Y, Li L, Fu L, Qin YR, Guan X, Zhang L. Identification and characterization of FGFR2+ hematopoietic stem cell-derived fibrocytes as precursors of cancer-associated fibroblasts induced by esophageal squamous cell carcinoma. J Exp Clin Cancer Res 2022; 41:240. [PMID: 35941662 PMCID: PMC9358838 DOI: 10.1186/s13046-022-02435-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
Background Cancer-associated fibroblast (CAF) is an ideal target for cancer treatment. Recent studies have focused on eliminating CAFs and their effects by targeting their markers or blocking individual CAF-secreted factors. However, these strategies have been limited by their specificity for targeting CAFs and effectiveness in blocking widespread influence of CAFs. To optimize CAF-targeted therapeutic strategies, we tried to explore the molecular mechanisms of CAF generation in this study. Methods Using FGFR2 as a tracing marker, we identified a novel origin of CAFs in esophageal squamous cell carcinoma (ESCC). Furthermore, we successfully isolated CAF precursors from peripheral blood of ESCC patients and explored the mechanisms underlying their expansion, recruitment, and differentiation via RNA-sequencing and bioinformatics analysis. The mechanisms were further verified by using different models both in vitro and in vivo. Results We found that FGFR2+ hematopoietic stem cell (HSC)-derived fibrocytes could be induced by ESCC cells, recruited into tumor xenografts, and differentiated into functional CAFs. They were mobilized by cancer-secreted FGF2 and recruited into tumor sites via the CXCL12/CXCR4 axis. Moreover, they differentiated into CAFs through the activation of YAP-TEAD complex, which is triggered by directly contracting with tumor cells. FGF2 and CXCR4 neutralizing antibodies could effectively block the mobilization and recruitment process of FGFR2+ CAFs. The YAP-TEAD complex-based mechanism hold promise for locally activation of genetically encoded therapeutic payloads at tumor sites. Conclusions We identified a novel CAF origin and systematically studied the process of mobilization, recruitment, and maturation of CAFs in ESCC under the guidance of tumor cells. These findings give rise to new approaches that target CAFs before their incorporation into tumor stroma and use CAF-precursors as cellular vehicles to target tumor cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02435-w.
Collapse
|
18
|
Wang CH, Lo CY, Huang HY, Wang TY, Weng CM, Chen CJ, Huang YC, Chung FT, Lin CW, Chung KF, Kuo HP. Oxygen Desaturation Is Associated With Fibrocyte Activation via Epidermal Growth Factor Receptor/Hypoxia-Inducible Factor-1α Axis in Chronic Obstructive Pulmonary Disease. Front Immunol 2022; 13:852713. [PMID: 35634326 PMCID: PMC9134242 DOI: 10.3389/fimmu.2022.852713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Fibrocytes are bloodborne mesenchymal progenitors which accumulate and differentiate at the disease site. We investigated whether hypoxemia activates fibrocytes, accelerating airflow limitation and exercise intolerance in chronic obstructive pulmonary disease (COPD) patients. Flow cytometry was used to determine collagen I+/CD45+ fibrocytes and α-smooth muscle actin+ differentiating fibrocytes within peripheral blood and cultured cells, as well as the expression of CXC chemokine receptor 4 (CXCR4), epidermal growth factor receptor (EGFR), connective tissue growth factor (CTGF) and hypoxia-inducible factor (HIF)-1α. Fibrocytes in lung specimens were identified by confocal microscopy. Compared to non-desaturators, COPD desaturators (peripheral blood oxygen saturation ≤88% during exercise) had greater number of fibrocytes in peripheral blood and lung specimens, paralleled with faster yearly lung function decline and a 6-minute walk distance. Fibrocytes from desaturators expressed more EGFR, CXCR4, CTGF, and HIF-1α, with a higher capacity of proliferation and myofibroblastic differentiation. Hypoxia (5% oxygen) increased the expression of EGFR, CXCR4, CTGF, and HIF-1α, the number and differentiation in fibrocytes. These effects were attenuated by EGFR inhibitor gefitinib, HIF-1α gene silencing, and anti-CTGF antibody. These data elucidate that hypoxemia triggers fibrocyte activation through the EGFR/HIF-1α axis, aggravating airflow obstruction in COPD.
Collapse
Affiliation(s)
- Chun-Hua Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Yu Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Yu Huang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Yu Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ming Weng
- School of Respiratory Therapy, Taipei Medical University, Taipei, Taiwan
| | - Chih-Jung Chen
- Department of Pathology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chen Huang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Tsai Chung
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan
| | - Chang-Wei Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Han-Pin Kuo
- Department of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- School of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
19
|
Eyraud E, Berger P, Contin-Bordes C, Dupin I. Lymphocytes T CD8+ et fibrocytes : un jeu dangereux dans les bronches distales des patients atteints de bronchopneumopathie chronique obstructive ? Rev Mal Respir 2022; 39:90-94. [DOI: 10.1016/j.rmr.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
|
20
|
Berger P, Dupin I. Unravelling the effects of omalizumab on fibrocytes. Respirology 2021; 26:825-827. [PMID: 34312947 DOI: 10.1111/resp.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick Berger
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Bordeaux, France.,Service d'exploration fonctionnelle respiratoire, CHU de Bordeaux, Pessac, France
| | - Isabelle Dupin
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Bordeaux, France
| |
Collapse
|
21
|
Coimbra-Campos LMC, Silva WN, Baltazar LM, Costa PAC, Prazeres PHDM, Picoli CC, Costa AC, Rocha BGS, Santos GSP, Oliveira FMS, Pinto MCX, Amorim JH, Azevedo VAC, Souza DG, Russo RC, Resende RR, Mintz A, Birbrair A. Circulating Nestin-GFP + Cells Participate in the Pathogenesis of Paracoccidioides brasiliensis in the Lungs. Stem Cell Rev Rep 2021; 17:1874-1888. [PMID: 34003465 DOI: 10.1007/s12015-021-10181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Multiple infectious diseases lead to impaired lung function. Revealing the cellular mechanisms involved in this impairment is crucial for the understanding of how the lungs shift from a physiologic to a pathologic state in each specific condition. In this context, we explored the pathogenesis of Paracoccidioidomycosis, which affects pulmonary functioning. The presence of cells expressing Nestin-GFP has been reported in different tissues, and their roles as tissue-specific progenitors have been stablished in particular organs. Here, we explored how Nestin-GFP+ cells are affected after lung infection by Paracoccidioides brasiliensis, a model of lung granulomatous inflammation with fibrotic outcome. We used Nestin-GFP transgenic mice, parabiosis surgery, confocal microscopy and flow cytometry to investigate the participation of Nestin-GFP+ cells in Paracoccidioides brasiliensis pathogenesis. We revealed that these cells increase in the lungs post-Paracoccidioides brasiliensis infection, accumulating around granulomas. This increase was due mainly to Nestin-GPF+ cells derived from the blood circulation, not associated to blood vessels, that co-express markers suggestive of hematopoietic cells (Sca-1, CD45 and CXCR4). Therefore, our findings suggest that circulating Nestin-GFP+ cells participate in the Paracoccidioides brasiliensis pathogenesis in the lungs.
Collapse
Affiliation(s)
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila M Baltazar
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício M S Oliveira
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Laboratory of Neuropharmacology and Neurochemistry, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of West Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle G Souza
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
22
|
From Allergy to Cancer-Clinical Usefulness of Eotaxins. Cancers (Basel) 2021; 13:cancers13010128. [PMID: 33401527 PMCID: PMC7795139 DOI: 10.3390/cancers13010128] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Eotaxins are small proteins included in the group of chemokines. They act mainly on blood cells called eosinophils which are involved in the pathogenesis of inflammatory processes. This connection leads to involvement of eotaxins in the pathogenesis of all inflammatory related diseases, such as allergic diseases and cancer. This paper summarizes the current knowledge about eotaxins, showing their usefulness as markers that can be used not only in the detection of these diseases, but also to determine the effectiveness of treatment. Abstract Eotaxins are proteins which belong to the group of cytokines. These small molecules are secreted by cells that are mainly involved in immune-mediated reactions in the course of allergic diseases. Eotaxins were discovered in 1994 and their main role was considered to be the selective recruitment of eosinophils. As those blood cells are involved in the course of all inflammatory diseases, including cancer, we decided to perform an extensive search of the literature pertaining to our investigation via the MEDLINE/PubMed database. On the basis of available literature, we can assume that eotaxins can be used as markers for the detection and determination of origin or type of allergic disease. Many publications also confirm that eotaxins can be used in the determination of allergic disease treatment. Moreover, there are also studies indicating a connection between eotaxins and cancer. Some researchers revealed that CCL11 (C-C motif chemokine ligand 11, eotaxin-1) concentrations differed between the control and tested groups indicating their possible usefulness in cancer detection. Furthermore, some papers showed usefulness of eotaxins in determining the treatment efficacy as markers of decreasing inflammation. Therefore, in this paper we present the current knowledge on eotaxins in the course of allergic and cancerous diseases.
Collapse
|
23
|
Shen W, Weng Z, Fan M, Wang S, Wang R, Zhang Y, Tian H, Wang X, Wu X, Yang X, Wei W, Yuan K. Mechanisms by Which the MBD2/miR-301a-5p/CXCL12/CXCR4 Pathway Regulates Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2020; 15:2561-2572. [PMID: 33116473 PMCID: PMC7585268 DOI: 10.2147/copd.s261522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by irreversible expiratory airflow obstruction, and its chronic course is worsened by recurrent acute exacerbations. Our previous microarray assay identified microRNA (miR)-301a-5p as being associated with progression of acute exacerbation of COPD (AE-COPD); however, the mechanism underlying COPD pathogenesis remains unknown. Methods Samples of serum and peripheral blood mononuclear cells (PBMCs) were isolated from healthy control subjects and patients with stable COPD (R-COPD) or with an acute exacerbation of COPD (AE-COPD). Human HULEC-5a and human bronchial epithelial (HBE) cells were transfected with methyl-CpG-binding domain protein 2 (MBD2), sh-MBD2, miR-301a-5p mimics or an inhibitor, and then stimulated with cigarette smoke extract (CSE). Conditioned medium co-culture assays were performed by adding the supernatant of medium derived from HULEC-5a cells transfected with miR-301a-5p mimics or inhibitor into wells containing si-c-x-c motif chemokine receptor 4 (CXCR4)-transfected-lung fibroblasts or human leukemic THP-1 cell line macrophages. Transwell assays were performed to analyze cell migration. Results Our analysis of clinical samples showed that decreased miR-301a-5p levels in patients with AE-COPD were positively correlated with levels of MBD2 expression, but negatively correlated with levels of chemokine ligand C-X-C motif chemokine ligand 12 (CXCL12) expression. MBD2 overexpression significantly promoted miR-301a-5p production, but suppressed CXCL12 production in HULEC-5a and HBE cells. CXCL12 was confirmed to be a direct target of miR-301a-5p. CXCR4 knockdown significantly enhanced the suppressive effect of miR-301a-5p mimics and attenuated the promotional effects of the miR-301a-5p inhibitor on the migration of circulating fibroblasts and macrophages, as well as the expression levels of phospho-mitogen-activated protein kinase (p-MEK) and phospho-protein kinase B (p-AKT). Conclusion In summary, the MBD2/miR-301a-5p/CXCL12/CXCR4 pathway was shown to affect the migration of lung fibroblasts and monocyte-derived macrophages, which may play an important role during COPD exacerbations.
Collapse
Affiliation(s)
- Wen Shen
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhiyin Weng
- School of Pharmaceutical Science, Kunming Medical University, Kunming, People’s Republic of China
| | - Minjuan Fan
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shukun Wang
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Ruili Wang
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Yang Zhang
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Hong Tian
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Xi Wang
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Xin Wu
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Xiaolei Yang
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Wei Wei
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Kaifen Yuan
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
24
|
Derlin T, Jaeger B, Jonigk D, Apel RM, Freise J, Shin HO, Weiberg D, Warnecke G, Ross TL, Wester HJ, Seeliger B, Welte T, Bengel FM, Prasse A. Clinical Molecular Imaging of Pulmonary CXCR4 Expression to Predict Outcome of Pirfenidone Treatment in Idiopathic Pulmonary Fibrosis. Chest 2020; 159:1094-1106. [PMID: 32822674 DOI: 10.1016/j.chest.2020.08.2043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive disease for which two antifibrotic drugs recently were approved. However, an unmet need exists to predict responses to antifibrotic treatment, such as pirfenidone. Recent data suggest that upregulated expression of CXCR4 is indicative of outcomes in IPF. RESEARCH QUESTION Can quantitative, molecular imaging of pulmonary CXCR4 expression as a biomarker for disease activity predict response to the targeted treatment pirfenidone and prognosis in patients with IPF? STUDY DESIGN AND METHODS CXCR4 expression was analyzed by immunohistochemistry examination of lung tissues and reverse-transcriptase polymerase chain reaction analysis of BAL. PET-CT scanning with the specific CXCR4 ligand 68Ga-pentixafor was performed in 28 IPF patients and compared with baseline clinical characteristics. In 16 patients, a follow-up scan was obtained 6 to 12 weeks after initiation of treatment with pirfenidone. Patients were followed up in our outpatient clinic for ≥ 12 months. RESULTS Immunohistochemistry analysis showed high CXCR4 staining of epithelial cells and macrophages in areas with vast fibrotic remodeling. Targeted PET scanning revealed CXCR4 upregulation in fibrotic areas of the lungs, particularly in zones with subpleural honeycombing. Baseline CXCR4 signal demonstrated a significant correlation with Gender Age Physiology stage (r = 0.44; P = .02) and with high-resolution CT scan score (r = 0.38; P = .04). Early changes in CXCR4 signal after initiation of pirfenidone treatment correlated with the long-term course of FVC after 12 months (r = -0.75; P = .0008). Moreover, patients with a high pulmonary CXCR4 signal on follow-up PET scan after 6 weeks into treatment demonstrated a statistically significant worse outcome at 12 months (P = .002). In multiple regression analysis, pulmonary CXCR4 signal on follow-up PET scan emerged as the only independent predictor of long-term outcome (P = .0226). INTERPRETATION CXCR4-targeted PET imaging identified disease activity and predicted outcome of IPF patients treated with pirfenidone. It may serve as a future biomarker for personalized guidance of antifibrotic treatment.
Collapse
Affiliation(s)
- Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Benedikt Jaeger
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Rosa M Apel
- Department of Pulmonology, Hannover Medical School, Hannover, Germany; DZL-BREATH, Hannover, Germany
| | - Julia Freise
- Department of Pulmonology, Hannover Medical School, Hannover, Germany; DZL-BREATH, Hannover, Germany
| | - Hoen-Oh Shin
- Institute of Radiology, Hannover Medical School, Hannover, Germany
| | - Desiree Weiberg
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Gregor Warnecke
- Department of Heart, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Hans-Jürgen Wester
- Institute of Radiopharmaceutical Chemistry, Technical University Munich, Garching, Germany
| | - Benjamin Seeliger
- Department of Pulmonology, Hannover Medical School, Hannover, Germany; DZL-BREATH, Hannover, Germany
| | - Tobias Welte
- Department of Pulmonology, Hannover Medical School, Hannover, Germany; DZL-BREATH, Hannover, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Antje Prasse
- Department of Pulmonology, Hannover Medical School, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany; DZL-BREATH, Hannover, Germany.
| |
Collapse
|
25
|
Lin CM, Alrbiaan A, Odackal J, Zhang Z, Scindia Y, Sung SSJ, Burdick MD, Mehrad B. Circulating fibrocytes traffic to the lung in murine acute lung injury and predict outcomes in human acute respiratory distress syndrome: a pilot study. Mol Med 2020; 26:52. [PMID: 32460694 PMCID: PMC7251319 DOI: 10.1186/s10020-020-00176-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background Fibrosis is an integral component of the pathogenesis of acute lung injury and is associated with poor outcomes in patients with acute respiratory distress syndrome (ARDS). Fibrocytes are bone marrow-derived cells that traffic to injured tissues and contribute to fibrosis; hence their concentration in the peripheral blood has the potential to serve as a biomarker of lung fibrogenesis. We therefore sought to test the hypothesis that the concentration and phenotype of circulating fibrocytes in patients with ARDS predicts clinical outcomes. Methods For the animal studies, C57Bl/6 mice were infected with experimental Klebsiella pneumoniae in a model of acute lung injury; one-way ANOVA was used to compare multiple groups and two-way ANOVA was used to compare two groups over time. For the human study, 42 subjects with ARDS and 12 subjects with pneumonia (without ARDS) were compared to healthy controls. Chi-squared or Fisher’s exact test were used to compare binary outcomes. Survival data was expressed using a Kaplan-Meier curve and compared by log-rank test. Univariable and multivariable logistic regression were used to predict death. Results In mice with acute lung injury caused by Klebsiella pneumonia, there was a time-dependent increase in lung soluble collagen that correlated with sequential expansion of fibrocytes in the bone marrow, blood, and then lung compartments. Correspondingly, when compared via cross-sectional analysis, the initial concentration of blood fibrocytes was elevated in human subjects with ARDS or pneumonia as compared to healthy controls. In addition, fibrocytes from subjects with ARDS displayed an activated phenotype and on serial measurements, exhibited intermittent episodes of markedly elevated concentration over a median of 1 week. A peak concentration of circulating fibrocytes above a threshold of > 4.8 × 106 cells/mL cells correlated with mortality that was independent of age, ratio of arterial oxygen concentration to the fraction of inspired oxygen, and vasopressor requirement. Conclusions Circulating fibrocytes increase in a murine model of acute lung injury and elevation in the number of these cells above a certain threshold is correlated with mortality in human ARDS. Therefore, these cells may provide a useful and easily measured biomarker to predict outcomes in these patients.
Collapse
Affiliation(s)
- Christine M Lin
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, 1600 SW Archer Road, Box 100225, Gainesville, FL, 32610-0225, USA
| | - Abdullah Alrbiaan
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - John Odackal
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Zhimin Zhang
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yogesh Scindia
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, 1600 SW Archer Road, Box 100225, Gainesville, FL, 32610-0225, USA
| | - Sun-Sang J Sung
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Marie D Burdick
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, 1600 SW Archer Road, Box 100225, Gainesville, FL, 32610-0225, USA.
| |
Collapse
|
26
|
Matsumura K, Ito S. Novel biomarker genes which distinguish between smokers and chronic obstructive pulmonary disease patients with machine learning approach. BMC Pulm Med 2020; 20:29. [PMID: 32013930 PMCID: PMC6998147 DOI: 10.1186/s12890-020-1062-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is combination of progressive lung diseases. The diagnosis of COPD is generally based on the pulmonary function testing, however, difficulties underlie in prognosis of smokers or early stage of COPD patients due to the complexity and heterogeneity of the pathogenesis. Computational analyses of omics technologies are expected as one of the solutions to resolve such complexities. Methods We obtained transcriptomic data by in vitro testing with exposures of human bronchial epithelial cells to the inducers for early events of COPD to identify the potential descriptive marker genes. With the identified genes, the machine learning technique was employed with the publicly available transcriptome data obtained from the lung specimens of COPD and non-COPD patients to develop the model that can reflect the risk continuum across smoking and COPD. Results The expression levels of 15 genes were commonly altered among in vitro tissues exposed to known inducible factors for earlier events of COPD (exposure to cigarette smoke, DNA damage, oxidative stress, and inflammation), and 10 of these genes and their corresponding proteins have not previously reported as COPD biomarkers. Although these genes were able to predict each group with 65% accuracy, the accuracy with which they were able to discriminate COPD subjects from smokers was only 29%. Furthermore, logistic regression enabled the conversion of gene expression levels to a numerical index, which we named the “potential risk factor (PRF)” index. The highest significant index value was recorded in COPD subjects (0.56 at the median), followed by smokers (0.30) and non-smokers (0.02). In vitro tissues exposed to cigarette smoke displayed dose-dependent increases of PRF, suggesting its utility for prospective risk estimation of tobacco products. Conclusions Our experimental-based transcriptomic analysis identified novel genes associated with COPD, and the 15 genes could distinguish smokers and COPD subjects from non-smokers via machine-learning classification with remarkable accuracy. We also suggested a PRF index that can quantitatively reflect the risk continuum across smoking and COPD pathogenesis, and we believe it will provide an improved understanding of smoking effects and new insights into COPD.
Collapse
Affiliation(s)
- Kazushi Matsumura
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan.
| | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan
| |
Collapse
|
27
|
Nicastro M, Vescovini R, Maritati F, Palmisano A, Urban ML, Incerti M, Fenaroli P, Peyronel F, Benigno GD, Mangieri D, Volpi R, Becchi G, Romagnani P, Corradi D, Vaglio A. Fibrocytes in Chronic Periaortitis: A Novel Mechanism Linking Inflammation and Fibrosis. Arthritis Rheumatol 2019; 71:1913-1922. [DOI: 10.1002/art.41024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/18/2019] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Paola Romagnani
- University of Florence and Meyer Children's Hospital Florence Italy
| | | | - Augusto Vaglio
- University of Florence and Meyer Children's Hospital Florence Italy
| |
Collapse
|
28
|
Dupin I, Thumerel M, Maurat E, Coste F, Eyraud E, Begueret H, Trian T, Montaudon M, Marthan R, Girodet PO, Berger P. Fibrocyte accumulation in the airway walls of COPD patients. Eur Respir J 2019; 54:13993003.02173-2018. [DOI: 10.1183/13993003.02173-2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
Abstract
The remodelling mechanism and cellular players causing persistent airflow limitation in COPD remain largely elusive. We have recently demonstrated that circulating fibrocytes, a rare population of fibroblast-like cells produced by the bone marrow stroma, are increased in COPD patients during an exacerbation. We aimed to quantify fibrocyte density in situ in bronchial specimens from both control subjects and COPD patients, to define associations with relevant clinical, functional and computed tomography (CT) parameters, and to investigate the effect of the epithelial microenvironment on fibrocyte survival in vitro (“Fibrochir” study).A total of 17 COPD patients and 25 control subjects, all requiring thoracic surgery, were recruited. Using co-immunostaining and image analysis, we identified CD45+ FSP1+ cells as tissue fibrocytes, and quantified their density in distal and proximal bronchial specimens. Fibrocytes, cultured from the blood samples of six COPD patients, were exposed to primary bronchial epithelial cell secretions from control subjects or COPD patients.We demonstrate that fibrocytes are increased in both distal and proximal tissue specimens of COPD patients. The density of fibrocytes is negatively correlated with lung function parameters and positively correlated with bronchial wall thickness as assessed by CT scan. A high density of distal bronchial fibrocytes predicts the presence of COPD with a sensitivity of 83% and a specificity of 70%. Exposure of fibrocytes to COPD epithelial cell supernatant favours cell survival.Our results thus demonstrate an increased density of fibrocytes within the bronchi of COPD patients, which may be promoted by epithelial-derived survival-mediating factors.
Collapse
|
29
|
Chemokines in COPD: From Implication to Therapeutic Use. Int J Mol Sci 2019; 20:ijms20112785. [PMID: 31174392 PMCID: PMC6600384 DOI: 10.3390/ijms20112785] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
: Chronic Obstructive Pulmonary Disease (COPD) represents the 3rd leading cause of death in the world. The underlying pathophysiological mechanisms have been the focus of extensive research in the past. The lung has a complex architecture, where structural cells interact continuously with immune cells that infiltrate into the pulmonary tissue. Both types of cells express chemokines and chemokine receptors, making them sensitive to modifications of concentration gradients. Cigarette smoke exposure and recurrent exacerbations, directly and indirectly, impact the expression of chemokines and chemokine receptors. Here, we provide an overview of the evidence regarding chemokines involvement in COPD, and we hypothesize that a dysregulation of this tightly regulated system is critical in COPD evolution, both at a stable state and during exacerbations. Targeting chemokines and chemokine receptors could be highly attractive as a mean to control both chronic inflammation and bronchial remodeling. We present a special focus on the CXCL8-CXCR1/2, CXCL9/10/11-CXCR3, CCL2-CCR2, and CXCL12-CXCR4 axes that seem particularly involved in the disease pathophysiology.
Collapse
|
30
|
Ruaro B, Soldano S, Smith V, Paolino S, Contini P, Montagna P, Pizzorni C, Casabella A, Tardito S, Sulli A, Cutolo M. Correlation between circulating fibrocytes and dermal thickness in limited cutaneous systemic sclerosis patients: a pilot study. Rheumatol Int 2019; 39:1369-1376. [PMID: 31056725 DOI: 10.1007/s00296-019-04315-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 04/26/2019] [Indexed: 11/30/2022]
Abstract
The objective is to detect any possible correlation between the modified Rodnan skin score (mRSS) and dermal thickness (DT) measured by skin high-frequency ultrasound (US) and the percentage of circulating fibrocytes in patients with limited cutaneous systemic sclerosis (lcSSc). Eight lcSSc patients and five healthy subjects (control group, CNT) were enrolled. The skin involvement was evaluated by mRSS and US (18 and 22 MHz probes) in all 13 subjects in the 17 standard skin areas evaluated by mRss. Circulating fibrocytes were isolated from the peripheral blood mononuclear cells (PBMCs) of all lcSSc patients and the CNT group to analyze their percentage at baseline time (T0) when the experiments started with PBMCs' isolation and collection and after 8 days of culture (T8). Non-parametric tests were used for the statistical analysis. A positive correlation between the percentage of circulating fibrocytes at T0, mRSS (p = 0.04 r = 0.96), and DT-US, evaluated by the 22 MHz and the 18 MHz probes (p = 0.03, r = 0.66 and p = 0.05, r = 0.52, respectively), was observed in lcSSc patients. Conversely, at T8, there was no correlation (p > 0.05) between these parameters in lcSSc group. In the CNT group, no correlations between mRSS or DT-US and the percentage of circulating fibrocytes were observed both at T0 and T8. The study shows the presence of a significant relationship between the percentage of circulating fibrocytes and DT, as evidenced by both mRSS and US, in limited cutaneus SSc. This observation may well suggest the reasonable hypothesis of a crucial contribution of circulating fibrocytes to skin fibrosis progression, which might be considered as further biomarkers.
Collapse
Affiliation(s)
- Barbara Ruaro
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, No 6, 16132, Genoa, Italy.
| | - Stefano Soldano
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, No 6, 16132, Genoa, Italy
| | - Vanessa Smith
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center (IRC), Ghent, Belgium
| | - Sabrina Paolino
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, No 6, 16132, Genoa, Italy
| | - Paola Contini
- Division of Clinical Immunology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Paola Montagna
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, No 6, 16132, Genoa, Italy
| | - Carmen Pizzorni
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, No 6, 16132, Genoa, Italy
| | - Andrea Casabella
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, No 6, 16132, Genoa, Italy
| | - Samuele Tardito
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, No 6, 16132, Genoa, Italy
| | - Alberto Sulli
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, No 6, 16132, Genoa, Italy
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, No 6, 16132, Genoa, Italy
| |
Collapse
|
31
|
Coppolino I, Ruggeri P, Nucera F, Cannavò MF, Adcock I, Girbino G, Caramori G. Role of Stem Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Pulmonary Emphysema. COPD 2018; 15:536-556. [DOI: 10.1080/15412555.2018.1536116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Irene Coppolino
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Paolo Ruggeri
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Francesco Nucera
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Mario Francesco Cannavò
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Ian Adcock
- Airways Disease Section, National Heart and Lung Institute, Royal Brompton Hospital Biomedical Research Unit, Imperial College, London, UK
| | - Giuseppe Girbino
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Gaetano Caramori
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| |
Collapse
|
32
|
Mack M. Inflammation and fibrosis. Matrix Biol 2018; 68-69:106-121. [DOI: 10.1016/j.matbio.2017.11.010] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023]
|
33
|
Cutolo M, Soldano S, Montagna P, Trombetta AC, Contini P, Ruaro B, Sulli A, Scabini S, Stratta E, Paolino S, Pizzorni C, Smith V, Brizzolara R. Effects of CTLA4-Ig treatment on circulating fibrocytes and skin fibroblasts from the same systemic sclerosis patients: an in vitro assay. Arthritis Res Ther 2018; 20:157. [PMID: 30053831 PMCID: PMC6062881 DOI: 10.1186/s13075-018-1652-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/22/2018] [Indexed: 12/16/2022] Open
Abstract
Background Systemic sclerosis (SSc) is characterized by vasculopathy and progressive fibrosis. CTLA4-Ig (abatacept) is able to interact with the cell surface costimulatory molecule CD86 and downregulate the target cell. The aim of this study was to evaluate the in-vitro effects of CTLA4-Ig treatment on circulating fibrocytes and skin fibroblasts isolated from the same SSc patient. Methods Circulating fibrocytes and skin fibroblasts were obtained from eight SSc patients with “limited” cutaneous involvement and from four healthy subjects (HSs). Samples were analyzed by fluorescence-activated cell sorter analysis (FACS) at baseline (T0) and after 8 days of culture (T8) for CD45, collagen type I (COL I), CXCR4, CD14, CD86, and HLA-DRII expression. Circulating fibrocytes were treated for 3 h and skin fibroblasts for 24/48 h with CTLA4-Ig (10, 50, 100, 500 μg/ml). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for CD86, COL I, FN, TGFβ, αSMA, S100A4, CXCR2, CXCR4, CD11a, and Western blotting was performed for COL I and FN. Results Using qRT-PCR, the T8-cultured SSc circulating fibrocytes which had not been treated with CTLA4-Ig showed higher gene expression for CD86, αSMA, S100A4, TGFβ, and COL I compared with HS circulating fibrocytes. Interestingly, αSMA/COL I gene expression was significantly lower only in the SSc circulating fibrocytes treated with CTLA4-Ig for 3 h (p < 0.01, p < 0.05). On the contrary, no effects were observed for either SSc or HS skin fibroblasts after CTLA4-Ig treatment. COL I and FN protein expression was unchanged in both SSc and HS skin fibroblasts by Western blot. Conclusions Circulating fibrocytes seem to be more responsive to CTLA4-Ig treatment than skin fibroblasts from the same SSc patient, likely due to their higher expression of CD86. CTLA4-Ig treatment might downregulate the fibrotic process in SSc patients by downregulating the fibrocytes, circulating progenitor cells. Electronic supplementary material The online version of this article (10.1186/s13075-018-1652-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, 616132, Genoa, Italy.
| | - Stefano Soldano
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, 616132, Genoa, Italy
| | - Paola Montagna
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, 616132, Genoa, Italy
| | - Amelia Chiara Trombetta
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, 616132, Genoa, Italy
| | - Paola Contini
- Division of Clinical Immunology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Barbara Ruaro
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, 616132, Genoa, Italy
| | - Alberto Sulli
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, 616132, Genoa, Italy
| | - Stefano Scabini
- Oncologic Surgery, Department of Surgery, IRCCS San Martino Polyclinic, Genoa, Italy
| | - Emanuela Stratta
- Oncologic Surgery, Department of Surgery, IRCCS San Martino Polyclinic, Genoa, Italy
| | - Sabrina Paolino
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, 616132, Genoa, Italy
| | - Carmen Pizzorni
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, 616132, Genoa, Italy
| | - Vanessa Smith
- Department of Rheumatology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Renata Brizzolara
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, 616132, Genoa, Italy
| |
Collapse
|
34
|
Dupin I, Contin-Bordes C, Berger P. Fibrocytes in Asthma and Chronic Obstructive Pulmonary Disease: Variations on the Same Theme. Am J Respir Cell Mol Biol 2018; 58:288-298. [PMID: 29087726 DOI: 10.1165/rcmb.2017-0301ps] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrocytes are circulating cells that have fibroblast properties. They are produced by the bone marrow stroma, and they move from the blood to injured organs using multiple chemokine pathways. They exhibit marked functional and phenotypic plasticity in response to the local tissue microenvironment to ensure a proinflammatory or a more resolving phenotype. They can adopt immune cell properties and modulate conventional immune cell functions. Although their exact function is not always clear, they have emerged as key effector cells in several fibrotic diseases such as keloid, scleroderma, and idiopathic pulmonary fibrosis. Recent evidence suggests that fibrocytes could contribute to bronchial obstructive diseases such as asthma and chronic obstructive pulmonary disease. This review summarizes the reported roles of fibrocytes and their pathways into the lung in the context of asthma and chronic obstructive pulmonary disease, provides an overview of the different roles played by fibrocytes, and discusses their possible contributions to these obstructive diseases.
Collapse
Affiliation(s)
- Isabelle Dupin
- 1 Université de Bordeaux, Centre de Recherche Cardio thoracique de Bordeaux, F 33000 Bordeaux, France.,2 INSERM, Centre de Recherche Cardio thoracique de Bordeaux, U1045, F 33000 Bordeaux, France
| | - Cécile Contin-Bordes
- 3 CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, F 33000, Bordeaux, France.,4 CNRS UMR5164 ImmunoConcEpT, Université de Bordeaux , F 33000, Bordeaux, France
| | - Patrick Berger
- 1 Université de Bordeaux, Centre de Recherche Cardio thoracique de Bordeaux, F 33000 Bordeaux, France.,2 INSERM, Centre de Recherche Cardio thoracique de Bordeaux, U1045, F 33000 Bordeaux, France.,5 CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, CIC 1401, F 33604 Pessac, France
| |
Collapse
|
35
|
Barwinska D, Oueini H, Poirier C, Albrecht ME, Bogatcheva NV, Justice MJ, Saliba J, Schweitzer KS, Broxmeyer HE, March KL, Petrache I. AMD3100 ameliorates cigarette smoke-induced emphysema-like manifestations in mice. Am J Physiol Lung Cell Mol Physiol 2018; 315:L382-L386. [PMID: 29745251 DOI: 10.1152/ajplung.00185.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have shown that cigarette smoke (CS)-induced pulmonary emphysema-like manifestations are preceded by marked suppression of the number and function of bone marrow hematopoietic progenitor cells (HPCs). To investigate whether a limited availability of HPCs may contribute to CS-induced lung injury, we used a Food and Drug Administration-approved antagonist of the interactions of stromal cell-derived factor 1 (SDF-1) with its chemokine receptor CXCR4 to promote intermittent HPC mobilization and tested its ability to limit emphysema-like injury following chronic CS. We administered AMD3100 (5mg/kg) to mice during a chronic CS exposure protocol of up to 24 wk. AMD3100 treatment did not affect either lung SDF-1 levels, which were reduced by CS, or lung inflammatory cell counts. However, AMD3100 markedly improved CS-induced bone marrow HPC suppression and significantly ameliorated emphysema-like end points, such as alveolar airspace size, lung volumes, and lung static compliance. These results suggest that antagonism of SDF-1 binding to CXCR4 is associated with protection of both bone marrow and lungs during chronic CS exposure, thus encouraging future studies of potential therapeutic benefit of AMD3100 in emphysema.
Collapse
Affiliation(s)
- Daria Barwinska
- Department of Cellular and Integrative Physiology, Indiana University , Indianapolis, Indiana.,Indiana Center for Vascular Biology and Medicine, Indiana University , Indianapolis, Indiana.,Vascular and Cardiac Center for Adult Stem Cell Therapy Signature Center, Indiana University, Purdue University , Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indiana University , Indianapolis, Indiana.,Division of Nephrology, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Houssam Oueini
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Christophe Poirier
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Marjorie E Albrecht
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Natalia V Bogatcheva
- Indiana Center for Vascular Biology and Medicine, Indiana University , Indianapolis, Indiana.,Vascular and Cardiac Center for Adult Stem Cell Therapy Signature Center, Indiana University, Purdue University , Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indiana University , Indianapolis, Indiana.,Division of Cardiology, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Matthew J Justice
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana.,Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Jacob Saliba
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Kelly S Schweitzer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana.,Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University , Indianapolis, Indiana
| | - Keith L March
- Indiana Center for Vascular Biology and Medicine, Indiana University , Indianapolis, Indiana.,Vascular and Cardiac Center for Adult Stem Cell Therapy Signature Center, Indiana University, Purdue University , Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indiana University , Indianapolis, Indiana.,Division of Cardiology, Department of Medicine, Indiana University , Indianapolis, Indiana.,Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida , Gainesville, Florida
| | - Irina Petrache
- Indiana Center for Vascular Biology and Medicine, Indiana University , Indianapolis, Indiana.,Vascular and Cardiac Center for Adult Stem Cell Therapy Signature Center, Indiana University, Purdue University , Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indiana University , Indianapolis, Indiana.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana.,Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado.,Department of Medicine, University of Colorado , Denver, Colorado
| |
Collapse
|
36
|
Heukels P, van Hulst JAC, van Nimwegen M, Boorsma CE, Melgert BN, van den Toorn LM, Boomars KAT, Wijsenbeek MS, Hoogsteden H, von der Thüsen JH, Hendriks RW, Kool M, van den Blink B. Fibrocytes are increased in lung and peripheral blood of patients with idiopathic pulmonary fibrosis. Respir Res 2018; 19:90. [PMID: 29747640 PMCID: PMC5946532 DOI: 10.1186/s12931-018-0798-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/29/2018] [Indexed: 02/07/2023] Open
Abstract
Background Fibrocytes are implicated in Idiopathic Pulmonary Fibrosis (IPF) pathogenesis and increased proportions in the circulation are associated with poor prognosis. Upon tissue injury, fibrocytes migrate to the affected organ. In IPF patients, circulating fibrocytes are increased especially during exacerbations, however fibrocytes in the lungs have not been examined. Therefore, we sought to evaluate if fibrocytes can be detected in IPF lungs and we compare percentages and phenotypic characteristics of lung fibrocytes with circulating fibrocytes in IPF. Methods First we optimized flow cytometric detection circulating fibrocytes using a unique combination of intra- and extra-cellular markers to establish a solid gating strategy. Next we analyzed lung fibrocytes in single cell suspensions of explanted IPF and control lungs and compared characteristics and numbers with circulating fibrocytes of IPF. Results Using a gating strategy for both circulating and lung fibrocytes, which excludes potentially contaminating cell populations (e.g. neutrophils and different leukocyte subsets), we show that patients with IPF have increased proportions of fibrocytes, not only in the circulation, but also in explanted end-stage IPF lungs. These lung fibrocytes have increased surface expression of HLA-DR, increased intracellular collagen-1 expression, and also altered forward and side scatter characteristics compared with their circulating counterparts. Conclusions These findings demonstrate that lung fibrocytes in IPF patients can be quantified and characterized by flow cytometry. Lung fibrocytes have different characteristics than circulating fibrocytes and represent an intermediate cell population between circulating fibrocytes and lung fibroblast. Therefore, more insight in their phenotype might lead to specific therapeutic targeting in fibrotic lung diseases. Electronic supplementary material The online version of this article (10.1186/s12931-018-0798-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Heukels
- Department of Pulmonary Medicine, Erasmus MC, s-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands.
| | - J A C van Hulst
- Department of Pulmonary Medicine, Erasmus MC, s-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - M van Nimwegen
- Department of Pulmonary Medicine, Erasmus MC, s-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - C E Boorsma
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - B N Melgert
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - L M van den Toorn
- Department of Pulmonary Medicine, Erasmus MC, s-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - K A T Boomars
- Department of Pulmonary Medicine, Erasmus MC, s-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - M S Wijsenbeek
- Department of Pulmonary Medicine, Erasmus MC, s-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - H Hoogsteden
- Department of Pulmonary Medicine, Erasmus MC, s-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - J H von der Thüsen
- Department of Pulmonary Medicine, Erasmus MC, s-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - R W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, s-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - M Kool
- Department of Pulmonary Medicine, Erasmus MC, s-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - B van den Blink
- Department of Pulmonary Medicine, Erasmus MC, s-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Florez-Sampedro L, Song S, Melgert BN. The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung. ACTA ACUST UNITED AC 2018; 5:3-25. [PMID: 29721324 PMCID: PMC5911451 DOI: 10.1002/reg2.97] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/23/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
In healthy circumstances the immune system coordinates tissue repair responses in a tight balance that entails efficient inflammation for removal of potential threats, proper wound closure, and regeneration to regain tissue function. Pathological conditions, continuous exposure to noxious agents, and even ageing can dysregulate immune responses after injury. This dysregulation can lead to a chronic repair mechanism known as fibrosis. Alterations in wound healing can occur in many organs, but our focus lies with the lung as it requires highly regulated immune and repair responses with its continuous exposure to airborne threats. Dysregulated repair responses can lead to pulmonary fibrosis but the exact reason for its development is often not known. Here, we review the diversity of innate immune cells of myeloid origin that are involved in tissue repair and we illustrate how these cell types can contribute to the development of pulmonary fibrosis. Moreover, we briefly discuss the effect of age on innate immune responses and therefore on wound healing and we conclude with the implications of current knowledge on the avenues for future research.
Collapse
Affiliation(s)
- Laura Florez-Sampedro
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Shanshan Song
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,University Medical Center Groningen, Groningen Research Institute for Asthma and COPD University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| |
Collapse
|
38
|
Koutsokera A, Royer PJ, Antonietti JP, Fritz A, Benden C, Aubert JD, Tissot A, Botturi K, Roux A, Reynaud-Gaubert ML, Kessler R, Dromer C, Mussot S, Mal H, Mornex JF, Guillemain R, Knoop C, Dahan M, Soccal PM, Claustre J, Sage E, Gomez C, Magnan A, Pison C, Nicod LP. Development of a Multivariate Prediction Model for Early-Onset Bronchiolitis Obliterans Syndrome and Restrictive Allograft Syndrome in Lung Transplantation. Front Med (Lausanne) 2017; 4:109. [PMID: 28770204 PMCID: PMC5511826 DOI: 10.3389/fmed.2017.00109] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic lung allograft dysfunction and its main phenotypes, bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS), are major causes of mortality after lung transplantation (LT). RAS and early-onset BOS, developing within 3 years after LT, are associated with particularly inferior clinical outcomes. Prediction models for early-onset BOS and RAS have not been previously described. METHODS LT recipients of the French and Swiss transplant cohorts were eligible for inclusion in the SysCLAD cohort if they were alive with at least 2 years of follow-up but less than 3 years, or if they died or were retransplanted at any time less than 3 years. These patients were assessed for early-onset BOS, RAS, or stable allograft function by an adjudication committee. Baseline characteristics, data on surgery, immunosuppression, and year-1 follow-up were collected. Prediction models for BOS and RAS were developed using multivariate logistic regression and multivariate multinomial analysis. RESULTS Among patients fulfilling the eligibility criteria, we identified 149 stable, 51 BOS, and 30 RAS subjects. The best prediction model for early-onset BOS and RAS included the underlying diagnosis, induction treatment, immunosuppression, and year-1 class II donor-specific antibodies (DSAs). Within this model, class II DSAs were associated with BOS and RAS, whereas pre-LT diagnoses of interstitial lung disease and chronic obstructive pulmonary disease were associated with RAS. CONCLUSION Although these findings need further validation, results indicate that specific baseline and year-1 parameters may serve as predictors of BOS or RAS by 3 years post-LT. Their identification may allow intervention or guide risk stratification, aiming for an individualized patient management approach.
Collapse
Affiliation(s)
- Angela Koutsokera
- Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Pierre J Royer
- Institut du thorax, INSERM UMR 1087/CNRS UMR 6291, CHU de Nantes, Université de Nantes, Nantes, France
| | - Jean P Antonietti
- Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | - Christian Benden
- Division of Pulmonary Medicine, University Hospital Zurich, Zurich, Switzerland
| | - John D Aubert
- Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Adrien Tissot
- Institut du thorax, INSERM UMR 1087/CNRS UMR 6291, CHU de Nantes, Université de Nantes, Nantes, France
| | - Karine Botturi
- Institut du thorax, INSERM UMR 1087/CNRS UMR 6291, CHU de Nantes, Université de Nantes, Nantes, France
| | - Antoine Roux
- Pneumology, Adult CF Center and Lung transplantation Department, Foch Hospital, Université Versailles Saint-Quentin-en-Yvelines, UPRES EA220, Suresnes, France
| | - Martine L Reynaud-Gaubert
- Pulmonary Medicine, CF Center and Lung Transplantation Department, Centre Hospitalier Universitaire Nord, CNRS UMR 6236 Aix-Marseille Université, Marseille, France
| | - Romain Kessler
- Lung Transplant Center, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Claire Dromer
- Service des Maladies respiratoires, Hôpital Haut Lévèque, Pessac, France
| | - Sacha Mussot
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardiopulmonaire, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Hervé Mal
- Service de Pneumologie et Transplantation pulmonaire, Hôpital Bichat, Université Denis Diderot, INSERM UMR1152, Paris, France
| | | | | | - Christiane Knoop
- Department of Chest Medicine, Erasme University Hospital, Brussels, Belgium
| | | | - Paola M Soccal
- Division of Pulmonary Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Johanna Claustre
- Clinique Universitaire de Pneumologie, Pôle Thorax et Vaisseaux, CHU Grenoble, INSERM 1055, Université Grenoble Alpes, Grenoble, France
| | - Edouard Sage
- Thoracic Surgery Department, Foch Hospital, Université Versailles Saint-Quentin-en-Yvelines, UPRES EA220, Suresnes, France
| | - Carine Gomez
- Pulmonary Medicine, CF Center and Lung Transplantation Department, Centre Hospitalier Universitaire Nord, CNRS UMR 6236 Aix-Marseille Université, Marseille, France
| | - Antoine Magnan
- Institut du thorax, INSERM UMR 1087/CNRS UMR 6291, CHU de Nantes, Université de Nantes, Nantes, France
| | - Christophe Pison
- Clinique Universitaire de Pneumologie, Pôle Thorax et Vaisseaux, CHU Grenoble, INSERM 1055, Université Grenoble Alpes, Grenoble, France
| | - Laurent P Nicod
- Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
39
|
Zhong JN, Lan L, Chen YF, Huang G, He GZ, Yang J, Gao YD. IL-4 and serum amyloid P inversely regulate fibrocyte differentiation by targeting store-operated Ca 2+ channels. Pharmacol Rep 2017; 70:22-28. [PMID: 29306759 DOI: 10.1016/j.pharep.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Circulating fibrocytes (CFs) have been shown to participate in subepithelial fibrosis of asthma with chronic airflow limitation by acting as an important source of fibroblasts deposited beneath airway epithelia. Serum amyloid P (SAP) is an innate inhibitor of fibrocytes differentiation. Store-operated Ca2+ entry (SOCE) is the major Ca2+ influx of non-excitable cells. In this study, the role of SOCE in the regulation of fibrocytes differentiation and the effects of Th2 cytokine IL-4 and SAP on SOCE of fibrocytes were investigated. METHODS Peripheral blood mononuclear cells or monocytes were cultured in serum-free medium for 7days to differentiate into fibrocytes; the expression of SOC channels was determined with PCR, SOCE was measured with Ca2+ fluorescence imaging. RESULTS IL-4 significantly promoted monocyte derived fibrocytes differentiation in vitro. It also increased both SOCE which was induced by thapsigargin or UTP and molecules STIM1 and Orai1 which were related to expression of SOC channels in fibrocytes. Fibrocytes differentiation induced by IL-4 and SOC channels activity could be inhibited by SOC channel blocker SKF-96365. As expected, SAP significantly inhibited IL-4-induced differentiation of fibrocytes, the activity of SOCE and the expression of STIM1 and Orai1 in IL-4-treated fibrocytes. CONCLUSION IL-4 and SAP reversely regulates cultured fibrocytes differentiation in vitro by respectively promoting or inhibiting the expression and activity of SOC channels in fibrocytes.
Collapse
Affiliation(s)
- Jin-Nan Zhong
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Lan Lan
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Yi-Fei Chen
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Ge Huang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Guang-Zhen He
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Jiong Yang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Ya-Dong Gao
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China.
| |
Collapse
|
40
|
Liu Y, Qingjuan S, Gao Z, Deng C, Wang Y, Guo C. Circulating fibrocytes are involved in inflammation and leukocyte trafficking in neonates with necrotizing enterocolitis. Medicine (Baltimore) 2017; 96:e7400. [PMID: 28658176 PMCID: PMC5500098 DOI: 10.1097/md.0000000000007400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibrocytes, ahematopoietic stem cell source of fibroblasts/myofibroblasts, were previously implicated to infiltrate into the intestinal and enhance inflammation.The aims of the present study were to elucidate the role of fibrocytes in necrotizing enterocolitis (NEC) pathogenesis and to explore the mechanisms by which fibrocytes contributed to the inflammatory responses.We investigated circulating and intestinal local fibrocytes from 32 patients with NEC, 8 patients with noninflammatory conditions of the gastrointestinal tract and 12 normal subjects.Significantly higher numbers of circulating fibrocytes were found in the peripheral blood from NEC patients than the controls (P < .01). Numerous fibrocytes were found infiltrating the NEC intestinal mucous membranes. The percentage of fibrocytes to total leukocytes in the NEC inflammatory lesions was significantly increased compared with the percentage in the noninflammatory gastrointestinal tract. The fibrocyte attractant chemokine C-X-C motif chemokine ligand 12 (CXCL12) was significantly increased in the plasma and was detectable in 80% of the peritoneal lavage fluid from NEC patients but not the controls. Furthermore, chemokine expression was increased in fibrocytes infiltrating and trafficking to leukocyte sites. In culture, lipopolysaccharide (LPS) induced a significant increase in the expression of the Toll-like receptor (TLR4) signal, with the upregulation of p38 in both the isolated fibrocytes and macrophages. Similarly, interleukin (IL)-1β induced increased the upregulation of the IL-6, tumor necrosis factor (TNF)-α, and intercellular cell adhesion molecule-1 mRNAs but downregulated ColI in fibrocytes isolated from NEC patients compared with the controls.These findings indicate that circulating fibrocytes are increased in NEC patients and may be recruited to the inflammatory intestinal track, most likely through the CXCR4/CXCL12 axis. These cells may contribute to intestinal inflammation through TLR4 signaling by producing the TNF-α and IL-6 cytokines.
Collapse
Affiliation(s)
- Ye Liu
- Department of Neonatal, Children's Hospital, Chongqing Medical University, Chongqing
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University
| | - Shang Qingjuan
- Department of Pathology, Linyi People's Hospital, Linyi, Shandong Province
| | - Zongwei Gao
- Department of Pathology, Linyi People's Hospital, Linyi, Shandong Province
| | - Chun Deng
- Department of Neonatal, Children's Hospital, Chongqing Medical University, Chongqing
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University
| | - Yan Wang
- Department of Neonatology, Yongchuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Chunbao Guo
- Department of Pediatric General Surgery
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University
| |
Collapse
|
41
|
Wright AKA, Newby C, Hartley RA, Mistry V, Gupta S, Berair R, Roach KM, Saunders R, Thornton T, Shelley M, Edwards K, Barker B, Brightling CE. Myeloid-derived suppressor cell-like fibrocytes are increased and associated with preserved lung function in chronic obstructive pulmonary disease. Allergy 2017; 72:645-655. [PMID: 27709630 DOI: 10.1111/all.13061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND The role of fibrocytes in chronic obstructive pulmonary disease (COPD) is unknown. We sought to enumerate blood and tissue fibrocytes in COPD and determine the association of blood fibrocytes with clinical features of disease. METHODS Utilizing flow cytometry to identify circulating, collagen type 1+ cells, we found two populations: (i) CD45+ CD34+ (fibrocytes) and (ii) CD45+ CD34- [myeloid-derived suppressor cell (MDSC)-like fibrocytes] cells in stable COPD (n = 41) and control (n = 29) subjects. Lung resection material from a separate group of subjects with (n = 11) or without (n = 11) COPD was collected for tissue fibrocyte detection. We examined circulating fibrocyte populations for correlations with clinical parameters including quantitative computed tomography (qCT) and determined pathways of association between correlated variables using a path analysis model. RESULTS Blood and tissue fibrocytes were not increased compared to control subjects nor were blood fibrocytes associated with lung function or qCT, but were increased in eosinophilic COPD. Myeloid-derived suppressor cell-like fibrocytes were increased in COPD compared to controls [2.3 (1.1-4.9), P = 0.038]. Our path analysis model showed that collagen type 1 intensity for MDSC-like fibrocytes was positively associated with lung function through associations with air trapping, predominately in the upper lobes. CONCLUSION We have demonstrated that two circulating populations of fibrocyte exist in COPD, with distinct clinical associations, but are not prevalent in proximal or small airway tissue. Blood MDSC-like fibrocytes, however, are increased and associated with preserved lung function through a small airway-dependent mechanism in COPD.
Collapse
Affiliation(s)
- A. K. A. Wright
- NIHR Leicester Respiratory Biomedical Unit; Institute of Lung Health; University Hospitals of Leicester NHS Trust; Leicester UK
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - C. Newby
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - R. A. Hartley
- NIHR Leicester Respiratory Biomedical Unit; Institute of Lung Health; University Hospitals of Leicester NHS Trust; Leicester UK
| | - V. Mistry
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - S. Gupta
- NIHR Leicester Respiratory Biomedical Unit; Institute of Lung Health; University Hospitals of Leicester NHS Trust; Leicester UK
| | - R. Berair
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - K. M. Roach
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - R. Saunders
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - T. Thornton
- NIHR Leicester Respiratory Biomedical Unit; Institute of Lung Health; University Hospitals of Leicester NHS Trust; Leicester UK
| | - M. Shelley
- NIHR Leicester Respiratory Biomedical Unit; Institute of Lung Health; University Hospitals of Leicester NHS Trust; Leicester UK
| | - K. Edwards
- NIHR Leicester Respiratory Biomedical Unit; Institute of Lung Health; University Hospitals of Leicester NHS Trust; Leicester UK
| | - B. Barker
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - C. E. Brightling
- NIHR Leicester Respiratory Biomedical Unit; Institute of Lung Health; University Hospitals of Leicester NHS Trust; Leicester UK
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| |
Collapse
|
42
|
Ogawa Y, He H, Mukai S, Imada T, Nakamura S, Su CW, Mahabole M, Tseng SCG, Tsubota K. Heavy Chain-Hyaluronan/Pentraxin 3 from Amniotic Membrane Suppresses Inflammation and Scarring in Murine Lacrimal Gland and Conjunctiva of Chronic Graft-versus-Host Disease. Sci Rep 2017; 7:42195. [PMID: 28165063 PMCID: PMC5292704 DOI: 10.1038/srep42195] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a major complication of hematopoietic stem cell transplantation. Dry eye disease is the prominent ocular sequel of cGVHD and is caused by excessive inflammation and fibrosis in the lacrimal glands. Heavy chain-Hyaluronan/Pentraxin 3 (HC-HA/PTX3) is a complex purified from human amniotic membrane (AM) and known to exert anti-inflammatory and anti-scarring actions. In this study, we utilized a mouse model of cGVHD to examine whether HC-HA/PTX3 could attenuate dry eye disease elicited by cGVHD. Our results indicated that subconjunctival and subcutaneous injection of HC-HA/PTX3 preserved tear secretion and conjunctival goblet cell density and mitigated inflammation and scarring of the conjunctiva. Such therapeutic benefits were associated with suppression of scarring and infiltration of inflammatory/immune cells in the lacrimal glands. Furthermore, HC-HA/PTX3 significantly reduced the extent of infiltration of CD45+ CD4+ IL-17+ cells, CD45+ CD34+ collagen I+ CXCR4+ fibrocytes, and HSP47+ activated fibroblasts that were accompanied by upregulation of collagen type Iα1, collagen type IIIα1 and NF-kB in lacrimal glands. Collectively, these pre-clinical data help prove the concept that subcutaneous and subconjunctival injection of HC-HA/PTX3 is a novel approach to prevent dry eye disease caused by cGVHD and allow us to test its safety and efficacy in future human clinical trials.
Collapse
Affiliation(s)
- Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hua He
- TissueTech, Inc., Miami, FL 33173, USA
| | - Shin Mukai
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshihiro Imada
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
43
|
Li C, Du S, Lu Y, Lu X, Liu F, Chen Y, Weng D, Chen J. Blocking the 4-1BB Pathway Ameliorates Crystalline Silica-induced Lung Inflammation and Fibrosis in Mice. Am J Cancer Res 2016; 6:2052-2067. [PMID: 27698940 PMCID: PMC5039680 DOI: 10.7150/thno.16180] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/30/2016] [Indexed: 12/30/2022] Open
Abstract
Long term pulmonary exposure to crystalline silica leads to silicosis that manifests progressive interstitial fibrosis, eventually leading to respiratory failure and death. Despite efforts to eliminate silicosis, clinical cases continue to occur in both developing and developed countries. The exact mechanisms of crystalline silica-induced pulmonary fibrosis remain elusive. Herein, we find that 4-1BB is induced in response to crystalline silica injury in lungs and that it is highly expressed during development of experimental silicosis. Therefore, we explore the role of 4-1BB pathway during crystalline silica-induced lung injury and find that a specific inhibitor blocking the pathway could effectively alleviate crystalline silica-induced lung inflammation and subsequent pulmonary fibrosis in vivo. Compared to controls, the treated mice exhibited reduced Th1 and Th17 responses. The concentrations of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF), including tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-17A following crystalline silica challenge were also reduced in inhibitor-treated mice. Although there was no significant alteration in Th2 cytokines of IL-4 and IL-13, another type of pro-fibrogenic cell, regulatory T cell (Treg) was significantly affected. In addition, one of the major participants in fibrogenesis, fibrocyte recruited less due to the blockade. Furthermore, we demonstrated the decreased fibrocyte recruitment was associated with chemokine reductions in lung. Our study discovers the 4-1BB pathway signaling enhances inflammatory response and promotes pulmonary fibrosis induced by crystalline silica. The findings here provide novel insights into the molecular events that control crystalline silica-induced lung inflammation and fibrosis through regulating Th responses and the recruitment of fibrocytes in crystalline silica-exposed lung.
Collapse
|
44
|
Li C, Li X, Deng C, Guo C. Circulating Fibrocytes Are Increased in Neonates with Bronchopulmonary Dysplasia. PLoS One 2016; 11:e0157181. [PMID: 27309347 PMCID: PMC4911073 DOI: 10.1371/journal.pone.0157181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/25/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is characterized by the aberrant remodeling of the lung parenchyma, resulting from accumulation of fibroblasts or myofibroblasts. Circulating fibrocytes are implied in pulmonary fibrosis, but whether these cells are associated with the development of BPD or the progressive fibrosis is unknown. The aim of the present study was to investigate the occurrence of fibrocytes in peripheral venous blood and explore whether these cells might be associated with severity of BPD. METHODS We investigated circulating fibrocytes in 66 patients with BPD, 23 patients with acute respiratory distress syndrome(ARDS) and 11 normal subjects. Circulating fibrocytes were defined and quantified as cells positive for CD45 andcollagen-1 by flow cytometry. Furthermore, serum SDF-1/CXCL12 and TGF-β1 were evaluated using ELISA methods. We also investigated the clinical value of fibrocyte counts by comparison with standard clinical parameters. RESULTS The patients with BPD had significantly increased numbers of fibrocytes compared to the controls (p < 0.01). Patients with ARDS were not different from healthy control subjects. There was a correlation between the number of fibrocytes and pulmonary hypertension or oxygen saturation (p < 0.05). Fibrocyte numbers were not correlated with other clinical or functional variables or radiologic severity scores. The fibrocyte attractant chemokine CXCL12 increased in plasma (p < 0.05) and was detectable in the bronchoalveolar lavage fluid of 40% of the patients but not in controls. CONCLUSION These findings indicate that circulating fibrocytes are increased in patients with BPD and may contribute to pulmonary fibrosis in BPD. Circulating fibrocytes, likely recruited through the CXCR4/CXCL12 axis, might contribute to the production of TGF-β1 for the expansion of fibroblast/myofibroblast population in BPD.
Collapse
Affiliation(s)
- Chun Li
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Li
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Chun Deng
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's hospital, Chongqing Medical University, Chongqing, 400014, P.R. China
| | - Chunbao Guo
- Department of Pediatric General Surgery and Liver Transplantation, Children's hospital, Chongqing Medical University, Chongqing, 400014, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's hospital, Chongqing Medical University, Chongqing, 400014, P.R. China
| |
Collapse
|
45
|
Circulating fibrocytes: Will the real fibrocyte please stand up? J Allergy Clin Immunol 2016; 137:1625-6. [DOI: 10.1016/j.jaci.2016.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/27/2016] [Indexed: 11/19/2022]
|
46
|
Reply. J Allergy Clin Immunol 2016; 137:1626. [PMID: 27012640 DOI: 10.1016/j.jaci.2016.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/29/2016] [Indexed: 11/23/2022]
|