1
|
Kim YY, Jeong S, Lee SW, Lee SJ, Rho MC, Kim SH, Lee S. Bakuchicin alleviates ovalbumin-induced allergic asthma by regulating M2 macrophage polarization. Inflamm Res 2024; 73:725-737. [PMID: 38538755 DOI: 10.1007/s00011-024-01859-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/20/2023] [Accepted: 02/02/2024] [Indexed: 04/30/2024] Open
Abstract
OBJECTIVE Asthma is an airway inflammatory disease caused by activation of numerous immune cells including macrophages. Bakuchicin (BKC) is known to exhibit anti-inflammatory effects and type 2 T helper (Th2) regulation, but has not been investigated for airway inflammation. This study aimed to evaluate the effects of BKC on airway inflammation and demonstrate the mechanisms of macrophage polarization. METHODS The anti-inflammatory effects were determined using lipopolysaccharide (LPS)-stimulated macrophages. The ovalbumin (OVA)-induced asthma mouse model was used to evaluate the effects of BKC on airway inflammation and Th2 responses. Moreover, the effect of BKC on macrophage polarization was confirmed in bone marrow-derived macrophages (BMDMs) differentiation. RESULTS BKC suppressed nitric oxide production and expression of pro-inflammatory cytokines by inhibiting signaling pathway in LPS-stimulated macrophages. In an OVA-induced asthma model, BKC treatment alleviated histological changes and mast cell infiltration and reduced the levels of eosinophil peroxidase, β-hexosaminidase, and immunoglobulin levels. In addition, BKC alleviated Th2 responses and M2 macrophage populations in bronchoalveolar fluid. In BMDMs, BKC suppressed IL-4-induced M2 macrophage polarization and the expression of M2 markers such as arginase-1 and Fizz-1 through inhibiting sirtuin 2 levels. CONCLUSION BKC could be a drug candidate for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Yeon-Yong Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seungwon Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Seung Woong Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Seung-Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Mun-Chual Rho
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Sang-Hyun Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Soyoung Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea.
| |
Collapse
|
2
|
Wang J, Luo J, Rotili D, Mai A, Steegborn C, Xu S, Jin ZG. SIRT6 Protects Against Lipopolysaccharide-Induced Inflammation in Human Pulmonary Lung Microvascular Endothelial Cells. Inflammation 2024; 47:323-332. [PMID: 37819455 DOI: 10.1007/s10753-023-01911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Inflammatory response in the pulmonary endothelium drives the pathogenesis of acute lung injury and sepsis. Sirtuin 6 (SIRT6), a member of class III NAD+-dependent deacetylases belonging to the sirtuin family, regulates senescence, metabolism, and inflammation and extends lifespan in mice and model organisms. However, the role of SIRT6 in pulmonary endothelial inflammation is unknown. Thus, we hypothesized that SIRT6 suppresses inflammatory response in human lung microvascular cells (HLMEC) and ensues monocyte adhesion to endothelial cells. Primary HLMECs were treated with control or SIRT6 adenovirus or SIRT6 agonist, with or without lipopolysaccharide (LPS) treatment. We observed that treatment with LPS did not affect the protein expression of SIRT6 in HLMECs. However, adenovirus-mediated SIRT6 overexpression attenuated LPS-induced VCAM1 gene and protein expression, followed by decreased monocyte adhesion to endothelial cells. Similarly, activation of SIRT6 by a recently reported SIRT6 activator UBCS039, but not the regioisomer negative control compound UBCS060, ameliorated LPS-induced VCAM1 mRNA and protein expression as well as monocyte adhesion. Moreover, luciferase assay revealed that SIRT6 adenovirus decreased the activity of NF-κB, the master regulator of vascular inflammation. Taken together, these results indicate that molecular and pharmacological activation of SIRT6 protects against lung microvascular inflammation via suppressing NF-κB activation, implicating the therapeutic potential of the SIRT6 activators for lung disorders associated with microvascular inflammation.
Collapse
Affiliation(s)
- Jinping Wang
- Aab Cardiovascular Research Institute (CVRI), Department of Medicine, University of Rochester School of Medicine and Dentistry , 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
- Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 518035, Shenzhen, China
- School of Business Administration, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Jinque Luo
- Aab Cardiovascular Research Institute (CVRI), Department of Medicine, University of Rochester School of Medicine and Dentistry , 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
- Present Address: Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440, Bayreuth, Germany
| | - Suowen Xu
- Aab Cardiovascular Research Institute (CVRI), Department of Medicine, University of Rochester School of Medicine and Dentistry , 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
- Present address: Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute (CVRI), Department of Medicine, University of Rochester School of Medicine and Dentistry , 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA.
| |
Collapse
|
3
|
Quan J, Wen X, Su G, Zhong Y, Huang T, Xiong Z, Huang J, Lv Y, Li S, Luo S, Luo C, Cai X, Lai X, Xiang Y, Zheng SG, Shao Y, Lin H, Gao X, Tang J, Lai T. Epithelial SIRT6 governs IL-17A pathogenicity and drives allergic airway inflammation and remodeling. Nat Commun 2023; 14:8525. [PMID: 38135684 PMCID: PMC10746710 DOI: 10.1038/s41467-023-44179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Dysregulation of IL-17A is closely associated with airway inflammation and remodeling in severe asthma. However, the molecular mechanisms by which IL-17A is regulated remain unclear. Here we identify epithelial sirtuin 6 (SIRT6) as an epigenetic regulator that governs IL-17A pathogenicity in severe asthma. Mice with airway epithelial cell-specific deletion of Sirt6 are protected against allergen-induced airway inflammation and remodeling via inhibiting IL-17A-mediated inflammatory chemokines and mesenchymal reprogramming. Mechanistically, SIRT6 directly interacts with RORγt and mediates RORγt deacetylation at lysine 192 via its PPXY motifs. SIRT6 promotes RORγt recruitment to the IL-17A gene promoter and enhances its transcription. In severe asthma patients, high expression of SIRT6 positively correlates with airway remodeling and disease severity. SIRT6 inhibitor (OSS_128167) treatment significantly attenuates airway inflammation and remodeling in mice. Collectively, these results uncover a function for SIRT6 in regulating IL-17A pathogenicity in severe asthma, implicating SIRT6 as a potential therapeutic target for severe asthma.
Collapse
Affiliation(s)
- Jingyun Quan
- Department of Respiratory and Critical Care Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China
- Department of Health Management & Physical Examination Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaoxia Wen
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Guomei Su
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yu Zhong
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Tong Huang
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhilin Xiong
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jiewen Huang
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yingying Lv
- Department of Respiratory and Critical Care Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China
| | - Shihai Li
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Shuhua Luo
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Chaole Luo
- Department of Respiratory and Critical Care Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China
| | - Xin Cai
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xianwen Lai
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yuanyuan Xiang
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Song Guo Zheng
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China
| | - Yiming Shao
- Department of Respiratory and Critical Care Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China
| | - Haitao Lin
- Department of Health Management & Physical Examination Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiao Gao
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Jing Tang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Tianwen Lai
- Department of Respiratory and Critical Care Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
4
|
Chen S, Wu M, Xiong Z, Huang J, Lv Y, Li Y, Zeng M, Lai T. Myeloid-Specific SIRT6 Deletion Protects Against Particulate Matter (PM 2.5)-Induced Airway Inflammation. Int J Chron Obstruct Pulmon Dis 2023; 18:1135-1144. [PMID: 37323542 PMCID: PMC10266380 DOI: 10.2147/copd.s398796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/30/2023] [Indexed: 06/17/2023] Open
Abstract
Purpose Particulate matter (PM2.5) is a common risk factor for airway inflammation. Alveolar macrophages play a critical role in airway inflammation. Sirtuin 6 (SIRT6) is a class Ill histone deacetylase that exerts an anti-inflammatory effect in airway diseases. However, the role of SIRT6 on PM2.5-induced airway inflammation in macrophages remains unclear. We aimed to determine whether SIRT6 protects against PM2.5-induced airway inflammation in macrophages. Methods The effect of SIRT6 on PM2.5-induced airway inflammation was assessed by using THP1 cells or bone marrow-derived macrophages (BMDMs) exposed to PM2.5 in vitro and myeloid cell-specific SIRT6 conditional knockout mice (Sirt6fl/fl-LysMCre) in vivo. Results PM2.5 increased SIRT6 expression in THP1 cells, but SIRT6 gene silencing decreased PM2.5 induced inflammatory cytokines in THP1 cells. Moreover, the expression of SIRT6 and inflammatory cytokines was also decreased in BMDMs with myeloid-specific deletion of SIRT6 after stimulation of PM2.5. In vivo, Sirt6fl/fl-LysMCre mice substantially decreased airway inflammation in response to PM2.5 exposure. Conclusion Our results revealed that SIRT6 promotes the PM2.5-induced airway inflammation in macrophages and indicated that inhibition of SIRT6 in macrophages may represent therapeutic strategy for airway disorders induced by airborne particulate pollution.
Collapse
Affiliation(s)
- Shaopeng Chen
- Institute of Respiratory Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
- Blood Donation Service Department, Zhanjiang Blood Center, Zhanjiang, People’s Republic of China
| | - Mindan Wu
- Department of Pulmonary and Critical Care Medicine, Shantou Central Hospital, Shantou, People’s Republic of China
| | - Zhilin Xiong
- Institute of Respiratory Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
| | - Jiewen Huang
- Institute of Respiratory Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
| | - Yingying Lv
- Institute of Respiratory Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
| | - Yuyan Li
- Department of Pulmonary and Critical Care Medicine, Dongguan Hospital of Southern Medical University, Dongguan, People’s Republic of China
| | - Minjuan Zeng
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, People’s Republic of China
| | - Tianwen Lai
- Institute of Respiratory Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
| |
Collapse
|
5
|
Bae EJ, Park BH. Multiple Roles of Sirtuin 6 in Adipose Tissue Inflammation. Diabetes Metab J 2023; 47:164-172. [PMID: 36631993 PMCID: PMC10040615 DOI: 10.4093/dmj.2022.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/03/2022] [Indexed: 01/13/2023] Open
Abstract
Adipose tissue (AT) inflammation is strongly associated with obesity-induced insulin resistance. When subjected to metabolic stress, adipocytes become inflamed and secrete a plethora of cytokines and chemokines, which recruit circulating immune cells to AT. Although sirtuin 6 (Sirt6) is known to control genomic stabilization, aging, and cellular metabolism, it is now understood to also play a pivotal role in the regulation of AT inflammation. Sirt6 protein levels are reduced in the AT of obese humans and animals and increased by weight loss. In this review, we summarize the potential mechanism of AT inflammation caused by impaired action of Sirt6 from the immune cells' point of view. We first describe the properties and functions of immune cells in obese AT, with an emphasis on discrete macrophage subpopulations which are central to AT inflammation. We then highlight data that links Sirt6 to functional phenotypes of AT inflammation. Importantly, we discuss in detail the effects of Sirt6 deficiency in adipocytes, macrophages, and eosinophils on insulin resistance or AT browning. In our closing perspectives, we discuss emerging issues in this field that require further investigation.
Collapse
Affiliation(s)
- Eun Ju Bae
- School of Pharmacy, Chonbuk National University, Jeonju, Korea
- Corresponding authors: Eun Ju Bae https://orcid.org/0000-0003-1693-8290 School of Pharmacy, Chonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea E-mail:
| | - Byung-Hyun Park
- Department of Biochemistry and Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
- Byung-Hyun Park https://orcid.org/0000-0003-3768-4285 Department of Biochemistry and Research Institute for Endocrine Sciences, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea E-mail:
| |
Collapse
|
6
|
Dong XC. Sirtuin 6-A Key Regulator of Hepatic Lipid Metabolism and Liver Health. Cells 2023; 12:cells12040663. [PMID: 36831330 PMCID: PMC9954390 DOI: 10.3390/cells12040663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Sirtuin 6 (SIRT6) is an NAD-dependent deacetylase/deacylase/mono-ADP ribosyltransferase, a member of the sirtuin protein family. SIRT6 has been implicated in hepatic lipid homeostasis and liver health. Hepatic lipogenesis is driven by several master regulators including liver X receptor (LXR), carbohydrate response element binding protein (ChREBP), and sterol regulatory element binding protein 1 (SREBP1). Interestingly, these three transcription factors can be negatively regulated by SIRT6 through direct deacetylation. Fatty acid oxidation is regulated by peroxisome proliferator activated receptor alpha (PPARα) in the liver. SIRT6 can promote fatty acid oxidation by the activation of PPARα or the suppression of miR-122. SIRT6 can also directly modulate acyl-CoA synthetase long chain family member 5 (ACSL5) activity for fatty acid oxidation. SIRT6 also plays a critical role in the regulation of total cholesterol and low-density lipoprotein (LDL)-cholesterol through the regulation of SREBP2 and proprotein convertase subtilisin/kexin type 9 (PCSK9), respectively. Hepatic deficiency of Sirt6 in mice has been shown to cause hepatic steatosis, inflammation, and fibrosis, hallmarks of alcoholic and nonalcoholic steatohepatitis. SIRT6 can dampen hepatic inflammation through the modulation of macrophage polarization from M1 to M2 type. Hepatic stellate cells are a key cell type in hepatic fibrogenesis. SIRT6 plays a strong anti-fibrosis role by the suppression of multiple fibrogenic pathways including the transforming growth factor beta (TGFβ)-SMAD family proteins and Hippo pathways. The role of SIRT6 in liver cancer is quite complicated, as both tumor-suppressive and tumor-promoting activities have been documented in the literature. Overall, SIRT6 has multiple salutary effects on metabolic homeostasis and liver health, and it may serve as a therapeutic target for hepatic metabolic diseases. To date, numerous activators and inhibitors of SIRT6 have been developed for translational research.
Collapse
Affiliation(s)
- X. Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Liu Y, Shi G. Roles of sirtuins in asthma. Respir Res 2022; 23:251. [PMID: 36117172 PMCID: PMC9482752 DOI: 10.1186/s12931-022-02175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacylases and deacetylases that participate in a variety of cellular processes, including transcriptional activity, energy metabolism, DNA damage response, inflammation, apoptosis, autophagy, and oxidative stress. As a result, sirtuins are linked to multiple pathophysiological processes, such as cardiovascular diseases, metabolic diseases, autoimmune diseases, infectious diseases, and respiratory diseases. Asthma is the most common respiratory disease, which is characterized by airway inflammation and airway remodeling. Accumulating evidence has indicated that sirtuins are involved in the pathogenesis of asthma. Furthermore, some studies have suggested that sirtuin modulators are potential agents for the treatment of asthma via alteration of the expression or activity of sirtuins. In this review, we illustrate the role of sirtuins in asthma, discuss related molecular mechanisms, and evaluate the sirtuins-targeted therapy for asthma.
Collapse
|
8
|
Diver S, Brightling CE, Greening NJ. Novel Therapeutic Strategies in Asthma-Chronic Obstructive Pulmonary Disease Overlap. Immunol Allergy Clin North Am 2022; 42:671-690. [DOI: 10.1016/j.iac.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Li Y, Jin J, Wang Y. SIRT6 Widely Regulates Aging, Immunity, and Cancer. Front Oncol 2022; 12:861334. [PMID: 35463332 PMCID: PMC9019339 DOI: 10.3389/fonc.2022.861334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
SIRT6 is a member of the Sir2-like family in mammals. Recent structural and biochemical studies have characterized SIRT6 as having deacetylation, defatty-acylation, and mono-ADP-ribosylation activities, which determine its important regulatory roles during physiological and pathological processes. This review focuses mainly on the regulatory functions of SIRT6 in aging, cancer, and, especially, immunity. Particular attention is paid to studies illustrating the critical role of SIRT6 in the regulation of immune cells from the viewpoints of immunesenescence, immunometabolism, and tumor immunology. Owing to its role in regulating the function of the immune system, SIRT6 can be considered to be a potential therapeutic target for the treatment of diseases.
Collapse
Affiliation(s)
- Yunjia Li
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
| | - Jing Jin
- Institute of Immunology and the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, China
| | - Yi Wang
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China.,Institute of Immunology and the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Jang HY, Ha DH, Rah SY, Lee DH, Lee SM, Park BH. Sirtuin 6 is a negative regulator of FcεRI signaling and anaphylactic responses. J Allergy Clin Immunol 2022; 149:156-167.e7. [PMID: 34051221 DOI: 10.1016/j.jaci.2021.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Binding IgE to a cognate allergen causes aggregation of Fcε receptor I (FcεRI) in mast cells, resulting in activation of receptor-associated Src family tyrosine kinases, including Lyn and Syk. Protein tyrosine phosphatase, receptor type C (PTPRC), also known as CD45, has emerged as a positive regulator of FcεRI signaling by dephosphorylation of the inhibitory tyrosine of Lyn. OBJECTIVE Sirtuin 6 (Sirt6), a NAD+-dependent deacetylase, exhibits an anti-inflammatory property. It remains to be determined, however, whether Sirt6 attenuates mast cell-associated diseases, including anaphylaxis. METHODS FcεRI signaling and mast cell degranulation were measured after IgE cross-linking in murine bone marrow-derived mast cells (BMMCs) and human cord blood-derived mast cells. To investigate the function of Sirt6 in mast cell activation in vivo, we used mast cell-dependent animal models of passive systemic anaphylaxis (PSA) and passive cutaneous anaphylaxis (PCA). RESULTS Sirt6-deficient BMMCs augmented IgE-FcεRI-mediated signaling and degranulation compared to wild-type BMMCs. Reconstitution of mast cell-deficient KitW-sh/W-sh mice with BMMCs received from Sirt6 knockout mice developed more severe PSA and PCA compared to mice engrafted with wild-type BMMCs. Similarly, genetic overexpression or pharmacologic activation of Sirt6 suppressed mast cell degranulation and blunted responses to PCA. Mechanistically, Sirt6 deficiency increased PTPRC transcription via acetylating histone H3, leading to enhanced aggregation of FcεRI in BMMCs. Finally, we recapitulated the Sirt6 regulation of PTPRC and FcεRI signaling in human mast cells. CONCLUSIONS Sirt6 acts as a negative regulator of FcεRI signaling cascade in mast cells by suppressing PTPRC transcription. Activation of Sirt6 may therefore represent a promising and novel therapeutic strategy for anaphylaxis.
Collapse
Affiliation(s)
- Hyun-Young Jang
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Korea
| | - Do Hyun Ha
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Korea
| | - So-Young Rah
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Korea
| | - Dong-Hyun Lee
- Department of Obstetrics and Gynecology, Chonbuk National University Medical School, Jeonju, Korea
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Korea.
| |
Collapse
|
11
|
Guo C, Hua Y, Qian Z. Differentially expressed genes, lncRNAs, and competing endogenous RNAs in Kawasaki disease. PeerJ 2021; 9:e11169. [PMID: 34026343 PMCID: PMC8123229 DOI: 10.7717/peerj.11169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/06/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Kawasaki disease (KD) is an acute and febrile systemic vasculitis of unknown etiology. This study aimed to identify the competing endogenous RNA (ceRNA) networks of lncRNAs, miRNAs, and genes in KD and explore the molecular mechanisms underlying KD. METHODS GSE68004 and GSE73464 datasets were downloaded from the Gene Expression Omnibus. Differentially expressed lncRNAs (DElncRNAs) and genes (DEGs) in KD were identified using the criteria of p < 0.05 and | log2 (fold change) | ≥ 1. MicroRNAs (miRNAs) related to KD were searched from databases. The lncRNA-miRNA-mRNA networks involving the DElncRNAs and DEGs were constructed. RESULTS A total of 769 common upregulated, 406 common downregulated DEGs, and six DElncRNAs were identified in the KD samples. The lncRNA-miRNA-mRNA network consisted of four miRNAs, three lncRNAs (including the upregulated PSORS1C3, LINC00999, and the downregulated SNHG5) and four DEGs (including the downregulated GATA3 and the upregulated SOD2, MAPK14, and PPARG). Validation in the GSE18606 dataset showed that intravenous immunoglobulin treatment significantly alleviated the deregulated profiles of the above RNAs in KD patients. Three ceRNA networks of LINC00999-hsa-miR-6780-SOD2, PSORS1C3-hsa-miR-216a-PPARG/MAPK14, and SNHG5-hsa-miR-132/hsa-miR-92-GATA3 were identified. Four genes were associated with functional categories, such as inflammatory response and vascular endothelial cell. CONCLUSIONS The ceRNA networks involve genes, such as SOD2, MAPK14, and PPARG, and lncRNAs, including PSORS1C3, LINC00999, and SNHG5, which might play a key role in the pathogenesis and development of KD by regulating inflammation.
Collapse
Affiliation(s)
- Changsheng Guo
- Department of Pediatrics, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuanqing Hua
- Nanjing Maigaoqiao Community Health Service Center, Nanjing, China
| | - Zuanhao Qian
- Department of Pediatrics, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Guo Y, Proaño-Pérez E, Muñoz-Cano R, Martin M. Anaphylaxis: Focus on Transcription Factor Activity. Int J Mol Sci 2021; 22:ijms22094935. [PMID: 34066544 PMCID: PMC8124588 DOI: 10.3390/ijms22094935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 05/02/2021] [Indexed: 12/11/2022] Open
Abstract
Anaphylaxis is a severe allergic reaction, rapid in onset, and can lead to fatal consequences if not promptly treated. The incidence of anaphylaxis has risen at an alarming rate in past decades and continues to rise. Therefore, there is a general interest in understanding the molecular mechanism that leads to an exacerbated response. The main effector cells are mast cells, commonly triggered by stimuli that involve the IgE-dependent or IgE-independent pathway. These signaling pathways converge in the release of proinflammatory mediators, such as histamine, tryptases, prostaglandins, etc., in minutes. The action and cell targets of these proinflammatory mediators are linked to the pathophysiologic consequences observed in this severe allergic reaction. While many molecules are involved in cellular regulation, the expression and regulation of transcription factors involved in the synthesis of proinflammatory mediators and secretory granule homeostasis are of special interest, due to their ability to control gene expression and change phenotype, and they may be key in the severity of the entire reaction. In this review, we will describe our current understanding of the pathophysiology of human anaphylaxis, focusing on the transcription factors' contributions to this systemic hypersensitivity reaction. Host mutation in transcription factor expression, or deregulation of their activity in an anaphylaxis context, will be updated. So far, the risk of anaphylaxis is unpredictable thus, increasing our knowledge of the molecular mechanism that leads and regulates mast cell activity will enable us to improve our understanding of how anaphylaxis can be prevented or treated.
Collapse
Affiliation(s)
- Yanru Guo
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain; (Y.G.); (E.P.-P.)
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Elizabeth Proaño-Pérez
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain; (Y.G.); (E.P.-P.)
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Rosa Muñoz-Cano
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Allergy Section, Pneumology Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- ARADyAL (Asthma, Drug Adverse Reactions and Allergy) Research Network, 28029 Madrid, Spain
| | - Margarita Martin
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain; (Y.G.); (E.P.-P.)
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- ARADyAL (Asthma, Drug Adverse Reactions and Allergy) Research Network, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-4024541; Fax: +34-93-4035882
| |
Collapse
|
13
|
Pillai VB, Gupta MP. Is nuclear sirtuin SIRT6 a master regulator of immune function? Am J Physiol Endocrinol Metab 2021; 320:E399-E414. [PMID: 33308014 PMCID: PMC7988780 DOI: 10.1152/ajpendo.00483.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022]
Abstract
The ability to ward off pathogens with minimal damage to the host determines the immune system's robustness. Multiple factors, including pathogen processing, identification, secretion of mediator and effector molecules, and immune cell proliferation and differentiation into various subsets, constitute the success of mounting an effective immune response. Cellular metabolism controls all of these intricate processes. Cells utilize diverse fuel sources and switch back and forth between different metabolic pathways depending on their energy needs. The three most critical metabolic pathways on which immune cells depend to meet their energy needs are oxidative metabolism, glycolysis, and glutaminolysis. Dynamic switching between these metabolic pathways is needed for optimal function of the immune cells. Moreover, switching between these metabolic pathways needs to be tightly regulated to achieve the best results. Immune cells depend on the Warburg effect for their growth, proliferation, secretory, and effector functions. Here, we hypothesize that the sirtuin, SIRT6, could be a negative regulator of the Warburg effect. We also postulate that SIRT6 could act as a master regulator of immune cell metabolism and function by regulating critical signaling pathways.
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- Department of Surgery (Division of Cardiothoracic Surgery), Pritzker School of Medicine, Basic Science Division, University of Chicago, Chicago, Illinois
| | - Mahesh P Gupta
- Department of Surgery (Division of Cardiothoracic Surgery), Pritzker School of Medicine, Basic Science Division, University of Chicago, Chicago, Illinois
| |
Collapse
|
14
|
Sawada Y, Gallo RL. Role of Epigenetics in the Regulation of Immune Functions of the Skin. J Invest Dermatol 2020; 141:1157-1166. [PMID: 33256976 DOI: 10.1016/j.jid.2020.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
This review is intended to illuminate the emerging understanding of epigenetic modifications that regulate both adaptive and innate immunity in the skin. Host defense of the epidermis and dermis involves the interplay of many cell types to enable homeostasis; tolerance to the external environment; and appropriate response to transient microbial, chemical, and physical insults. To understand this process, the study of cutaneous immunology has focused on immune responses that reflect both adaptive learned and genetically programmed innate defense systems. However, recent advances have begun to reveal that epigenetic modifications of chromatin structure also have a major influence on the skin immune system. This deeper understanding of how enzymatic changes in chromatin structure can modify the skin immune system and may explain how environmental exposures during life, and the microbiome, lead to both short-term and long-term changes in cutaneous allergic and other inflammatory processes. Understanding the mechanisms responsible for alterations in gene and chromatin structure within skin immunocytes could provide key insights into the pathogenesis of inflammatory skin diseases that have thus far evaded understanding by dermatologists.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of California, San Diego, San Diego, California, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, San Diego, California, USA.
| |
Collapse
|
15
|
Mazumder S, Barman M, Bandyopadhyay U, Bindu S. Sirtuins as endogenous regulators of lung fibrosis: A current perspective. Life Sci 2020; 258:118201. [PMID: 32781070 DOI: 10.1016/j.lfs.2020.118201] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Fibrotic lung diseases qualify among the most dreaded irreversible interstitial pulmonary complications with progressive yet largely unpredictable clinical course. Idiopathic pulmonary fibrosis (IPF) is the most challenging prototype characterized by unknown and complex molecular etiology, severe dearth of non-invasive therapeutic options and average lifespan of 2-5 years in patients post diagnosis. Lung fibrosis (LF) is a leading cause of death in the industrialized world with the propensity to contract, significantly increasing with age. Approximately 45% deaths in US are attributed to fibrotic diseases while around 7% respiratory disease-associated deaths, annually in UK, are actually attributed to IPF. Recent developments in the field of LF have unambiguously pointed towards the pivotal role of Sirtuins (SIRTs) in regulating disease progression, thereby qualifying as potential anti-fibrotic drug targets. These NAD+-dependent lysine deacetylases, deacylases and ADP-ribosyltransferases are evolutionarily conserved proteins, regulated by diverse metabolic/environmental factors and implicated in age-related degenerative and inflammatory disorders. While SIRT1, SIRT6 and SIRT7 are predominantly nuclear, SIRT3, SIRT4, SIRT5 are mainly mitochondrial and SIRT2 is majorly cytosolic with occasional nuclear translocation. SIRT1, SIRT3, SIRT6 and SIRT7 are documented as cytoprotective sirtuins implicated in cardiovascular, pulmonary and metabolic diseases including fibrosis; however functional roles of remaining sirtuins in pulmonary pathologies are yet elusive. Here, we provide a comprehensive recent update on the regulatory role of sirtuins on LF along with discussion on potential therapeutic modulation of endogenous Sirtuin expression through synthetic/plant-derived compounds which can help synthetic chemists and ethnopharmacologists to design new-generation cheap, non-toxic Sirtuin-based drugs against LF.
Collapse
Affiliation(s)
- Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Mukta Barman
- Department of Zoology, Cooch Behar Panchanan Barma University, Vivekananda Street, Cooch Behar, West Bengal 736101, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India; Division of Molecular Medicine, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kankurgachi, Kolkata, West Bengal 700054, India
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Vivekananda Street, Cooch Behar, West Bengal 736101, India.
| |
Collapse
|
16
|
Liu F, Shang YX. Sirtuin 6 attenuates epithelial-mesenchymal transition by suppressing the TGF-β1/Smad3 pathway and c-Jun in asthma models. Int Immunopharmacol 2020; 82:106333. [PMID: 32143002 DOI: 10.1016/j.intimp.2020.106333] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Allergic asthma is a chronic inflammatory airway disease involving airway remodeling. The histone deacetylase sirtuin6 (SIRT6) has protective effects in cardiac and liver fibrosis; however, its role in airway remodeling is unclear. In this study, we investigated the expression of SIRT6 in a rat model of airway remodeling and observed its effects on the epithelial-mesenchymal transition (EMT) in human bronchial epithelial 16HBE cells. Sprague-Dawley rats were sensitized and challenged with ovalbumin to induce airway remodeling or with phosphate-buffered saline as a control for different periods. Morphological changes, cell counts in the bronchoalveolar lavage fluid, and SIRT6 expression were assessed. 16HBE cells were transfected with plasmids to silence or overexpress SIRT6. Western blotting, quantitative polymerase chain reaction, Transwell assays, and cell proliferation assays were performed to examine the transforming growth factor (TGF)-β1-induced changes in EMT indicators and EMT-related cell behaviors. SIRT6 expression was upregulated in bronchial epithelial cells from rats with airway remodeling and in TGF-β1-treated 16HBE cells. SIRT6 overexpression affected TGF-β1-induced changes in EMT markers and EMT-like cell behaviors. In particular, SIRT6 overexpression alleviated the reduction in E-cadherin and the increases in N-cadherin, vimentin, alpha-smooth muscle actin, and metalloproteinase-9 levels in TGF-β1-treated 16HBE cells. Forced expression of SIRT6 also decreased the rates of cell migration and proliferation, reduced activation of phosphorylated Smad3 induced by TGF-β1 treatment, suppressed the acetylation level at histone H3K9, and inhibited the transcriptional activity of the c-Jun promotor. These results suggested that SIRT6 expression is upregulated during airway remodeling and modulates EMT in bronchial epithelial cells targeting Smad3 and c-Jun, highlighting a new therapeutic candidate for improving airway remodeling in asthma.
Collapse
Affiliation(s)
- Fen Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yun-Xiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
17
|
Tost J. A translational perspective on epigenetics in allergic diseases. J Allergy Clin Immunol 2019; 142:715-726. [PMID: 30195377 DOI: 10.1016/j.jaci.2018.07.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/19/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
The analysis of epigenetic modifications in allergic diseases has recently attracted substantial interest because epigenetic modifications can mediate the effects of the environment on the development of or protection from allergic diseases. Furthermore, recent research has provided evidence for an altered epigenomic landscape in disease-relevant cell populations. Although still in the early phase, epigenetic modifications, particularly DNA methylation and microRNAs, might have potential for assisting in the stratification of patients for treatment and complement or replace in the future biochemical or clinical tests. The first epigenetic biomarkers correlating with the successful outcome of immunotherapy have been reported, and with personalized treatment options being rolled out, epigenetic modifications might well play a role in monitoring or even predicting the response to tailored therapy. However, further studies in larger cohorts with well-defined phenotypes in specific cell populations need to be performed before their implementation. Furthermore, the epigenome provides an interesting target for therapeutic intervention, with microRNA mimics, inhibitors, and antisense oligonucleotides being evaluated in clinical trials in patients with other diseases. Selection or engineering of populations of extracellular vesicles and epigenetic editing represent novel tools for modulation of the cellular phenotype and responses, although further technological improvements are required. Moreover, interactions between the host epigenome and the microbiome are increasingly recognized, and interventions of the microbiome could contribute to modulation of the epigenome with a potential effect on the overall goal of prevention of allergic diseases.
Collapse
Affiliation(s)
- Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France.
| |
Collapse
|
18
|
Bang IH, Kwon OK, Hao L, Park D, Chung MJ, Oh BC, Lee S, Bae EJ, Park BH. Deacetylation of XBP1s by sirtuin 6 confers resistance to ER stress-induced hepatic steatosis. Exp Mol Med 2019; 51:1-11. [PMID: 31541078 PMCID: PMC6802632 DOI: 10.1038/s12276-019-0309-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
The active spliced form of X-box-binding protein 1 (XBP1s) is a key modulator of ER stress, but the functional role of its post-translational modification remains unclear. Here, we demonstrate that XBP1s is a deacetylation target of Sirt6 and that its deacetylation protects against ER stress-induced hepatic steatosis. Specifically, the abundance of acetylated XBP1s and concordant hepatic steatosis were increased in hepatocyte-specific Sirt6 knockout and obese mice but were decreased by genetic overexpression and pharmacological activation of Sirt6. Mechanistically, we identified that Sirt6 deacetylated a transactivation domain of XBP1s at Lys257 and Lys297 and promoted XBP1s protein degradation through the ubiquitin-proteasome system. Overexpression of XBP1s, but not its deacetylation mutant 2KR (K257/297R), in mice increased lipid accumulation in the liver. Importantly, in liver tissues obtained from patients with nonalcoholic fatty liver disease (NAFLD), the extent of XBP1s acetylation correlated positively with the NAFLD activity score but negatively with the Sirt6 level. Collectively, we present direct evidence supporting the importance of XBP1 acetylation in ER stress-induced hepatic steatosis. Activating a protein that regulates cellular health could protect against fat accumulation during the onset of non-alcoholic fatty liver disease (NAFLD). A high-fat diet disrupts the endoplasmic reticulum (ER), a cellular membrane network responsible for synthesizing and processing proteins and fats, and can lead to NAFLD development. Previous studies found that a protein called XBP1s activates fat-related genes during NAFLD. Byung-Hyun Park and Eun Ju Bae at Chonbuk National University in Jeonbuk, South Korea, and co-workers, recently demonstrated that high levels of a regulatory protein called Sirt6 limits liver inflammation and ER stress during high-fat diets. Now, in experiments on mouse models and human liver cells, Park’s team have shown that Sirt6 reduces liver ER stress by modifying XBP1s. Encouraging Sirt6 activation may help protect against NAFLD progression.
Collapse
Affiliation(s)
- In Hyuk Bang
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Oh Kwang Kwon
- College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Lihua Hao
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Dami Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Myung-Ja Chung
- Department of Pathology, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - Sangkyu Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun Ju Bae
- College of Pharmacy, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
19
|
Ma K, Lu N, Zou F, Meng FZ. Sirtuins as novel targets in the pathogenesis of airway inflammation in bronchial asthma. Eur J Pharmacol 2019; 865:172670. [PMID: 31542484 DOI: 10.1016/j.ejphar.2019.172670] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Sirtuins are NAD-dependent class III histone deacetylase, which modulate the epigenetic changes to influence the functions in normal and diseased conditions. Preclinical studies have described an increase in the levels of sirtuin 2 and decrease in the levels of sirtuin 6 in the lungs. Sirtuin 2 exerts proinflammatory actions and hence, its blockers reduce the airway inflammation and symptoms of asthma. On the other hand, sirtuin 6 is anti-inflammatory and its activators produce beneficial actions in asthma. The beneficial effects of sirtuin 6 have been attributed to decrease in acetylation of transcriptional factor GATA3 in the T cells, which is associated with decrease in the TH2 immune response. However, there seems to be dual role of sirtuin 1 in airway inflammation as its proinflammatory as well as anti-inflammatory actions have been described in asthma. The anti-inflammatory actions of sirtuin 1 have been attributed to decrease in acetylation of GATA3 and inhibition of Akt/NF-kappaB signaling. On the other hand, proinflammatory actions of sirtuin 1 have been attributed to increase in the expression of HIF-1α and VEGF along with repression of PPAR-γ activity. The present review discusses the role of different sirtuins in the pathogenesis of bronchial asthma. Moreover, it also discusses sirtuin-triggered signaling pathways that may contribute in modulating the disease state of bronchial asthma.
Collapse
Affiliation(s)
- Ke Ma
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Na Lu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Fei Zou
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Fan-Zheng Meng
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
20
|
Song MY, Kim SH, Ryoo GH, Kim MK, Cha HN, Park SY, Hwang HP, Yu HC, Bae EJ, Park BH. Adipose sirtuin 6 drives macrophage polarization toward M2 through IL-4 production and maintains systemic insulin sensitivity in mice and humans. Exp Mol Med 2019; 51:1-10. [PMID: 31113929 PMCID: PMC6529411 DOI: 10.1038/s12276-019-0256-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/29/2022] Open
Abstract
Adipose tissue inflammation is a reproducible feature of obesity and obesity-linked insulin resistance. Although sirtuin 6 (Sirt6) deficiency has previously been implicated in diet-induced obesity and systemic insulin resistance, the adipocyte-specific role of Sirt6 in the regulation of adipose tissue inflammation and systemic metabolic dysfunction in mice fed normal chow and in humans remains elusive. Here, using Adipoq-Cre-mediated adipocyte-specific Sirt6 knockout (aS6KO) mice, we explored whether adipocyte Sirt6 inhibits adipose tissue inflammation and its underlying mechanism. aS6KO mice fed normal chow gained more body weight and fat mass than wild-type mice and exhibited glucose intolerance and systemic insulin resistance. Measurement of plasma and tissue cytokines and flow cytometric analysis of adipose stromal vascular cells indicated a decrease in alternatively activated M2 macrophages in the adipose tissue of aS6KO mice. Mechanistically, Sirt6 regulated the expression of the canonical type 2 cytokine IL-4 by adipocytes in a cell autonomous manner, which in turn affects M2 macrophage polarization. Consistent with animal experimental data, the degree of obesity and insulin resistance demonstrated by the body mass index, fasting blood glucose and HbA1c correlated negatively with the expression of Sirt6 in human visceral fat tissues. Collectively, these results suggest that adipocyte Sirt6 regulates body weight gain and insulin sensitivity independent of diet, and the increased IL-4 production by Sirt6 and resultant M2 polarization of adipose tissue macrophages may attenuate proinflammatory responses in adipose tissue. A protein in adipose tissue (composed of fat cells) helps protect against inflammation and the development of resistance to insulin that develops in obesity and can lead to type 2 diabetes. Researchers in South Korea, led by Eun Ju Bae at Woosuk University, Wanju, and Byung-Hyun Park at Chonbuk National University, Jeonju, investigated the role of Sirt6 in mice and in human adipose tissue. Deleting the mouse gene that codes for Sirt6 in adipocytes promoted the impaired response to insulin and associated increase in blood glucose levels that are two key aspects of diabetes. Changes in biochemical signaling pathways controlling immune cells called macrophages were implicated in these effects and suggest an anti-inflammatory role for Sirt6. Analysis of human adipose tissue supported these findings. The research will help understand how obesity promotes type 2 diabetes.
Collapse
Affiliation(s)
- Mi-Young Song
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Sang Hoon Kim
- Department of Surgery, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Ga-Hee Ryoo
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Mi-Kyung Kim
- Research Institute of Dong-A ST Co. Ltd., Yongin, Gyeonggi, 17073, Republic of Korea
| | - Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Hong Pil Hwang
- Department of Surgery, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Hee Chul Yu
- Department of Surgery, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Eun Ju Bae
- College of Pharmacy, Woosuk University, Wanju, Jeonbuk, 55338, Republic of Korea.
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
21
|
Koo JH, Jang HY, Lee Y, Moon YJ, Bae EJ, Yun SK, Park BH. Myeloid cell-specific sirtuin 6 deficiency delays wound healing in mice by modulating inflammation and macrophage phenotypes. Exp Mol Med 2019; 51:1-10. [PMID: 31028245 PMCID: PMC6486573 DOI: 10.1038/s12276-019-0248-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/27/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
We recently reported that myeloid cell-expressed sirtuin 6 (Sirt6) plays a crucial role in M1 macrophage polarization and chemotaxis. Given the prominent role of macrophages during wound repair and macrophage heterogeneity, we hypothesized that a Sirt6 deficiency in myeloid cells would delay skin wound closure by affecting the phenotypes of macrophages in wounds. To address this question, a full-thickness excisional lesion was made in the dorsal skin of myeloid cell-specific Sirt6 knockout (KO) and wild-type mice. Wound closure was delayed in the KO mice, which exhibited less collagen deposition, suppressed angiogenesis, and reduced expression of wound healing-related genes compared to the wild-type mice. Using immunohistochemical, flow cytometric, and gene-expression analyses of macrophage subpopulations from wound tissue, we identified increased infiltration of M1 macrophages with a concomitant decrease in M2 macrophage numbers in the KO mice compared to the wild-type mice. Consistent with the in vivo wound closure defects observed in the KO mice, keratinocytes and fibroblasts treated with KO macrophage-derived conditioned medium migrated slower than those treated with wild-type macrophage-derived conditioned medium. An analysis of downstream signaling pathways indicated that impaired Akt signaling underlies the decreased M2 phenotypic switching in KO mice. These results suggest that a macrophage phenotypic switch induced by Sirt6 deficiency contributes to impaired wound healing in mice.
Collapse
Affiliation(s)
- Jeung-Hyun Koo
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Hyun-Young Jang
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Youngyi Lee
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Young Jae Moon
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Eun Ju Bae
- College of Pharmacy, Woosuk University, Wanju, Jeonbuk, 55338, Republic of Korea
| | - Seok-Kweon Yun
- Department of Dermatology and Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea.
- Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Jeonbuk, 54907, Republic of Korea.
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
22
|
Woo SJ, Noh HS, Lee NY, Cheon YH, Yi SM, Jeon HM, Bae EJ, Lee SI, Park BH. Myeloid sirtuin 6 deficiency accelerates experimental rheumatoid arthritis by enhancing macrophage activation and infiltration into synovium. EBioMedicine 2018; 38:228-237. [PMID: 30429089 PMCID: PMC6306347 DOI: 10.1016/j.ebiom.2018.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 11/02/2018] [Indexed: 11/28/2022] Open
Abstract
Background We recently reported that myeloid sirtuin 6 (Sirt6) is a critical determinant of phenotypic switching and the migratory responses of macrophages. Given the prominent role of macrophages in the pathogenesis of rheumatoid arthritis (RA), we tested whether myeloid Sirt6 deficiency affects the development and exacerbation of RA. Methods Arthritis was induced in wild type and myeloid Sirt6 knockout (mS6KO) mice using collagen-induced and K/BxN serum transfer models. Sirt6 expression (or activity) and inflammatory activities were compared in peripheral blood mononuclear cells (PBMCs) and monocytes/macrophages obtained from patients with RA or osteoarthritis. Findings Based on clinical score, ankle thickness, pathology, and radiology, arthritis was more severe in mS6KO mice relative to wild type, with a greater accumulation of macrophages in the synovium. Consistent with these findings, myeloid Sirt6 deficiency increased the migration potential of macrophages toward synoviocyte-derived chemoattractants. Mechanistically, Sirt6 deficiency in macrophages caused an inflammation with increases in acetylation and protein stability of forkhead box protein O1. Conversely, ectopic overexpression of Sirt6 in knockout cells reduced the inflammatory responses. Lastly, PBMCs and monocytes/macrophages from RA patients exhibited lower expression of Sirt6 than those from patients with osteoarthritis, and their Sirt6 activity was inversely correlated with disease severity. Interpretation Our data identify a role of myeloid Sirt6 in clinical and experimental RA and suggest that myeloid Sirt6 may be an intriguing therapeutic target. Fund Medical Research Center Program and Basic Science Research Program through the National Research Foundation of Korea. Myeloid Sirt6 deficiency aggravates the joint destruction by increasing recruitment of macrophages into arthritic joints. Myeloid Sirt6 deacetylates FoxO1 to promote proteasomal degradation. Overexpression of Sirt6 greatly attenuates inflammatory activity of human macrophages. Sirt6 expression and activity decrease in blood monocytes and joint macrophages from RA patients.
Collapse
Affiliation(s)
- Seong Ji Woo
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Hae Sook Noh
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongnam 52828, Republic of Korea
| | - Na Young Lee
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Yun-Hong Cheon
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sang Mi Yi
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongnam 52828, Republic of Korea
| | - Hyun Min Jeon
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongnam 52828, Republic of Korea
| | - Eun Ju Bae
- College of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338, Republic of Korea
| | - Sang-Il Lee
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongnam 52828, Republic of Korea.
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
23
|
Bae UJ, Park EO, Park J, Jung SJ, Ham H, Yu KW, Park YJ, Chae SW, Park BH. Gypenoside UL4-RichGynostemma pentaphyllumExtract Exerts a Hepatoprotective Effect on Diet-Induced Nonalcoholic Fatty Liver Disease. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1315-1332. [DOI: 10.1142/s0192415x18500696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) arises from nonalcoholic fatty liver disease (NAFLD) as a consequence of oxidative stress. Gynostemma pentaphyllum extract (GPE) is proven to be beneficial for patients suffering from NAFLD. However, the precise mechanism by which GPE confers these benefits remains largely unknown. The purpose of this study was to investigate the underlying mechanism and to determine whether supplementation with the newly discovered GPE gypenoside UL4 mitigates NASH progression. Male c57BL/6 mice were fed a normal chow diet, a methionine choline-deficient (MCD) diet, or an MCD diet supplemented with various doses of UL4-rich GPE for eight weeks. GPE supplementation suppressed oxidative stress induced by the MCD diet by increasing levels of sirtuin 6 and phase 2 anti-oxidant enzymes in mouse liver and HepG2 cells. Additionally, GPE supplementation prevented diet-induced hepatic fat accumulation, hepatocellular injury, inflammation, and fibrosis in mice fed the MCD diet. These results indicate the possible therapeutic potential of dietary supplementation of UL4-rich GPE in preventing the development of fatty liver and its progression to NASH.
Collapse
Affiliation(s)
- Ui-Jin Bae
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Eun-Ock Park
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - John Park
- Department of Chemistry, Chonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Hyeonmi Ham
- Celltrion Chemical Research Institute, Yongin, Gyeonggi 17015, Republic of Korea
| | - Kee-Won Yu
- Celltrion Chemical Research Institute, Yongin, Gyeonggi 17015, Republic of Korea
| | - Young-Jun Park
- Celltrion Chemical Research Institute, Yongin, Gyeonggi 17015, Republic of Korea
| | - Soo-Wan Chae
- Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
24
|
Rothenberg ME, Saito H, Peebles RS. Advances in mechanisms of allergic disease in 2016. J Allergy Clin Immunol 2017; 140:1622-1631. [PMID: 29038009 DOI: 10.1016/j.jaci.2017.08.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/30/2022]
Abstract
This review highlights advances in mechanisms of allergic disease, particularly type 2 innate lymphoid cells; TH2 lymphocytes; eicosanoid regulation of inflammation; extracellular vesicles in allergic responses; IL-33; microbiome properties, especially as they relate to mucosal barrier function; and a series of findings concerning the allergic inflammatory cells eosinophils, basophils, and mast cells. During the last year, mechanistic advances occurred in understanding type 2 innate lymphoid cells, particularly related to their response to ozone, involvement with experimental food allergy responses, and regulation by IL-33. Novel ways of regulating TH2 cells through epigenetic regulation of GATA-3 through sirtuin-1, a class III histone deacetylase, were published. The understanding of eicosanoid regulation of inflammation increased and focused on additional properties of phospholipase A2 and the role of prostaglandin D2 and its receptors and inhibitory prostaglandin E2 pathways. Mechanisms through which extracellular vesicles are released and contribute to allergic responses were reported. There was a deeper appreciation of mucosal barrier function, the epithelial alarmin IL-33, and the microbiome. Finally, there were advances concerning allergic inflammatory cells (mast cells, basophils, and eosinophils) that will undoubtedly have an effect on disease understanding and new therapeutic strategies.
Collapse
Affiliation(s)
- Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| | - Hirohisa Saito
- National Research Institute for Child Health & Development, Tokyo, Japan
| | - R Stokes Peebles
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| |
Collapse
|
25
|
Lee Y, Ka SO, Cha HN, Chae YN, Kim MK, Park SY, Bae EJ, Park BH. Myeloid Sirtuin 6 Deficiency Causes Insulin Resistance in High-Fat Diet-Fed Mice by Eliciting Macrophage Polarization Toward an M1 Phenotype. Diabetes 2017; 66:2659-2668. [PMID: 28607107 DOI: 10.2337/db16-1446] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/20/2017] [Indexed: 11/13/2022]
Abstract
Obesity-related insulin resistance is closely associated with macrophage accumulation and subsequent cytokine release in local tissues. Sirtuin 6 (Sirt6) is known to exert an anti-inflammatory function, but its role in macrophages in the context of obesity has not been investigated. We generated myeloid-specific Sirt6 knockout (mS6KO) mice and investigated the metabolic characteristics after high-fat diet (HFD) feeding for 16 weeks. Compared with their wild-type littermates, HFD-fed mS6KO mice exhibited greater increases in body weight, fasting blood glucose and insulin levels, hepatic steatosis, glucose intolerance, and insulin resistance. Gene expression, histology, and flow cytometric analyses demonstrated that liver and adipose tissue inflammation were elevated in HFD-fed mS6KO mice relative to wild type, with a greater accumulation of F4/80+CD11b+CD11c+ adipose tissue macrophages. Myeloid Sirt6 deletion facilitated proinflammatory M1 polarization of bone marrow macrophages and augmented the migration potential of macrophages toward adipose-derived chemoattractants. Mechanistically, Sirt6 deletion in macrophages promoted the activation of nuclear factor-κB (NF-κB) and endogenous production of interleukin-6, which led to STAT3 activation and the positive feedback circuits for NF-κB stimulation; this cross talk expedited an M1 polarization. We conclude that Sirt6 in macrophages is required for the prevention of obesity-associated tissue inflammation and insulin resistance.
Collapse
Affiliation(s)
- Youngyi Lee
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Sun-O Ka
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, North Gyeongsang, Republic of Korea
| | - Yu-Na Chae
- Research Institute of Dong-A ST, Yongin, Gyeonggi, Republic of Korea
| | - Mi-Kyung Kim
- Research Institute of Dong-A ST, Yongin, Gyeonggi, Republic of Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, North Gyeongsang, Republic of Korea
| | - Eun Ju Bae
- College of Pharmacy, Woosuk University, Wanju, Jeonbuk, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| |
Collapse
|
26
|
Ka SO, Bang IH, Bae EJ, Park BH. Hepatocyte-specific sirtuin 6 deletion predisposes to nonalcoholic steatohepatitis by up-regulation of Bach1, an Nrf2 repressor. FASEB J 2017; 31:3999-4010. [PMID: 28536120 DOI: 10.1096/fj.201700098rr] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/01/2017] [Indexed: 12/20/2022]
Abstract
Sirtuin (Sirt)6 has been implicated in negative regulation of inflammation and lipid metabolism, although its function in the progression from simple steatosis to nonalcoholic steatohepatitis (NASH) remains to be defined. To explore the role of hepatocyte Sirt6 in NASH development, we generated hepatocyte-specific Sirt6-knockout (KO) mice that were fed a high-fat and high-fructose (HFHF) diet for 16 wk. HFHF-fed KO mice had increased hepatic steatosis and inflammation and aggravated glucose intolerance and insulin resistance compared with wild-type mice. HFHF-induced liver fibrosis and oxidative stress and related gene expression were significantly elevated in KO mice. In the livers of KO mice, nuclear factor erythroid 2-related factor 2 (Nrf2) was down-regulated; conversely, BTB domain and CNC homolog 1 (Bach1), a nuclear repressor of Nrf2, were up-regulated. We discovered that Sirt6, which interacts with Bach1 under basal condition, induces its detachment from the antioxidant response element (ARE) region of heme oxygenase 1 promoter. Furthermore, we found that Sirt6 promotes Nrf2 binding to ARE in response to oxidative stimuli, which leads to the expression of phase II/antioxidant enzymes. Finally, we showed that HFHF-induced steatosis, inflammation, and fibrosis were ameliorated by adenoviral Sirt6 overexpression. Sirt6 may be a useful therapeutic target for amelioration of NASH by curbing inflammation and oxidative stress.-Ka, S.-O, Bang, I. H., Bae, E. J., Park, B.-H. Hepatocyte-specific sirtuin 6 deletion predisposes to nonalcoholic steatohepatitis by up-regulation of Bach1, an Nrf2 repressor.
Collapse
Affiliation(s)
- Sun-O Ka
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, South Korea
| | - In Hyuk Bang
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, South Korea
| | - Eun Ju Bae
- College of Pharmacy, Woosuk University, Wanju, South Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, South Korea;
| |
Collapse
|