1
|
Van der Borght K, Brimnes J, Haspeslagh E, Brand S, Neyt K, Gupta S, Knudsen NPH, Hammad H, Andersen PS, Lambrecht BN. Sublingual allergen immunotherapy prevents house dust mite inhalant type 2 immunity through dendritic cell-mediated induction of Foxp3 + regulatory T cells. Mucosal Immunol 2024; 17:618-632. [PMID: 38570140 DOI: 10.1016/j.mucimm.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Sublingual allergen immunotherapy (SLIT) is an emerging treatment option for allergic asthma and a potential disease-modifying strategy for asthma prevention. The key cellular events leading to such long-term tolerance remain to be fully elucidated. We administered prophylactic SLIT in a mouse model of house dust mite (HDM)-driven allergic asthma. HDM extract was sublingually administered over 3 weeks followed by intratracheal sensitization and intranasal challenges with HDM. Prophylactic SLIT prevented allergic airway inflammation and hyperreactivity with a low lab-to-lab variation. The HDM-specific T helper (Th)2 (cluster of differentiation 4 Th) response was shifted by SLIT toward a regulatory and Th17 response in the lung and mediastinal lymph node. By using Derp1-specific cluster of differentiation 4+ T cells (1-DER), we found that SLIT blocked 1-DER T cell recruitment to the mediastinal lymph node and dampened IL-4 secretion following intratracheal HDM sensitization. Sublingually administered Derp1 protein activated 1-DER T cells in the cervical lymph node via chemokine receptor7+ migratory dendritic cells (DC). DCs migrating from the oral submucosa to the cervical lymph node after SLIT-induced Foxp3+ regulatory T cells. When mice were sensitized with HDM, prior prophylactic SLIT increased Derp1 specific regulatory T cells (Tregs) and lowered Th2 recruitment in the lung. By using Foxp3-diphtheria toxin receptor mice, Tregs were found to contribute to the immunoregulatory prophylactic effect of SLIT on type 2 immunity. These findings in a mouse model suggest that DC-mediated functional Treg induction in oral mucosa draining lymph nodes is one of the driving mechanisms behind the disease-modifying effect of prophylactic SLIT.
Collapse
Affiliation(s)
- Katrien Van der Borght
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jens Brimnes
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | - Eline Haspeslagh
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Stephanie Brand
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | - Katrijn Neyt
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Shashank Gupta
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | | | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Peter S Andersen
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Olivieri B, Günaydın FE, Corren J, Senna G, Durham SR. The combination of allergen immunotherapy and biologics for inhalant allergies: Exploring the synergy. Ann Allergy Asthma Immunol 2024:S1081-1206(24)00365-X. [PMID: 38897405 DOI: 10.1016/j.anai.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The development of monoclonal antibodies that selectively target IgE and type 2 immunity has opened new possibilities in the treatment of allergies. Although they have been used mainly as single therapies found to have efficacy in the management of asthma and other T2-mediated diseases, there is a growing interest in using these monoclonal antibodies in combination with allergen immunotherapy (AIT). AIT has transformed the treatment of allergic diseases by aiming to modify the underlying immune response to allergens rather than just providing temporary symptom relief. Despite the proven efficacy and safety of AIT, unmet needs call for further research and innovation. Combination strategies involving biologics and AIT exhibit potential in improving short-term efficacy, reducing adverse events, and increasing immunologic tolerance. Anti-IgE emerges as the most promising therapeutic strategy, not only enhancing AIT's safety and tolerability but also providing additional evidence of efficacy compared with AIT alone. Anti-interleukin-4 receptor offers a reduction in adverse effects and an improved immunologic profile when combined with AIT; however, its impact on short-term efficacy seems limited. The combination of cat dander subcutaneous immunotherapy with anti-thymic stromal lymphopoietin was synergistic with enhanced efficacy and altered immune responses that persisted for 1 year after discontinuation compared with AIT alone. Long-term studies are needed to evaluate the sustained benefits and safety profiles of combination strategies.
Collapse
Affiliation(s)
- Bianca Olivieri
- Asthma, Allergy and Clinical Immunology Section, University Hospital of Verona, Verona, Italy
| | - Fatma Esra Günaydın
- Department of Immunology and Allergy Diseases, Ordu University Education and Training Hospital, Ordu, Turkey
| | - Jonathan Corren
- Division of Allergy and Clinical Immunology, Department of Medicine and Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gianenrico Senna
- Asthma, Allergy and Clinical Immunology Section, University Hospital of Verona, Verona, Italy; Department of Medicine, University of Verona, Verona, Italy
| | - Stephen R Durham
- Allergy and Clinical Immunology, Section Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
3
|
Dong B, Li B, Xie L, Li Y. Treatment of Allergic Rhinitis with Acupuncture Based on Pathophysiological. Int J Gen Med 2024; 17:2741-2756. [PMID: 38883703 PMCID: PMC11180464 DOI: 10.2147/ijgm.s470949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
Allergic rhinitis is a prevalent allergic diseases and has a profound impact on physical well-being. In recent years, more and more people have changed to allergic diseases, such as allergic rhinitis, allergic asthma, allergic dermatitis and so on. In the incidence of allergic rhinitis, covering all ages. The common clinical treatment of allergic rhinitis are drugs and immunotherapy, but these therapies have certain limitations. Therefore, an effective and economical treatment for AR is urgently needed. Acupuncture are widely used in the clinical treatment of various diseases, but the effect of acupuncture in the treatment of allergic rhinitis (AR) is significant, and the mechanism of acupuncture in the treatment of AR is also a hot spot. Acupuncture is one of the traditional treatment methods of traditional Chinese medicine, which achieves therapeutic effect by pressing a needle or other means at a specific location on the skin to produce a special sensation. Among them, acupuncture, as a popular treatment method, has attracted more and more attention. In this review, we provide an overview of the current understanding of acupuncture and AR, as well as current studies investigating the efficacy and safety of acupuncture for AR.
Collapse
Affiliation(s)
- Boyang Dong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Bingquan Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Liangzhen Xie
- Ear-Nose-Throat Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Yan Li
- Ear-Nose-Throat Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| |
Collapse
|
4
|
Creticos PS, Gunaydin FE, Nolte H, Damask C, Durham SR. Allergen Immunotherapy: The Evidence Supporting the Efficacy and Safety of Subcutaneous Immunotherapy and Sublingual Forms of Immunotherapy for Allergic Rhinitis/Conjunctivitis and Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1415-1427. [PMID: 38685477 DOI: 10.1016/j.jaip.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Allergen immunotherapy (AIT) is a recognized key therapeutic modality for the treatment of allergic respiratory disease. Definitive studies have provided evidence-based data to demonstrate its effectiveness in allergic rhinitis and asthma due to the inhalation of proteinaceous allergic substances from specific seasonal pollens, dust mites, animal allergens, and certain mold spores. Over the ensuing decades, laboratory investigations have provided objective evidence to demonstrate immunologic changes, including production of protective IgG antibody, suppression of IgE antibody, upregulation of regulatory T cells, and induction of a state of immune tolerance to the offending allergen(s). Tangential to this work were carefully designed clinical studies that defined allergen dose and duration of treatment, established the importance of preparing extracts with standardized allergens (or well-defined extracts) based on major protein moieties, and used allergen provocation models to demonstrate efficacy superior to placebo. In the United States, the use of subcutaneous immunotherapy extracts for AIT was grandfathered in by the Food and Drug Administration based on expert literature review. In contrast, sublingual tablet immunotherapy underwent formal clinical development programs (phase I-III clinical trials) that provided the necessary clinical evidence for safety and efficacy that led to regulatory agency approvals for the treatment of allergic rhinitis in properly characterized patients with allergy. The allergy specialist's treatment options currently include traditional subcutaneous AIT and specific sublingual tablets approved for grass, ragweed, house dust mites, trees belonging to the birch-homologous group, and Japanese cedar. Tangential to this are sublingual drops that are increasingly being used off-label (albeit not approved by the Food and Drug Administration) in the United States. This article will review the evidence-based literature supporting the use of these forms of AIT, as well as focus on several current controversies and gaps in our knowledge base that have relevance for the appropriate selection of patients for treatment with specific AIT.
Collapse
Affiliation(s)
- Peter Socrates Creticos
- Johns Hopkins Division of Allergy & Clinical Immunology, Baltimore, Md; Creticos Research Group, Crownsville, MD.
| | - Fatma E Gunaydin
- Department of Immunology & Allergy, Ordu University Education & Research Hospital, Ordu, Türkiye
| | | | - Cecilia Damask
- Department of Otolaryngology, Central Florida College of Medicine, Orlando, Fla
| | - Stephen R Durham
- Allergy & Clinical Immunology, Division of Respiratory Science, National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
5
|
Ferslew BC, Smulders R, Zhu T, Blauwet MB, Kusawake T, Spence A, Aldridge K, DeBerg HA, Khosa S, Wambre E, Chichili GR. Safety and immunopharmacology of ASP0892 in adults or adolescents with peanut allergy: two randomized trials. Allergy 2024; 79:456-470. [PMID: 38010254 DOI: 10.1111/all.15931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND New treatment options with improved safety and novel mechanisms of actions are needed for patients with peanut allergy. OBJECTIVES To evaluate the safety, tolerability, and immunogenicity of ASP0892, a peanut DNA vaccine, after intradermal (id) or intramuscular (im) administration in adult or adolescent patients with peanut allergy in two phase 1 studies. METHODS ASP0892 or placebo was administered every 2 weeks for a total of 4 doses. The doses were 1 mg or 4 mg id or 4 mg im for adults, and 1 mg or 4 mg id for adolescents. Immunologic parameters were assessed longitudinally. RESULTS Thirty-one adults (mean age 24.3 years, 17 males) received ASP0892 (9, 8, 8 patients for 1 mg id, 4 mg id or 4 mg im, respectively) or placebo (2 patients/group). Twenty adolescents (mean age 14.2 years, 11 males) received ASP0892 (8 patients/group) or placebo (2 patients/group). In both studies, the most common treatment-emergent adverse event (TEAE) was injection site pruritus. No deaths or treatment withdrawal were related to TEAEs. No serious TEAEs related to treatment were observed in adult or adolescent patients. ASP0892 treatment led to modest increases in allergen-specific IgG and/or IgG4 in adults (1 mg id, 4 mg im) and adolescents (1 mg id, 4 mg id). No improvements in clinical outcomes, including double-blind placebo-controlled food challenge, were found after ASP0892 treatment. CONCLUSIONS In two phase 1 studies, ASP0892 was well tolerated with modest but not clinically relevant changes in immune responses. CLINICALTRIALS GOV IDENTIFIERS NCT02851277, NCT03755713.
Collapse
Affiliation(s)
- Brian C Ferslew
- Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | - Ronald Smulders
- Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | - Tong Zhu
- Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | - Mary B Blauwet
- Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | | | - Anna Spence
- Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | - Kelly Aldridge
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Hannah A DeBerg
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Sugandhika Khosa
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Erik Wambre
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | |
Collapse
|
6
|
Layhadi JA, Lalioti A, Palmer E, van Zelm MC, Wambre E, Shamji MH. Mechanisms and Predictive Biomarkers of Allergen Immunotherapy in the Clinic. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:59-66. [PMID: 37996041 DOI: 10.1016/j.jaip.2023.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Allergen immunotherapy (AIT) remains to be the only disease-modifying treatment for IgE-mediated allergic diseases such as allergic rhinitis. It can provide long-term clinical benefits when given for 3 years or longer. Mechanisms of immune tolerance induction by AIT are underscored by the modulation of several compartments within the immune system. These include repair of disruption in epithelial barrier integrity, modulation of the innate immune compartment that includes regulatory dendritic cells and innate lymphoid cells, and adaptive immune compartments such as induction of regulatory T and B cells. Altogether, these are also associated with the dampening of allergen-specific TH2 and T follicular helper cell responses and subsequent generation of blocking antibodies. Although AIT is effective in modifying the immune response, there is a lack of validated and clinically relevant biomarkers that can be used to monitor desensitization, efficacy, and the likelihood of response, all of which can contribute to accelerating personalized medication and increasing patient care. Candidate biomarkers comprise humoral, cellular, metabolic, and in vivo biomarkers; however, these are primarily studied in small trials and require further validation. In this review, we evaluate the current candidates of biomarkers of AIT and how we can implement changes in future studies to help us identify clinically relevant biomarkers of safety, compliance, and efficacy.
Collapse
Affiliation(s)
- Janice A Layhadi
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anastasia Lalioti
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Elizabeth Palmer
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Menno C van Zelm
- Department of Immunology, Monash University and Alfred Health, Melbourne, Victoria, Australia; Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Erik Wambre
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mohamed H Shamji
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
7
|
Arshad H, Lack G, Durham SR, Penagos M, Larenas-Linnemann D, Halken S. Prevention Is Better than Cure: Impact of Allergen Immunotherapy on the Progression of Airway Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:45-56. [PMID: 37844847 DOI: 10.1016/j.jaip.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Allergen immunotherapy is highly effective for seasonal pollinosis. Three years of treatment results in long-term efficacy. This disease modification is accompanied by downregulation of allergen-specific Th2 responses and the induction of persistent specific IgG- and IgA-associated IgE-blocking activity. In children with seasonal rhinitis, both subcutaneous and sublingual pollen immunotherapy have been shown to reduce the development of asthma symptoms and asthma medication requirements. House dust mite tablet allergen immunotherapy has been shown to be effective for perennial mite-driven rhinitis in adults and children and may suppress asthma exacerbations, whereas its long-term efficacy has yet to be explored. The success of primary prevention of peanut allergy in childhood by introduction of peanut into the diet during infancy provides a strong rationale to explore whether primary prevention of inhalant allergies and asthma may also be possible. House dust mite allergy is a major risk factor for developing asthma. Preliminary data in at-risk children suggest that sublingual house dust mite immunotherapy initiated during infancy could reduce the onset of multiple allergen sensitizations and prevent the development of asthma at age 6 years. This possibility should now be explored in an adequately powered, prospectively randomized controlled trial.
Collapse
Affiliation(s)
- Hasan Arshad
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom; The David Hide Asthma and Allergy Centre, Isle of Wight, United Kingdom
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Stephen R Durham
- Allergy and Clinical Immunology, Division of Respiratory Science, National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, United Kingdom
| | - Martin Penagos
- Allergy and Clinical Immunology, Division of Respiratory Science, National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, United Kingdom
| | - Désireé Larenas-Linnemann
- Médica Sur, Clinical Foundation and Hospital, Centro de Excelencia en Asma y Alergia, Mexico City, Mexico
| | - Susanne Halken
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
8
|
Altman MC, Segnitz RM, Larson D, Jayavelu ND, Smith MT, Patel S, Scadding GW, Qin T, Sanda S, Steveling E, Eifan AO, Penagos M, Jacobson MR, Parkin RV, Shamji MH, Togias A, Durham SR. Nasal and blood transcriptomic pathways underpinning the clinical response to grass pollen immunotherapy. J Allergy Clin Immunol 2023; 152:1247-1260. [PMID: 37460024 PMCID: PMC10788383 DOI: 10.1016/j.jaci.2023.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Allergen immunotherapy (AIT) is a well-established disease-modifying therapy for allergic rhinitis, yet the fundamental mechanisms underlying its clinical effect remain inadequately understood. Gauging Response in Allergic Rhinitis to Sublingual and Subcutaneous Immunotherapy was a randomized, double-blind, placebo-controlled trial of individuals allergic to timothy grass who received 2 years of placebo (n = 30), subcutaneous immunotherapy (SCIT) (n = 27), or sublingual immunotherapy (SLIT) (n = 27) and were then followed for 1 additional year. OBJECTIVE We used yearly biospecimens from the Gauging Response in Allergic Rhinitis to Sublingual and Subcutaneous Immunotherapy study to identify molecular mechanisms of response. METHODS We used longitudinal transcriptomic profiling of nasal brush and PBMC samples after allergen provocation to uncover airway and systemic expression pathways mediating responsiveness to AIT. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01335139, EudraCT Number: 2010-023536-16. RESULTS SCIT and SLIT demonstrated similar changes in gene module expression over time. In nasal samples, alterations included downregulation of pathways of mucus hypersecretion, leukocyte migration/activation, and endoplasmic reticulum stress (log2 fold changes -0.133 to -0.640, false discovery rates [FDRs] <0.05). We observed upregulation of modules related to epithelial development, junction formation, and lipid metabolism (log2 fold changes 0.104 to 0.393, FDRs <0.05). In PBMCs, modules related to cellular stress response and type 2 cytokine signaling were reduced by immunotherapy (log2 fold changes -0.611 to -0.828, FDRs <0.05). Expression of these modules was also significantly associated with both Total Nasal Symptom Score and peak nasal inspiratory flow, indicating important links between treatment, module expression, and allergen response. CONCLUSIONS Our results identify specific molecular responses of the nasal airway impacting barrier function, leukocyte migration activation, and mucus secretion that are affected by both SCIT and SLIT, offering potential targets to guide novel strategies for AIT.
Collapse
Affiliation(s)
- Matthew C Altman
- Systems Immunology Division, Benaroya Research Institute, Seattle; Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle.
| | - R Max Segnitz
- Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle
| | | | | | - Malisa T Smith
- Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle
| | - Sana Patel
- Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle
| | - Guy W Scadding
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| | | | - Srinath Sanda
- Madison Clinic for Pediatric Diabetes, University of California San Francisco, San Francisco
| | - Esther Steveling
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| | - Aarif O Eifan
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| | - Martin Penagos
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| | - Mikila R Jacobson
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| | - Rebecca V Parkin
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| | - Alkis Togias
- The National Institute of Allergy and Infectious Disease, Bethesda
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London
| |
Collapse
|
9
|
Suhrkamp I, Scheffold A, Heine G. T-cell subsets in allergy and tolerance induction. Eur J Immunol 2023; 53:e2249983. [PMID: 37489248 DOI: 10.1002/eji.202249983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Antigen-specific T lymphocytes are the central regulators of tolerance versus immune pathology against otherwise innocuous antigens and key targets of antigen-specific immune therapy. Recent advances in the understanding of T cells in tolerance and allergy resulted from improved technologies to directly characterize allergen-specific T cells by multiparameter flow cytometry or single-cell sequencing. This unravelled phenotypically and functionally distinct populations, such as Type 2a T helper cells (Th2a), follicular Th cells (Tfh), regulatory T cells (Treg), Type 1 regulatory T cells (Tr1), and follicular T regulatory cells. Here we will discuss the role of the different Th-cell subsets in the healthy state, during sensitization and development of allergy, and in tolerance induction by allergen immunotherapy (AIT). To date, the mechanisms of AIT as the only causal treatment of allergy are not completely understood. The analyses of allergen-specific T cells directly ex vivo during AIT support the concept of specific-Th2(a) cell deletion rather than an expansion of allergen-specific Tr1 or Treg cells as underlying mechanism.
Collapse
Affiliation(s)
- Ina Suhrkamp
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Guido Heine
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
10
|
Makiya MA, Brown T, Holland N, Wetzler L, Ware JAM, Khoury P, Frischmeyer-Guerrerio PA, Klion AD, Kuang FL. Distinct CRTH2+CD161+ (peTh2) memory CD4+ T-cell cytokine profiles in food allergy and eosinophilic gastrointestinal disorders. Clin Exp Allergy 2023; 53:1031-1040. [PMID: 37487654 PMCID: PMC10592354 DOI: 10.1111/cea.14376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Although IgE-mediated food allergy (FA) and eosinophilic gastrointestinal disorders (EGID) are clinically distinct and treated differently, pathogenic effector Th2 (peTh2) cells are implicated in the pathogenesis of both FA and EGID. The aim of this study was to better characterize peTh2 cells in the context of FA and EGID and the overlap between these two conditions. METHODS Peripheral blood peTh2 cells (CD3+CD4+CD27-CD49d+CRTH2+CD161+) were profiled by intracellular cytokine flow cytometry in the following patient cohorts: patients with FA alone (n = 8), FA and food-triggered EGID (EGID+FA+FT, n = 7), food-triggered EGID alone (EGID+FT, n = 7), EGID without FA or specific food triggers (ONLY_EGID, n = 9), and healthy volunteers (HV, n = 7). Overnight peripheral blood mononuclear cell (PBMC) culture supernatants were assessed for cytokine production by multiplex analysis. RESULTS CRTH2+CD161+ (peTh2) memory CD4+ T cells were significantly increased in both patients with FA and those with ALL_EGID (inclusive of EGID+FA+FT, EGID+FT and ONLY_EGID) when compared to HV. However, ALL_EGID patients, particularly those with EGID+FA+FT, had significantly elevated IL-5+IL-13+ peTh2 cells, whereas FA patients had significantly elevated IFN-γ or IL-17A-expressing peTh2 cells. This finding was supported by increased spontaneous IL-5 and IL-13 production in overnight cultures of PBMC from EGID+FA+FT patients compared to spontaneous IL-10 and IFN-γ production by PBMC from FA patients. FA patients had increased IL-9, IL-10, IL-17A, and IFN-γ production in overnight cultures of stimulated PBMC. CONCLUSIONS EGID and IgE-mediated FA share a common cell subtype defined by specific surface markers and termed CRTH2+CD161+ (peTh2) memory CD4+ T cells. However, the cytokine profiles of these CRTH2+CD161+ (peTh2) memory CD4+ T cells are markedly different between the two disorders.
Collapse
Affiliation(s)
| | - Thomas Brown
- Clinical Parasitology Section, LPD, NIAID, NIH, Bethesda, MD
| | - Nicole Holland
- Clinical Parasitology Section, LPD, NIAID, NIH, Bethesda, MD
| | - Lauren Wetzler
- Clinical Parasitology Section, LPD, NIAID, NIH, Bethesda, MD
| | | | - Paneez Khoury
- Human Eosinophil Section, LPD, NIAID, NIH, Bethesda, MD
| | | | - Amy D. Klion
- Human Eosinophil Section, LPD, NIAID, NIH, Bethesda, MD
| | - Fei Li Kuang
- Human Eosinophil Section, LPD, NIAID, NIH, Bethesda, MD
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
11
|
Zeng Y, Xiao H, Gao S, Li J, Yang C, Zeng Q, Luo X, Luo R, Chen X, Liu W. Efficacy and immunological changes of sublingual immunotherapy in pediatric allergic rhinitis. World Allergy Organ J 2023; 16:100803. [PMID: 37520614 PMCID: PMC10382672 DOI: 10.1016/j.waojou.2023.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/11/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Background Allergen-specific immunotherapy, including subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT), improves the disease progression of allergic rhinitis (AR). SCIT and SLIT exhibit similar efficacy, but SLIT has less systemic reactions. However, few studies have investigated the underlying mechanisms of SLIT treatment. In this study, we explored the efficacy of SLIT under different treatment durations and immunological changes. Methods This retrospective study was conducted from August 2017 to August 2022 in our hospital. A total of 314 children who underwent SLIT were divided into the following groups based on their treatment duration: the 1 year group (6 months-1 year), the 2 years group (1-2 years), and the 3 years group (2-3 years). The treatment efficacy was confirmed using a combined symptom and medication score (SMS). Multiple serum cytokines were measured using Luminex. Various immune cells in PBMCs were determined using flow cytometry. Results The total nasal symptom score (TNSS), rescue medication score (RMS), and SMS of the 3 years group was significantly different from those of the 1 years and 2 years groups. At the end of the 2 years following cessation of SLIT, the following results were observed in the 3 years group: 1) the TNSS, RMS, and SMS had significantly improved, 2) the serum IL-10, TGF-beta, and IL-35 levels had increased significantly, and 3) the percentages of regulatory T cell, regulatory B cell, and follicular regulatory T cell increased significantly. Conclusion Our results suggest that 3 years of SLIT is necessary for long-term effects and continued immunological changes.
Collapse
Affiliation(s)
- Yinhui Zeng
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Haiqing Xiao
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Shengli Gao
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Jinyuan Li
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Chao Yang
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Qingxiang Zeng
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xi Luo
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Renzhong Luo
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xi Chen
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Wenlong Liu
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| |
Collapse
|
12
|
Jiang L, Wang C, Zhao R, Cao J, Liu Y, Tian L, Liu M. Silencing SOX11 Alleviates Allergic Rhinitis by Inhibiting Epithelial-Derived Cytokines. Balkan Med J 2023; 40:57-65. [PMID: 36571426 PMCID: PMC9874254 DOI: 10.4274/balkanmedj.galenos.2022.2022-9-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Allergic rhinitis is a chronic inflammatory disease of the nasal mucosa affecting the quality of life of patients. SRY-box transcription factor 11 (SOX11) was reported to play important roles in inflammatory responses, but its role in AR is poorly understood. Aims To explore the role of SOX11 in the development of allergic rhinitis. Study Design Cell culture and animal study. Methods An in vivo murine allergic rhinitis model was established using ovalbumin treatment in female mice. Interleukin-13-stimulated human nasal mucosa epithelial cells were used for in vitro studies. Expression levels of SOX11, epithelial-derived cytokines, and mucin were determined in both modesls. Results SOX11 was highly expressed in allergic rhinitis mice. Allergy symptoms, serum ovalbumin-specific IgE, histamine, eosinophils, goblet cells, and type 2 cytokine secretion were increased in ovalbumin-treated mice. Furthermore, allergic rhinitis mice exhibited overproduction of epithelial-derived cytokines (thymic stromal lymphopoietin, interleukin-25, interleukin-33), C-C motif chemokine ligand 26 (CCL26), and mucin 5 AC (MUC5AC). Silencing SOX11 alleviated the behavioral symptoms and upregulation of epithelial-derived cytokines, CCL26, and MUC5AC. In human nasal mucosa epithelial cells, interleukin-13 enhanced SOX11 expression in a time-dependent manner, and signal transducer and activator of transcription 6 (STAT6) was involved in the interleukin-13-mediated expression of SOX11 by regulating transcription. Knockdown of SOX11 reduced epithelial-derived cytokine expression and MUC5AC levels in interleukin-13-treated human nasal mucosa epithelial cells. Conclusion SOX11 plays a critical role in allergic rhinitis development by regulating epithelial-derived cytokines and might be a new therapeutic target for allergic rhinitis.
Collapse
Affiliation(s)
- Li Jiang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Chunrui Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Rui Zhao
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Jing Cao
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Yaohui Liu
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Linli Tian
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China,* Address for Correspondence: epartment of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China E-mail:/
| | - Ming Liu
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China,* Address for Correspondence: epartment of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China E-mail:/
| |
Collapse
|
13
|
Rahman RS, Wesemann DR. Immunology of allergen immunotherapy. IMMUNOTHERAPY ADVANCES 2022; 2:ltac022. [PMID: 36530352 PMCID: PMC9749131 DOI: 10.1093/immadv/ltac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/24/2022] [Indexed: 10/17/2023] Open
Abstract
Allergen immunotherapy (AIT) is the only disease-modifying therapy for allergic disease. Through repeated inoculations of low doses of allergen-either as whole proteins or peptides-patients can achieve a homeostatic balance between inflammatory effectors induced and/or associated with allergen contact, and mediators of immunologic non-responsiveness, potentially leading to sustained clinical improvements. AIT for airborne/respiratory tract allergens and insect venoms have traditionally been supplied subcutaneously, but other routes and modalities of administration can also be effective. Despite differences of allergen administration, there are some similarities of immunologic responses across platforms, with a general theme involving the restructuring and polarization of adaptive and innate immune effector cells. Here we review the immunology of AIT across various delivery platforms, including subcutaneous, sublingual, epicutaneous, intradermal, and intralymphatic approaches, emphasizing shared mechanisms associated with achieving immunologic non-responsiveness to allergen.
Collapse
Affiliation(s)
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| |
Collapse
|
14
|
Abstract
Allergen immunotherapy is a form of therapeutic vaccination for established IgE-mediated hypersensitivity to common allergen sources such as pollens, house dust mites and the venom of stinging insects. The classical protocol, introduced in 1911, involves repeated subcutaneous injection of increasing amounts of allergen extract, followed by maintenance injections over a period of 3 years, achieving a form of allergen-specific tolerance that provides clinical benefit for years after its discontinuation. More recently, administration through the sublingual route has emerged as an effective, safe alternative. Oral immunotherapy for peanut allergy induces effective ‘desensitization’ but not long-term tolerance. Research and clinical trials over the past few decades have elucidated the mechanisms underlying immunotherapy-induced tolerance, involving a reduction of allergen-specific T helper 2 (TH2) cells, an induction of regulatory T and B cells, and production of IgG and IgA ‘blocking’ antibodies. To better harness these mechanisms, novel strategies are being explored to achieve safer, effective, more convenient regimens and more durable long-term tolerance; these include alternative routes for current immunotherapy approaches, novel adjuvants, use of recombinant allergens (including hypoallergenic variants) and combination of allergens with immune modifiers or monoclonal antibodies targeting the TH2 cell pathway. Durham and Shamji review the history and future of allergen immunotherapy for established IgE-mediated hypersensitivity to common allergens. They describe the mechanisms of immunotherapy-induced tolerance and the new strategies being explored to achieve safer, more effective, long-term tolerance.
Collapse
|
15
|
Huang Z, Chu M, Chen X, Wang Z, Jiang L, Ma Y, Wang Y. Th2A cells: The pathogenic players in allergic diseases. Front Immunol 2022; 13:916778. [PMID: 36003397 PMCID: PMC9393262 DOI: 10.3389/fimmu.2022.916778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Proallergic type 2 helper T (Th2A) cells are a subset of memory Th2 cells confined to atopic individuals, and they include all the allergen-specific Th2 cells. Recently, many studies have shown that Th2A cells characterized by CD3+ CD4+ HPGDS+ CRTH2+ CD161high ST2high CD49dhigh CD27low play a crucial role in allergic diseases, such as atopic dermatitis (AD), food allergy (FA), allergic rhinitis (AR), asthma, and eosinophilic esophagitis (EoE). In this review, we summarize the discovery, biomarkers, and biological properties of Th2A cells to gain new insights into the pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Ziyu Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Department of Clinical Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Ziyuan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Lin Jiang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yinchao Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| |
Collapse
|
16
|
Bajzik V, DeBerg HA, Garabatos N, Rust BJ, Obrien KK, Nguyen QA, O’Rourke C, Smith A, Walker AH, Quinn C, Gersuk VH, Farrington M, Jeong D, Vickery BP, Adelman DC, Wambre E. Oral desensitization therapy for peanut allergy induces dynamic changes in peanut-specific immune responses. Allergy 2022; 77:2534-2548. [PMID: 35266148 PMCID: PMC9356972 DOI: 10.1111/all.15276] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The PALISADE study, an international, phase 3 trial of peanut oral immunotherapy (POIT) with AR101, resulted in desensitization in children and adolescents who were highly allergic to peanut. An improved understanding of the immune mechanism induced in response to food allergen immunotherapy would enable more informed and effective therapeutic strategies. Our main purpose was to examine the immunological changes in blood samples from a subset of peanut-allergic individuals undergoing oral desensitization immunotherapy with AR101. METHODS Blood samples obtained as part of enrollment screening and at multiple time points during PALISADE study were used to assess basophil and CD4+ T-cell reactivity to peanut. RESULTS The absence of clinical reactivity to the entry double-blinded placebo-controlled peanut challenge (DBPCFC) was accompanied by a significantly lower basophil sensitivity and T-cell reactivity to peanut compared with DBPCFC reactors. At baseline, peanut-reactive TH2A cells were observed in many but not all peanut-allergic patients and their level in peripheral blood correlates with T-cell reactivity to peanut and with serum peanut-specific IgE and IgG4 levels. POIT reshaped circulating peanut-reactive T-cell responses in a subset-dependent manner. Changes in basophil and T-cell responses to peanut closely paralleled clinical benefits to AR101 therapy and resemble responses in those with lower clinical sensitivity to peanut. However, no difference in peanut-reactive Treg cell frequency was observed between groups. CONCLUSION Oral desensitization therapy with AR101 leads to decreased basophil sensitivity to peanut and reshapes peanut-reactive T effector cell responses supporting its potential as an immunomodulatory therapy.
Collapse
Affiliation(s)
- Veronique Bajzik
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - Hannah A. DeBerg
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - Nahir Garabatos
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - Blake J. Rust
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | | | - Quynh-Anh Nguyen
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - Colin O’Rourke
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | | | - Alex H. Walker
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - Charlie Quinn
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - Vivian H. Gersuk
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | | | - David Jeong
- Virginia Mason Medical Center, Seattle, WA 98101
| | | | | | - Erik Wambre
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| |
Collapse
|
17
|
Tan TJ, Layhadi JA, Shamji MH. Mechanisms and biomarkers of subcutaneous immunotherapy and sublingual immunotherapy in allergen immunotherapy. Allergy Asthma Proc 2022; 43:254-259. [PMID: 35818151 DOI: 10.2500/aap.2022.43.220030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There are currently no biomarkers that can accurately predict clinical outcomes and segregate responders from nonresponders in allergen immunotherapy (AIT). Therefore, identifying a reliable predictive biomarker is essential to enable clinicians to tailor personalized therapy. New developments in AIT biomarkers are currently being explored, and it would be important to identify key areas of development and their feasibility for use in the clinic. Biomarkers can be categorized broadly into seven domains: (i) Immunoglobulin E (IgE), (ii) IgG and IgA responses, (iii) IgE -facilitated allergen binding/blocking factor, (iv) basophil activation, (v) cytokines and chemokines, (vi) cellular markers, and (vii) in vivo biomarkers. Despite their potential, most biomarkers remain infeasible to be translated to the clinical setting due to requirements of complex instruments such as flow cytometry. The identification of suitable biomarkers remains key in predicting outcomes of AIT and requires more research. Additional exploration into integrative biomarkers may be required.
Collapse
|
18
|
Pfaar O, Bousquet J, Durham SR, Kleine‐Tebbe J, Larché M, Roberts G, Shamji MH, Gerth van Wijk R. One hundred and ten years of Allergen Immunotherapy: A journey from empiric observation to evidence. Allergy 2022; 77:454-468. [PMID: 34315190 DOI: 10.1111/all.15023] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022]
Abstract
One hundred and ten years after Noon's first clinical report of the subcutaneous application of allergen extracts, allergen immunotherapy (AIT) has evolved as the most important pillar of the treatment of allergic patients. It is the only disease-modifying treatment option available and the evidence for its clinical efficacy and safety is broad and undisputed. Throughout recent decades, more insights into the underlying mechanisms, in particular the modulation of innate and adaptive immune responses, have been described. AIT is acknowledged by worldwide regulatory authorities, and following the regulatory guidelines for product development, AIT products are subject to a rigorous evaluation before obtaining market authorization. Knowledge and practice are anchored in international guidelines, such as the recently published series of the European Academy of Allergy and Clinical Immunology (EAACI). Innovative approaches continue to be further developed with the focus on clinical improvement by, for example, the usage of adjuvants, peptides, recombinants, modification of allergens, new routes of administration, and the concomitant use of biologicals. In addition, real-life data provide complementary and valuable information on the effectiveness and tolerability of this treatment option in the clinical routine. New mobile health technologies and big-data approaches will improve daily treatment convenience, adherence, and efficacy of AIT. However, the current coronavirus disease 2019 (COVID-19) pandemic has also had some implications for the feasibility and practicability of AIT. Taken together, AIT as the only disease-modifying therapy in allergic diseases has been broadly investigated over the past 110 years laying the path for innovations and further improvement.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital Marburg, Philipps‐Universität Marburg Marburg Germany
| | - Jean Bousquet
- Department of Dermatology and Allergy Charité, Universitätsmedizin Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center Berlin Germany
- University Hospital Montpellier Montpellier France
| | - Stephen R. Durham
- Allergy and Clinical Immunology Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College NIHR Biomedical Research Centre, National Heart and Lung Institute London UK
| | - Jörg Kleine‐Tebbe
- Allergy & Asthma Center Westend, Outpatient and Clinical Research Center Berlin Germany
| | - Mark Larché
- Department of Medicine McMaster University Hamilton ON Canada
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare Hamilton ON Canada
| | - Graham Roberts
- Faculty of Medicine University of Southampton Southampton UK
- The David Hide Asthma and Allergy Research Centre St Mary's Hospital Isle of Wight UK
- NIHR Southampton Biomedical Research Centre University Hospital Southampton NHS Foundation Trust Southampton UK
| | - Mohamed H. Shamji
- Allergy and Clinical Immunology Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College NIHR Biomedical Research Centre, National Heart and Lung Institute London UK
| | - Roy Gerth van Wijk
- Section of Allergology and Clinical Immunology Department of Internal Medicine Erasmus Medical Center Rotterdam The Netherlands
| |
Collapse
|
19
|
Penagos M, Durham SR. Allergen immunotherapy for long-term tolerance and prevention. J Allergy Clin Immunol 2022; 149:802-811. [DOI: 10.1016/j.jaci.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
|
20
|
Shamji MH, Sharif H, Layhadi JA, Zhu R, Kishore U, Renz H. Diverse Immune Mechanisms of Allergen Immunotherapy for allergic rhinitis with and without asthma. J Allergy Clin Immunol 2022; 149:791-801. [DOI: 10.1016/j.jaci.2022.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
21
|
Boonpiyathad T, Lao-Araya M, Chiewchalermsri C, Sangkanjanavanich S, Morita H. Allergic Rhinitis: What Do We Know About Allergen-Specific Immunotherapy? FRONTIERS IN ALLERGY 2021; 2:747323. [PMID: 35387059 PMCID: PMC8974870 DOI: 10.3389/falgy.2021.747323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 01/23/2023] Open
Abstract
Allergic rhinitis (AR) is an IgE-mediated disease that is characterized by Th2 joint inflammation. Allergen-specific immunotherapy (AIT) is indicated for AR when symptoms remain uncontrolled despite medication and allergen avoidance. AIT is considered to have been effective if it alleviated allergic symptoms, decreased medication use, improved the quality of life even after treatment cessation, and prevented the progression of AR to asthma and the onset of new sensitization. AIT can be administered subcutaneously or sublingually, and novel routes are still being developed, such as intra-lymphatically and epicutaneously. AIT aims at inducing allergen tolerance through modification of innate and adaptive immunologic responses. The main mechanism of AIT is control of type 2 inflammatory cells through induction of various functional regulatory cells such as regulatory T cells (Tregs), follicular T cells (Tfr), B cells (Bregs), dendritic cells (DCregs), innate lymphoid cells (IL-10+ ILCs), and natural killer cells (NKregs). However, AIT has a number of disadvantages: the long treatment period required to achieve greater efficacy, high cost, systemic allergic reactions, and the absence of a biomarker for predicting treatment responders. Currently, adjunctive therapies, vaccine adjuvants, and novel vaccine technologies are being studied to overcome the problems associated with AIT. This review presents an updated overview of AIT, with a special focus on AR.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
- *Correspondence: Tadech Boonpiyathad
| | - Mongkol Lao-Araya
- Faculty of Medicine, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Chirawat Chiewchalermsri
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Sasipa Sangkanjanavanich
- Faculty of Medicine Ramathibodi Hospital, Department of Medicine, Mahidol University, Bangkok, Thailand
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
22
|
Shamji MH, Larson D, Eifan A, Scadding GW, Qin T, Lawson K, Sever ML, Macfarlane E, Layhadi JA, Würtzen PA, Parkin RV, Sanda S, Harris KM, Nepom GT, Togias A, Durham SR. Differential induction of allergen-specific IgA responses following timothy grass subcutaneous and sublingual immunotherapy. J Allergy Clin Immunol 2021; 148:1061-1071.e11. [PMID: 33819508 DOI: 10.1016/j.jaci.2021.03.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION There is no detailed comparison of allergen-specific immunoglobulin responses following sublingual immunotherapy (SLIT) and subcutaneous immunotherapy (SCIT). OBJECTIVE We sought to compare nasal and systemic timothy grass pollen (TGP)-specific antibody responses during 2 years of SCIT and SLIT and 1 year after treatment discontinuation in a double-blind, double-dummy, placebo-controlled trial. METHODS Nasal fluid and serum were obtained yearly (per-protocol population, n = 84). TGP-specific IgA1, IgA2, IgG4, IgG, and IgE were measured in nasal fluids by ELISA. TGP-specific IgA1, IgA2, and Phleum pratense (Phl p)1, 2, 4, 5b, 6, 7, 11, and 12 IgE and IgG4 were measured in sera by ELISA and ImmunoCAP, respectively. RESULTS At years 2 and 3, TGP-IgA1/2 levels in nasal fluid were elevated in SLIT compared with SCIT (4.2- and 3.0-fold for IgA1, 2.0- and 1.8-fold for IgA2, respectively; all P < .01). TGP-IgA1 level in serum was elevated in SLIT compared with SCIT at years 1, 2, and 3 (4.6-, 5.1-, and 4.7-fold, respectively; all P < .001). Serum TGP-IgG level was higher in SCIT compared with SLIT (2.8-fold) at year 2. Serum TGP-IgG4 level was higher in SCIT compared with SLIT at years 1, 2, and 3 (10.4-, 27.4-, and 5.1-fold, respectively; all P < .01). Serum IgG4 levels to Phl p1, 2, 5b, and 6 were increased at years 1, 2, and 3 in SCIT and SLIT compared with placebo (Phl p1: 11.8- and 3.9-fold; Phl p2: 31.6- and 4.4-fold; Phl p5b: 135.5- and 5.3-fold; Phl p6: 145.4- and 14.7-fold, respectively, all at year 2 when levels peaked; P < .05). IgE to TGP in nasal fluid increased in the SLIT group at year 2 but not at year 3 compared with SCIT (2.8-fold; P = .04) and placebo (3.1-fold; P = .02). IgA to TGP and IgE and IgG4 to TGP components stratified participants according to treatment group and clinical response. CONCLUSIONS The observed induction of IgA1/2 in SLIT and IgG4 in SCIT suggest key differences in the mechanisms of action.
Collapse
Affiliation(s)
- Mohamed H Shamji
- National Heart and Lung Institute, Allergy and Clinical Immunology, Imperial College NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.
| | | | - Aarif Eifan
- National Heart and Lung Institute, Allergy and Clinical Immunology, Imperial College NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Guy W Scadding
- National Heart and Lung Institute, Allergy and Clinical Immunology, Imperial College NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | | | | | | | - Ellen Macfarlane
- National Heart and Lung Institute, Allergy and Clinical Immunology, Imperial College NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Janice A Layhadi
- National Heart and Lung Institute, Allergy and Clinical Immunology, Imperial College NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | | | - Rebecca V Parkin
- National Heart and Lung Institute, Allergy and Clinical Immunology, Imperial College NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | | | | | - Gerald T Nepom
- Immune Tolerance Network, Bethesda, Md; Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Stephen R Durham
- National Heart and Lung Institute, Allergy and Clinical Immunology, Imperial College NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Immune Tolerance Network, Bethesda, Md
| |
Collapse
|
23
|
Baker JR, Rasky AJ, Landers JJ, Janczak KW, Totten TD, Lukacs NW, O’Konek JJ. Intranasal delivery of allergen in a nanoemulsion adjuvant inhibits allergen-specific reactions in mouse models of allergic airway disease. Clin Exp Allergy 2021; 51:1361-1373. [PMID: 33999457 PMCID: PMC11155263 DOI: 10.1111/cea.13903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Atopic diseases are an increasing problem that involve both immediate hypersensitivity reactions mediated by IgE and unique cellular inflammation. Many forms of specific immunotherapy involve the administration of allergen to suppress allergic immune responses but are focused on IgE-mediated reactions. In contrast, the effect of allergen-specific immunotherapy on allergic inflammation is complex, not entirely consistent and not well understood. We have previously demonstrated the ability of allergen administered in a nanoemulsion (NE) mucosal adjuvant to suppress IgE-mediated allergic responses and protect from allergen challenge in murine food allergy models. This activity was associated with decreases in allergen-specific IL-10 and reductions in allergic cytokines and increases in regulatory T cells. OBJECTIVE Here, we extend these studies to using 2 distinct models, the ovalbumin (OVA) and cockroach (CRA) models of allergic airway disease, which are based predominantly on allergic inflammation. METHODS Acute or chronic allergic airway disease was induced in mice using ovalbumin and cockroach allergen models. Mice received three therapeutic immunizations with allergen in NE, and reactivity to airway challenge was determined. RESULTS Therapeutic immunization with cockroach or OVA allergen in NE markedly reduced pathology after airway challenge. The 2 models demonstrated protection from allergen challenge-induced pathology that was associated with suppression of Th2-polarized immune responses in the lung. In addition, the reduction in ILC2 numbers in the lungs of allergic mice along with reduction in epithelial cell alarmins, IL-25 and IL-33, suggests an overall change in the lung immune environment induced by the NE immunization protocol. CONCLUSIONS AND CLINICAL RELEVANCE These results demonstrate that suppression of allergic airway inflammation and bronchial hyper-reactivity can be achieved using allergen-specific immunotherapy without significant reductions in allergen-specific IgE and suggest that ILC2 cells may be critical targets for this activity.
Collapse
Affiliation(s)
- James R. Baker
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J. Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey J. Landers
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Tiffanie D. Totten
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas W. Lukacs
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica J. O’Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Hardy MY, Goel G, Russell AK, Chen Yi Mei SLG, Brown GJE, Wang S, Szymczak E, Zhang R, Goldstein KE, Neff KM, Williams LJ, Truitt KE, Dzuris JL, Tye-Din JA, Anderson RP. A Sensitive Whole Blood Assay Detects Antigen-Stimulated Cytokine Release From CD4+ T Cells and Facilitates Immunomonitoring in a Phase 2 Clinical Trial of Nexvax2 in Coeliac Disease. Front Immunol 2021; 12:661622. [PMID: 34093551 PMCID: PMC8171185 DOI: 10.3389/fimmu.2021.661622] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
Improved blood tests assessing the functional status of rare gluten-specific CD4+ T cells are needed to effectively monitor experimental therapies for coeliac disease (CD). Our aim was to develop a simple, but highly sensitive cytokine release assay (CRA) for gluten-specific CD4+ T cells that did not require patients to undergo a prior gluten challenge, and would be practical in large, multi-centre clinical trials. We developed an enhanced CRA and used it in a phase 2 clinical trial (“RESET CeD”) of Nexvax2, a peptide-based immunotherapy for CD. Two participants with treated CD were assessed in a pilot study prior to and six days after a 3-day gluten challenge. Dye-dilution proliferation in peripheral blood mononuclear cells (PBMC) was assessed, and IL-2, IFN-γ and IL-10 were measured by multiplex electrochemiluminescence immunoassay (ECL) after 24-hour gluten-peptide stimulation of whole blood or matched PBMC. Subsequently, gluten-specific CD4+ T cells in blood were assessed in a subgroup of the RESET CeD Study participants who received Nexvax2 (maintenance dose 900 μg, n = 12) or placebo (n = 9). The pilot study showed that gluten peptides induced IL-2, IFN-γ and IL-10 release from PBMCs attributable to CD4+ T cells, but the PBMC CRA was substantially less sensitive than whole blood CRA. Only modest gluten peptide-stimulated IL-2 release could be detected without prior gluten challenge using PBMC. In contrast, whole blood CRA enabled detection of IL-2 and IFN-γ before and after gluten challenge. IL-2 and IFN-γ release in whole blood required more than 6 hours incubation. Delay in whole blood incubation of more than three hours from collection substantially reduced antigen-stimulated IL-2 and IFN-γ secretion. Nexvax2, but not placebo treatment in the RESET CeD Study was associated with significant reductions in gluten peptide-stimulated whole blood IL-2 and IFN-γ release, and CD4+ T cell proliferation. We conclude that using fresh whole blood instead of PBMC substantially enhances cytokine secretion stimulated by gluten peptides, and enables assessment of rare gluten-specific CD4+ T cells without requiring CD patients to undertake a gluten challenge. Whole blood assessment coupled with ultra-sensitive cytokine detection shows promise in the monitoring of rare antigen-specific T cells in clinical studies.
Collapse
Affiliation(s)
- Melinda Y Hardy
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gautam Goel
- ImmusanT, Inc., Cambridge, MA, United States
| | - Amy K Russell
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | | | - Gregor J E Brown
- Department of Gastroenterology, Alfred Hospital, Prahran, VIC, Australia
| | - Suyue Wang
- ImmusanT, Inc., Cambridge, MA, United States
| | | | - Ruan Zhang
- ImmusanT, Inc., Cambridge, MA, United States
| | | | | | | | | | | | - Jason A Tye-Din
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | | |
Collapse
|
25
|
Luce S, Batard T, Bordas-Le Floch V, Le Gall M, Mascarell L. Decrease in CD38 + TH2A cell frequencies following immunotherapy with house dust mite tablet correlates with humoral responses. Clin Exp Allergy 2021; 51:1057-1068. [PMID: 33938071 DOI: 10.1111/cea.13891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND In line with evidence for a role of pathogenic TH2A in seasonal allergies, we previously showed that individuals suffering from food allergy exhibited a decrease in circulating TH2A cells following multi-food immunotherapy. Herein, we aim to confirm the decline of TH2A cells in individuals undergoing house dust mite immunotherapy (HDM-AIT) and extend our observation to a new subset of CD38 expressing activated TH2A cells. METHODS The frequencies of TH2A and CD38+ TH2A cells were analysed by flow cytometry in blood cells from 182 Japanese HDM-allergic individuals included in a 1-year clinical trial assessing the efficacy of HDM tablets. Interrelationship between these cellular responses and humoral mite-specific IgE and IgG4 levels was further explored. RESULTS A decrease in TH2A cells was observed in both active and placebo groups. Interestingly, CD38+ TH2A cell frequencies significantly decreased only in active groups. In younger individuals (16-30 years), both TH2A and CD38+ TH2A cells were significantly reduced in active groups but not in the placebo group. Significant inverse correlations were observed in the course of HDM-AIT between changes in TH2A or CD38+ TH2A frequencies and IgG4 antibody levels. CONCLUSIONS We confirm the value of monitoring TH2A cell frequencies in allergic individuals and extend this observation to perennial allergy to HDM. We highlight the interest of CD38 to better identify the subset of TH2A cell down-regulated by AIT. Finally, correlated cellular and humoral responses observed in immunoreactive individuals stress that coordinated pathways occur in the adaptive responses during AIT.
Collapse
|
26
|
Schmid JM, Würtzen PA, Siddhuraj P, Jogdand P, Petersen CG, Dahl R, Erjefält JS, Hoffmann HJ. Basophil sensitivity reflects long-term clinical outcome of subcutaneous immunotherapy in grass pollen-allergic patients. Allergy 2021; 76:1528-1538. [PMID: 32145088 DOI: 10.1111/all.14264] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Allergic rhinoconjunctivitis is a public health problem. Allergen Immunotherapy is an effective and safe treatment, that modifies the natural course of allergic disease and induces long-term tolerance. OBJECTIVE To correlate basophil and antibody biomarkers of subcutaneous immunotherapy to clinical outcomes and cellular changes in target tissue. METHODS Adults suffering from allergic rhinoconjunctivitis due to grass pollen allergy were randomized to receive subcutaneous immunotherapy (n = 18) or to an open control group (n = 6). Patients reported daily symptom and medication scores and weekly rhinitis related quality of life scores during four pollen seasons. Biomarkers were measured every 3 months for three years treatment and every 6 months in the follow-up year. Nasal and cutaneous allergen challenge tests were performed annually. Leukocyte subsets were assessed in nasal mucosa biopsies at baseline and after treatment. RESULTS Subcutaneous immunotherapy led to a 447-fold decrease in basophil sensitivity during the first treatment year. This remained 100-fold lower than baseline during the 3 year-treatment period and 10-fold lower during the follow-up year (n = 18, P = .03). Decrease in basophil sensitivity after three weeks of treatment predicted long-term improvement in seasonal combined symptom and medication scores (ῥ=-0.69, P = .0027) during three years of treatment. AUC of IgE-blocking factor correlated to nasal allergen challenge (ῥ = 0.63, P = .0012) and SPT (ῥ = 0.45, P = .03). Plasma cell numbers in the nasal mucosa increased during treatment (P = .02). CONCLUSION Decrease in basophil sensitivity after three weeks of subcutaneous allergen immunotherapy predicted the clinical outcome of this treatment.
Collapse
Affiliation(s)
- Johannes M. Schmid
- Department of Respiratory Diseases and Allergy Aarhus University Hospital Aarhus Denmark
| | | | | | | | - Claus G. Petersen
- Department of Otorhinolaryngology Aarhus University Hospital Aarhus Denmark
| | - Ronald Dahl
- Department of Respiratory Diseases and Allergy Aarhus University Hospital Aarhus Denmark
- Department of Clinical Medicine, Aarhus University Aarhus Denmark
| | | | - Hans Jürgen Hoffmann
- Department of Respiratory Diseases and Allergy Aarhus University Hospital Aarhus Denmark
- Department of Clinical Medicine, Aarhus University Aarhus Denmark
| |
Collapse
|
27
|
Alpan O, Layhadi JA, Ulrik Sønder S, Li H, Shamji MH. Basophil activation test: A diagnostic, predictive and monitoring assay for allergen immunotherapy. Allergy 2021; 76:1321-1324. [PMID: 32909281 DOI: 10.1111/all.14585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Affiliation(s)
| | - Janice A. Layhadi
- Immunomodulation and Tolerance Group, Allergy & Clinical Immunology, National Heart and Lung Institute Imperial College London London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London London UK
| | | | - Henry Li
- Institute for Asthma and Allergy Wheaton MD USA
| | - Mohamed H. Shamji
- Immunomodulation and Tolerance Group, Allergy & Clinical Immunology, National Heart and Lung Institute Imperial College London London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London London UK
| |
Collapse
|
28
|
Shamji MH, Layhadi JA, Sharif H, Penagos M, Durham SR. Immunological Responses and Biomarkers for Allergen-Specific Immunotherapy Against Inhaled Allergens. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1769-1778. [PMID: 33781958 DOI: 10.1016/j.jaip.2021.03.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022]
Abstract
Long-term efficacy that occurs with allergen immunotherapy of proven value is associated with decreases in IgE-dependent activation of mast cells and tissue eosinophilia. This suppression of type 2 immunity is accompanied by early induction of regulatory T cells, immune deviation in favor of TH1 responses, and induction of local and systemic IgG, IgG4, and IgA antibodies. These "protective" antibodies can inhibit allergen-IgE complex formation and consequent mast cell triggering and IgE-facilitated TH2-cell activation. Recent studies have highlighted the importance of innate responses mediated by type 2 dendritic cells and innate lymphoid cells in allergic inflammation. These cell types are under the regulation of cytokines such as thymic stromal lymphopoietin and IL-33 derived from the respiratory epithelium. Novel subsets of regulatory cells induced by immunotherapy include IL-35-producing regulatory T cells, regulatory B cells, a subset of T follicular regulatory cells, and IL-10-producing group 2 innate lymphoid cells. These mechanisms point to biomarkers that require testing for their ability to predict clinical response to immunotherapy and to inform novel approaches for better efficacy, safety, and long-term tolerance.
Collapse
Affiliation(s)
- Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom.
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Hanisah Sharif
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Martin Penagos
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity 2021; 54:291-307.e7. [PMID: 33450188 DOI: 10.1016/j.immuni.2020.12.013] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/04/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
The role of innate immune cells in allergen immunotherapy that confers immune tolerance to the sensitizing allergen is unclear. Here, we report a role of interleukin-10-producing type 2 innate lymphoid cells (IL-10+ ILC2s) in modulating grass-pollen allergy. We demonstrate that KLRG1+ but not KLRG1- ILC2 produced IL-10 upon activation with IL-33 and retinoic acid. These cells attenuated Th responses and maintained epithelial cell integrity. IL-10+ KLRG1+ ILC2s were lower in patients with grass-pollen allergy when compared to healthy subjects. In a prospective, double-blind, placebo-controlled trial, we demonstrated that the competence of ILC2 to produce IL-10 was restored in patients who received grass-pollen sublingual immunotherapy. The underpinning mechanisms were associated with the modification of retinol metabolic pathway, cytokine-cytokine receptor interaction, and JAK-STAT signaling pathways in the ILCs. Altogether, our findings underscore the contribution of IL-10+ ILC2s in the disease-modifying effect by allergen immunotherapy.
Collapse
|
30
|
Abstract
Allergic rhinitis (AR) is caused by immunoglobulin E (IgE)-mediated reactions to inhaled allergens and is one of the most common chronic conditions globally. AR often co-occurs with asthma and conjunctivitis and is a global health problem causing major burden and disability worldwide. Risk factors include inhalant and occupational allergens, as well as genetic factors. AR impairs quality of life, affects social life, school and work, and is associated with substantial economic costs. The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative classified AR into intermittent or persistent and mild or moderate/severe. The diagnosis is based on the clinical history and, if needed in patients with uncontrolled rhinitis despite medications or with long-lasting symptoms, on skin tests or the presence of serum-specific IgE antibodies to allergens. The most frequently used pharmacological treatments include oral, intranasal or ocular H1-antihistamines, intranasal corticosteroids or a fixed combination of intranasal H1-antihistamines and corticosteroids. Allergen immunotherapy prescribed by a specialist using high-quality extracts in stratified patients is effective in patients with persistent symptoms. Real-world data obtained by mobile technology offer new insights into AR phenotypes and management. The outlook for AR includes a better understanding of novel multimorbid phenotypes, health technology assessment and patient-centred shared decision-making.
Collapse
|
31
|
Meng Y, Wang C, Zhang L. Advances and novel developments in allergic rhinitis. Allergy 2020; 75:3069-3076. [PMID: 32901931 DOI: 10.1111/all.14586] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Allergic rhinitis (AR) is an upper airway disease with high prevalence in the world, and therefore needs to be thoroughly investigated and treated accordingly. Although the mechanisms underlying the pathology and treatment of AR have been widely studied, many aspects of AR are still unclear and warrant further investigations. The purpose of the present review was therefore to report recently published papers, which highlight the novel mechanisms and treatments of AR. These include role of environment, important proteins and cells, and some other factors in the pathogenesis of AR; as well as the role of immunotherapy and biologics in the treatment of AR.
Collapse
Affiliation(s)
- Yifan Meng
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases Chinese Academy of Medical Sciences Beijing China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases Chinese Academy of Medical Sciences Beijing China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases Chinese Academy of Medical Sciences Beijing China
- Department of Allergy Beijing TongRen Hospital Capital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
| |
Collapse
|
32
|
Sharif H, Acharya S, Dhondalay GKR, Varricchi G, Krasner-Macleod S, Laisuan W, Switzer A, Lenormand M, Kashe E, Parkin RV, Yi Y, Koc M, Fedina O, Vilà-Nadal G, Marone G, Eifan A, Scadding GW, Fear DJ, Nadeau KC, Durham SR, Shamji MH. Altered chromatin landscape in circulating T follicular helper and regulatory cells following grass pollen subcutaneous and sublingual immunotherapy. J Allergy Clin Immunol 2020; 147:663-676. [PMID: 33160969 DOI: 10.1016/j.jaci.2020.10.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Allergen-specific immunotherapy is a disease-modifying treatment that induces long-term T-cell tolerance. OBJECTIVE We sought to evaluate the role of circulating CXCR5+PD-1+ T follicular helper (cTFH) and T follicular regulatory (TFR) cells following grass pollen subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT) and the accompanying changes in their chromatin landscape. METHODS Phenotype and function of cTFH cells were initially evaluated in the grass pollen-allergic (GPA) group (n = 28) and nonatopic healthy controls (NAC, n = 13) by mathematical algorithms developed to manage high-dimensional data and cell culture, respectively. cTFH and TFR cells were further enumerated in NAC (n = 12), GPA (n = 14), SCIT- (n = 10), and SLIT- (n = 8) treated groups. Chromatin accessibility in cTFH and TFR cells was assessed by assay for transposase-accessible chromatin sequencing (ATAC-seq) to investigate epigenetic mechanisms underlying the differences between NAC, GPA, SCIT, and SLIT groups. RESULTS cTFH cells were shown to be distinct from TH2- and TH2A-cell subsets, capable of secreting IL-4 and IL-21. Both cytokines synergistically promoted B-cell class switching to IgE and plasma cell differentiation. Grass pollen allergen induced cTFH-cell proliferation in the GPA group but not in the NAC group (P < .05). cTFH cells were higher in the GPA group compared with the NAC group and were lower in the SCIT and SLIT groups (P < .01). Time-dependent induction of IL-4, IL-21, and IL-6 was observed in nasal mucosa following intranasal allergen challenge in the GPA group but not in SCIT and SLIT groups. TFR and IL-10+ cTFH cells were induced in SCIT and SLIT groups (all, P < .01). ATAC-seq analyses revealed differentially accessible chromatin regions in all groups. CONCLUSIONS For the first time, we showed dysregulation of cTFH cells in the GPA group compared to NAC, SCIT, and SLIT groups and induction of TFR and IL-10+ cTFH cells following SCIT and SLIT. Changes in the chromatin landscape were observed following allergen-specific immunotherapy in cTFH and TFR cells.
Collapse
Affiliation(s)
- Hanisah Sharif
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, Imperial College London, London, United Kingdom; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Swati Acharya
- Sean N. Parker Center for Asthma and Allergy Research, Department of Medicine, Stanford University, Stanford, Calif
| | - Gopal Krishna R Dhondalay
- Sean N. Parker Center for Asthma and Allergy Research, Department of Medicine, Stanford University, Stanford, Calif
| | - Gilda Varricchi
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom; Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Shoshanna Krasner-Macleod
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom
| | - Wannada Laisuan
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, Imperial College London, London, United Kingdom
| | - Amy Switzer
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom
| | - Madison Lenormand
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, Imperial College London, London, United Kingdom
| | - Elena Kashe
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom
| | - Rebecca V Parkin
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, Imperial College London, London, United Kingdom
| | - Yi Yi
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, Imperial College London, London, United Kingdom
| | - Merve Koc
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, Imperial College London, London, United Kingdom
| | - Oleksandra Fedina
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom
| | - Gemma Vilà-Nadal
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom
| | - Gianni Marone
- Division of Clinical Immunology and Allergy, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Aarif Eifan
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom
| | - Guy W Scadding
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom
| | - David J Fear
- Asthma UK Centre in Allergic Mechanisms of Asthma, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Kari C Nadeau
- Sean N. Parker Center for Asthma and Allergy Research, Department of Medicine, Stanford University, Stanford, Calif
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, Imperial College London, London, United Kingdom.
| |
Collapse
|
33
|
Schworer SA, Kim EH. Sublingual immunotherapy for food allergy and its future directions. Immunotherapy 2020; 12:921-931. [PMID: 32611211 DOI: 10.2217/imt-2020-0123] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Food allergy is an important medical problem with increasing prevalence throughout the world. Different approaches of food immunotherapy are being investigated including oral, epicutaneous and sublingual routes. Sublingual immunotherapy (SLIT) for food allergy involves placement of glycerinated allergen under the tongue daily to achieve allergen-specific desensitization. SLIT has been studied in the treatment of hazelnut, peach, apple, milk and peanut allergies with substantial focus on the treatment of peanut allergy. Phase II studies have shown SLIT for treatment of peanut allergy increases the tolerated dose of peanut by a substantial margin with fewer and less severe side effects than other modalities. This review discusses the mechanisms of SLIT, early studies of its use in food allergy and larger randomized controlled trials for treatment of peanut allergy. Future directions using the mechanisms involved in SLIT include oral mucosal immunotherapy for peanut allergy.
Collapse
Affiliation(s)
- Stephen A Schworer
- Department of Medicine, Division of Rheumatology, Allergy & Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Edwin H Kim
- Department of Medicine, Division of Rheumatology, Allergy & Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Weinfeld D, Westin U, Hellkvist L, Mellqvist UH, Jacobsson I, Cardell LO. A preseason booster prolongs the increase of allergen specific IgG4 levels, after basic allergen intralymphatic immunotherapy, against grass pollen seasonal allergy. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2020; 16:31. [PMID: 32368217 PMCID: PMC7189556 DOI: 10.1186/s13223-020-00427-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Allergen specific IgG4 levels have been monitored as a surrogate marker for the tolerance inducing effect of subcutaneous immunotherapy (SCIT) in many studies. Its accuracy at group level has been well established, but IgG4 has not yet found its place in the daily care of immunotherapy patients. METHODS Intralymphatic immunotherapy (ILIT) is a novel route for allergy vaccination against pollen allergy, where an ultrasound-guided injection of 1000 SQ-U Alutard is given directly into a groin lymph node. The suggested standard dosing so far has been one injection with 4 weeks in-between. In total 3000 SQ-U with the treatment completed in 2 months. IgG4 was measured with Immulite technique and rhinoconjunctivitis symptoms were estimated with daily online questionnaires. Mann-Whitney U-test and Wilcoxon Signed Rank test were applied for comparisons between groups and within groups, respectively. RESULTS The present study demonstrates that a single, preseason ILIT booster of 1000 SQ-U Alutard 5-grasses®, re-increases the allergen specific timothy-IgG4 levels, in patients already treated with ILIT before the previous pollen season. It also shows the feasibility of the ILIT-route for allergy vaccination of rhinitis patients, with or without concomitant asthma, with low degree of side effects and reconfirms high and sustained patient satisfaction. CONCLUSIONS It is tempting to suggest that the allergen specific IgG4 levels can be used to build an intuitive algorithm for future clinical guidance of ILIT patients.Trial registration Is Intralymphatic Allergen Immunotherapy Effective and Safe?, ClinicalTrials.gov Identifier NCT04210193. Registered 24 December 2019-Retrospectively registered, https://clinicaltrials.gov/ct2/show/study/NCT04210193?term=NCT04210193&draw=2&rank=1.
Collapse
Affiliation(s)
- Dan Weinfeld
- Asthma and Allergy Clinic Outpatient Unit (Adults), Department of Internal Medicine, South Alvsborgs Central Hospital, 50182 Boras, Sweden
| | - Ulla Westin
- Division of Ear, Nose and Throat Diseases, Head and Neck Surgery, Department of Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Laila Hellkvist
- Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Ulf-Henrik Mellqvist
- Section of Hematology, Department of Internal Medicine, South Alvsborgs Central Hospital, Boras, Sweden
| | - Ingvar Jacobsson
- Clinical Chemistry, Department of Medical Imaging and Laboratory Medicine, South Alvsborgs Central Hospital, Boras, Sweden
| | - Lars-Olaf Cardell
- Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
35
|
Larson D, Patel P, Salapatek AM, Couroux P, Whitehouse D, Pina A, Johnson JL, Sever ML, Sanda S, Poyser J, Allio T, Scadding GW, Qin T, Shamji MH, Kwok WW, James EA, French D, Lelic A, Larché M, Altman MC, Togias A, Durham SR. Nasal allergen challenge and environmental exposure chamber challenge: A randomized trial comparing clinical and biological responses to cat allergen. J Allergy Clin Immunol 2020; 145:1585-1597. [PMID: 32169380 DOI: 10.1016/j.jaci.2020.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND The direct-instillation nasal allergen challenge (NAC) and the environmental exposure chamber (EEC) are 2 methods of conducting controlled allergen provocations. The clinical and biological comparability of these methods has not been thoroughly investigated. OBJECTIVE We sought to compare clinical and immunologic responses to cat allergen in NAC versus EEC. METHODS Twenty-four participants were randomized to receive either NAC followed by a 2-day challenge in an EEC or a 2-day challenge in an EEC followed by NAC. Challenges were separated by 28-day washout periods. We measured total nasal symptom scores, peak nasal inspiratory flow, nasal (0-8 hours) and serum cytokines, serum antibodies, peripheral blood antigen-specific T lymphocytes, and gene expression in nasal scrapings. The primary outcome was the total nasal symptom score area under the curve for the first 3 hours after allergen exposure in NAC or after initiation of exposure in EEC. RESULTS Both challenges increased IL-5 and IL-13 in nasal fluids and serum and resulted in altered nasal cell expression of gene modules related to mucosal biology and transcriptional regulation. Changes in gene modules, more so than cytokine measurements, showed significant associations with total nasal symptom score and peak nasal inspiratory flow. Overall, EEC exposure generated larger responses and more early terminations compared with NAC. Although the 2 challenges did not correlate in symptom magnitude or temporality, striking correlations were observed in cytokine levels. CONCLUSIONS Although clinical outcomes of NAC and EEC were temporally different and nonequivalent in magnitude, immunologic responses were similar. Selection of a particular allergen challenge method should depend on considerations of study objectives and cost.
Collapse
Affiliation(s)
| | - Piyush Patel
- Inflamax Research Limited, DBA Cliantha Research, Mississauga, Canada
| | | | - Peter Couroux
- Inflamax Research Limited, DBA Cliantha Research, Mississauga, Canada
| | | | - Adela Pina
- Rho Federal Systems Division, Durham, NC
| | | | | | | | - Julian Poyser
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Theresa Allio
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Guy W Scadding
- MRC and Asthma UK, Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Tielin Qin
- The Immune Tolerance Network, Bethesda, Md
| | - Mohamed H Shamji
- MRC and Asthma UK, Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Section of Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - William W Kwok
- Benaroya Research Institute, Department of Translational Research, Seattle, Wash
| | - Eddie A James
- Benaroya Research Institute, Department of Translational Research, Seattle, Wash
| | | | - Alina Lelic
- Human Immunology Testing Suite, McMaster University, Hamilton, Ontario, Canada
| | - Mark Larché
- McMaster University, Hamilton, Ontario, Canada; Divisions of Clinical Immunology & Allergy and Respirology, Department of Medicine, Firestone Institute of Respiratory Health, The Research Institute, St Joe's Hamilton, Hamilton, Canada
| | - Matthew C Altman
- Department of Medicine, University of Washington, Seattle, Wash; Benaroya Research Institute, Systems Immunology Division, Seattle, Wash
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Stephen R Durham
- MRC and Asthma UK, Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Section of Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
Rauber MM, Möbs C, Campana R, Henning R, Schulze‐Dasbeck M, Greene B, Focke‐Tejkl M, Weber M, Valenta R, Pfützner W. Allergen immunotherapy with the hypoallergenic B-cell epitope-based vaccine BM32 modifies IL-10- and IL-5-secreting T cells. Allergy 2020; 75:450-453. [PMID: 31330050 DOI: 10.1111/all.13996] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michèle Myriam Rauber
- Clinical & Experimental Allergology, Department of Dermatology and Allergology Philipps‐Universität Marburg Marburg Germany
- Experimental Dermatology and Allergy Research Justus‐Liebig‐University Giessen Giessen Germany
| | - Christian Möbs
- Clinical & Experimental Allergology, Department of Dermatology and Allergology Philipps‐Universität Marburg Marburg Germany
| | - Raffaela Campana
- Department of Pathophysiology and Allergy Research Medical University Vienna Vienna Austria
| | | | - Manuel Schulze‐Dasbeck
- Clinical & Experimental Allergology, Department of Dermatology and Allergology Philipps‐Universität Marburg Marburg Germany
| | - Brandon Greene
- Institute of Medical Biometry and Epidemiology Philipps‐Universität Marburg Marburg Germany
| | - Margarete Focke‐Tejkl
- Department of Pathophysiology and Allergy Research Medical University Vienna Vienna Austria
| | - Milena Weber
- Department of Pathophysiology and Allergy Research Medical University Vienna Vienna Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research Medical University Vienna Vienna Austria
- NRC Institute of Immunology FMBA of Russia Moscow Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy Sechenov First Moscow State Medical University Moscow Russia
| | - Wolfgang Pfützner
- Clinical & Experimental Allergology, Department of Dermatology and Allergology Philipps‐Universität Marburg Marburg Germany
| |
Collapse
|
37
|
[Allergo-oncology: what allergologists and oncologists can learn from each other : Regulatory T cells in allergy and cancer]. HNO 2020; 68:115-122. [PMID: 31970443 DOI: 10.1007/s00106-019-00810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND The immune system has substantial involvement in the pathophysiology of allergies and cancer. The complexity of the immune system is well balanced in health, in so-called immune homeostasis. In many diseases, as in allergies and cancer, this balance is disturbed. The tolerance to foreign but harmless substances, such as tree or grass pollen, is no longer sufficiently given in allergic patients. In cancer patients, the immune system is tolerant to harmful tumor cells. Thus, allergies and cancer show an opposing pattern in terms of immune tolerance. The group of regulatory T cells occupies a central position here. OBJECTIVE This article deals with the function of regulatory T cells in detail. This group of immune cells and its interaction with other involved immune cells and messenger signals in the pathophysiology and treatment of allergies and cancer are presented. METHODS A review article was compiled based on the pertinent literature. RESULTS The regulatory T cells of cancer patients are a mechanism of the so-called tumor escape phenomenon to hide from the immune system. The tumor uses danger signals, e.g., the HMGB1 protein, to mediate tolerance to the immune system through these cells and thus avoid elimination. In allergic patients, these cells are underrepresented and can be induced by a specific immunotherapy, in order to achieve tolerance to the allergens and thus a causal treatment. CONCLUSION Regulatory T cells play an important role in the pathogenesis of cancer and allergies, and thus represent a therapeutic target.
Collapse
|
38
|
Huang R, Qin R, Hu Q, Zhu Z, Liu Y, Luo T, Li J. Effect of Dermatophagoides pteronyssinus Immunotherapy on Upper and Lower Airway Eosinophilic Inflammatory Response to Nasal Allergen Challenge. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:844-858. [PMID: 32638564 PMCID: PMC7347002 DOI: 10.4168/aair.2020.12.5.844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
Purpose It remains unknown whether allergen-specific immunotherapy (AIT) could attenuate airway inflammatory response triggered by allergen exposure. Methods We performed Dermatophagoides pteronyssinus (Der-p) nasal provocation tests (NPTs) in allergic rhinitis (AR) and/or asthma patients without AIT (non-AIT), or at 16, 52, 104, or 156 weeks after Der-p AIT. Rhinitis and asthma visual analog scale (VAS; VAS of nasal symptoms [VAS-NS], VAS of asthma symptoms), the rhinoconjunctivitis quality of life questionnaire (RQLQ), nasal lavage, sputum induction, fractional exhaled nitric oxide (FeNO), nasal airway resistance, pulmonary function, and airway hyperresponsiveness were performed before and after NPT. Results Non-AIT subjects demonstrated significantly higher VAS-NS before and after NPT compared to AIT subjects (P < 0.05). NPT response was positive in 14 (100%) non-AIT, 7 (70%) 16 weeks-AIT, 6 (60%) 52 weeks-AIT, 6 (60%) 104 weeks-AIT, and 2 (20%) 156 weeks-AIT subjects. The NPT grade significantly correlated with AIT duration and baseline RQLQ score (r = −0.561, P < 0.001 and r = 0.525, P < 0.001, respectively). Sputum and nasal lavage eosinophil count, and FeNO in non-AIT subjects were significantly increased 6 hours after NPT (P < 0.05). AIT subjects did not change their sputum or nasal lavage eosinophil count before and after NPT. Subjects with 156 weeks-AIT demonstrated significantly lower levels of sputum and nasal lavage eosinophil count before and after NPT when compared with non-AIT patients (P < 0.05). Sputum eosinophil counts positively correlated with nasal lavage eosinophil counts at baseline and 6 hours after NPT (r = 0.719, P = 0.006 and r = 0.823, P < 0.001, respectively) in non-AIT patients. Conclusion Our results show that AIT can attenuate both upper and lower airway immune response to nasal allergen exposure in patients with AR and/or asthma.
Collapse
Affiliation(s)
- Renbin Huang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rundong Qin
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiurong Hu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheng Zhu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - YuKai Liu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tian Luo
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
39
|
Zelm MC, McKenzie CI, Varese N, Rolland JM, O'Hehir RE. Recent developments and highlights in immune monitoring of allergen immunotherapy. Allergy 2019; 74:2342-2354. [PMID: 31587309 DOI: 10.1111/all.14078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022]
Abstract
Allergic diseases are the most common chronic immune-mediated disorders and can manifest with an enormous diversity in clinical severity and symptoms. Underlying mechanisms for the adverse immune response to allergens and its downregulation by treatment are still being revealed. As a result, there have been, and still are, major challenges in diagnosis, prediction of disease progression/evolution and treatment. Currently, the only corrective treatment available is allergen immunotherapy (AIT). AIT modifies the immune response through long-term repeated exposure to defined doses of allergen. However, as the treatment usually needs to be continued for several years to be effective, and can be accompanied by adverse reactions, many patients face difficulties completing their schedule. Long-term therapy also potentially incurs high costs. Therefore, there is a great need for objective markers to predict or to monitor individual patient's beneficial changes in immune response during therapy so that efficacy can be identified as early as possible. In this review, we specifically address recent technical developments that have generated new insights into allergic disease pathogenesis, and how these could potentially be translated into routine laboratory assays for disease monitoring during AIT that are relatively inexpensive, robust and scalable.
Collapse
Affiliation(s)
- Menno C. Zelm
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Craig I. McKenzie
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
| | - Nirupama Varese
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Jennifer M. Rolland
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Robyn E. O'Hehir
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| |
Collapse
|
40
|
Starchenka S, Heath MD, Lineberry A, Higenbottam T, Skinner MA. Transcriptome analysis and safety profile of the early-phase clinical response to an adjuvanted grass allergoid immunotherapy. World Allergy Organ J 2019; 12:100087. [PMID: 31768216 PMCID: PMC6872854 DOI: 10.1016/j.waojou.2019.100087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Background Specific immunotherapy is the only type of disease-modifying treatment, which induces rapid desensitization and long-term sustained unresponsiveness in patients with seasonal allergic rhinoconjunctivitis. The safety and tolerability of a new cumulative dose regimen of 35600 SU Grass MATA MPL for subcutaneous immunotherapy were assessed in pre-seasonal, single-blind, placebo controlled Phase I clinical study. Underlying immunological mechanisms were explored using transcriptome analysis of peripheral blood mononuclear cells. Methods Study subjects with a history of moderate to severe seasonal allergic rhinitis and/or conjunctivitis (SAR) due to grass (Pooideae) pollen exposure were randomized on a 1:1 ratio to receive either six 1.0 mL injections of cumulative dose regimen 35600 SU of Grass MATA MPL or placebo. The study consisted of three periods: screening, randomization and treatment and End of Study period. Blood samples were taken for clinical safety laboratory assessments and for the assessment of gene expression analysis during screening visit and End of Study visit. The safety statistics was calculated using Fisher's exact test. Delta Delta Ct method analysis of RT2 Profiler PCR Array gene expression results was used to calculate changes in gene expression level. Genes with the absolute value of log2 fold change greater than ±1.1 and p-value less than 0.05 were identified as differentially expressed and underwent IPA data analysis. Results The results of the study indicated that the higher cumulative dose regimen of the immunotherapy was well-tolerated. Changes in gene expression profile were associated with early immune responses implicating innate and adaptive immune mechanisms. Pathways and mechanistic network analysis via IPA mapped differentially expressed genes onto canonical pathways related to T cell differentiation, cytokine signalling and Th1/Th2 activation pathways. The transcriptome findings of the study could be further verified in large-scale field studies in order to explore their potential as predictive markers of successful immunotherapy. Conclusions The higher dose cumulative regime 35600 SU of Grass MATA MPL vaccine was well tolerated and safe. Molecular markers IL-27, IL-10, IL-4, TNF, IFNγ, TGFβ and TLR4 were the main predicted molecular drivers of the observed gene expression changes following early stages of SIT with Grass MATA MPL immunotherapy.
Collapse
Key Words
- ADRs, adverse drug reactions
- AE, adverse events
- AIT, allergen mmunotherapy
- ARC, adverse reaction complex
- Allergen immunotherapy
- Allergoid
- DC, dendritic cell
- EAACI, European Academy of Allergy and Clinical Immunology
- FEV, forced expiratory volume
- FVC, forced vital capacity
- Grass pollen
- IPA, Ingenuity Pathway Analysis
- MATA, modified allergen tyrosine adsorbate
- MCT, microcrystalline tyrosine
- MPL, monophosphoryl lipid A
- SAEs, serious adverse events
- SAR, seasonal allergic rhinoconjunctivitis
- SD, standard deviation
- SIT, specific immunotherapy
- SU, standardized units
- Safety
- TEAEs, treatment-emergent adverse events
- TLR, toll-like receptor
- TSS, total symptom score
- Transcriptome
- URA, Upstream Regulator Analysis
- mRNA, messenger ribosomal nucleic acid
Collapse
Affiliation(s)
- Sviatlana Starchenka
- Corresponding author. Allergy Therapeutics (UK) Ltd, Worthing, BN14 8SA, United Kingdom.
| | | | | | | | | |
Collapse
|
41
|
Mechanisms of Subcutaneous and Sublingual Aeroallergen Immunotherapy: What Is New? Immunol Allergy Clin North Am 2019; 40:1-14. [PMID: 31761112 DOI: 10.1016/j.iac.2019.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allergen immunotherapy (AIT) is considered to be the only treatment option with the promise of healing and induction of long-lasting allergen tolerance, persisting even after discontinuation of therapy. Despite a more than 100-year-long history, still only a minority of patients are being treated with AIT. Substantial developments took place in the last decade to overcome problems in standardization, efficacy, safety, high costs, long duration of treatment; and new guidelines have also been implemented. Major advancements in the understanding of AIT mechanisms with the focus on recent findings of subcutaneous and sublingual AIT have been summarized.
Collapse
|
42
|
Wai CYY, Leung NYH, Leung PSC, Chu KH. Modulating Shrimp Tropomyosin-Mediated Allergy: Hypoallergen DNA Vaccines Induce Regulatory T Cells to Reduce Hypersensitivity in Mouse Model. Int J Mol Sci 2019; 20:ijms20184656. [PMID: 31546958 PMCID: PMC6769673 DOI: 10.3390/ijms20184656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Shellfish allergy is one of the most common food allergies, with tropomyosin as the major cross-reactive allergen. However, no allergen-specific immunotherapy is clinically available. Recently, we designed two shrimp hypoallergens MEM49 and MED171. This study aimed to examine and compare the efficacy of the MEM49- and MED171-based DNA vaccines (pMEM49 and pMED171) in modulating shrimp allergy in a murine model of shrimp tropomyosin sensitivity. Intradermal immunization of BALB/c mice with pMEM49 or pMED171 effectively down-modulated allergic symptoms, tropomyosin-specific IgE levels, intestinal Th2 cytokines expression, and inflammatory cell infiltration. Both pMEM49 and pMED171 increased the frequency of regulatory T cells, but to a greater extent by pMED171 with upregulation of gut-homing molecules integrin-α4β7. The functionality of the pMED171-induced Treg cells was further illustrated by anti-CD25-mediated depletion of Treg cells and the adoptive transfer of CD4+CD25+Foxp3+Treg cells. Collectively, the data demonstrate that intradermal administration of pMED171 leads to the priming, activation, and migration of dermal dendritic cells which subsequently induce Treg cells, both locally and systemically, to downregulate the allergic responses to tropomyosin. This study is the first to demonstrate the potency of hypoallergen-encoding DNA vaccines as a therapeutic strategy for human shellfish allergy via the vigorous induction of functional Treg cells.
Collapse
Affiliation(s)
- Christine Y Y Wai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Paediatrics, School of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Nicki Y H Leung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Paediatrics, School of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Patrick S C Leung
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
43
|
Bacher P, Scheffold A. The effect of regulatory T cells on tolerance to airborne allergens and allergen immunotherapy. J Allergy Clin Immunol 2019; 142:1697-1709. [PMID: 30527063 DOI: 10.1016/j.jaci.2018.10.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022]
Abstract
Forkhead box P3-positive regulatory T (Treg) cells are essential mediators of tolerance against self-antigens and harmless exogenous antigens. Treg cell deficiencies result in multiple autoimmune and allergic syndromes in neonates. How Treg cells affect conventional allergies against aeroantigens, which are restricted to a few specific proteins released from inhaled particles, remains controversial. The hallmarks of antigen-specific loss of tolerance are allergen-specific TH2 cells and IgE. However, difficulties in identifying the rare allergen-specific Treg cells have obscured the cellular basis of tolerance to aeroallergens, which is also a major obstacle for the rational design of novel and more efficient allergen-specific immunotherapies. Recent technological progress allowing characterization of allergen-specific effectors and Treg cells with minimal in vitro manipulation revealed their detailed contribution to tolerance. The data identified inhaled particles as immunodominant Treg cell targets in healthy and allergic subjects. Conversely, the supposed immunodominant major allergens being rapidly released from inhaled particles apparently do not actively induce tolerance but are ignored by the immune system. Here, the partially contradictory data on various allergen-specific T-cell types in healthy subjects, allergic patients, and patients undergoing allergen-specific immunotherapy are discussed and integrated into one model, postulating Treg cell-dependent and Treg cell-independent checkpoints of tolerance and allergy development.
Collapse
Affiliation(s)
- Petra Bacher
- Institute for Immunology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Alexander Scheffold
- Institute for Immunology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Sublingual allergen immunotherapy (SLIT), a disease-modifying treatment for allergic rhinitis, can induce long-term clinical benefits which are mediated by immune responses that include generation of regulatory B (Breg) and T (Treg) cells. The newest member of the IL-12 superfamily, IL-35, is an anti-inflammatory cytokine known to be produced by Breg and Treg cells. Limited studies are available on the role of IL-35 on allergic rhinitis and during SLIT. This review summarizes recent findings relevant to the topic of IL-35 and their role in SLIT. RECENT FINDINGS Recombinant IL-35 protein can induce the generation of IL-35-producing Breg and Treg cells with immunosuppressive capacity. Levels of IL-35 and IL-35-inducible Treg (iTR35) cells are dysregulated in allergic rhinitis patients, which can be restored with SLIT. Mechanism of IL-35-mediated tolerance to allergens includes suppressions of T cell proliferation, Th2 cytokine production, and B cell production of IgE antibodies. SUMMARY Emerging evidence supports a potential role for IL-35 and iTR35 cells in tolerance maintenance during SLIT. A better understanding for the role of IL-35 and iTR35 cells could provide new avenues for the development of clinical biomarker to assess efficacy of allergen immunotherapy and novel therapeutic strategies for allergic rhinitis.
Collapse
|
45
|
Role of allergen-specific T-follicular helper cells in immunotherapy. Curr Opin Allergy Clin Immunol 2019; 18:495-501. [PMID: 30124489 DOI: 10.1097/aci.0000000000000480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The discovery of novel T-cell subsets including follicular helper T (Tfh) cells has broadened our knowledge on the complex immune networks in allergic diseases. This review summarizes the evidence for Tfh cells in controlling immune responses to allergens with a particular focus on immunoglobulin E (IgE) production and discusses the implication of such regulation in allergen-specific immunotherapy. RECENT FINDINGS Tfh cells support the production of IgE in animal models for allergic diseases. Among Tfh cells, the type 2 subset (Tfh2) is considered as the major player that secretes IL-4 and promotes the isotype switching to IgE. In human inflammatory airway diseases, including allergic rhinitis, asthma, and nasal polyps, the increased frequencies of circulating or tissue Tfh2 cells have been reported. Notably, the frequencies of Dermatophagoides pteronyssinus group 1 (Der p 1)-specific IL-4 Tfh cells in blood positively correlated with serum Der p-specific IgE levels in allergic rhinitis patients. After allergen immunotherapy (AIT), Der p 1-specific IL-4 Tfh cells declined in allergic rhinitis patients, which associated with the remission of clinical symptoms. SUMMARY Allergen-specific IL-4 Tfh cells contribute to the production of allergen-specific IgE and correlate with clinical efficacy of AIT in allergic rhinitis patients, which suggest allergen-specific Tfh cells as a promising therapeutic target and biomarker for AIT in allergic rhinitis.
Collapse
|
46
|
Mucosal IgE immune responses in respiratory diseases. Curr Opin Pharmacol 2019; 46:100-107. [PMID: 31220711 DOI: 10.1016/j.coph.2019.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 01/19/2023]
Abstract
IgE is the less abundant immunoglobulin isotype in serum and displays higher affinity for its cognate Fc receptor (FcεRI) than the rest of antibody isotypes. Moreover, the class switch recombination and the generation of memory responses remarkably differ between IgE and other isotypes. Importantly, class switch recombination to IgE can occur in the mucosae, preferentially through the sequential switching from IgG. Therefore, resident effector cells get rapidly sensitized, and free IgE can be found in mucosal secretions. All these aspects explain the involvement of IgE in respiratory diseases. In allergic rhinitis and allergic asthma, the IgE-sensitization to environmental allergens triggers an eosinophilic inflammation of the airway mucosa of atopic patients. In recent years, growing evidence indicates that some non-atopic patients with nasal reactivity to allergens display nasal eosinophilic inflammation, which could be triggered by the local production of allergen-specific IgE. This phenotype has been termed local allergic rhinitis. Mucosal IgE is also implicated in the pathophysiology of chronic rhinosinusitis with nasal polyps, even though the mechanisms for IgE synthesis might differ in this case. The role of IgE as mediator of airway diseases identify this marker as a therapeutic target. Some biologicals antagonize IgE-mediated inflammation of the airway mucosa, but they have not shown a beneficial long-term effect after discontinuation. In contrast, allergen immunotherapy does not only control the symptoms of airway allergy, but it also induces a long-lasting effect after discontinuation, thus modifying the natural course of the disease.
Collapse
|
47
|
Boonpiyathad T, Sokolowska M, Morita H, Rückert B, Kast JI, Wawrzyniak M, Sangasapaviliya A, Pradubpongsa P, Fuengthong R, Thantiworasit P, Sirivichayakul S, Kwok WW, Ruxrungtham K, Akdis M, Akdis CA. Der p 1-specific regulatory T-cell response during house dust mite allergen immunotherapy. Allergy 2019; 74:976-985. [PMID: 30485456 DOI: 10.1111/all.13684] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) is the only available treatment for allergic diseases that can induce specific immune tolerance to allergens. The key mechanisms involved in this process include changes in allergen-specific regulatory T (Treg) cells. METHODS We studied 25 allergic rhinitis patients undergoing subcutaneous house dust mite-specific immunotherapy. Peripheral blood mononuclear cells were studied before and after 10, 30 weeks, and 3 years of AIT. Der p 1-specific T regulatory cell responses were investigated by characterization of Der p 1-MHC class II tetramer-positive cells and correlated with nasal symptom score. RESULTS Twelve of 25 AIT patients matched with their MHC class II expression to the Der p 1 peptide-MHC class II tetramers. A significant increase in the numbers of Der p 1-specific FOXP3+ Helios+ CD25+ CD127- Treg cells after 30 weeks was observed, which slightly decreased after 3 years of AIT. In contrast, Der p 1-specific immunoglobulin-like transcript 3 (ILT3)+ CD25+ Treg cells decreased substantially from baseline after 3 years of AIT. ILT3+ Treg cells displayed compromised suppressive function and low FOXP3 expression. In addition, Der p 1-specific IL-10 and IL-22 responses have increased after 30 weeks, but only IL-10+ Der p 1-specific Treg cells remained present at high frequency after 3 years of AIT. Increased number of FOXP3+ Helios+ and IL-10+ and decreased ILT3+ Treg cell responses correlated with improved allergic symptoms. CONCLUSION The results indicate that AIT involves upregulation of the activated allergen-specific Treg cells and downregulation of dysfunctional allergen-specific Treg cell subset. Correction of dysregulated Treg cells responses during AIT is associated with improved clinical response.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
- Department of Medicine Phramongkutklao Hospital Bangkok Thailand
- Faculty of Medicine Chulalongkorn University Bangkok Thailand
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| | - Hideaki Morita
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Jeannette I. Kast
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Marcin Wawrzyniak
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | | | | | | | | | | | - William W. Kwok
- Benaroya Research Institute at Virginia Mason Seattle Washington
- Department of Immunology University of Washington Seattle Washington
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| |
Collapse
|
48
|
Shamji MH, Thomsen I, Layhadi JA, Kappen J, Holtappels G, Sahiner U, Switzer A, Durham SR, Pabst O, Bachert C. Broad IgG repertoire in patients with chronic rhinosinusitis with nasal polyps regulates proinflammatory IgE responses. J Allergy Clin Immunol 2019; 143:2086-2094.e2. [PMID: 30763592 DOI: 10.1016/j.jaci.2019.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is often characterized by local production of polyclonal IgE idiotypes. Although tissue IgE concentrations can be in the range of several thousand kilounits per liter, the regulatory mechanisms by which IgE-mediated inflammation is controlled in patients with nasal polyps are not well understood. OBJECTIVE We sought to determine whether locally induced IgG antibodies in patients with nasal polyps can inhibit an IgE-mediated proallergic response. METHODS Nasal polyp homogenates were collected from patients with grass pollen allergy with CRSwNP and nonallergic control subjects. IgE levels were measured using the Immuno Solid-phase Allergen Chip assay. IgE-containing nasal polyp homogenates with or without IgG depletion were evaluated for their capacity to promote IgE-facilitated allergen presentation, basophil activation, and histamine release. Local IgE and IgG repertoires were evaluated using Immunoglobulin 454 sequencing. RESULTS We show that IgG plays a key role in controlling IgE-mediated inflammatory responses in patients with nasal polyps. Depletion of IgG from nasal homogenates resulted in an increase in CD23-mediated IgE-facilitated allergen binding to B cells but also enhanced FcεRI-mediated allergen-driven basophil activation and histamine release. A similar response was observed in relation to specific IgE antibodies to Staphylococcus aureus enterotoxins. The capacity of IgG in nasal polyps to limit IgE-mediated inflammation is based on the fact that IgG repertoires widely share the antigen targets with the IgE repertoires in both allergic and nonallergic subjects. CONCLUSION Polyclonal IgE idiotypes in patients with CRSwNP are functional, promote IgE-mediated proallergic inflammation, and are partially antagonized by corresponding IgG idiotypes. This is most likely due to the fact that IgE and IgG clonotypes are widely shared in patients with nasal polyps.
Collapse
Affiliation(s)
- Mohamed H Shamji
- Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Division of ENT Diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden.
| | - Irene Thomsen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Janice A Layhadi
- Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Jasper Kappen
- Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Department of Pulmonology, STZ centre of excellence for Asthma & COPD, Sint Franciscus Vlietland group, Rotterdam, The Netherlands
| | - Gabriële Holtappels
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium; Division of ENT Diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Umit Sahiner
- Pediatric Allergy Department, Hacettepe University School of Medicine, Ankara, Turkey
| | - Amy Switzer
- Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Stephen R Durham
- Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Oliver Pabst
- Institute of Immunology, Hannover Medical School, Hannover, Germany; Institute of Molecular Medicine, RWTH Aachen, Aachen, Germany
| | - Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium; Division of ENT Diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
49
|
Eckl-Dorna J, Villazala-Merino S, Linhart B, Karaulov AV, Zhernov Y, Khaitov M, Niederberger-Leppin V, Valenta R. Allergen-Specific Antibodies Regulate Secondary Allergen-Specific Immune Responses. Front Immunol 2019; 9:3131. [PMID: 30705676 PMCID: PMC6344431 DOI: 10.3389/fimmu.2018.03131] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/18/2018] [Indexed: 01/08/2023] Open
Abstract
Immunoglobulin E (IgE)-associated allergy is the most common immunologically-mediated hypersensensitivity disease. It is based on the production of IgE antibodies and T cell responses against per se innocuous antigens (i.e., allergens) and subsequent allergen-induced inflammation in genetically pre-disposed individuals. While allergen exposure in sensitized subjects mainly boosts IgE production and T cell activation, successful allergen-specific immunotherapy (AIT) induces the production of allergen-specific IgG antibodies and reduces T cell activity. Under both circumstances, the resulting allergen-antibody complexes play a major role in modulating secondary allergen-specific immune responses: Allergen-IgE complexes induce mast cell and basophil activation and perpetuate allergen-specific T cell responses via presentation of allergen by allergen presenting cells to T cells, a process called IgE-facilitated antigen presentation (FAP). In addition, they may induce activation of IgE memory B cells. Allergen-induced production of specific IgGs usually exerts ameliorating effects but under certain circumstances may also contribute to exacerbation. Allergen-specific IgG antibodies induced by AIT which compete with IgE for allergen binding (i.e., blocking IgG) inhibit formation of IgE-allergen complexes and reduce activation of effector cells, B cells and indirectly T cells as FAP is prevented. Experimental data provide evidence that by binding of allergen-specific IgG to epitopes different from those recognized by IgE, allergen-specific IgG may enhance IgE-mediated activation of mast cells, basophils and allergen-specific IgE+ B cells. In this review we provide an overview about the role of allergen-specific antibodies in regulating secondary allergen-specific immune responses.
Collapse
Affiliation(s)
- Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | | | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexander V Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yury Zhernov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | | | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia.,NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| |
Collapse
|
50
|
Shamji MH, Kappen J, Abubakar-Waziri H, Zhang J, Steveling E, Watchman S, Kouser L, Eifan A, Switzer A, Varricchi G, Marone G, Couto-Francisco NC, Calderon M, Durham SR. Nasal allergen-neutralizing IgG 4 antibodies block IgE-mediated responses: Novel biomarker of subcutaneous grass pollen immunotherapy. J Allergy Clin Immunol 2018; 143:1067-1076. [PMID: 30445057 DOI: 10.1016/j.jaci.2018.09.039] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Grass pollen subcutaneous immunotherapy (SCIT) is associated with induction of serum IgG4-associated inhibitory antibodies that prevent IgE-facilitated allergen binding to B cells. OBJECTIVE We sought to determine whether SCIT induces nasal allergen-specific IgG4 antibodies with inhibitory activity that correlates closely with clinical response. METHODS In a cross-sectional controlled study, nasal fluid and sera were collected during the grass pollen season from 10 SCIT-treated patients, 13 untreated allergic patients (with seasonal allergic rhinitis [SAR]), and 12 nonatopic control subjects. Nasal and serum IgE and IgG4 levels to Phleum pratense components were measured by using the Immuno Solid Allergen Chip microarray. Inhibitory activity was measured by IgE-facilitated allergen binding assay. IL-10+ regulatory B cells were quantified in peripheral blood by using flow cytometry. RESULTS Nasal and serum Phl p 1- and Phl p 5-specific IgE levels were increased in patients with SAR compared to nonatopic control subjects (all, P < .001) and SCIT-treated patients (nasal, P < .001; serum Phl p 5, P = .073). Nasal IgG4 levels were increased in the SCIT group compared to those in the SAR group (P < .001) during the pollen season compared to out of season. IgG-associated inhibitory activity in nasal fluid and serum was significantly increased in the SCIT group compared to that in the SAR (both, P < .01). The magnitude of the inhibitory activity was 93% (P < .001) in nasal fluid compared to 66% (P < .001) in serum and was reversed after depletion of IgG. Both nasal fluid (r = -0.69, P = .0005) and serum (r = -0.552, P = .0095) blocking activity correlated with global symptom improvement. IL-10+ regulatory B cells were increased in season compared to out of season in the SCIT group (P < .01). CONCLUSION For the first time, we show that nasal IgG4-associated inhibitory activity correlates closely with the clinical response to allergen immunotherapy in patients with allergic rhinitis with or without asthma.
Collapse
Affiliation(s)
- Mohamed H Shamji
- Allergy and Clinical Immunology, Immunomodulation and Tolerance Group, National Heart and Lung Institute, Inflammation Repair and Development, Imperial College, London, United Kingdom.
| | - Jasper Kappen
- Allergy and Clinical Immunology, Immunomodulation and Tolerance Group, National Heart and Lung Institute, Inflammation Repair and Development, Imperial College, London, United Kingdom; Department of Pulmonology, STZ Centre of Excellence for Asthma & COPD, Franciscus group, Rotterdam, United Kingdom
| | - Hisham Abubakar-Waziri
- Allergy and Clinical Immunology, Immunomodulation and Tolerance Group, National Heart and Lung Institute, Inflammation Repair and Development, Imperial College, London, United Kingdom
| | - Jinjin Zhang
- Allergy and Clinical Immunology, Immunomodulation and Tolerance Group, National Heart and Lung Institute, Inflammation Repair and Development, Imperial College, London, United Kingdom
| | - Esther Steveling
- Allergy and Clinical Immunology, Immunomodulation and Tolerance Group, National Heart and Lung Institute, Inflammation Repair and Development, Imperial College, London, United Kingdom
| | - Shelley Watchman
- Allergy and Clinical Immunology, Immunomodulation and Tolerance Group, National Heart and Lung Institute, Inflammation Repair and Development, Imperial College, London, United Kingdom
| | - Lubna Kouser
- Allergy and Clinical Immunology, Immunomodulation and Tolerance Group, National Heart and Lung Institute, Inflammation Repair and Development, Imperial College, London, United Kingdom
| | - Aarif Eifan
- Allergy and Clinical Immunology, Immunomodulation and Tolerance Group, National Heart and Lung Institute, Inflammation Repair and Development, Imperial College, London, United Kingdom
| | - Amy Switzer
- Allergy and Clinical Immunology, Immunomodulation and Tolerance Group, National Heart and Lung Institute, Inflammation Repair and Development, Imperial College, London, United Kingdom
| | - Gilda Varricchi
- Allergy and Clinical Immunology, Immunomodulation and Tolerance Group, National Heart and Lung Institute, Inflammation Repair and Development, Imperial College, London, United Kingdom
| | - Gianni Marone
- Allergy and Clinical Immunology, Immunomodulation and Tolerance Group, National Heart and Lung Institute, Inflammation Repair and Development, Imperial College, London, United Kingdom
| | - Natália C Couto-Francisco
- Allergy and Clinical Immunology, Immunomodulation and Tolerance Group, National Heart and Lung Institute, Inflammation Repair and Development, Imperial College, London, United Kingdom
| | - Moises Calderon
- Allergy and Clinical Immunology, Immunomodulation and Tolerance Group, National Heart and Lung Institute, Inflammation Repair and Development, Imperial College, London, United Kingdom
| | - Stephen R Durham
- Allergy and Clinical Immunology, Immunomodulation and Tolerance Group, National Heart and Lung Institute, Inflammation Repair and Development, Imperial College, London, United Kingdom
| |
Collapse
|