1
|
Wang C, Damiano RJ, Ruebush LE, Engelen MPKJ, Mariani S, Liu L, Silva I, Borhani S, Cote GL, Conroy B, McFarlane D, Deutz NEP. A randomized, triple-blinded, placebo-controlled clinical trial evaluating immune responses of Typhim Vi and PPSV23 vaccines in healthy adults: The PREP study. Vaccine 2024; 42:126292. [PMID: 39245584 DOI: 10.1016/j.vaccine.2024.126292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Rapid and early identification of emergent infections is essential for delivering prompt clinical care. To advance the development of algorithms for the clinical management of infection identification, we performed a vaccination clinical trial to investigate the potential of using vaccination as a model for studying mild inflammation responses associated with different infections (NCT05346302). We collected data at various time points over 4 weeks from blood samples, wearable devices, and questionnaires. Following a 2-week baseline period, 210 healthy participants, aged 18-40 years, were administered either a Pneumococcal Polysaccharide vaccine (PPSV23), Typhoid Vi Polysaccharide vaccine (Typhim Vi), or placebo. In longitudinal analyses of blood biomarkers, we found that CRP was significantly higher at 2 days post-vaccination, whereas basophils, IL-10, IL-12p40, and MIG were significantly higher at 7 days post-vaccination in the PPSV23 group compared to both other groups (all p < 0.05). MIP-1β was significantly lower in the PPSV23 group than in the placebo group, while monocytes and MPV were significantly lower in the Typhim Vi group than in the placebo group at 7 days post-vaccination (all p < 0.05). The PPSV3 group showed a higher inflammatory profile, suggesting that PPSV23 induces a stronger immune response compared to Typhim Vi. The distinct immune responses induced by the two vaccines indicate the potential for utilizing vaccines as models for studying inflammation responses associated with different infectious pathogens.
Collapse
Affiliation(s)
| | | | - Laura E Ruebush
- Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
| | - Mariёlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
| | | | - Luoluo Liu
- Philips North America, Cambridge, MA, USA
| | | | | | - Gerard L Cote
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, USA
| | | | | | - Nicolaas E P Deutz
- Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Colas L, Magnan A, Brouard S. Immunoglobulin E response in health and disease beyond allergic disorders. Allergy 2022; 77:1700-1718. [PMID: 35073421 DOI: 10.1111/all.15230] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/13/2021] [Accepted: 01/16/2022] [Indexed: 12/24/2022]
Abstract
Immunoglobulin E is the latest discovered of immunoglobulin family and has been long associated with anaphylaxis and worm expulsion. Immunoglobulin E, along with mast cells, basophils, and eosinophils, is also a hallmark of type 2 immunity which is dysregulated in numerous diseases such as asthma, rhinitis, atopic dermatitis, and eosinophilic esophagitis in addition to anaphylaxis as aforementioned. However, recent advances have shed light on IgE regulation and memory explaining the low level of free IgE, the scarcity of IgE plasma cells that are mainly short live and the absence of IgE memory B cells in homeostatic conditions. Furthermore, IgE was implicated in inflammatory conditions beyond allergic disorders where IgE-mediated facilitated antigen presentation can enhance cellular and humoral response against autoantigens in systemic lupus or chronic urticaria leading to more severe disease and even against neoantigen facilitating tumor cell lysis. At last, IgE was unexpectedly associated with allograft rejection or atheromatous cardiovascular diseases where precise mechanisms remain to be deciphered. The purpose of this review is to summarize these recent advances in IgE regulation, biology, and physiopathology beyond allergic diseases opening whole new fields of IgE biology to explore.
Collapse
Affiliation(s)
- Luc Colas
- Plateforme Transversale d'Allergologie et d'immunologie Clinique PFTA Clinique dermatologique CHU de Nantes Nantes France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology Nantes France
| | - Antoine Magnan
- Hôpital Foch, Suresnes; Université de Versailles Saint‐Quentin Paris‐Saclay; INRAe Paris France
| | - Sophie Brouard
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology Nantes France
- Labex IGO Nantes France
- Centre d’Investigation Clinique en Biothérapie Centre de ressources biologiques (CRB) Nantes France
| |
Collapse
|
3
|
McKendry RT, Kwok M, Hemmings O, James LK, Santos AF. Allergen-specific IgG show distinct patterns in persistent and transient food allergy. Pediatr Allergy Immunol 2021; 32:1508-1518. [PMID: 34057765 DOI: 10.1111/pai.13567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Immediate food-allergic reactions are IgE-mediated, but many individuals with detectable allergen-specific IgE do not react to the food. Allergen-specific IgG may interfere with allergen-IgE interaction and/or through intracellular inhibitory signalling to suppress mast cell and basophil response to food allergens. We aimed to understand the role of allergen-specific IgG in food allergy and natural tolerance. METHODS IgG and IgG isotypes specific to peanut, cow's milk and egg were measured using ImmunoCAP and ELISA respectively in samples of children with suspected food allergies. Expression of IgE and IgG and their receptors and expression of activation markers following allergen stimulation were measured on basophils and mast cells by flow cytometry, with and without blockade of FcγRIIα or FcγRIIβ receptors. RESULTS The levels of peanut-specific IgG, IgG1, IgG2, IgG3 and IgG4 in ELISA were higher in peanut-allergic than in non-peanut-allergic children. No difference in allergen-specific IgG isotypes was observed between allergic and non-allergic children to milk or egg, except for milk-specific IgG4 that was higher in non-cow's milk-allergic than in cow's milk-allergic children. Basophils and LAD2 cells expressed IgG receptors, but IgG and IgA were not detected on the surface of either cell type and blocking FcγRIIα or FcγRIIβ did not modify basophil or mast cell activation in response to allergen in allergic or tolerant children. CONCLUSION Allergen-specific IgG patterns were distinct in persistent (peanut) versus transient (milk and egg) food allergies. We found no evidence that FcγRIIα or FcγRIIβ receptors affect allergen-induced activation of mast cells and basophils in food allergy or natural tolerance.
Collapse
Affiliation(s)
- Richard T McKendry
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Matthew Kwok
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Oliver Hemmings
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Louisa K James
- Blizard Institute, Queen Mary University of London, London, UK
| | - Alexandra F Santos
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,Children's Allergy Service, Guy's and St Thomas' Hospital, London, UK
| |
Collapse
|
4
|
Zhao X, Zhong X, Liu X, Wang X, Gao X. Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota. Front Nutr 2021; 8:693412. [PMID: 34164427 PMCID: PMC8215129 DOI: 10.3389/fnut.2021.693412] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of cardiovascular-related diseases are associated with structural and functional changes in gut microbiota (GM). The accumulation of beneficial gut commensals contributes to the improvement of cardiovascular-related diseases. The cardiovascular-related diseases that can be relieved by Lactobacillus supplementation, including hypercholesterolemia, atherosclerosis, myocardial infarction, heart failure, type 2 diabetes mellitus, and obesity, have expanded. As probiotics, lactobacilli occupy a substantial part of the GM and play important functional roles through various GM-derived metabolites. Lactobacilli ultimately have a beneficial impact on lipid metabolism, inflammatory factors, and oxidative stress to relieve the symptoms of cardiovascular-related diseases. However, the axis and cellular process of gut commensal Lactobacillus in improving cardiovascular-related diseases have not been fully elucidated. Additionally, Lactobacillus strains produce diverse antimicrobial peptides, which help maintain intestinal homeostasis and ameliorate cardiovascular-related diseases. These strains are a field that needs to be further investigated immediately. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus strain supplementation from animal studies and human clinical trials. We also highlighted a broad range of lactobacilli candidates with therapeutic capability by mining their metabolites. Our study provides instruction in the development of lactobacilli as a functional food to improve cardiovascular-related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Wang L, Zhan M, Wang J, Chen D, Zhao N, Wang L, Wang W, Zhang X, Huang Y, Zhang H, He S. Upregulated Expression of Toll-Like Receptor 7 in Peripheral Blood Basophils of Patients With Allergic Rhinitis. Am J Rhinol Allergy 2021; 35:746-760. [PMID: 33557582 DOI: 10.1177/1945892421993034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Recently, it has been reported that Toll-like receptor 7 (TLR7) agonists can improve allergic rhinitis (AR) symptoms by up-regulation of Th1 cytokine release and suppression of Th2 cell functions. However, little is known of the expression of TLR7 in basophils of AR. Objective To explore the expression of TLR7 in basophils of AR, and influence of allergens on TLR7 expression. Methods The expression levels of TLR7 in basophils of patients with AR were determined by flow cytometry, and the influence of allergens on TLR7 expression was examined by real time (q) PCR. Results The percentages of TLR7+CCR3+ cells ( P < 0.001 and P = 0.011), TLR7+CD123+HLA-DR− cells ( P = 0 .016 and P = 0.042) and TLR7+CCR3+CD123+HLA-DR− cells ( P = 0.046 and P = 0.035) in blood granulocyte and mononucleated cell populations of the patients with AR were increased, respectively compared with HC subjects. TLR7 MFI on CCR3+ cells ( P = 0.050 and P = 0.043), CD123+HLA-DR− cells ( P < 0.001 and P = 0.002) and CCR3+CD123+HLA-DR− cells ( P < 0.001 and P = 0.003) were enhanced compared with HC subjects. Allergens Der p1 and OVA provoked upregulation of TLR7 expression at both protein and mRNA levels and IL-13 production in KU812 cells. House Dust Mite extract (HDME), Artemisia sieversiana wild allergen extract (ASWE), IL-31, IL-33, IL-37, and TSLP provoked elevation of IL-6 release from KU812 cells following 2 h incubation period. Conclusions The percentage of TLR7+ basophils and TLR7 expression intensity in a single basophil are both increased in the blood of patients with AR, indicating that basophils likely contribute to the pathogenesis of AR via TLR7.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Immunology, Translational Medicine Institute, Shenyang Medical College, Shenyang, China
| | - Mengmeng Zhan
- Department of Immunology, Translational Medicine Institute, Shenyang Medical College, Shenyang, China
| | - Junling Wang
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dong Chen
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Nan Zhao
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ling Wang
- Department of Immunology, Translational Medicine Institute, Shenyang Medical College, Shenyang, China
| | - Wei Wang
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaowen Zhang
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yixia Huang
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Huiyun Zhang
- Department of Immunology, Translational Medicine Institute, Shenyang Medical College, Shenyang, China
| | - Shaoheng He
- Department of Immunology, Translational Medicine Institute, Shenyang Medical College, Shenyang, China
| |
Collapse
|
6
|
Marone G, Schroeder JT, Mattei F, Loffredo S, Gambardella AR, Poto R, de Paulis A, Schiavoni G, Varricchi G. Is There a Role for Basophils in Cancer? Front Immunol 2020; 11:2103. [PMID: 33013885 PMCID: PMC7505934 DOI: 10.3389/fimmu.2020.02103] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Basophils were identified in human peripheral blood by Paul Ehrlich over 140 years ago. Human basophils represent <1% of peripheral blood leukocytes. During the last decades, basophils have been described also in mice, guinea pigs, rabbits, and monkeys. There are many similarities, but also several immunological differences between human and mouse basophils. There are currently several strains of mice with profound constitutive or inducible basophil deficiency useful to prove that these cells have specific roles in vivo. However, none of these mice are solely and completely devoid of all basophils. Therefore, the relevance of these findings to humans remains to be established. It has been known for some time that basophils have the propensity to migrate into the site of inflammation. Recent observations indicate that tissue resident basophils contribute to lung development and locally promote M2 polarization of macrophages. Moreover, there is increasing evidence that lung-resident basophils exhibit a specific phenotype, different from circulating basophils. Activated human and mouse basophils synthesize restricted and distinct profiles of cytokines. Human basophils produce several canonical (e.g., VEGFs, angiopoietin 1) and non-canonical (i.e., cysteinyl leukotriene C4) angiogenic factors. Activated human and mouse basophils release extracellular DNA traps that may have multiple effects in cancer. Hyperresponsiveness of basophils has been demonstrated in patients with JAK2V617F-positive polycythemia vera. Basophils are present in the immune landscape of human lung adenocarcinoma and pancreatic cancer and can promote inflammation-driven skin tumor growth. The few studies conducted thus far using different models of basophil-deficient mice have provided informative results on the roles of these cells in tumorigenesis. Much more remains to be discovered before we unravel the hitherto mysterious roles of basophils in human and experimental cancers.
Collapse
Affiliation(s)
- Giancarlo Marone
- Section of Hygiene, Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli, Monaldi Hospital Pharmacy, Naples, Italy
| | - John T Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | | | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
7
|
IgE-binding epitope mapping of tropomyosin allergen (Exo m 1) from Exopalaemon modestus, the freshwater Siberian prawn. Food Chem 2019; 309:125603. [PMID: 31707198 DOI: 10.1016/j.foodchem.2019.125603] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
Exopalaemon modestus (EM) is a shrimp delicacy that could cause food allergy, the major allergen of EM is Exo m 1. The amino acid (AA) sequence, IgE-binding epitopes and allergenic peptides in gastrointestinal (GI) digests of Exo m 1, and their effects on basophil function were investigated. Exo m 1 has an AA-sequence of high similarity with other shrimp tropomyosins, while not 100% matching. The IgE-binding epitopes of Exo m 1 are epitope 1 (43-59, VHNLQKRMQQLENDLDS), epitope 2 (85-105, VAALNRRIQLLEEDLERSEER), epitope 3 (131-164, ENRSLSDEERMDALENQLKEARFLAEEADRKYDE), epitope 4 (187-201, ESKIVELEEELRVVG) and epitope 5 (243-280, ERSVQKLQKEVDRLEDELVNEKEKYKSITDELDQTFSE). Among the thirty-three peptides of Exo m 1 identified in GI digests, two were highly recognized by IgE, twenty-four moderately or weakly bound IgE, and seven had no IgE-reactivities. These IgE-binding epitopes and GI digestion induced-allergenic peptides could activate basophil degranulation, and CD63 and CD203c expression, they could be potential peptide-based immunotherapy for shrimp allergic individuals.
Collapse
|
8
|
Pellefigues C, Mehta P, Prout MS, Naidoo K, Yumnam B, Chandler J, Chappell S, Filbey K, Camberis M, Le Gros G. The Basoph8 Mice Enable an Unbiased Detection and a Conditional Depletion of Basophils. Front Immunol 2019; 10:2143. [PMID: 31552058 PMCID: PMC6746837 DOI: 10.3389/fimmu.2019.02143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
Basophils are granulocytes involved in parasite immunity and allergic diseases, known for their potent secretion of type 2 cytokines. Identifying their functions has proven to be controversial due to their relative rarity and their complex lineage phenotype. Here, we show that the expression of basophils lineage markers CD200R3 and FcεRIα is highly variable in inflammatory settings and hinders basophils identification by flow cytometry across multiple disease states or tissues. Fluorophore-conjugated antibody staining of these lineage markers strongly activates basophil type 2 cytokine expression, and represents a potential bias for coculture or in vivo transfer experiments. The Basoph8 is a mouse model where basophils specifically express a strong fluorescent reporter and the Cre recombinase. Basophils can be identified and FACS sorted unambiguously by their expression of the enhanced yellow fluorescent protein (eYFP) in these mice. We show that the expression of the eYFP is robust in vivo during inflammation, and in vitro on living basophils for at least 72 h, including during the induction of anaphylactoid degranulation. We bred and characterized the Basoph8xiDTR mice, in which basophils specifically express eYFP and the simian diphtheria toxin receptor (DTR). This model enables basophils conditional depletion relatively specifically ex vivo and in vivo during allergic inflammation and their detection as eYFP+ cells. In conclusion, we report underappreciated benefits of the commercially available Basoph8 mice to study basophils function.
Collapse
Affiliation(s)
- Christophe Pellefigues
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Palak Mehta
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Melanie Sarah Prout
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Karmella Naidoo
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Bibek Yumnam
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Jodie Chandler
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Sally Chappell
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Kara Filbey
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Mali Camberis
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Graham Le Gros
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| |
Collapse
|
9
|
Miller RL, Shtessel M, Robinson LB, Banerji A. Advances in drug allergy, urticaria, angioedema, and anaphylaxis in 2018. J Allergy Clin Immunol 2019; 144:381-392. [PMID: 31247266 DOI: 10.1016/j.jaci.2019.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Many notable advances in drug allergy, urticaria, angioedema, and anaphylaxis were reported in 2018. Broad-spectrum antibiotic use and, consequently, antibiotic resistance are widespread, and algorithms to clarify β-lactam allergy and optimize antibiotic use were described. Meaningful data emerged on the pathogenesis of delayed drug hypersensitivity reactions. Progress not only in defining biomarkers but also in understanding the effect on quality of life and developing better treatments has been made for patients with chronic idiopathic urticaria. Patients with hereditary angioedema (HAE) have gained additional access to highly efficacious therapies, with associated improvements in quality of life, and some progress was made in our understanding of recurrent angioedema in patients with normal laboratory results. Guidelines have defined clear goals to help providers optimize therapies in patients with HAE. The epidemiology and triggers of anaphylaxis and the mechanisms underlying anaphylaxis were elucidated further. In summary, these disorders (and labels) cause substantial burdens for individual persons and even society. Fortunately, publications in 2018 have informed on advancements in diagnosis and management and have provided better understanding of mechanisms that potentially could yield new therapies. This progress should lead to better health outcomes and paths forward in patients with drug allergy, urticaria, HAE, and anaphylaxis.
Collapse
Affiliation(s)
- Rachel L Miller
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY.
| | - Maria Shtessel
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Lacey B Robinson
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| | - Aleena Banerji
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|