1
|
Guguin J, Chen TY, Cuinat S, Besson A, Bertiaux E, Boutaud L, Ardito N, Imaz Murguiondo M, Cabet S, Hamel V, Thomas S, Pain B, Edery P, Putoux A, Tang TK, Mazoyer S, Delous M. A Taybi-Linder syndrome-related RTTN variant impedes neural rosette formation in human cortical organoids. PLoS Genet 2024; 20:e1011517. [PMID: 39680576 DOI: 10.1371/journal.pgen.1011517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Taybi-Linder syndrome (TALS) is a rare autosomal recessive disorder characterized by severe microcephaly with abnormal gyral pattern, severe growth retardation and bone abnormalities. It is caused by pathogenic variants in the RNU4ATAC gene. Its transcript, the small nuclear RNA U4atac, is involved in the excision of ~850 minor introns. Here, we report a patient presenting with TALS features but no pathogenic variants were found in RNU4ATAC, instead the homozygous RTTN c.2953A>G variant was detected by whole-exome sequencing. After deciphering the impact of the variant on the RTTN protein function at centrosome in engineered RTTN-depleted RPE1 cells and patient fibroblasts, we analysed neuronal stem cells (NSC) derived from CRISPR/Cas9-edited induced pluripotent stem cells and revealed major cell cycle and mitotic abnormalities, leading to aneuploidy, cell cycle arrest and cell death. In cortical organoids, we discovered an additional function of RTTN in the self-organisation of NSC into neural rosettes, by observing delayed apico-basal polarization of NSC. Altogether, these defects resulted to a marked delay of rosette formation in RTTN-mutated organoids, thus impeding their overall growth and shedding light on mechanisms leading to microcephaly.
Collapse
Affiliation(s)
- Justine Guguin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Ting-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Silvestre Cuinat
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Alicia Besson
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Eloïse Bertiaux
- University of Geneva, Molecular and Cellular biology department, Sciences faculty, Geneva, Switzerland
| | - Lucile Boutaud
- INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Nolan Ardito
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | | | - Sara Cabet
- Service d'imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, Institut NeuroMyoGène, Université de Lyon, Lyon, France
| | - Virginie Hamel
- University of Geneva, Molecular and Cellular biology department, Sciences faculty, Geneva, Switzerland
| | - Sophie Thomas
- INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Bertrand Pain
- University of Lyon, Université de Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Patrick Edery
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
- Unité de génétique clinique et Centre de référence labellisé des Anomalies du Développement Sud-Est, Département de génétique, Hospices Civils de Lyon, Bron, France
| | - Audrey Putoux
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
- Unité de génétique clinique et Centre de référence labellisé des Anomalies du Développement Sud-Est, Département de génétique, Hospices Civils de Lyon, Bron, France
| | - Tang K Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| |
Collapse
|
2
|
Gauthier LW, Gossez M, Malcus C, Viel S, Monneret G, Bordonné R, Pons L, Cabet S, Delous M, Mazoyer S, Putoux A, Edery P. B-cell immune deficiency in twin sisters expands the phenotype of MOPDI. Clin Genet 2024; 106:476-482. [PMID: 38837402 DOI: 10.1111/cge.14571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Microcephalic osteodysplastic primordial dwarfism type I (MOPDI) is a very rare and severe autosomal recessive disorder characterized by marked intrauterine growth retardation, skeletal dysplasia, microcephaly and brain malformations. MOPDI is caused by biallelic mutations in RNU4ATAC, a non-coding gene involved in U12-type splicing of 1% of the introns in the genome, which are recognized by their specific splicing consensus sequences. Here, we describe a unique observation of immunodeficiency in twin sisters with mild MOPDI, who harbor a novel n.108_126del mutation, encompassing part of the U4atac snRNA 3' stem-loop and Sm protein binding site, and the previously reported n.111G>A mutation. Interestingly, both twin sisters show mild B-cell anomalies, including low naive B-cell counts and increased memory B-cell and plasmablasts counts, suggesting partial and transitory blockage of B-cell maturation and/or excessive activation of naive B-cells. Hence, the localization of a mutation in stem II of U4atac snRNA, as observed in another RNU4ATAC-opathy with immunodeficiency, that is, Roifman syndrome (RFMN), is not required for the occurrence of an immune deficiency. Finally, we emphasize the importance of considering immunodeficiency in MOPDI management to reduce the risk of serious infectious episodes.
Collapse
Affiliation(s)
- Lucas W Gauthier
- Department of Genetics, Clinical Genetics Unit, Centre de Référence Maladies Rares des Anomalies du Développement Sud-Est, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Morgane Gossez
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Christophe Malcus
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Sébastien Viel
- Plateforme de Biothérapies et de production de MTI, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Guillaume Monneret
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
- Equipe d'Accueil 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon - bioMérieux, Hôpital Edouard Herriot, Lyon, France
| | - Remy Bordonné
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, Montpellier, France
| | - Linda Pons
- Unité Fonctionnelle de Cytogénétique, Laboratoire de Biologie Médicale, Centre hospitalier de Valence, Valence, France
| | - Sara Cabet
- Pediatric and Fetal Imaging Department, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
- Institut NeuroMyoGène, CNRS UMR5292, INSERM U1028, Claude Bernard Lyon 1 University, Lyon, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Genetics of Neurodevelopment Team (GENDEV), Bron, France
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Genetics of Neurodevelopment Team (GENDEV), Bron, France
| | - Audrey Putoux
- Department of Genetics, Clinical Genetics Unit, Centre de Référence Maladies Rares des Anomalies du Développement Sud-Est, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Bron, France
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Genetics of Neurodevelopment Team (GENDEV), Bron, France
| | - Patrick Edery
- Department of Genetics, Clinical Genetics Unit, Centre de Référence Maladies Rares des Anomalies du Développement Sud-Est, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Bron, France
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Genetics of Neurodevelopment Team (GENDEV), Bron, France
| |
Collapse
|
3
|
Greene D, De Wispelaere K, Lees J, Katrinecz A, Pascoal S, Hales E, Codina-Solà M, Valenzuela I, Tizzano EF, Atton G, Donnelly D, Foulds N, Jarvis J, McKee S, O'Donoghue M, Suri M, Vasudevan P, Stirrups K, Morgan NP, Freson K, Mumford AD, Turro E. Mutations in the U2 snRNA gene RNU2-2P cause a severe neurodevelopmental disorder with prominent epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.03.24312863. [PMID: 39281759 PMCID: PMC11398430 DOI: 10.1101/2024.09.03.24312863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The major spliceosome comprises the five snRNAs U1, U2, U4, U5 and U6. We recently showed that mutations in RNU4- 2, which encodes U4 snRNA, cause one of the most prevalent monogenic neurodevelopmental disorders. Here, we report that recurrent germline mutations in RNU2-2P , a 191bp gene encoding U2 snRNA, are responsible for a related disorder. By genetic association, we implicated recurrent de novo single nucleotide mutations at nucleotide positions 4 and 35 of RNU2-2P among nine cases. We replicated this finding in six additional cases, bringing the total to 15. The disorder is characterized by intellectual disability, neurodevelopmental delay, autistic behavior, microcephaly, hypotonia, epilepsy and hyperventilation. All cases display a severe and complex seizure phenotype. Our findings cement the role of major spliceosomal snRNAs in the etiologies of neurodevelopmental disorders.
Collapse
|
4
|
Ballios BG, Mandola A, Tayyib A, Tumber A, Garkaby J, Vong L, Heon E, Roifman CM, Vincent A. Deep phenotypic characterization of the retinal dystrophy in patients with RNU4ATAC-associated Roifman syndrome. Eye (Lond) 2023; 37:3734-3742. [PMID: 37225827 PMCID: PMC10697969 DOI: 10.1038/s41433-023-02581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023] Open
Abstract
PURPOSE To characterize the retinal phenotype in RNU4ATAC-associated Roifman syndrome. METHODS Ten patients (including 8 males) with molecularly confirmed Roifman syndrome underwent detailed ophthalmologic evaluation including fundus imaging, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography (SD-OCT), and electroretinography (ERG). Six patients had follow-up eye exams. All patients also underwent comprehensive examination for features of extra-retinal Roifman syndrome. RESULTS All patients had biallelic RNU4ATAC variants. Nyctalopia was common (7/10). Visual acuity at presentation ranged from 20/20 to 20/200 (Age Range: 5-41 years). Retinal exam revealed features of generalized retinopathy with mid-peripheral pigment epithelial changes. A para or peri-foveal ring of hyper-autofluorescence was the commonest FAF abnormality noted (6/8). The SD-OCT demonstrated relative preservation of the foveal ellipsoid zone in six cases; associated features included cystoid changes (5/10) and posterior staphyloma (3/10). The ERG was abnormal in all patients; nine showed generalized rod-cone dystrophy, whilst one patient with sectoral retinal involvement only had isolated rod dystrophy (20 years old). On follow-up examination (Mean duration: 8.16 years), progressive loss of visual acuity (2/6), mid-peripheral retinal atrophy (3/6) or shortening of ellipsoid zone width (1/6) were observed. CONCLUSION This study has characterized the retinal phenotype in RNU4ATAC-associated Roifman syndrome. Retinal involvement is universal, early-onset, and overall, the retinal and FAF features are consistent with rod-cone degeneration that is slowly progressive over time. The sub-foveal retinal ultrastructure is relatively preserved in majority of patients. Phenotypic variability independent of age exists, and more study of allelic- and sex-based determinants of disease severity are necessary.
Collapse
Affiliation(s)
- Brian G Ballios
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Amarilla Mandola
- Division of Immunology and Allergy, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - Alaa Tayyib
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jenny Garkaby
- Division of Immunology and Allergy, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - Linda Vong
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chaim M Roifman
- Division of Immunology and Allergy, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
5
|
Tabib A, Richmond CM, McGaughran J. Delineating the phenotype of RNU4ATAC-related spliceosomopathy. Am J Med Genet A 2023; 191:1094-1100. [PMID: 36622817 DOI: 10.1002/ajmg.a.63110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023]
Abstract
Biallelic pathogenic variants in RNU4ATAC cause microcephalic osteodysplastic primordial dwarfism type I (MOPD1), Roifman syndrome (RS) and Lowry-Wood syndrome (LWS). These conditions demonstrate significant phenotypic heterogeneity yet have overlapping features. Although historically described as discrete conditions they appear to represent a phenotypic spectrum with clinical features not always aligning with diagnostic categories. Clinical variability and ambiguity in diagnostic criteria exist among each disorder. Here we report an individual with a novel genotype and phenotype spanning all three disorders, expanding the phenotypic spectrum of RNU4ATAC-related spliceosomeopathies.
Collapse
Affiliation(s)
- Amanda Tabib
- Paediatrics, John Hunter Children's Hospital, Newcastle, New South Wales, Australia
| | - Christopher M Richmond
- Genetic Health QLD, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia.,School of Medicine, Griffith University, Southport, Queensland, Australia
| | - Julie McGaughran
- Genetic Health QLD, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia.,Faculty of Medicine, University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
6
|
Almentina Ramos Shidi F, Cologne A, Delous M, Besson A, Putoux A, Leutenegger AL, Lacroix V, Edery P, Mazoyer S, Bordonné R. Mutations in the non-coding RNU4ATAC gene affect the homeostasis and function of the Integrator complex. Nucleic Acids Res 2023; 51:712-727. [PMID: 36537210 PMCID: PMC9881141 DOI: 10.1093/nar/gkac1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Various genetic diseases associated with microcephaly and developmental defects are due to pathogenic variants in the U4atac small nuclear RNA (snRNA), a component of the minor spliceosome essential for the removal of U12-type introns from eukaryotic mRNAs. While it has been shown that a few RNU4ATAC mutations result in impaired binding of essential protein components, the molecular defects of the vast majority of variants are still unknown. Here, we used lymphoblastoid cells derived from RNU4ATAC compound heterozygous (g.108_126del;g.111G>A) twin patients with MOPD1 phenotypes to analyze the molecular consequences of the mutations on small nuclear ribonucleoproteins (snRNPs) formation and on splicing. We found that the U4atac108_126del mutant is unstable and that the U4atac111G>A mutant as well as the minor di- and tri-snRNPs are present at reduced levels. Our results also reveal the existence of 3'-extended snRNA transcripts in patients' cells. Moreover, we show that the mutant cells have alterations in splicing of INTS7 and INTS10 minor introns, contain lower levels of the INTS7 and INTS10 proteins and display changes in the assembly of Integrator subunits. Altogether, our results show that compound heterozygous g.108_126del;g.111G>A mutations induce splicing defects and affect the homeostasis and function of the Integrator complex.
Collapse
Affiliation(s)
- Fatimat Almentina Ramos Shidi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, 34293 Montpellier, France
| | - Audric Cologne
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, 69622 Villeurbanne, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Alicia Besson
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Audrey Putoux
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Centre de Référence Anomalies du Développement et Syndromes Polymalformatifs, Hospices Civils de Lyon, University Lyon 1, Bron, France
| | | | - Vincent Lacroix
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, 69622 Villeurbanne, France
| | - Patrick Edery
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Centre de Référence Anomalies du Développement et Syndromes Polymalformatifs, Hospices Civils de Lyon, University Lyon 1, Bron, France
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, 34293 Montpellier, France
| |
Collapse
|
7
|
De Wispelaere K, Freson K. The Analysis of the Human Megakaryocyte and Platelet Coding Transcriptome in Healthy and Diseased Subjects. Int J Mol Sci 2022; 23:ijms23147647. [PMID: 35886993 PMCID: PMC9317744 DOI: 10.3390/ijms23147647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Platelets are generated and released into the bloodstream from their precursor cells, megakaryocytes that reside in the bone marrow. Though platelets have no nucleus or DNA, they contain a full transcriptome that, during platelet formation, is transported from the megakaryocyte to the platelet. It has been described that transcripts in platelets can be translated into proteins that influence platelet response. The platelet transcriptome is highly dynamic and has been extensively studied using microarrays and, more recently, RNA sequencing (RNA-seq) in relation to diverse conditions (inflammation, obesity, cancer, pathogens and others). In this review, we focus on bulk and single-cell RNA-seq studies that have aimed to characterize the coding transcriptome of healthy megakaryocytes and platelets in humans. It has been noted that bulk RNA-seq has limitations when studying in vitro-generated megakaryocyte cultures that are highly heterogeneous, while single-cell RNA-seq has not yet been applied to platelets due to their very limited RNA content. Next, we illustrate how these methods can be applied in the field of inherited platelet disorders for gene discovery and for unraveling novel disease mechanisms using RNA from platelets and megakaryocytes and rare disease bioinformatics. Next, future perspectives are discussed on how this field of coding transcriptomics can be integrated with other next-generation technologies to decipher unexplained inherited platelet disorders in a multiomics approach.
Collapse
|
8
|
Warren JT, Di Paola J. Genetics of inherited thrombocytopenias. Blood 2022; 139:3264-3277. [PMID: 35167650 PMCID: PMC9164741 DOI: 10.1182/blood.2020009300] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/04/2022] [Indexed: 01/19/2023] Open
Abstract
The inherited thrombocytopenia syndromes are a group of disorders characterized primarily by quantitative defects in platelet number, though with a variety demonstrating qualitative defects and/or extrahematopoietic findings. Through collaborative international efforts applying next-generation sequencing approaches, the list of genetic syndromes that cause thrombocytopenia has expanded significantly in recent years, now with over 40 genes implicated. In this review, we focus on what is known about the genetic etiology of inherited thrombocytopenia syndromes and how the field has worked to validate new genetic discoveries. We highlight the important role for the clinician in identifying a germline genetic diagnosis and strategies for identifying novel causes through research-based endeavors.
Collapse
Affiliation(s)
- Julia T Warren
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jorge Di Paola
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
9
|
Clifford D, Moloney F, Leahy TR, Murray DM. Roifman syndrome: a description of further immunological and radiological features. BMJ Case Rep 2022; 15:e249109. [PMID: 35450878 PMCID: PMC9024203 DOI: 10.1136/bcr-2022-249109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2022] [Indexed: 11/03/2022] Open
Abstract
Roifman syndrome is a rare autosomal recessive inherited syndromic immunodeficiency. We wish to add to the available literature by reporting two brothers with clinical, radiological and immunological features of Roifman syndrome, confirmed on whole exome sequencing. We report an excellent response to subcutaneous immunoglobulin therapy in both brothers, reducing infection burden and hospital admissions. New radiological features are also described here which may assist in the diagnosis of other patients.
Collapse
Affiliation(s)
- Danielle Clifford
- Department of Paediatrics and Child Health, Cork University Hospital, Cork, Ireland
| | - Fiachra Moloney
- Department of Paediatric Radiology, Cork University Hospital, Cork, Ireland
| | - Timothy Ronan Leahy
- Department of Paediatric Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
- Department of Paediatrics, Trinity College Dublin, Dublin, Ireland
| | - Deirdre M Murray
- Department of Paediatrics and Child Health, Cork University Hospital, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- Principal Investigator, INFANT Centre, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Bourguignon A, Tasneem S, Hayward CP. Screening and diagnosis of inherited platelet disorders. Crit Rev Clin Lab Sci 2022; 59:405-444. [PMID: 35341454 DOI: 10.1080/10408363.2022.2049199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inherited platelet disorders are important conditions that often manifest with bleeding. These disorders have heterogeneous underlying pathologies. Some are syndromic disorders with non-blood phenotypic features, and others are associated with an increased predisposition to developing myelodysplasia and leukemia. Platelet disorders can present with thrombocytopenia, defects in platelet function, or both. As the underlying pathogenesis of inherited thrombocytopenias and platelet function disorders are quite diverse, their evaluation requires a thorough clinical assessment and specialized diagnostic tests, that often challenge diagnostic laboratories. At present, many of the commonly encountered, non-syndromic platelet disorders do not have a defined molecular cause. Nonetheless, significant progress has been made over the past few decades to improve the diagnostic evaluation of inherited platelet disorders, from the assessment of the bleeding history to improved standardization of light transmission aggregometry, which remains a "gold standard" test of platelet function. Some platelet disorder test findings are highly predictive of a bleeding disorder and some show association to symptoms of prolonged bleeding, surgical bleeding, and wound healing problems. Multiple assays can be required to diagnose common and rare platelet disorders, each requiring control of preanalytical, analytical, and post-analytical variables. The laboratory investigations of platelet disorders include evaluations of platelet counts, size, and morphology by light microscopy; assessments for aggregation defects; tests for dense granule deficiency; analyses of granule constituents and their release; platelet protein analysis by immunofluorescent staining or flow cytometry; tests of platelet procoagulant function; evaluations of platelet ultrastructure; high-throughput sequencing and other molecular diagnostic tests. The focus of this article is to review current methods for the diagnostic assessment of platelet function, with a focus on contemporary, best diagnostic laboratory practices, and relationships between clinical and laboratory findings.
Collapse
Affiliation(s)
- Alex Bourguignon
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Catherine P Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.,Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
11
|
Ver Donck F, Labarque V, Freson K. Hemostatic phenotypes and genetic disorders. Res Pract Thromb Haemost 2021; 5:e12637. [PMID: 34964017 PMCID: PMC8677882 DOI: 10.1002/rth2.12637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
This review is focused on genetic regulators of bleeding and thrombosis with a focus on next-generation sequencing (NGS) technologies for diagnosis and research of patients with inherited disorders. The molecular diagnosis of hemostatic phenotypes relies on the detection of genetic variants in the 99 curated disease-causing genes implicated for bleeding, platelet, and thrombotic disorders through the use of multigene panel tests. In this review, we will provide an overview of the advantages and disadvantages of using such multigene panel tests for diagnostics. During the past decade, NGS technologies have also been used for the gene discovery of 32 novel genes involved in inherited hemostatic phenotypes. We will provide a brief overview of these genes and discuss what information (eg, linkage, consanguinity, multiple index cases with similar phenotypes, mouse models, and more) was used to support the gene discovery process. Next, we provide examples on how RNA sequencing is useful to explore disease mechanisms of novel and often unexpected genes. This review will summarize the important findings concerning NGS technologies for diagnostics and gene discovery that were presented at the ISTH 2021 conference. Finally, future perspectives in our field mainly deal with finding the needle in the haystack for some still unexplained patients and the need for exploring the noncoding gene space and rapid disease validation models.
Collapse
Affiliation(s)
- Fabienne Ver Donck
- Department of Cardiovascular SciencesCenter for Molecular and Vascular BiologyUniversity of LeuvenLeuvenBelgium
| | - Veerle Labarque
- Department of Cardiovascular SciencesCenter for Molecular and Vascular BiologyUniversity of LeuvenLeuvenBelgium
- Department of Pediatrics, Pediatric Hemato‐OncologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Kathleen Freson
- Department of Cardiovascular SciencesCenter for Molecular and Vascular BiologyUniversity of LeuvenLeuvenBelgium
| |
Collapse
|
12
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
13
|
Eddens T, Van Meerbeke S, Zhang M, Petrov A, Fajt ML. A 33-year-old man with a history of recurrent pneumonia presenting with hypoxemic respiratory failure. Allergy Asthma Proc 2021; 42:439-442. [PMID: 34256898 DOI: 10.2500/aap.2021.42.210032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The patient was a 33-year-old man with a history of recurrent pneumonia, autism, bipolar disorder, hypothyroidism, intermittent asthma, and nonischemic cardiomyopathy attributed to cocaine use who was admitted with hypoxemic respiratory distress with bilateral infiltrates seen on a chest radiograph. He was treated for community-acquired pneumonia but progressed to respiratory failure that required intubation and broad-spectrum antibiotic therapy. His medical history was notable for short stature, abnormal facial features, and, since childhood, at least two pneumonias per year that required antibiotics. The initial evaluation for an underlying primary immunodeficiency found that the patient had normal quantitative immunoglobulin levels, with absent CD19+ B cells. This case highlighted the evaluation of the humoral immune system for hospitalized adult patients with recurrent infections as well as the use of genetic testing to diagnose rare immunodeficiency syndromes.
Collapse
|
14
|
Smets I, Prezzemolo T, Imbrechts M, Mallants K, Mitera T, Humblet-Baron S, Dubois B, Matthys P, Liston A, Goris A. Treatment-Induced BAFF Expression and B Cell Biology in Multiple Sclerosis. Front Immunol 2021; 12:676619. [PMID: 34122439 PMCID: PMC8187869 DOI: 10.3389/fimmu.2021.676619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/07/2021] [Indexed: 01/12/2023] Open
Abstract
Although fingolimod and interferon-β are two mechanistically different multiple sclerosis (MS) treatments, they both induce B cell activating factor (BAFF) and shift the B cell pool towards a regulatory phenotype. However, whether there is a shared mechanism between both treatments in how they influence the B cell compartment remains elusive. In this study, we collected a cross-sectional study population of 112 MS patients (41 untreated, 42 interferon-β, 29 fingolimod) and determined B cell subsets, cell-surface and RNA expression of BAFF-receptor (BAFF-R) and transmembrane activator and cyclophilin ligand interactor (TACI) as well as plasma and/or RNA levels of BAFF, BAFF splice forms and interleukin-10 (IL-10) and -35 (IL-35). We added an in vitro B cell culture with four stimulus conditions (Medium, CpG, BAFF and CpG+BAFF) for untreated and interferon-β treated patients including measurement of intracellular IL-10 levels. Our flow experiments showed that interferon-β and fingolimod induced BAFF protein and mRNA expression (P ≤ 3.15 x 10-4) without disproportional change in the antagonizing splice form. Protein BAFF correlated with an increase in transitional B cells (P = 5.70 x 10-6), decrease in switched B cells (P = 3.29 x 10-4), and reduction in B cell-surface BAFF-R expression (P = 2.70 x 10-10), both on TACI-positive and -negative cells. TACI and BAFF-R RNA levels remained unaltered. RNA, plasma and in vitro experiments demonstrated that BAFF was not associated with increased IL-10 and IL-35 levels. In conclusion, treatment-induced BAFF correlates with a shift towards transitional B cells which are enriched for cells with an immunoregulatory function. However, BAFF does not directly influence the expression of the immunoregulatory cytokines IL-10 and IL-35. Furthermore, the post-translational mechanism of BAFF-induced BAFF-R cell surface loss was TACI-independent. These observations put the failure of pharmaceutical anti-BAFF strategies in perspective and provide insights for targeted B cell therapies.
Collapse
Affiliation(s)
- Ide Smets
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Teresa Prezzemolo
- Department of Microbiology, Immunology and Transplantation, Laboratory for Adaptive Immunology, KU Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Maya Imbrechts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Klara Mallants
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Tania Mitera
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Stéphanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory for Adaptive Immunology, KU Leuven, Belgium
| | - Bénédicte Dubois
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory for Adaptive Immunology, KU Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium.,Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - An Goris
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Camacho-Ordonez N, Ballestar E, Timmers HTM, Grimbacher B. What can clinical immunology learn from inborn errors of epigenetic regulators? J Allergy Clin Immunol 2021; 147:1602-1618. [PMID: 33609625 DOI: 10.1016/j.jaci.2021.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
The epigenome is at the interface between environmental factors and the genome, regulating gene transcription, DNA repair, and replication. Epigenetic modifications play a crucial role in establishing and maintaining cell identity and are especially crucial for neurology, musculoskeletal integrity, and the function of the immune system. Mutations in genes encoding for the components of the epigenetic machinery lead to the development of distinct disorders, especially involving the central nervous system and host defense. In this review, we focus on the role of epigenetic modifications for the function of the immune system. By studying the immune phenotype of patients with monogenic mutations in components of the epigenetic machinery (inborn errors of epigenetic regulators), we demonstrate the importance of DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and mRNA processing for immunity. Moreover, we give a short overview on therapeutic strategies targeting the epigenome.
Collapse
Affiliation(s)
- Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - H Th Marc Timmers
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Urology, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST- Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
16
|
Mohtashami M, Razavi A, Abolhassani H, Aghamohammadi A, Yazdani R. Primary Immunodeficiency and Thrombocytopenia. Int Rev Immunol 2021; 41:135-159. [PMID: 33464134 DOI: 10.1080/08830185.2020.1868454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Primary immunodeficiency (PID) or Inborn errors of immunity (IEI) refers to a heterogeneous group of disorders characterized by immune system impairment. Although patients with IEI manifest highly variable symptoms, the most common clinical manifestations are recurrent infections, autoimmunity and malignancies. Some patients present hematological abnormality including thrombocytopenia due to different pathogenic mechanisms. This review focuses on primary and secondary thrombocytopenia as a complication, which can occur in IEI. Based on the International Union of Immunological Societies phenotypic classification for IEI, the several innate and adaptive immunodeficiency disorders can lead to thrombocytopenia. This review, for the first time, describes manifestation, mechanism and therapeutic modalities for thrombocytopenia in different classes of IEI.
Collapse
Affiliation(s)
- Maryam Mohtashami
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biology Sciences, University of Kharazmi, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The increasing use of high throughput sequencing and genomic analysis has facilitated the discovery of new causes of inherited platelet disorders. Studies of these disorders and their respective mouse models have been central to understanding their biology, and also in revealing new aspects of platelet function and production. This review covers recent contributions to the identification of genes, proteins and variants associated with inherited platelet defects, and highlights how these studies have provided insights into platelet development and function. RECENT FINDINGS Novel genes recently implicated in human platelet dysfunction include the galactose metabolism enzyme UDP-galactose-4-epimerase in macrothrombocytopenia, and erythropoietin-producing hepatoma-amplified sequence receptor transmembrane tyrosine kinase EPHB2 in a severe bleeding disorder with deficiencies in platelet agonist response and granule secretion. Recent studies of disease-associated variants established or clarified roles in platelet function and/or production for the membrane receptor G6b-B, the FYN-binding protein FYB1/ADAP, the RAS guanyl-releasing protein RASGRP2/CalDAG-GEFI and the receptor-like protein tyrosine phosphatase PTPRJ/CD148. Studies of genes associated with platelet disorders advanced understanding of the cellular roles of neurobeachin-like 2, as well as several genes influenced by the transcription regulator RUNT-related transcription factor 1 (RUNX1), including NOTCH4. SUMMARY The molecular bases of many hereditary platelet disorders have been elucidated by the application of recent advances in cell imaging and manipulation, genomics and protein function analysis. These techniques have also aided the detection of new disorders, and enabled studies of disease-associated genes and variants to enhance understanding of platelet development and function.
Collapse
|
18
|
Clinical interpretation of variants identified in RNU4ATAC, a non-coding spliceosomal gene. PLoS One 2020; 15:e0235655. [PMID: 32628740 PMCID: PMC7337319 DOI: 10.1371/journal.pone.0235655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Biallelic variants in RNU4ATAC, a non-coding gene transcribed into the minor spliceosome component U4atac snRNA, are responsible for three rare recessive developmental diseases, namely Taybi-Linder/MOPD1, Roifman and Lowry-Wood syndromes. Next-generation sequencing of clinically heterogeneous cohorts (children with either a suspected genetic disorder or a congenital microcephaly) recently identified mutations in this gene, illustrating how profoundly these technologies are modifying genetic testing and assessment. As RNU4ATAC has a single non-coding exon, the bioinformatic prediction algorithms assessing the effect of sequence variants on splicing or protein function are irrelevant, which makes variant interpretation challenging to molecular diagnostic laboratories. In order to facilitate and improve clinical diagnostic assessment and genetic counseling, we present i) an update of the previously reported RNU4ATAC mutations and an analysis of the genetic variations affecting this gene using the Genome Aggregation Database (gnomAD) resource; ii) the pathogenicity prediction performances of scores computed based on an RNA structure prediction tool and of those produced by the Combined Annotation Dependent Depletion tool for the 285 RNU4ATAC variants identified in patients or in large-scale sequencing projects; iii) a method, based on a cellular assay, that allows to measure the effect of RNU4ATAC variants on splicing efficiency of a minor (U12-type) reporter intron. Lastly, the concordance of bioinformatic predictions and cellular assay results was investigated.
Collapse
|
19
|
Turro E, Astle WJ, Megy K, Gräf S, Greene D, Shamardina O, Allen HL, Sanchis-Juan A, Frontini M, Thys C, Stephens J, Mapeta R, Burren OS, Downes K, Haimel M, Tuna S, Deevi SVV, Aitman TJ, Bennett DL, Calleja P, Carss K, Caulfield MJ, Chinnery PF, Dixon PH, Gale DP, James R, Koziell A, Laffan MA, Levine AP, Maher ER, Markus HS, Morales J, Morrell NW, Mumford AD, Ormondroyd E, Rankin S, Rendon A, Richardson S, Roberts I, Roy NBA, Saleem MA, Smith KGC, Stark H, Tan RYY, Themistocleous AC, Thrasher AJ, Watkins H, Webster AR, Wilkins MR, Williamson C, Whitworth J, Humphray S, Bentley DR, Kingston N, Walker N, Bradley JR, Ashford S, Penkett CJ, Freson K, Stirrups KE, Raymond FL, Ouwehand WH. Whole-genome sequencing of patients with rare diseases in a national health system. Nature 2020; 583:96-102. [PMID: 32581362 PMCID: PMC7610553 DOI: 10.1038/s41586-020-2434-2] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/05/2020] [Indexed: 02/02/2023]
Abstract
Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.
Collapse
Affiliation(s)
- Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK.
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK.
| | - William J Astle
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Stefan Gräf
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Daniel Greene
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Olga Shamardina
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Hana Lango Allen
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Alba Sanchis-Juan
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
- British Heart Foundation Cambridge Centre of Excellence, University of Cambridge, Cambridge, UK
| | - Chantal Thys
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Jonathan Stephens
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Rutendo Mapeta
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Oliver S Burren
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Matthias Haimel
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Salih Tuna
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Sri V V Deevi
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Timothy J Aitman
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, UK
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - David L Bennett
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Paul Calleja
- High Performance Computing Service, University of Cambridge, Cambridge, UK
| | - Keren Carss
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Mark J Caulfield
- Genomics England Ltd, London, UK
- William Harvey Research Institute, NIHR Biomedical Research Centre at Barts, Queen Mary University of London, London, UK
| | - Patrick F Chinnery
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Peter H Dixon
- Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK
- Rare Renal Disease Registry, UK Renal Registry, Bristol, UK
| | - Roger James
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Ania Koziell
- King's College London, London, UK
- Department of Paediatric Nephrology, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Michael A Laffan
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
- Centre for Haematology, Imperial College London, London, UK
| | - Adam P Levine
- Department of Renal Medicine, University College London, London, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Bristol, UK
| | - Joannella Morales
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Nicholas W Morrell
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Andrew D Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Elizabeth Ormondroyd
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- Department of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stuart Rankin
- High Performance Computing Service, University of Cambridge, Cambridge, UK
| | - Augusto Rendon
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Genomics England Ltd, London, UK
| | - Sylvia Richardson
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Irene Roberts
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Noemi B A Roy
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Moin A Saleem
- Bristol Renal and Children's Renal Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Kenneth G C Smith
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Hannah Stark
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Rhea Y Y Tan
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Bristol, UK
| | - Andreas C Themistocleous
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Hugh Watkins
- Department of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrew R Webster
- Moorfields Eye Hospital NHS Trust, London, UK
- UCL Institute of Opthalmology, University College London, London, UK
| | | | - Catherine Williamson
- Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - James Whitworth
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | | | | | - Nathalie Kingston
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Neil Walker
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - John R Bradley
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Renal Medicine, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sofie Ashford
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Christopher J Penkett
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Kathleen E Stirrups
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - F Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK.
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK.
- British Heart Foundation Cambridge Centre of Excellence, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
20
|
Nurden AT, Nurden P. Inherited thrombocytopenias: history, advances and perspectives. Haematologica 2020; 105:2004-2019. [PMID: 32527953 PMCID: PMC7395261 DOI: 10.3324/haematol.2019.233197] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Over the last 100 years the role of platelets in hemostatic events and their production by megakaryocytes have gradually been defined. Progressively, thrombocytopenia was recognized as a cause of bleeding, first through an acquired immune disorder; then, since 1948, when Bernard-Soulier syndrome was first described, inherited thrombocytopenia became a fascinating example of Mendelian disease. The platelet count is often severely decreased and platelet size variable; associated platelet function defects frequently aggravate bleeding. Macrothrombocytopenia with variable proportions of enlarged platelets is common. The number of circulating platelets will depend on platelet production, consumption and lifespan. The bulk of macrothrombocytopenias arise from defects in megakaryopoiesis with causal variants in transcription factor genes giving rise to altered stem cell differentiation and changes in early megakaryocyte development and maturation. Genes encoding surface receptors, cytoskeletal and signaling proteins also feature prominently and Sanger sequencing associated with careful phenotyping has allowed their early classification. It quickly became apparent that many inherited thrombocytopenias are syndromic while others are linked to an increased risk of hematologic malignancies. In the last decade, the application of next-generation sequencing, including whole exome sequencing, and the use of gene platforms for rapid testing have greatly accelerated the discovery of causal genes and extended the list of variants in more common disorders. Genes linked to an increased platelet turnover and apoptosis have also been identified. The current challenges are now to use next-generation sequencing in first-step screening and to define bleeding risk and treatment better.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Pessac, France
| | | |
Collapse
|
21
|
Giltiay NV, Giordano D, Clark EA. The Plasticity of Newly Formed B Cells. THE JOURNAL OF IMMUNOLOGY 2020; 203:3095-3104. [PMID: 31818922 DOI: 10.4049/jimmunol.1900928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
Newly formed B cells (NF-B cells) that emerge from the bone marrow to the periphery have often been referred to as immature or transitional B cells. However, NF-B cells have several striking characteristics, including a distinct BCR repertoire, high expression of AID, high sensitivity to PAMPs, and the ability to produce cytokines. A number of findings do not support their designation as immature because NF-B cells have the potential to become Ab-producing cells and to undergo class-switch recombination. In this review, we provide a fresh perspective on NF-B cell functions and describe some of the signals driving their activation. We summarize growing evidence supporting a role for NF-B cells in protection against infections and as a potential source of autoantibody-producing cells in autoimmune diseases such as systemic lupus erythematosus.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109; and
| | - Daniela Giordano
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
22
|
Von Willebrand Disease: From In Vivo to In Vitro Disease Models. Hemasphere 2020; 3:e297. [PMID: 31942548 PMCID: PMC6919471 DOI: 10.1097/hs9.0000000000000297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/04/2019] [Indexed: 01/28/2023] Open
Abstract
Von Willebrand factor (VWF) plays an essential role in primary hemostasis and is exclusively synthesized and stored in endothelial cells and megakaryocytes. Upon vascular injury, VWF is released into the circulation where this multimeric protein is required for platelet adhesion. Defects of VWF lead to the most common inherited bleeding disorder von Willebrand disease (VWD). Three different types of VWD exist, presenting with varying degrees of bleeding tendencies. The pathophysiology of VWD can be investigated by examining the synthesis, storage and secretion in VWF producing cells. These cells can either be primary VWF producing cells or transfected heterologous cell models. For many years transfected heterologous cells have been used successfully to elucidate many aspects of VWF synthesis. However, those cells do not fully reflect the characteristics of primary cells. Obtaining primary endothelial cells or megakaryocytes with a VWD phenotype, requires invasive procedures, such as vessel collection or a bone marrow biopsy. A more recent and promising development is the isolation of endothelial colony forming cells (ECFCs) from peripheral blood as a true-to-nature cell model. Alternatively, various animal models are available but limiting, therefore, new approaches are needed to study VWD and other bleeding disorders. A potential versatile source of endothelial cells and megakaryocytes could be induced pluripotent stem cells (iPSCs). This review gives an overview of models that are available to study VWD and VWF and will discuss novel approaches that can be considered to improve the understanding of the structural and functional mechanisms underlying this disease.
Collapse
|
23
|
Lye JJ, Williams A, Baralle D. Exploring the RNA Gap for Improving Diagnostic Yield in Primary Immunodeficiencies. Front Genet 2019; 10:1204. [PMID: 31921280 PMCID: PMC6917654 DOI: 10.3389/fgene.2019.01204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Challenges in diagnosing primary immunodeficiency are numerous and diverse, with current whole-exome and whole-genome sequencing approaches only able to reach a molecular diagnosis in 25–60% of cases. We assess these problems and discuss how RNA-focused analysis has expanded and improved in recent years and may now be utilized to gain an unparalleled insight into cellular immunology. We review how investigation into RNA biology can give information regarding the differential expression, monoallelic expression, and alternative splicing—which have important roles in immune regulation and function. We show how this information can inform bioinformatic analysis pipelines and aid in the variant filtering process, expediting the identification of causal variants—especially those affecting splicing—and enhance overall diagnostic ability. We also demonstrate the challenges, which remain in the design of this type of investigation, regarding technological limitation and biological considerations and suggest potential directions for the clinical applications.
Collapse
Affiliation(s)
- Jed J Lye
- University of Southampton Medical School, University of Southampton, Southampton, United Kingdom
| | - Anthony Williams
- University of Southampton Medical School, University of Southampton, Southampton, United Kingdom.,Wessex Investigational Sciences Hub Laboratory (WISH Lab), Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Diana Baralle
- University of Southampton Medical School, University of Southampton, Southampton, United Kingdom.,Faculty of Medicine, Highfield Campus, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
24
|
Cologne A, Benoit-Pilven C, Besson A, Putoux A, Campan-Fournier A, Bober MB, De Die-Smulders CEM, Paulussen ADC, Pinson L, Toutain A, Roifman CM, Leutenegger AL, Mazoyer S, Edery P, Lacroix V. New insights into minor splicing-a transcriptomic analysis of cells derived from TALS patients. RNA (NEW YORK, N.Y.) 2019; 25:1130-1149. [PMID: 31175170 PMCID: PMC6800510 DOI: 10.1261/rna.071423.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Minor intron splicing plays a central role in human embryonic development and survival. Indeed, biallelic mutations in RNU4ATAC, transcribed into the minor spliceosomal U4atac snRNA, are responsible for three rare autosomal recessive multimalformation disorders named Taybi-Linder (TALS/MOPD1), Roifman (RFMN), and Lowry-Wood (LWS) syndromes, which associate numerous overlapping signs of varying severity. Although RNA-seq experiments have been conducted on a few RFMN patient cells, none have been performed in TALS, and more generally no in-depth transcriptomic analysis of the ∼700 human genes containing a minor (U12-type) intron had been published as yet. We thus sequenced RNA from cells derived from five skin, three amniotic fluid, and one blood biosamples obtained from seven unrelated TALS cases and from age- and sex-matched controls. This allowed us to describe for the first time the mRNA expression and splicing profile of genes containing U12-type introns, in the context of a functional minor spliceosome. Concerning RNU4ATAC-mutated patients, we show that as expected, they display distinct U12-type intron splicing profiles compared to controls, but that rather unexpectedly mRNA expression levels are mostly unchanged. Furthermore, although U12-type intron missplicing concerns most of the expressed U12 genes, the level of U12-type intron retention is surprisingly low in fibroblasts and amniocytes, and much more pronounced in blood cells. Interestingly, we found several occurrences of introns that can be spliced using either U2, U12, or a combination of both types of splice site consensus sequences, with a shift towards splicing using preferentially U2 sites in TALS patients' cells compared to controls.
Collapse
Affiliation(s)
- Audric Cologne
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, F-69622 Villeurbanne, France
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
| | - Clara Benoit-Pilven
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, F-69622 Villeurbanne, France
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
| | - Alicia Besson
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
| | - Audrey Putoux
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Hospices Civils de Lyon, F-69500 Bron, France
| | - Amandine Campan-Fournier
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, F-69622 Villeurbanne, France
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
| | - Michael B Bober
- Division of Medical Genetics, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, Delaware 19803, USA
| | - Christine E M De Die-Smulders
- Department of Clinical Genetics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
- School for Oncology and Developmental Biology, GROW, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aimee D C Paulussen
- Department of Clinical Genetics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
- School for Oncology and Developmental Biology, GROW, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Lucile Pinson
- Genetic Department for Rare Diseases and Personalized Medicine, Clinical Division, CHU Montpellier, F-34000 Montpellier, France
| | - Annick Toutain
- Department of Genetics, Tours University Hospital, F-37000 Tours, France
- UMR 1253, iBrain, Tours University, Inserm, F-37000 Tours, France
| | - Chaim M Roifman
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
- Division for Immunology and Allergy, Canadian Center for Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | - Sylvie Mazoyer
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
| | - Patrick Edery
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Hospices Civils de Lyon, F-69500 Bron, France
| | - Vincent Lacroix
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, F-69622 Villeurbanne, France
| |
Collapse
|
25
|
Martínez-Cano J, Campos-Sánchez E, Cobaleda C. Epigenetic Priming in Immunodeficiencies. Front Cell Dev Biol 2019; 7:125. [PMID: 31355198 PMCID: PMC6635466 DOI: 10.3389/fcell.2019.00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
Immunodeficiencies (IDs) are disorders of the immune system that increase susceptibility to infections and cancer, and are therefore associated with elevated morbidity and mortality. IDs can be primary (not caused by other condition or exposure) or secondary due to the exposure to different agents (infections, chemicals, aging, etc.). Most primary immunodeficiencies (PIDs) are of genetic origin, caused by mutations affecting genes with key roles in the development or function of the cells of the immune system. A large percentage of PIDs are associated with a defective development and/or function of lymphocytes and, especially, B cells, the ones in charge of generating the different types of antibodies. B-cell development is a tightly regulated process in which many different factors participate. Among the regulators of B-cell differentiation, a correct epigenetic control of cellular identity is essential for normal cell function. With the advent of next-generation sequencing (NGS) techniques, more and more alterations in different types of epigenetic regulators are being described at the root of PIDs, both in humans and in animal models. At the same time, it is becoming increasingly clear that epigenetic alterations triggered by the exposure to environmental agents have a key role in the development of secondary immunodeficiencies (SIDs). Due to their largely reversible nature, epigenetic modifications are quickly becoming key therapeutic targets in other diseases where their contribution has been known for more time, like cancer. Here, we establish a parallelism between IDs and the nowadays accepted role of epigenetics in cancer initiation and progression, and propose that epigenetics forms a "third axis" (together with genetics and external agents) to be considered in the etiology of IDs, and linking PIDs and SIDs at the molecular level. We therefore postulate that IDs arise due to a variable contribution of (i) genetic, (ii) environmental, and (iii) epigenetic causes, which in fact form a continuum landscape of all possible combinations of these factors. Additionally, this implies the possibility of a fully epigenetically triggered mechanism for some IDs. This concept would have important prophylactic and translational implications, and would also imply a more blurred frontier between primary and secondary immunodeficiencies.
Collapse
Affiliation(s)
| | | | - César Cobaleda
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas –Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
26
|
Doggett K, Williams BB, Markmiller S, Geng FS, Coates J, Mieruszynski S, Ernst M, Thomas T, Heath JK. Early developmental arrest and impaired gastrointestinal homeostasis in U12-dependent splicing-defective Rnpc3-deficient mice. RNA (NEW YORK, N.Y.) 2018; 24:1856-1870. [PMID: 30254136 PMCID: PMC6239176 DOI: 10.1261/rna.068221.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/20/2018] [Indexed: 05/10/2023]
Abstract
Splicing is an essential step in eukaryotic gene expression. While the majority of introns is excised by the U2-dependent, or major class, spliceosome, the appropriate expression of a very small subset of genes depends on U12-dependent, or minor class, splicing. The U11/U12 65K protein (hereafter 65K), encoded by RNPC3, is one of seven proteins that are unique to the U12-dependent spliceosome, and previous studies including our own have established that it plays a role in plant and vertebrate development. To pinpoint the impact of 65K loss during mammalian development and in adulthood, we generated germline and conditional Rnpc3-deficient mice. Homozygous Rnpc3-/- embryos died prior to blastocyst implantation, whereas Rnpc3+/- mice were born at the expected frequency, achieved sexual maturity, and exhibited a completely normal lifespan. Systemic recombination of conditional Rnpc3 alleles in adult (Rnpc3lox/lox ) mice caused rapid weight loss, leukopenia, and degeneration of the epithelial lining of the entire gastrointestinal tract, the latter due to increased cell death and a reduction in cell proliferation. Accompanying this, we observed a loss of both 65K and the pro-proliferative phospho-ERK1/2 proteins from the stem/progenitor cells at the base of intestinal crypts. RT-PCR analysis of RNA extracted from purified preparations of intestinal epithelial cells with recombined Rnpc3lox alleles revealed increased frequency of U12-type intron retention in all transcripts tested. Our study, using a novel conditional mouse model of Rnpc3 deficiency, establishes that U12-dependent splicing is not only important during development but is indispensable throughout life.
Collapse
Affiliation(s)
- Karen Doggett
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ben B Williams
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Sebastian Markmiller
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Fan-Suo Geng
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Janine Coates
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Stephen Mieruszynski
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3050, Australia
| | - Tim Thomas
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Joan K Heath
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
27
|
Campos-Sanchez E, Martínez-Cano J, Del Pino Molina L, López-Granados E, Cobaleda C. Epigenetic Deregulation in Human Primary Immunodeficiencies. Trends Immunol 2018; 40:49-65. [PMID: 30509895 DOI: 10.1016/j.it.2018.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022]
Abstract
Primary immunodeficiencies (PIDs) are immune disorders resulting from defects in genes involved in immune regulation, and manifesting as an increased susceptibility to infections, autoimmunity, and cancer. However, the molecular basis of some prevalent entities remains poorly understood. Epigenetic control is essential for immune functions, and epigenetic alterations have been identified in different PIDs, including syndromes such as immunodeficiency-centromeric-instability-facial-anomalies, Kabuki, or Wolf-Hirschhorn, among others. Although the epigenetic changes may differ among these PIDs, the reversibility of epigenetic modifications suggests that they might become potential therapeutic targets. Here, we review recent mechanistic advances in our understanding of epigenetic alterations associated with certain PIDs, propose that a fully epigenetically driven mechanism might underlie some PIDs, and discuss the possible prophylactic and therapeutic implications.
Collapse
Affiliation(s)
- Elena Campos-Sanchez
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC/UAM, Madrid 28049, Spain; These authors contributed equally to this work
| | - Jorge Martínez-Cano
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC/UAM, Madrid 28049, Spain; These authors contributed equally to this work
| | - Lucía Del Pino Molina
- Clinical Immunology Department, Hospital Universitario, La Paz Institute of Biomedical Research, 28046, Madrid, Spain; Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, 28046 Madrid, Spain
| | - Eduardo López-Granados
- Clinical Immunology Department, Hospital Universitario, La Paz Institute of Biomedical Research, 28046, Madrid, Spain; Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, 28046 Madrid, Spain.
| | - Cesar Cobaleda
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC/UAM, Madrid 28049, Spain.
| |
Collapse
|
28
|
Heremans J, Freson K. High-throughput sequencing for diagnosing platelet disorders: lessons learned from exploring the causes of bleeding disorders. Int J Lab Hematol 2018; 40 Suppl 1:89-96. [PMID: 29741246 DOI: 10.1111/ijlh.12812] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
Inherited platelet disorders (IPDs) are a heterogeneous group of disorders caused by multiple genetic defects. Obtaining a molecular diagnosis for IPD patients using a phenotype- and laboratory-based approach is complex, expensive, time-consuming, and not always successful. High-throughput sequencing (HTS) methods offer a genotype-based approach to facilitate molecular diagnostics. Such approaches are expected to decrease time to diagnosis, increase the diagnostic rate, and they have provided novel insights into the genotype-phenotype correlation of IPDs. Some of these approaches have also focused on the discovery of novel genes and unexpected molecular pathways which modulate megakaryocyte and platelet biology were discovered. A growing number of genetic defects underlying IPDs have been identified and we will here provide an overview of the diverse molecular players. Screening of these genes will deliver a genetic diagnosis for about 40%-50% of the IPDs patients and we will compare different HTS applications that have been developed. A brief focus on gene variant interpretation and classification in a diagnostic setting will be given. Although it is true that successes in diagnostics and gene discovery have been reached, a large fraction of patients still remains without a conclusive diagnosis. In these patients, the sum of non-diagnostic variants in known genes or in potential novel genes might only be proven informative in future studies with larger patient cohorts and by data sharing among the diverse genome medicine initiatives. Finally, we still do not understand the role of the non-coding genome space for IPDs.
Collapse
Affiliation(s)
- J Heremans
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - K Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|