1
|
Adelon J, Abolhassani H, Esenboga S, Fouyssac F, Cagdas D, Tezcan I, Kuskonmaz B, Cetinkaya D, Suarez F, Mahdaviani SA, Plassart S, Mathieu AL, Fabien N, Malcus C, Morfin-Sherpa F, Billaud G, Tusseau M, Benezech S, Walzer T, De Villartay JP, Bertrand Y, Belot A. Human DNA-dependent protein kinase catalytic subunit deficiency: A comprehensive review and update. J Allergy Clin Immunol 2024; 154:1300-1312. [PMID: 38977084 DOI: 10.1016/j.jaci.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has an essential role in the non-homologous end-joining pathway that repairs DNA double-strand breaks in V(D)J recombination involved in the expression of T- and B-cell receptors. Whereas homozygous mutations in Prkdc define the Scid mouse, a model that has been widely used in biology, human mutations in PRKDC are extremely rare and the disease spectrum has not been described so far. OBJECTIVES To provide an update on the genetics, clinical spectrum, immunological profile, and therapy of DNA-PKcs deficiency in human. METHODS The clinical, biological, and treatment data from the 6 cases published to date and from 1 new patient were obtained and analyzed. Rubella PCR was performed on available granuloma material. RESULTS We report on 7 patients; 6 patients displayed the autosomal recessive p.L3062R mutation in PRKDC-encoding DNA-PKcs. Atypical severe combined immunodeficiency with inflammatory lesions, granulomas, and autoimmunity was the predominant clinical manifestation (n = 5 of 7). Rubella viral strain was detected in the granuloma of 1 patient over the 2 tested. T-cell counts, including naive CD4+CD45RA+ T cells and T-cell function were low at diagnosis for 6 patients. For most patients with available values, naive CD4+CD45RA+ T cells decreased over time (n = 5 of 6). Hematopoietic stem cell transplantation was performed in 5 patients, of whom 4 are still alive without transplant-related morbidity. Sustained T- and B-cell reconstitution was observed, respectively, for 4 and 3 patients, after a median follow-up of 8 years (range 3-16 years). CONCLUSIONS DNA-PKcs deficiency mainly manifests as an inflammatory disease with granuloma and autoimmune features, along with severe infections.
Collapse
Affiliation(s)
- Jihane Adelon
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France.
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Saliha Esenboga
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Fanny Fouyssac
- Department of Pediatric Oncology, Children's Hospital, Nancy, France
| | - Deniz Cagdas
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Barıs Kuskonmaz
- Department of Pediatric Hematology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Duygu Cetinkaya
- Department of Pediatric Hematology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Felipe Suarez
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; INSERM UMR1163, Imagine Institut, Sorbonne Paris Cité, Paris, France; Department of Hematology, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France; Université Paris Cité, Paris, France
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Plassart
- Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France
| | - Anne-Laure Mathieu
- Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Nicole Fabien
- Department of Immunology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Benite, France
| | - Christophe Malcus
- Department of Immunology, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Florence Morfin-Sherpa
- Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France; Laboratoire Virologie et Pathologies humaines (VirPath),Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Geneviève Billaud
- Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France
| | - Maud Tusseau
- Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France; Service de Génétique, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Sarah Benezech
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Jean-Pierre De Villartay
- Laboratory "Genome Dynamics in the Immune System" INSERM UMR 1163, Imagine Institute, Université de Paris Cité, Paris, France
| | - Yves Bertrand
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Alexandre Belot
- Hospices Civils de Lyon, Lyon, France; Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France; Department of Pediatrics Nephrology, Rheumatology, and Dermatology, Hôpital Femme-Mère-Enfant, Bron, France.
| |
Collapse
|
2
|
Jenni R, Klaa H, Khamessi O, Chikhaoui A, Najjar D, Ghedira K, Kraoua I, Turki I, Yacoub-Youssef H. Clinical and genetic spectrum of Ataxia Telangiectasia Tunisian patients: Bioinformatic analysis unveil mechanisms of ATM variants pathogenicity. Int J Biol Macromol 2024; 278:134444. [PMID: 39098699 DOI: 10.1016/j.ijbiomac.2024.134444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Ataxia Telangiectasia (AT) is a rare multisystemic neurodegenerative disease caused by biallelic mutations in the ATM gene. Few clinical studies on AT disease have been conducted in Tunisia, however, the mutational landscape is still undefined. Our aim is to determine the clinical and genetic spectrum of AT Tunisian patients and to explore the potential underlying mechanism of variant pathogenicity. Sanger sequencing was performed for nine AT patients. A comprehensive computational analysis was conducted to evaluate the possible pathogenic effect of ATM identified variants. Genetic screening of ATM gene has identified nine different variants from which six have not been previously reported. In silico analysis has predicted a pathogenic effect of identified mutations. This was corroborated by a structural bioinformatics study based on molecular modeling and docking for novel missense mutations. Our findings suggest a profound impact of identified mutations not only on the ATM protein stability, but also on the ATM-ligand interactions. Our study characterizes the mutational landscape of AT Tunisian patients which will allow to set up genetic counseling and prenatal diagnosis for families at risk and expand the spectrum of ATM variants worldwide. Furthermore, understanding the mechanism that underpin variant pathogenicity could provide further insights into disease pathogenesis.
Collapse
Affiliation(s)
- Rim Jenni
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Hedia Klaa
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Oussema Khamessi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia; Institut de Biotechnologie de Sidi Thabet, Université de la Manouba, Ariana BP-66, Manouba 2010, Tunisia.
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Dorra Najjar
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia.
| | - Ichraf Kraoua
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Ilhem Turki
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| |
Collapse
|
3
|
Chbihi M, Nabhan L, Pinton A, Drabent P, de Villartay JP, Neven B. HSCT in a Patient with Cernunnos/XLF Deficiency and Omenn Syndrome. J Clin Immunol 2024; 45:5. [PMID: 39264509 DOI: 10.1007/s10875-024-01765-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/11/2024] [Indexed: 09/13/2024]
Affiliation(s)
- Marwa Chbihi
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, 149 Rue de Sèvres, 75015, Paris, France
- Paris-Cité University, Paris, France
| | - Léa Nabhan
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Antoine Pinton
- Institut Necker Enfants Malades, UMR 1151, INSERM, Paris, France
| | - Philippe Drabent
- Department of Pathology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Bénédicte Neven
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, 149 Rue de Sèvres, 75015, Paris, France.
- Paris-Cité University, Paris, France.
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, Paris, France.
| |
Collapse
|
4
|
Tahiat A, Belbouab R, Yagoubi A, Hakem S, Fernini F, Keddari M, Belhadj H, Touri S, Aggoune S, Stoddard J, Niemela J, Zerifi F, Melzi S, Aboura R, Saad-Djaballah A, Ferhani Y, Ketfi A, Messaoudi H, Bencharif Madani T, Benhacine Z, Dehimi A, Okka K, Amroune F, Fellahi M, Bendahmane C, Khoulani R, Oukil A, Soufane A, Bourelaf I, Boubidi C, Boukhenfouf N, Amine Ifri M, Khelafi N, Boudiaf H, Khelifi Touhami T, Meçabih F, Boucelma M, Zelaci A, Gacem O, Ladj MS, Mekki A, Bensaadi N, Benhalima M, Zeroual Z, Bioud B, Benameur M, Bouhdjila R, Bouzerar Z, Ibsaine O, Maouche H, Kedji L, Smati L, Boukari R, Lambert C, Rosenzweig SD, Notarangelo LD, Djenouhat K. Flow cytometry-based diagnostic approach for inborn errors of immunity: experience from Algeria. Front Immunol 2024; 15:1402038. [PMID: 39072316 PMCID: PMC11273131 DOI: 10.3389/fimmu.2024.1402038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose In this study, we retrospectively reviewed the use of flow cytometry (FCM) in the diagnosis of inborn errors of immunity (IEIs) at a single center in Algeria. Sharing insights into our practical experience, we present FCM based diagnostic approaches adapted to different clinical scenarios. Methods Between May 2017 and February 2024, pediatric and adult patients presenting with clinical features suggestive of immunodeficiency were subjected to FCM evaluation, including lymphocyte subset analysis, detection of specific surface or intracellular proteins, and functional analysis of immune cells. Results Over a nearly seven-year period, our laboratory diagnosed a total of 670 patients (372 (55.5%) males and 298 (44.5%) females), distributed into 70 different IEIs belonging to 9 different categories of the International Union of Immunological Societies classification. FCM was used to diagnose and categorize IEI in 514 patients (76.7%). It provided direct diagnostic insights for IEIs such as severe combined immunodeficiency, Omenn syndrome, MHC class II deficiency, familial hemophagocytic lymphohistiocytosis, and CD55 deficiency. For certain IEIs, including hyper-IgE syndrome, STAT1-gain of function, autoimmune lymphoproliferative syndrome, and activated PI3K delta syndrome, FCM offered suggestive evidence, necessitating subsequent genetic testing for confirmation. Protein expression and functional assays played a crucial role in establishing definitive diagnoses for various disorders. To setup such diagnostic assays at high and reproducible quality, high level of expertise is required; in house reference values need to be determined and the parallel testing of healthy controls is highly recommended. Conclusion Flow cytometry has emerged as a highly valuable and cost-effective tool for diagnosing and studying most IEIs, particularly in low-income countries where access to genetic testing can be limited. FCM analysis could provide direct diagnostic insights for most common IEIs, offer clues to the underlying genetic defects, and/or aid in narrowing the list of putative genes to be analyzed.
Collapse
Affiliation(s)
- Azzeddine Tahiat
- Department of Medical Biology, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| | - Reda Belbouab
- Department of Pediatrics, Mustapha University Hospital, University of Algiers 1, Algiers, Algeria
| | - Abdelghani Yagoubi
- Pediatric Gastroenterology, Centre Algérois de Pédiatrie, Algiers, Algeria
| | - Saliha Hakem
- Department of Pediatrics, Mustapha University Hospital, University of Algiers 1, Algiers, Algeria
| | - Faiza Fernini
- Department of Pediatrics, Mustapha University Hospital, University of Algiers 1, Algiers, Algeria
| | - Malika Keddari
- Department of Pediatrics, Mustapha University Hospital, University of Algiers 1, Algiers, Algeria
| | - Hayet Belhadj
- Department of Pediatrics, Central Hospital of the Army, Algiers, Algeria
| | - Souad Touri
- Department of Pediatrics, Blida University Hospital, University of Blida, Blida, Algeria
| | - Samira Aggoune
- Department of Pediatrics, El-Harrach Hospital, University of Algiers 1, Algiers, Algeria
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Julie Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Farida Zerifi
- Department of Pediatrics, Ain Taya Hospital, University of Algiers 1, Algiers, Algeria
| | - Souhila Melzi
- Department of Pediatrics, Bab El-Oued University Hospital, University of Algiers 1, Algiers, Algeria
| | - Rawda Aboura
- Department of Pediatrics, Bab El-Oued University Hospital, University of Algiers 1, Algiers, Algeria
| | - Amina Saad-Djaballah
- Department of Pediatrics, Bologhine Hospital, University of Algiers 1, Algiers, Algeria
| | - Yacine Ferhani
- Department of Pediatrics, Mustapha University Hospital, University of Algiers 1, Algiers, Algeria
| | - Abdalbasset Ketfi
- Department of Pneumology, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| | - Hassen Messaoudi
- Department of Internal Medicine, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| | - Tahar Bencharif Madani
- Department of Pediatrics, Mansourah Hospital, University of Constantine, Constantine, Algeria
| | - Zouleikha Benhacine
- Department of Pediatrics, Constantine University Hospital, University of Constantine, Constantine, Algeria
| | - Abdelhak Dehimi
- Department of Pediatrics, Setif University Hospital, University of Setif, Setif, Algeria
| | - Kamelia Okka
- Department of Pediatrics, Setif University Hospital, University of Setif, Setif, Algeria
| | - Fairouz Amroune
- Department of Pediatrics, Setif University Hospital, University of Setif, Setif, Algeria
| | - Meriem Fellahi
- Department of Pediatrics, Setif University Hospital, University of Setif, Setif, Algeria
| | | | - Radia Khoulani
- Department of Pediatrics, Meftah Hospital, Blida, Algeria
| | - Asma Oukil
- Department of Medical Biology, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| | - Asma Soufane
- Department of Medical Biology, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| | - Imene Bourelaf
- Department of Medical Biology, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| | - Chahynez Boubidi
- Department of Pediatrics A, Hussein Dey University Hospital, University of Algiers 1, Algiers, Algeria
| | | | | | | | - Houda Boudiaf
- Department of Pediatric Oncology, Mustapha University Hospital, University of Algiers 1, Algiers, Algeria
| | | | - Fethi Meçabih
- Department of Immunology, Institut Pasteur d’Algérie, University of Algiers 1, Algiers, Algeria
| | - Malika Boucelma
- Department of Internal Medicine, Kouba Hospital, University of Algiers 1, Algiers, Algeria
| | - Amara Zelaci
- Department of Pediatrics, El Oued Hospital, El Oued, Algeria
| | - Ourida Gacem
- Department of Pediatrics, Birtraria Hospital El Biar, University of Algiers 1, Algiers, Algeria
| | - Mohamed Samir Ladj
- Department of Pediatrics, Birtraria Hospital El Biar, University of Algiers 1, Algiers, Algeria
| | - Azzedine Mekki
- Department of Pediatrics B, Hussein Dey University Hospital, University of Algiers 1, Algiers, Algeria
| | - Nadia Bensaadi
- Department of Pediatrics, Tizi Ouzou University Hospital, University of Tizi Ouzou, Tizi Ouzou, Algeria
| | - Malika Benhalima
- Algiers Faculty of Pharmacy, University of Algiers 1, Algiers, Algeria
| | - Zoulikha Zeroual
- Department of Pediatrics A, Hussein Dey University Hospital, University of Algiers 1, Algiers, Algeria
| | - Belkacem Bioud
- Department of Pediatrics, Setif University Hospital, University of Setif, Setif, Algeria
| | - Mustapha Benameur
- Department of Internal Medicine, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| | - Rachid Bouhdjila
- Department of Pediatrics, Constantine University Hospital, University of Constantine, Constantine, Algeria
| | - Zahir Bouzerar
- Department of Pediatrics, Bab El-Oued University Hospital, University of Algiers 1, Algiers, Algeria
| | - Ouardia Ibsaine
- Department of Pediatrics, Ain Taya Hospital, University of Algiers 1, Algiers, Algeria
| | - Hachemi Maouche
- Department of Pediatrics, El-Harrach Hospital, University of Algiers 1, Algiers, Algeria
| | - Leila Kedji
- Department of Pediatrics, Blida University Hospital, University of Blida, Blida, Algeria
| | - Leila Smati
- Department of Pediatrics, Bologhine Hospital, University of Algiers 1, Algiers, Algeria
| | - Rachida Boukari
- Department of Pediatrics, Mustapha University Hospital, University of Algiers 1, Algiers, Algeria
| | - Claude Lambert
- Cytometry Unit, Immunology Laboratory, Saint-Etienne University Hospital, Saint-Étienne, Lyon, France
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Luigi D. Notarangelo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kamel Djenouhat
- Department of Medical Biology, Rouiba Hospital, University of Algiers 1, Algiers, Algeria
| |
Collapse
|
5
|
Benavides-Nieto M, Adam F, Martin E, Boussard C, Lagresle-Peyrou C, Callebaut I, Kauskot A, Repérant C, Feng M, Bordet JC, Castelle M, Morelle G, Brouzes C, Zarhrate M, Panikulam P, Lambert N, Picard C, Bodet D, Rouger-Gaudichon J, Revy P, de Villartay JP, Moshous D. Somatic RAP1B gain-of-function variant underlies isolated thrombocytopenia and immunodeficiency. J Clin Invest 2024; 134:e169994. [PMID: 39225097 PMCID: PMC11364392 DOI: 10.1172/jci169994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The ubiquitously expressed small GTPase Ras-related protein 1B (RAP1B) acts as a molecular switch that regulates cell signaling, cytoskeletal remodeling, and cell trafficking and activates integrins in platelets and lymphocytes. The residue G12 in the P-loop is required for the RAP1B-GTPase conformational switch. Heterozygous germline RAP1B variants have been described in patients with syndromic thrombocytopenia. However, the causality and pathophysiological impact remained unexplored. We report a boy with neonatal thrombocytopenia, combined immunodeficiency, neutropenia, and monocytopenia caused by a heterozygous de novo single nucleotide substitution, c.35G>A (p.G12E) in RAP1B. We demonstrate that G12E and the previously described G12V and G60R were gain-of-function variants that increased RAP1B activation, talin recruitment, and integrin activation, thereby modifying late responses such as platelet activation, T cell proliferation, and migration. We show that in our patient, G12E was a somatic variant whose allele frequency decreased over time in the peripheral immune compartment, but remained stable in bone marrow cells, suggesting a differential effect in distinct cell populations. Allogeneic hematopoietic stem cell transplantation fully restored the patient's hemato-immunological phenotype. Our findings define monoallelic RAP1B gain-of-function variants as a cause for constitutive immunodeficiency and thrombocytopenia. The phenotypic spectrum ranged from isolated hematological manifestations in our patient with somatic mosaicism to complex syndromic features in patients with reported germline RAP1B variants.
Collapse
Affiliation(s)
- Marta Benavides-Nieto
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
- General Pediatrics–Infectious Diseases and Internal Medicine, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris (AP-HP) Nord, Paris, France
| | - Frédéric Adam
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Emmanuel Martin
- Laboratory Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Charlotte Boussard
- Université Paris Cité, Paris, France
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Laboratory Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Chantal Lagresle-Peyrou
- Biotherapy Clinical Investigation Center, AP-HP, Paris, France
- Laboratory Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Isabelle Callebaut
- Sorbonne University, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Alexandre Kauskot
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Christelle Repérant
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Miao Feng
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Claude Bordet
- Laboratoire d’Hémostase, Centre de Biologie Est, Hospices Civils de Lyon, Bron, France
| | - Martin Castelle
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Guillaume Morelle
- Université Paris Cité, Paris, France
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Chantal Brouzes
- Laboratory of Onco-Hematology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France, and INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Mohammed Zarhrate
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 and INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Patricia Panikulam
- Université Paris Cité, Paris, France
- Laboratory “Molecular basis of altered immune homeostasis,” INSERM UMR 1163, Imagine Institute, Paris, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Capucine Picard
- Université Paris Cité, Paris, France
- Laboratory Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Centre de Référence des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Damien Bodet
- CHU de Caen Normandie, Onco-Immunohématologie Pédiatrique, Caen, France
| | | | - Patrick Revy
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
| | - Jean-Pierre de Villartay
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
| | - Despina Moshous
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Centre de Référence des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| |
Collapse
|
6
|
Chen R, Lukianova E, van der Loeff IS, Spegarova JS, Willet JDP, James KD, Ryder EJ, Griffin H, IJspeert H, Gajbhiye A, Lamoliatte F, Marin-Rubio JL, Woodbine L, Lemos H, Swan DJ, Pintar V, Sayes K, Ruiz-Morales ER, Eastham S, Dixon D, Prete M, Prigmore E, Jeggo P, Boyes J, Mellor A, Huang L, van der Burg M, Engelhardt KR, Stray-Pedersen A, Erichsen HC, Gennery AR, Trost M, Adams DJ, Anderson G, Lorenc A, Trynka G, Hambleton S. NUDCD3 deficiency disrupts V(D)J recombination to cause SCID and Omenn syndrome. Sci Immunol 2024; 9:eade5705. [PMID: 38787962 DOI: 10.1126/sciimmunol.ade5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Inborn errors of T cell development present a pediatric emergency in which timely curative therapy is informed by molecular diagnosis. In 11 affected patients across four consanguineous kindreds, we detected homozygosity for a single deleterious missense variant in the gene NudC domain-containing 3 (NUDCD3). Two infants had severe combined immunodeficiency with the complete absence of T and B cells (T -B- SCID), whereas nine showed classical features of Omenn syndrome (OS). Restricted antigen receptor gene usage by residual T lymphocytes suggested impaired V(D)J recombination. Patient cells showed reduced expression of NUDCD3 protein and diminished ability to support RAG-mediated recombination in vitro, which was associated with pathologic sequestration of RAG1 in the nucleoli. Although impaired V(D)J recombination in a mouse model bearing the homologous variant led to milder immunologic abnormalities, NUDCD3 is absolutely required for healthy T and B cell development in humans.
Collapse
Affiliation(s)
- Rui Chen
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Elena Lukianova
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Ina Schim van der Loeff
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4LP Newcastle upon Tyne, UK
| | | | - Joseph D P Willet
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Kieran D James
- Institute of Immunology and Immunotherapy, University of Birmingham. B15 2TT Birmingham, UK
| | - Edward J Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Helen Griffin
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Hanna IJspeert
- Department of Immunology, Erasmus University Medical Center, Rotterdam 3000 CA, Netherlands
| | - Akshada Gajbhiye
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Frederic Lamoliatte
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Jose L Marin-Rubio
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Lisa Woodbine
- Genome Damage and Stability Centre, University of Sussex, BN1 9RQ Brighton, UK
| | - Henrique Lemos
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - David J Swan
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Valeria Pintar
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Kamal Sayes
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | | | - Simon Eastham
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - David Dixon
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Penny Jeggo
- Genome Damage and Stability Centre, University of Sussex, BN1 9RQ Brighton, UK
| | - Joan Boyes
- Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, UK
| | - Andrew Mellor
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Lei Huang
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Mirjam van der Burg
- Department of Immunology, Erasmus University Medical Center, Rotterdam 3000 CA, Netherlands
| | - Karin R Engelhardt
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo 0424, Norway
| | - Hans Christian Erichsen
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo 0424, Norway
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4LP Newcastle upon Tyne, UK
| | - Matthias Trost
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham. B15 2TT Birmingham, UK
| | - Anna Lorenc
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Gosia Trynka
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
- Open Targets, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4LP Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Pavel-Dinu M, Gardner CL, Nakauchi Y, Kawai T, Delmonte OM, Palterer B, Bosticardo M, Pala F, Viel S, Malech HL, Ghanim HY, Bode NM, Kurgan GL, Detweiler AM, Vakulskas CA, Neff NF, Sheikali A, Menezes ST, Chrobok J, Hernández González EM, Majeti R, Notarangelo LD, Porteus MH. Genetically corrected RAG2-SCID human hematopoietic stem cells restore V(D)J-recombinase and rescue lymphoid deficiency. Blood Adv 2024; 8:1820-1833. [PMID: 38096800 PMCID: PMC11006817 DOI: 10.1182/bloodadvances.2023011766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 04/10/2024] Open
Abstract
ABSTRACT Recombination-activating genes (RAG1 and RAG2) are critical for lymphoid cell development and function by initiating the variable (V), diversity (D), and joining (J) (V(D)J)-recombination process to generate polyclonal lymphocytes with broad antigen specificity. The clinical manifestations of defective RAG1/2 genes range from immune dysregulation to severe combined immunodeficiencies (SCIDs), causing life-threatening infections and death early in life without hematopoietic cell transplantation (HCT). Despite improvements, haploidentical HCT without myeloablative conditioning carries a high risk of graft failure and incomplete immune reconstitution. The RAG complex is only expressed during the G0-G1 phase of the cell cycle in the early stages of T- and B-cell development, underscoring that a direct gene correction might capture the precise temporal expression of the endogenous gene. Here, we report a feasibility study using the CRISPR/Cas9-based "universal gene-correction" approach for the RAG2 locus in human hematopoietic stem/progenitor cells (HSPCs) from healthy donors and RAG2-SCID patient. V(D)J-recombinase activity was restored after gene correction of RAG2-SCID-derived HSPCs, resulting in the development of T-cell receptor (TCR) αβ and γδ CD3+ cells and single-positive CD4+ and CD8+ lymphocytes. TCR repertoire analysis indicated a normal distribution of CDR3 length and preserved usage of the distal TRAV genes. We confirmed the in vivo rescue of B-cell development with normal immunoglobulin M surface expression and a significant decrease in CD56bright natural killer cells. Together, we provide specificity, toxicity, and efficacy data supporting the development of a gene-correction therapy to benefit RAG2-deficient patients.
Collapse
Affiliation(s)
- Mara Pavel-Dinu
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Cameron L. Gardner
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Yusuke Nakauchi
- Division of Hematology, Department of Medicine, Cancer Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| | - Tomoki Kawai
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ottavia M. Delmonte
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Boaz Palterer
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Marita Bosticardo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Francesca Pala
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sebastien Viel
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
- Service d’immunologie biologique, Hospices Civils de Lyon, Centre International de Recherche en Infectivologie, Centre International de Recheerche in Infectivalogie, INSERM U1111, Université Claude Bernard Lyon 1, Centre National de la Recherge Scientifique, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Harry L. Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hana Y. Ghanim
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | | | | | | | | | | | - Adam Sheikali
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Sherah T. Menezes
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Jade Chrobok
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Elaine M. Hernández González
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Cancer Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| | - Luigi D. Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Matthew H. Porteus
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| |
Collapse
|
8
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Riestra MR, Pillay BA, Willemsen M, Kienapfel V, Ehlers L, Delafontaine S, Pinton A, Wouters M, Hombrouck A, Sauer K, Bossuyt X, Voet A, Soenen SJ, Conde CD, Bucciol G, Boztug K, Humblet-Baron S, Touzart A, Rieux-Laucat F, Notarangelo LD, Moens L, Meyts I. Human Autosomal Recessive DNA Polymerase Delta 3 Deficiency Presenting as Omenn Syndrome. J Clin Immunol 2023; 44:2. [PMID: 38099988 PMCID: PMC11252662 DOI: 10.1007/s10875-023-01627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
The DNA polymerase δ complex (PolD), comprising catalytic subunit POLD1 and accessory subunits POLD2, POLD3, and POLD4, is essential for DNA synthesis and is central to genome integrity. We identified, by whole exome sequencing, a homozygous missense mutation (c.1118A > C; p.K373T) in POLD3 in a patient with Omenn syndrome. The patient exhibited severely decreased numbers of naïve T cells associated with a restricted T-cell receptor repertoire and a defect in the early stages of TCR recombination. The patient received hematopoietic stem cell transplantation at age 6 months. He manifested progressive neurological regression and ultimately died at age 4 years. We performed molecular and functional analysis of the mutant POLD3 and assessed cell cycle progression as well as replication-associated DNA damage. Patient fibroblasts showed a marked defect in S-phase entry and an enhanced number of double-stranded DNA break-associated foci despite normal expression levels of PolD components. The cell cycle defect was rescued by transduction with WT POLD3. This study validates autosomal recessive POLD3 deficiency as a novel cause of profound T-cell deficiency and Omenn syndrome.
Collapse
Affiliation(s)
- Maria Rodrigo Riestra
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Bethany A Pillay
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mathijs Willemsen
- Laboratory of Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Verena Kienapfel
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Lisa Ehlers
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Selket Delafontaine
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Antoine Pinton
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Marjon Wouters
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Anneleen Hombrouck
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Kate Sauer
- Department of Pediatrics, Pediatric Pulmonology Division, University Hospitals Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Pulmonology Division, AZ Sint-Jan Brugge, Brugge, Belgium
| | - Xavier Bossuyt
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Arnout Voet
- Laboratory for Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Cancer Research Institute, Faculty of Medical Sciences, KU Leuven, Leuven, Belgium
| | - Cecilia Dominguez Conde
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giorgia Bucciol
- Department of Pediatrics, Division of Primary Immunodeficiencies, University Hospitals Leuven, Leuven, Belgium
| | - Kaan Boztug
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Stephanie Humblet-Baron
- Laboratory of Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Aurore Touzart
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Frédéric Rieux-Laucat
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Leen Moens
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
- Department of Pediatrics, Division of Primary Immunodeficiencies, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Gaikwad P, Bargir UA, Shinde S, Kini P, Chaurasia R, Yadav U, Dhawale A, George M, Jodhawat N, Setia P, Vedpathak D, Dalvi A, Parab A, Gupta M, Yadav RM, Goriwale M, Vundinti B, Bhat N, Sapra BK, Otiv M, Sharma R, Madkaikar M. A Clinical Conundrum with Diagnostic and Therapeutic Challenge: a Tale of Two Disorders in One Case. J Clin Immunol 2023; 43:1891-1902. [PMID: 37526892 DOI: 10.1007/s10875-023-01553-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
Living organisms are exposed to exogenous and endogenous agents that affect genomic integrity by creating DNA double strand breaks (DSBs). These breaks are repaired by DNA repair proteins to maintain homeostasis. Defects in DNA repair pathways also affect lymphocyte development and maturation, as DSB sites are critical intermediates for rearrangements required for V(D)J recombination. Recent classifications for inborn errors of immunity (IEIs) have listed DNA repair defect genes in a separate group, which suggests the importance of these genes for adaptive and innate immunity. We report an interesting case of a young female (index P1) with mutations in two different genes, DCLRE1C and FANCA, involved in DNA repair pathways. She presented with clinical manifestations attributed to both defects. With the advent of NGS, more than one defect is increasingly identified in patients with IEIs. Familial segregation studies and appropriate functional assays help ascertain the pathogenicity of these mutations and provide appropriate management and genetic counseling.
Collapse
Affiliation(s)
- Pallavi Gaikwad
- Indian Council of Medical Research (ICMR) - National Institute of Immunohaematology (NIIH), KEM Hospital, 13th floor New Multistorey Building, Parel Mumbai, Mumbai, India
| | - Umair Ahmed Bargir
- Indian Council of Medical Research (ICMR) - National Institute of Immunohaematology (NIIH), KEM Hospital, 13th floor New Multistorey Building, Parel Mumbai, Mumbai, India
| | - Shweta Shinde
- Indian Council of Medical Research (ICMR) - National Institute of Immunohaematology (NIIH), KEM Hospital, 13th floor New Multistorey Building, Parel Mumbai, Mumbai, India
| | - Pranoti Kini
- Department of Pediatric Hematology Oncology, Comprehensive Thalassemia Care, PHO and BMT Centre, Borivali, Mumbai, India
| | - Rajesh Chaurasia
- Radiological Physics and Advisory Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - Usha Yadav
- Radiological Physics and Advisory Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - Amruta Dhawale
- Indian Council of Medical Research (ICMR) - National Institute of Immunohaematology (NIIH), KEM Hospital, 13th floor New Multistorey Building, Parel Mumbai, Mumbai, India
| | - Merin George
- Indian Council of Medical Research (ICMR) - National Institute of Immunohaematology (NIIH), KEM Hospital, 13th floor New Multistorey Building, Parel Mumbai, Mumbai, India
| | - Neha Jodhawat
- Indian Council of Medical Research (ICMR) - National Institute of Immunohaematology (NIIH), KEM Hospital, 13th floor New Multistorey Building, Parel Mumbai, Mumbai, India
| | - Priyanka Setia
- Indian Council of Medical Research (ICMR) - National Institute of Immunohaematology (NIIH), KEM Hospital, 13th floor New Multistorey Building, Parel Mumbai, Mumbai, India
| | - Disha Vedpathak
- Indian Council of Medical Research (ICMR) - National Institute of Immunohaematology (NIIH), KEM Hospital, 13th floor New Multistorey Building, Parel Mumbai, Mumbai, India
| | - Aparna Dalvi
- Indian Council of Medical Research (ICMR) - National Institute of Immunohaematology (NIIH), KEM Hospital, 13th floor New Multistorey Building, Parel Mumbai, Mumbai, India
| | - Ankita Parab
- Indian Council of Medical Research (ICMR) - National Institute of Immunohaematology (NIIH), KEM Hospital, 13th floor New Multistorey Building, Parel Mumbai, Mumbai, India
| | - Maya Gupta
- Indian Council of Medical Research (ICMR) - National Institute of Immunohaematology (NIIH), KEM Hospital, 13th floor New Multistorey Building, Parel Mumbai, Mumbai, India
| | - Reetika Malik Yadav
- Indian Council of Medical Research (ICMR) - National Institute of Immunohaematology (NIIH), KEM Hospital, 13th floor New Multistorey Building, Parel Mumbai, Mumbai, India
| | - Mayuri Goriwale
- Indian Council of Medical Research (ICMR) - National Institute of Immunohaematology (NIIH), KEM Hospital, 13th floor New Multistorey Building, Parel Mumbai, Mumbai, India
| | - Baburao Vundinti
- Indian Council of Medical Research (ICMR) - National Institute of Immunohaematology (NIIH), KEM Hospital, 13th floor New Multistorey Building, Parel Mumbai, Mumbai, India
| | - Nagesh Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - B K Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - Madhumati Otiv
- Department of Paediatric Intensive Care Unit, KEM Hospital, Pune, India
| | - Ratna Sharma
- Department of Pediatric Hematology Oncology, Comprehensive Thalassemia Care, PHO and BMT Centre, Borivali, Mumbai, India
| | - Manisha Madkaikar
- Indian Council of Medical Research (ICMR) - National Institute of Immunohaematology (NIIH), KEM Hospital, 13th floor New Multistorey Building, Parel Mumbai, Mumbai, India.
| |
Collapse
|
11
|
David NA, Lee RD, LaRue RS, Joo S, Farrar MA. Nuclear corepressors NCOR1 and NCOR2 entrain thymocyte signaling, selection, and emigration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559810. [PMID: 37808728 PMCID: PMC10557688 DOI: 10.1101/2023.09.27.559810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
T cell development proceeds via discrete stages that require both gene induction and gene repression. Transcription factors direct gene repression by associating with corepressor complexes containing chromatin-remodeling enzymes; the corepressors NCOR1 and NCOR2 recruit histone deacetylases to these complexes to silence transcription of target genes. Earlier work identified the importance of NCOR1 in promoting the survival of positively-selected thymocytes. Here, we used flow cytometry and single-cell RNA sequencing to identify a broader role for NCOR1 and NCOR2 in regulating thymocyte development. Using Cd4-cre mice, we found that conditional deletion of NCOR2 had no effect on thymocyte development, whereas conditional deletion of NCOR1 had a modest effect. In contrast, Cd4-cre x Ncor1f/f x Ncor2f/f mice exhibited a significant block in thymocyte development at the DP to SP transition. Combined NCOR1/2 deletion resulted in increased signaling through the T cell receptor, ultimately resulting in elevated BIM expression and increased negative selection. The NF-κB, NUR77, and MAPK signaling pathways were also upregulated in the absence of NCOR1/2, contributing to altered CD4/CD8 lineage commitment, TCR rearrangement, and thymocyte emigration. Taken together, our data identify multiple critical roles for the combined action of NCOR1 and NCOR2 over the course of thymocyte development.
Collapse
Affiliation(s)
- Natalie A David
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| | - Robin D Lee
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| | - Rebecca S LaRue
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| | - Sookyong Joo
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| | - Michael A Farrar
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
12
|
Jauch AJ, Bignucolo O, Seki S, Ghraichy M, Delmonte OM, von Niederhäusern V, Higgins R, Ghosh A, Nishizawa M, Tanaka M, Baldrich A, Köppen J, Hirsiger JR, Hupfer R, Ehl S, Rensing-Ehl A, Hopfer H, Prince SS, Daley SR, Marquardsen FA, Meyer BJ, Tamm M, Daikeler TD, Diesch T, Kühne T, Helbling A, Berkemeier C, Heijnen I, Navarini AA, Trück J, de Villartay JP, Oxenius A, Berger CT, Hess C, Notarangelo LD, Yamamoto H, Recher M. Autoimmunity and immunodeficiency associated with monoallelic LIG4 mutations via haploinsufficiency. J Allergy Clin Immunol 2023; 152:500-516. [PMID: 37004747 PMCID: PMC10529397 DOI: 10.1016/j.jaci.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Biallelic mutations in LIG4 encoding DNA-ligase 4 cause a rare immunodeficiency syndrome manifesting as infant-onset life-threatening and/or opportunistic infections, skeletal malformations, radiosensitivity and neoplasia. LIG4 is pivotal during DNA repair and during V(D)J recombination as it performs the final DNA-break sealing step. OBJECTIVES This study explored whether monoallelic LIG4 missense mutations may underlie immunodeficiency and autoimmunity with autosomal dominant inheritance. METHODS Extensive flow-cytometric immune-phenotyping was performed. Rare variants of immune system genes were analyzed by whole exome sequencing. DNA repair functionality and T-cell-intrinsic DNA damage tolerance was tested with an ensemble of in vitro and in silico tools. Antigen-receptor diversity and autoimmune features were characterized by high-throughput sequencing and autoantibody arrays. Reconstitution of wild-type versus mutant LIG4 were performed in LIG4 knockout Jurkat T cells, and DNA damage tolerance was subsequently assessed. RESULTS A novel heterozygous LIG4 loss-of-function mutation (p.R580Q), associated with a dominantly inherited familial immune-dysregulation consisting of autoimmune cytopenias, and in the index patient with lymphoproliferation, agammaglobulinemia, and adaptive immune cell infiltration into nonlymphoid organs. Immunophenotyping revealed reduced naive CD4+ T cells and low TCR-Vα7.2+ T cells, while T-/B-cell receptor repertoires showed only mild alterations. Cohort screening identified 2 other nonrelated patients with the monoallelic LIG4 mutation p.A842D recapitulating clinical and immune-phenotypic dysregulations observed in the index family and displaying T-cell-intrinsic DNA damage intolerance. Reconstitution experiments and molecular dynamics simulations categorize both missense mutations as loss-of-function and haploinsufficient. CONCLUSIONS This study provides evidence that certain monoallelic LIG4 mutations may cause human immune dysregulation via haploinsufficiency.
Collapse
Affiliation(s)
- Annaïse J Jauch
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | | | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Marie Ghraichy
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Valentin von Niederhäusern
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Rebecca Higgins
- Division of Dermatology and Dermatology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Adhideb Ghosh
- Division of Dermatology and Dermatology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; Competence Center for Personalized Medicine, University of Zürich/Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mariko Tanaka
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| | - Adrian Baldrich
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Julius Köppen
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Julia R Hirsiger
- Translational Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Robin Hupfer
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty for Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty for Medicine, University of Freiburg, Freiburg, Germany
| | - Helmut Hopfer
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Stephen R Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland
| | - Florian A Marquardsen
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Benedikt J Meyer
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Michael Tamm
- Department of Pneumology, University Hospital Basel, Basel, Switzerland
| | - Thomas D Daikeler
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Tamara Diesch
- Division of Pediatric Oncology/Hematology, University Children's Hospital Basel, Basel, Switzerland
| | - Thomas Kühne
- Division of Pediatric Oncology/Hematology, University Children's Hospital Basel, Basel, Switzerland
| | - Arthur Helbling
- Division of Allergology and clinical Immunology, Department of Pneumology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Caroline Berkemeier
- Division Medical Immunology, Laboratory Medicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Ingmar Heijnen
- Division Medical Immunology, Laboratory Medicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Alexander A Navarini
- Division of Dermatology and Dermatology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Johannes Trück
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherché 1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Annette Oxenius
- Institute of Microbiology, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Christoph T Berger
- Translational Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Christoph Hess
- University Center for Immunology, University Hospital Basel, Basel, Switzerland; Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hiroyuki Yamamoto
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Tsuji A, Yoshikawa S, Morikawa S, Ikeda Y, Taniguchi K, Sawamura H, Asai T, Matsuda S. Potential tactics with vitamin D and certain phytochemicals for enhancing the effectiveness of immune-checkpoint blockade therapies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:460-473. [PMID: 37455830 PMCID: PMC10344894 DOI: 10.37349/etat.2023.00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 07/18/2023] Open
Abstract
Immunotherapy strategies targeting immune checkpoint molecules such as programmed cell death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) are revolutionizing oncology. However, its effectiveness is limited in part due to the loss of effector cytotoxic T lymphocytes. Interestingly, supplementation of vitamin D could abolish the repressive effect of programmed cell death-ligand 1 (PD-L1) on CD8+ T cells, which might prevent the lymphocytopenia. In addition, vitamin D signaling could contribute to the differentiation of T-regulatory (Treg) cells associated with the expression of Treg markers such as forkhead box P3 (FOXP3) and CTLA-4. Furthermore, vitamin D may be associated with the stimulation of innate immunity. Peroxisome proliferator-activated receptor (PPAR) and estrogen receptor (ESR) signaling, and even the signaling from phosphoinositide-3 kinase (PI3K)/AKT pathway could have inhibitory roles in carcinogenesis possibly via the modulation of immune checkpoint molecules. In some cases, certain small molecules including vitamin D could be a novel therapeutic modality with a promising potential for the better performance of immune checkpoint blockade cancer therapies.
Collapse
Affiliation(s)
- Ai Tsuji
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| | - Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| | - Sae Morikawa
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| | - Haruka Sawamura
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| | - Tomoko Asai
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
14
|
Li X, Liang H, Fan J. Prospects of Cytomegalovirus-Specific T-Cell Receptors in Clinical Diagnosis and Therapy. Viruses 2023; 15:1334. [PMID: 37376633 DOI: 10.3390/v15061334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) is responsible for widespread infections worldwide. In immunocompetent individuals it is typically latent, while infection or reactivation in immunocompromised individuals can result in severe clinical symptoms or even death. Although there has been significant progress in the treatment and diagnosis of HCMV infection in recent years, numerous shortcomings and developmental limitations persist. There is an urgent need to develop innovative, safe, and effective treatments, as well as to explore early and timely diagnostic strategies for HCMV infection. Cell-mediated immune responses are the primary factor controlling HCMV infection and replication, but the protective role of humoral immune responses remains controversial. T-cells, key effector cells of the cellular immune system, are critical for clearing and preventing HCMV infection. The T-cell receptor (TCR) lies at the heart of T-cell immune responses, and its diversity enables the immune system to differentiate between self and non-self. Given the significant influence of cellular immunity on human health and the indispensable role of the TCR in T-cell immune responses, we posit that the impact of TCR on the development of novel diagnostic and prognostic methods, as well as on patient monitoring and management of clinical HCMV infection, will be far-reaching and profound. High-throughput and single-cell sequencing technologies have facilitated unprecedented quantitative detection of TCR diversity. With these current sequencing technologies, researchers have already obtained a vast number of TCR sequences. It is plausible that in the near future studies on TCR repertoires will be instrumental in assessing vaccine efficacy, immunotherapeutic strategies, and the early diagnosis of HCMV infection.
Collapse
Affiliation(s)
- Xuejie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hanying Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
15
|
de Villartay JP, Pannier E, Sibiude J, Frange P, Tubiana R, Blanche S. Brief Report: T-Cell Receptor α Repertoire Diversity at Birth After in utero Exposure to HIV Integrase Strand-Transfer Inhibitors. J Acquir Immune Defic Syndr 2023; 92:260-262. [PMID: 36343360 DOI: 10.1097/qai.0000000000003130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
ABSTRACT Effectiveness of anti-HIV in the prevention of perinatal transmission has been established. Assessing the tolerance of drug exposure during pregnancy is of the utmost importance given the number of children exposed. HIV integrase and the recombinase-activating gene enzyme involved in the establishment of the T-lymphocyte repertoire show structural similarity. The inhibition of recombinase-activating (RAG) gene by anti-integrases is observed in vitro, in a variable way according to the molecules. Here, we show that in utero exposure to raltegravir did not alter the T-lymphocyte repertoire of 12 newborns. These reassuring data merit verification for other anti-integrases. ( ClinicalTrial.org NCT04024150).
Collapse
Affiliation(s)
- Jean Pierre de Villartay
- Imagine Institute, Laboratory "Genome Dynamics in the Immune System", INSERM UMR 11635, Paris, France.,Université Paris-Cité, Paris, France; and
| | - Emmanuelle Pannier
- Université Paris-Cité, Paris, France; and.,Assistance Publique-Hôpitaux de Paris (APHP), Paris and Colombes, France
| | - Jeanne Sibiude
- Université Paris-Cité, Paris, France; and.,Assistance Publique-Hôpitaux de Paris (APHP), Paris and Colombes, France
| | - Pierre Frange
- Université Paris-Cité, Paris, France; and.,Assistance Publique-Hôpitaux de Paris (APHP), Paris and Colombes, France
| | - Roland Tubiana
- Assistance Publique-Hôpitaux de Paris (APHP), Paris and Colombes, France
| | - Stéphane Blanche
- Université Paris-Cité, Paris, France; and.,Assistance Publique-Hôpitaux de Paris (APHP), Paris and Colombes, France
| |
Collapse
|
16
|
Mullan KA, Zhang JB, Jones CM, Goh SJ, Revote J, Illing PT, Purcell AW, La Gruta NL, Li C, Mifsud NA. TCR_Explore: A novel webtool for T cell receptor repertoire analysis. Comput Struct Biotechnol J 2023; 21:1272-1282. [PMID: 36814721 PMCID: PMC9939424 DOI: 10.1016/j.csbj.2023.01.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
T cells expressing either alpha-beta or gamma-delta T cell receptors (TCR) are critical sentinels of the adaptive immune system, with receptor diversity being essential for protective immunity against a broad array of pathogens and agents. Programs available to profile TCR clonotypic signatures can be limiting for users with no coding expertise. Current analytical pipelines can be inefficient due to manual processing steps, open to data entry errors and have multiple analytical tools with unique inputs that require coding expertise. Here we present a bespoke webtool designed for users irrespective of coding expertise, coined 'TCR_Explore', enabling analysis either derived via Sanger sequencing or next generation sequencing (NGS) platforms. Further, TCR_Explore incorporates automated quality control steps for Sanger sequencing. The creation of flexible and publication ready figures are enabled for different sequencing platforms following universal conversion to the TCR_Explore file format. TCR_Explore will enhance a user's capacity to undertake in-depth TCR repertoire analysis of both new and pre-existing datasets for identification of T cell clonotypes associated with health and disease. The web application is located at https://tcr-explore.erc.monash.edu for users to interactively explore TCR repertoire datasets.
Collapse
Affiliation(s)
- Kerry A. Mullan
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia,Corresponding authors.
| | - Justin B. Zhang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Claerwen M. Jones
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Shawn J.R. Goh
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Jerico Revote
- Monash eResearch Centre, Monash University, Melbourne, VIC 3800, Australia
| | - Patricia T. Illing
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Anthony W. Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Nicole L. La Gruta
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Chen Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Nicole A. Mifsud
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia,Corresponding authors.
| |
Collapse
|
17
|
Castiello MC, Brandas C, Capo V, Villa A. HyperIgE in hypomorphic recombination-activating gene defects. Curr Opin Immunol 2023; 80:102279. [PMID: 36529093 DOI: 10.1016/j.coi.2022.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Increased immunogloblulin-E (IgE) levels associated with eosinophilia represent a common finding observed in Omenn syndrome, a severe immunodeficiency caused by decreased V(D)J recombination, leading to restricted T- and B-cell receptor repertoire. V(D)J recombination is initiated by the lymphoid-restricted recombination-activating gene (RAG) recombinases. The lack of RAG proteins causes a block in lymphocyte differentiation, resulting in T-B- severe combined immunodeficiency. Conversely, hypomorphic mutations allow the generation of few T and B cells, leading to a spectrum of immunological phenotypes, in which immunodeficiency associates to inflammation, immune dysregulation, and autoimmunity. Elevated IgE levels are frequently observed in hypomorphic RAG patients. Here, we describe the role of RAG genes in lymphocyte differentiation and maintenance of immune tolerance.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Chiara Brandas
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy.
| |
Collapse
|
18
|
Pala F, Notarangelo LD, Bosticardo M. Inborn errors of immunity associated with defects of thymic development. Pediatr Allergy Immunol 2022; 33:e13832. [PMID: 36003043 PMCID: PMC11077434 DOI: 10.1111/pai.13832] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022]
Abstract
The main function of the thymus is to support the establishment of a wide repertoire of T lymphocytes capable of eliminating foreign pathogens, yet tolerant to self-antigens. Thymocyte development in the thymus is dependent on the interaction with thymic stromal cells, a complex mixture of cells comprising thymic epithelial cells (TEC), mesenchymal and endothelial cells. The exchange of signals between stromal cells and thymocytes is referred to as "thymic cross-talk". Genetic defects affecting either side of this interaction result in defects in thymic development that ultimately lead to a decreased output of T lymphocytes to the periphery. In the present review, we aim at providing a summary of inborn errors of immunity (IEI) characterized by T-cell lymphopenia due to defects of the thymic stroma, or to hematopoietic-intrinsic defects of T-cell development, with a special focus on recently discovered disorders. Additionally, we review the novel diagnostic tools developed to discover and study new genetic causes of IEI due to defects in thymic development. Finally, we discuss therapeutic approaches to correct thymic defects that are currently available, in addition to potential novel therapies that could be applied in the future.
Collapse
Affiliation(s)
- Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Chiriaco M, Ursu GM, Amodio D, Cotugno N, Volpi S, Berardinelli F, Pizzi S, Cifaldi C, Zoccolillo M, Prigione I, Di Cesare S, Giancotta C, Anastasio E, Rivalta B, Pacillo L, Zangari P, Fiocchi AG, Diociaiuti A, Bruselles A, Pantaleoni F, Ciolfi A, D’Oria V, Palumbo G, Gattorno M, El Hachem M, de Villartay JP, Finocchi A, Palma P, Rossi P, Tartaglia M, Aiuti A, Antoccia A, Di Matteo G, Cancrini C. Radiosensitivity in patients affected by ARPC1B deficiency: a new disease trait? Front Immunol 2022; 13:919237. [PMID: 35967303 PMCID: PMC9372879 DOI: 10.3389/fimmu.2022.919237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/30/2022] [Indexed: 12/16/2022] Open
Abstract
Actin-related protein 2/3 complex subunit 1B (ARPC1B) deficiency is a recently described inborn error of immunity (IEI) presenting with combined immunodeficiency and characterized by recurrent infections and thrombocytopenia. Manifestations of immune dysregulation, including colitis, vasculitis, and severe dermatitis, associated with eosinophilia, hyper-IgA, and hyper-IgE are also described in ARPC1B-deficient patients. To date, hematopoietic stem cell transplantation seems to be the only curative option for patients. ARPC1B is part of the actin-related protein 2/3 complex (Arp2/3) and cooperates with the Wiskott–Aldrich syndrome protein (WASp) in the regulation of the actin cytoskeleton remodeling and in driving double-strand break clustering for homology-directed repair. In this study, we aimed to investigate radiosensitivity (RS) in ARPC1B-deficient patients to assess whether it can be considered an additional disease trait. First, we performed trio-based next-generation-sequencing studies to obtain the ARPC1B molecular diagnosis in our index case characterized by increased RS, and then we confirmed, using three different methods, an increment of radiosensitivity in all enrolled ARPC1B-deficient patients. In particular, higher levels of chromatid-type aberrations and γH2AX foci, with an increased number of cells arrested in the G2/M-phase of the cell cycle, were found in patients’ cells after ionizing radiation exposition and radiomimetic bleomycin treatment. Overall, our data suggest increased radiosensitivity as an additional trait in ARPC1B deficiency and support the necessity to investigate this feature in ARPC1B patients as well as in other IEI with cytoskeleton defects to address specific clinical follow-up and optimize therapeutic interventions.
Collapse
Affiliation(s)
- Maria Chiriaco
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giorgiana Madalina Ursu
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Nicola Cotugno
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research and Healthcare (IRCCS) Istituto Giannina Gaslini and University of Genoa, Genoa, Italy
| | - Francesco Berardinelli
- Laboratory of Neurodevelopment, Neurogenetics and Molecular Neurobiology, Scientific Institute for Research and Healthcare (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Cristina Cifaldi
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Matteo Zoccolillo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- San Raffaele Telethon Institute for Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Ignazia Prigione
- Center for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research and Healthcare (IRCCS) Istituto Giannina Gaslini and University of Genoa, Genoa, Italy
| | - Silvia Di Cesare
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Carmela Giancotta
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Elisa Anastasio
- Department of Medical and Surgical Sciences, Pediatrics Unit, University “Magna Graecia”, Catanzaro, Italy
| | - Beatrice Rivalta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Lucia Pacillo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Alessandro G. Fiocchi
- Pediatric Allergology Unit, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Andrea Diociaiuti
- Dermatology Unit, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Valentina D’Oria
- Research Laboratories, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Giuseppe Palumbo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Haematology, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research and Healthcare (IRCCS) Istituto Giannina Gaslini and University of Genoa, Genoa, Italy
| | - Maya El Hachem
- Dermatology Unit, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Jean-Pierre de Villartay
- Université de Paris, Imagine Institute, Laboratory “Genome Dynamics in the Immune System”, INSERM UMR 1163, F-75015, Paris, France
| | - Andrea Finocchi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Paolo Palma
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Paolo Rossi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology, San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | | | - Gigliola Di Matteo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- *Correspondence: Gigliola Di Matteo, ; Caterina Cancrini, ;
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- *Correspondence: Gigliola Di Matteo, ; Caterina Cancrini, ;
| |
Collapse
|
20
|
Fournier B, Mahlaoui N, Moshous D, de Villartay JP. Inborn errors of immunity caused by defects in the DNA damage response pathways: Importance of minimizing treatment-related genotoxicity. Pediatr Allergy Immunol 2022; 33:e13820. [PMID: 35754136 PMCID: PMC9327728 DOI: 10.1111/pai.13820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022]
Abstract
Several primary immunodeficiencies are caused by defects in the general DNA repair machinery as exemplified by the T-B- radiosensitive SCID condition owing to impaired resolution of programmed DNA double-strand breaks introduced by RAG1/2 during V(D)J recombination. The genome instability generally associated with these conditions results in an increased propensity to develop malignancies requiring genotoxic-based anti-cancer treatments. Moreover, the extent of immune deficiency often calls for hematopoietic stem cell transplantation as a definitive treatment, also requiring genotoxic-based conditioning regimen prior to transplantation. In both cases, the underlying general DNA repair defect may result in catastrophic iatrogenic consequences. It is, therefore, of paramount importance to assess the functionality of the DNA repair apparatus prior to any genotoxic treatment when the exact molecular cause of the disease is unknown. For this purpose, two simple assays can be used on patients derived peripheral blood lymphocytes: (1) the PROMIDISα biomarker, based on the next-generation sequencing analysis of the TCRα repertoire, will highlight specific signatures of DNA repair deficiencies; (2) direct analysis of the sensitivity of peripheral lymphocytes to ionizing radiation will formally identify patients at risk to develop toxicity toward genotoxic-based treatments.
Collapse
Affiliation(s)
- Benjamin Fournier
- Pediatric Hematology-Immunology and Rheumatology Department, APHP-Centre Université de Paris (CUP), Necker Hospital, Paris, France
| | - Nizar Mahlaoui
- Pediatric Hematology-Immunology and Rheumatology Department, APHP-Centre Université de Paris (CUP), Necker Hospital, Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Despina Moshous
- Pediatric Hematology-Immunology and Rheumatology Department, APHP-Centre Université de Paris (CUP), Necker Hospital, Paris, France.,Laboratory "Genome Dynamics in the Immune System" INSERM UMR 1163, Imagine Institute, Université de Paris Cité, Paris, France
| | - Jean-Pierre de Villartay
- Laboratory "Genome Dynamics in the Immune System" INSERM UMR 1163, Imagine Institute, Université de Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
21
|
Fang M, Su Z, Abolhassani H, Zhang W, Jiang C, Cheng B, Luo L, Wu J, Wang S, Lin L, Wang X, Wang L, Aghamohammadi A, Li T, Zhang X, Hammarström L, Liu X. T Cell Repertoire Abnormality in Immunodeficiency Patients with DNA Repair and Methylation Defects. J Clin Immunol 2022; 42:375-393. [PMID: 34825286 PMCID: PMC8821531 DOI: 10.1007/s10875-021-01178-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
Both DNA damage response and methylation play a crucial role in antigen receptor recombination by creating a diverse repertoire in developing lymphocytes, but how their defects relate to T cell repertoire and phenotypic heterogeneity of immunodeficiency remains obscure. We studied the TCR repertoire in patients with the mutation in different genes (ATM, DNMT3B, ZBTB24, RAG1, DCLRE1C, and JAK3) and uncovered distinct characteristics of repertoire diversity. We propose that early aberrancies in thymus T cell development predispose to the heterogeneous phenotypes of the immunodeficiency spectrum. Shorter CDR3 lengths in ATM-deficient patients, resulting from a decreased number of nucleotide insertions during VDJ recombination in the pre-selected TCR repertoire, as well as the increment of CDR3 tyrosine residues, lead to the enrichment of pathology-associated TCRs, which may contribute to the phenotypes of ATM deficiency. Furthermore, patients with DNMT3B and ZBTB24 mutations who exhibit discrepant phenotypes present longer CDR3 lengths and reduced number of known pathology-associated TCRs.
Collapse
Affiliation(s)
- Mingyan Fang
- BGI-Shenzhen, Shenzhen, 518083, China
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Zheng Su
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW, Australia
| | - Hassan Abolhassani
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Wei Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China
| | | | | | - Lihua Luo
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Liya Lin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xie Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tao Li
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Lennart Hammarström
- BGI-Shenzhen, Shenzhen, 518083, China.
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
22
|
Biomarkers of DNA Damage Response Enable Flow Cytometry-Based Diagnostic to Identify Inborn DNA Repair Defects in Primary Immunodeficiencies. J Clin Immunol 2021; 42:286-298. [PMID: 34716846 PMCID: PMC8821069 DOI: 10.1007/s10875-021-01156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/11/2021] [Indexed: 11/03/2022]
Abstract
DNA damage is a constant event in every cell caused by exogenous factors such as ultraviolet and ionizing radiation (UVR/IR) and intercalating drugs, or endogenous metabolic and replicative stress. Proteins of the DNA damage response (DDR) network sense DNA lesions and induce cell cycle arrest, DNA repair, and apoptosis. Genetic defects of DDR or DNA repair proteins can be associated with immunodeficiency, bone marrow failure syndromes, and cancer susceptibility. Although various diagnostic tools are available to evaluate DNA damage, their quality to identify DNA repair deficiencies differs enormously and depends on affected pathways. In this study, we investigated the DDR biomarkers γH2AX (Ser139), p-ATM (Ser1981), and p-CHK2 (Thr68) using flow cytometry on peripheral blood cells obtained from patients with combined immunodeficiencies due to non-homologous end-joining (NHEJ) defects and ataxia telangiectasia (AT) in response to low-dose IR. Significantly reduced induction of all three markers was observed in AT patients compared to controls. However, delayed downregulation of γH2AX was found in patients with NHEJ defects. In contrast to previous reports of DDR in cellular models, these biomarkers were not sensitive enough to identify ARTEMIS deficiency with sufficient reliability. In summary, DDR biomarkers are suitable for diagnosing NHEJ defects and AT, which can be useful in neonates with abnormal TREC levels (T cell receptor excision circles) identified by newborn screening. We conclude that DDR biomarkers have benefits and some limitations depending on the underlying DNA repair deficiency.
Collapse
|
23
|
Delmonte OM, Bergerson JRE, Kawai T, Kuehn HS, McDermott DH, Cortese I, Zimmermann MT, Dobbs AK, Bosticardo M, Fink D, Majumdar S, Palterer B, Pala F, Dsouza NR, Pouzolles M, Taylor N, Calvo KR, Daley SR, Velez D, Agharahimi A, Myint-Hpu K, Dropulic LK, Lyons JJ, Holland SM, Freeman AF, Ghosh R, Similuk MB, Niemela JE, Stoddard J, Kuhns DB, Urrutia R, Rosenzweig SD, Walkiewicz MA, Murphy PM, Notarangelo LD. SASH3 variants cause a novel form of X-linked combined immunodeficiency with immune dysregulation. Blood 2021; 138:1019-1033. [PMID: 33876203 PMCID: PMC8462359 DOI: 10.1182/blood.2020008629] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterile alpha motif (SAM) and Src homology-3 (SH3) domain-containing 3 (SASH3), also called SH3-containing lymphocyte protein (SLY1), is a putative adaptor protein that is postulated to play an important role in the organization of signaling complexes and propagation of signal transduction cascades in lymphocytes. The SASH3 gene is located on the X-chromosome. Here, we identified 3 novel SASH3 deleterious variants in 4 unrelated male patients with a history of combined immunodeficiency and immune dysregulation that manifested as recurrent sinopulmonary, cutaneous, and mucosal infections and refractory autoimmune cytopenias. Patients exhibited CD4+ T-cell lymphopenia, decreased T-cell proliferation, cell cycle progression, and increased T-cell apoptosis in response to mitogens. In vitro T-cell differentiation of CD34+ cells and molecular signatures of rearrangements at the T-cell receptor α (TRA) locus were indicative of impaired thymocyte survival. These patients also manifested neutropenia and B-cell and natural killer (NK)-cell lymphopenia. Lentivirus-mediated transfer of the SASH3 complementary DNA-corrected protein expression, in vitro proliferation, and signaling in SASH3-deficient Jurkat and patient-derived T cells. These findings define a new type of X-linked combined immunodeficiency in humans that recapitulates many of the abnormalities reported in mice with Sly1-/- and Sly1Δ/Δ mutations, highlighting an important role of SASH3 in human lymphocyte function and survival.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/immunology
- Child, Preschool
- Chromosomes, Human, X/genetics
- Chromosomes, Human, X/immunology
- Genetic Loci
- Humans
- Jurkat Cells
- Killer Cells, Natural/immunology
- Lymphopenia/genetics
- Lymphopenia/immunology
- Male
- Mice
- Mice, Knockout
- Mutation
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- X-Linked Combined Immunodeficiency Diseases/genetics
- X-Linked Combined Immunodeficiency Diseases/immunology
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hye Sun Kuehn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Irene Cortese
- Neuroimmunology Clinic, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Michael T Zimmermann
- Division of Research, Genomics Sciences & Precision Medicine Center, Milwaukee, WI
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI
| | - A Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Danielle Fink
- Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Boaz Palterer
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nikita R Dsouza
- Division of Research, Genomics Sciences & Precision Medicine Center, Milwaukee, WI
| | - Marie Pouzolles
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Naomi Taylor
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Institut de Genetique Moleculaire de Montpellier, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5535, Universite de Montpellier, Montpellier, France
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Stephen R Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Daniel Velez
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Anahita Agharahimi
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Katherine Myint-Hpu
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | - Jonathan J Lyons
- Division of Intramural Research, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD and
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Rajarshi Ghosh
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Morgan B Similuk
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Julie E Niemela
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Jennifer Stoddard
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Douglas B Kuhns
- Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Raul Urrutia
- Division of Research, Genomics Sciences & Precision Medicine Center, Milwaukee, WI
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Magdalena A Walkiewicz
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
24
|
Roch B, Abramowski V, Etienne O, Musilli S, David P, Charbonnier JB, Callebaut I, Boussin FD, de Villartay JP. An XRCC4 mutant mouse, a model for human X4 syndrome, reveals interplays with Xlf, PAXX, and ATM in lymphoid development. eLife 2021; 10:e69353. [PMID: 34519267 PMCID: PMC8516412 DOI: 10.7554/elife.69353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
We developed an Xrcc4M61R separation of function mouse line to overcome the embryonic lethality of Xrcc4-deficient mice. XRCC4M61R protein does not interact with Xlf, thus obliterating XRCC4-Xlf filament formation while preserving the ability to stabilize DNA ligase IV. X4M61R mice, which are DNA repair deficient, phenocopy the Nhej1-/- (known as Xlf -/-) setting with a minor impact on the development of the adaptive immune system. The core non-homologous end-joining (NHEJ) DNA repair factor XRCC4 is therefore not mandatory for V(D)J recombination aside from its role in stabilizing DNA ligase IV. In contrast, Xrcc4M61R mice crossed on Paxx-/-, Nhej1-/-, or Atm-/- backgrounds are severely immunocompromised, owing to aborted V(D)J recombination as in Xlf-Paxx and Xlf-Atm double Knock Out (DKO) settings. Furthermore, massive apoptosis of post-mitotic neurons causes embryonic lethality of Xrcc4M61R -Nhej1-/- double mutants. These in vivo results reveal new functional interplays between XRCC4 and PAXX, ATM and Xlf in mouse development and provide new insights into the understanding of the clinical manifestations of human XRCC4-deficient condition, in particular its absence of immune deficiency.
Collapse
Affiliation(s)
- Benoit Roch
- Université de Paris, Imagine Institute, Laboratory “Genome Dynamics in the Immune System”, INSERM UMR 1163, F-75015ParisFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer, F75015ParisFrance
| | - Vincent Abramowski
- Université de Paris, Imagine Institute, Laboratory “Genome Dynamics in the Immune System”, INSERM UMR 1163, F-75015ParisFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer, F75015ParisFrance
| | - Olivier Etienne
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265Fontenay-aux-RosesFrance
| | - Stefania Musilli
- Université de Paris, Imagine Institute, Laboratory “Genome Dynamics in the Immune System”, INSERM UMR 1163, F-75015ParisFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer, F75015ParisFrance
| | - Pierre David
- Université de Paris, Imagine Institute, Transgenesis facility, INSERM UMR 1163, F-75015ParisFrance
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91198Gif-sur-Yvette CedexFrance
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, F-75005ParisFrance
| | - François D Boussin
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265Fontenay-aux-RosesFrance
| | - Jean-Pierre de Villartay
- Université de Paris, Imagine Institute, Laboratory “Genome Dynamics in the Immune System”, INSERM UMR 1163, F-75015ParisFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer, F75015ParisFrance
| |
Collapse
|
25
|
Costagliola G, Consolini R. Lymphadenopathy at the crossroad between immunodeficiency and autoinflammation: An intriguing challenge. Clin Exp Immunol 2021; 205:288-305. [PMID: 34008169 PMCID: PMC8374228 DOI: 10.1111/cei.13620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Lymphadenopathies can be part of the clinical spectrum of several primary immunodeficiencies, including diseases with immune dysregulation and autoinflammatory disorders, as the clinical expression of benign polyclonal lymphoproliferation, granulomatous disease or lymphoid malignancy. Lymphadenopathy poses a significant diagnostic dilemma when it represents the first sign of a disorder of the immune system, leading to a consequently delayed diagnosis. Additionally, the finding of lymphadenopathy in a patient with diagnosed immunodeficiency raises the question of the differential diagnosis between benign lymphoproliferation and malignancies. Lymphadenopathies are evidenced in 15–20% of the patients with common variable immunodeficiency, while in other antibody deficiencies the prevalence is lower. They are also evidenced in different combined immunodeficiency disorders, including Omenn syndrome, which presents in the first months of life. Interestingly, in the activated phosphoinositide 3‐kinase delta syndrome, autoimmune lymphoproliferative syndrome, Epstein–Barr virus (EBV)‐related lymphoproliferative disorders and regulatory T cell disorders, lymphadenopathy is one of the leading signs of the entire clinical picture. Among autoinflammatory diseases, the highest prevalence of lymphadenopathies is observed in patients with periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) and hyper‐immunoglobulin (Ig)D syndrome. The mechanisms underlying lymphoproliferation in the different disorders of the immune system are multiple and not completely elucidated. The advances in genetic techniques provide the opportunity of identifying new monogenic disorders, allowing genotype–phenotype correlations to be made and to provide adequate follow‐up and treatment in the single diseases. In this work, we provide an overview of the most relevant immune disorders associated with lymphadenopathy, focusing on their diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
26
|
Ferrua F, Bortolomai I, Fontana E, Di Silvestre D, Rigoni R, Marcovecchio GE, Draghici E, Brambilla F, Castiello MC, Delfanti G, Moshous D, Picard C, Taghon T, Bordon V, Schulz AS, Schuetz C, Giliani S, Soresina A, Gennery AR, Signa S, Dávila Saldaña BJ, Delmonte OM, Notarangelo LD, Roifman CM, Poliani PL, Uva P, Mauri PL, Villa A, Bosticardo M. Thymic Epithelial Cell Alterations and Defective Thymopoiesis Lead to Central and Peripheral Tolerance Perturbation in MHCII Deficiency. Front Immunol 2021; 12:669943. [PMID: 34211466 PMCID: PMC8239840 DOI: 10.3389/fimmu.2021.669943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Major Histocompatibility Complex (MHC) class II (MHCII) deficiency (MHCII-D), also known as Bare Lymphocyte Syndrome (BLS), is a rare combined immunodeficiency due to mutations in genes regulating expression of MHCII molecules. MHCII deficiency results in impaired cellular and humoral immune responses, leading to severe infections and autoimmunity. Abnormal cross-talk with developing T cells due to the absence of MHCII expression likely leads to defects in thymic epithelial cells (TEC). However, the contribution of TEC alterations to the pathogenesis of this primary immunodeficiency has not been well characterized to date, in particular in regard to immune dysregulation. To this aim, we have performed an in-depth cellular and molecular characterization of TEC in this disease. We observed an overall perturbation of thymic structure and function in both MHCII-/- mice and patients. Transcriptomic and proteomic profiling of murine TEC revealed several alterations. In particular, we demonstrated that impairment of lymphostromal cross-talk in the thymus of MHCII-/- mice affects mTEC maturation and promiscuous gene expression and causes defects of central tolerance. Furthermore, we observed peripheral tolerance impairment, likely due to defective Treg cell generation and/or function and B cell tolerance breakdown. Overall, our findings reveal disease-specific TEC defects resulting in perturbation of central tolerance and limiting the potential benefits of hematopoietic stem cell transplantation in MHCII deficiency.
Collapse
Affiliation(s)
- Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ileana Bortolomai
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- Human Genome Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Dario Di Silvestre
- Department of Biomedical Sciences, Institute for Biomedical Technologies-National Research Council (CNR), Milan, Italy
| | - Rosita Rigoni
- Human Genome Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Genni Enza Marcovecchio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Draghici
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Brambilla
- Department of Biomedical Sciences, Institute for Biomedical Technologies-National Research Council (CNR), Milan, Italy
| | - Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Despina Moshous
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker Children’s Hospital, AP-HP, Paris, France
- Laboratory “Genome Dynamics in the Immune System”, INSERM UMR1163, Université de Paris, Institut Imagine, Paris, France
| | - Capucine Picard
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker Children’s Hospital, AP-HP, Paris, France
- Centre d’Etude des Déficits Immunitaires, Necker-Enfants Malades Hospital, AP-HP, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Victoria Bordon
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Ansgar S. Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Catharina Schuetz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Silvia Giliani
- Cytogenetics and Medical Genetics Unit and “A. Nocivelli” Institute for Molecular Medicine, Spedali Civili Hospital, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST-Spedali Civili Brescia, Brescia, Italy
| | - Andrew R. Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Pediatric Immunology and HSCT, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Sara Signa
- Department of Pediatric Immunology and HSCT, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto G. Gaslini, and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Children's Sciences, University of Genoa, Genoa, Italy
| | - Blachy J. Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, United States
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, United States
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, United States
| | - Chaim M. Roifman
- Division of Immunology & Allergy, Department of Pediatrics, The Hospital for Sick Children, the Canadian Centre for Primary Immunodeficiency and the University of Toronto, Toronto, ON, Canada
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia, Brescia, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Pula, Cagliari, Italy
| | - Pier Luigi Mauri
- Department of Biomedical Sciences, Institute for Biomedical Technologies-National Research Council (CNR), Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Marita Bosticardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, United States
| |
Collapse
|
27
|
Bosticardo M, Pala F, Notarangelo LD. RAG deficiencies: Recent advances in disease pathogenesis and novel therapeutic approaches. Eur J Immunol 2021; 51:1028-1038. [PMID: 33682138 PMCID: PMC8325549 DOI: 10.1002/eji.202048880] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/13/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022]
Abstract
The RAG1 and RAG2 proteins initiate the process of V(D)J recombination and therefore play an essential role in adaptive immunity. While null mutations in the RAG genes cause severe combined immune deficiency with lack of T and B cells (T- B- SCID) and susceptibility to life-threatening, early-onset infections, studies in humans and mice have demonstrated that hypomorphic RAG mutations are associated with defects of central and peripheral tolerance resulting in immune dysregulation. In this review, we provide an overview of the extended spectrum of RAG deficiencies and their associated clinical and immunological phenotypes in humans. We discuss recent advances in the mechanisms that control RAG expression and function, the effects of perturbed RAG activity on lymphoid development and immune homeostasis, and propose novel approaches to correct this group of disorders.
Collapse
Affiliation(s)
- Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Rawat A, Singh A, Dobbs K, Pala F, Delmonte OM, Vignesh P, Jindal AK, Gupta A, Suri D, Kaur A, Shandilya JK, Sachdeva MUS, Walia M, Regueiro JR, Briones AC, Notarangelo LD, Singh S. Skewed TCR Alpha, but not Beta, Gene Rearrangements and Lymphoma Associated with a Pathogenic TRAC Variant. J Clin Immunol 2021; 41:1395-1399. [PMID: 33909184 DOI: 10.1007/s10875-021-01047-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Amit Rawat
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education & Research, Sector 12, Chandigarh, 160012, India.
| | - Ankita Singh
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education & Research, Sector 12, Chandigarh, 160012, India
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10 CRC, Room 5-3950, 10 Centre Drive, MSC 1456, Bethesda, MD, 20892, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10 CRC, Room 5-3950, 10 Centre Drive, MSC 1456, Bethesda, MD, 20892, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10 CRC, Room 5-3950, 10 Centre Drive, MSC 1456, Bethesda, MD, 20892, USA
| | - Pandiarajan Vignesh
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education & Research, Sector 12, Chandigarh, 160012, India
| | - Ankur Kumar Jindal
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education & Research, Sector 12, Chandigarh, 160012, India
| | - Anju Gupta
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education & Research, Sector 12, Chandigarh, 160012, India
| | - Deepti Suri
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education & Research, Sector 12, Chandigarh, 160012, India
| | - Anit Kaur
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education & Research, Sector 12, Chandigarh, 160012, India
| | - Jitendra Kumar Shandilya
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education & Research, Sector 12, Chandigarh, 160012, India
| | | | - Mandeep Walia
- Max (SMART) Superspeciality Hospital & Rainbow Children's Hospital, New Delhi, India
| | - Jose R Regueiro
- Department of Immunology, Complutense University School of Medicine, imas12 Research Institute, 28040, Madrid, Spain
| | - Alejandro C Briones
- Department of Immunology, Complutense University School of Medicine, imas12 Research Institute, 28040, Madrid, Spain
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10 CRC, Room 5-3950, 10 Centre Drive, MSC 1456, Bethesda, MD, 20892, USA
| | - Surjit Singh
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education & Research, Sector 12, Chandigarh, 160012, India
| |
Collapse
|
29
|
ATM: Translating the DNA Damage Response to Adaptive Immunity. Trends Immunol 2021; 42:350-365. [PMID: 33663955 DOI: 10.1016/j.it.2021.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination.
Collapse
|
30
|
Gardner CL, Pavel-Dinu M, Dobbs K, Bosticardo M, Reardon PK, Lack J, DeRavin SS, Le K, Bello E, Pala F, Delmonte OM, Malech H, Montel-Hagan A, Crooks G, Acuto O, Porteus MH, Notarangelo LD. Gene Editing Rescues In vitro T Cell Development of RAG2-Deficient Induced Pluripotent Stem Cells in an Artificial Thymic Organoid System. J Clin Immunol 2021; 41:852-862. [PMID: 33650026 DOI: 10.1007/s10875-021-00989-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Severe combined immune deficiency (SCID) caused by RAG1 or RAG2 deficiency is a genetically determined immune deficiency characterized by the virtual absence of T and B lymphocytes. Unless treated with hematopoietic stem cell transplantation (HSCT), patients with RAG deficiency succumb to severe infections early in life. However, HSCT carries the risk of graft-versus-host disease. Moreover, a high rate of graft failure and poor immune reconstitution have been reported after unconditioned HSCT. Expression of the RAG genes is tightly regulated, and preclinical attempts of gene therapy with heterologous promoters have led to controversial results. Using patient-derived induced pluripotent stem cells (iPSCs) and an in vitro artificial thymic organoid system as a model, here we demonstrate that gene editing rescues the progressive T cell differentiation potential of RAG2-deficient cells to normal levels, with generation of a diversified T cell repertoire. These results suggest that targeted gene editing may represent a novel therapeutic option for correction of this immunodeficiency.
Collapse
Affiliation(s)
- Cameron L Gardner
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA.,Sir William Dunn School of Pathology, University of Oxford, Oxford, OX14RE, UK
| | - Mara Pavel-Dinu
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Kerry Dobbs
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Marita Bosticardo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Paul K Reardon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX14RE, UK
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, MD, USA.,Advanced Biomedical Computational Science (ABCS), Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Suk See DeRavin
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Kent Le
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Ezekiel Bello
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Francesca Pala
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Ottavia M Delmonte
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Harry Malech
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Amelie Montel-Hagan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gay Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX14RE, UK.
| | - Matthew H Porteus
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
| | - Luigi D Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA.
| |
Collapse
|
31
|
Buchbinder D, Walter JE, Butte MJ, Chan WY, Chitty Lopez M, Dimitriades VR, Dorsey MJ, Nugent DJ, Puck JM, Singh J, Collins CA. When Screening for Severe Combined Immunodeficiency (SCID) with T Cell Receptor Excision Circles Is Not SCID: a Case-Based Review. J Clin Immunol 2021; 41:294-302. [PMID: 33411155 PMCID: PMC8179373 DOI: 10.1007/s10875-020-00931-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Newborn screening efforts focusing on the quantification of T cell receptor excision circles (TRECs), as a biomarker for abnormal thymic production of T cells, have allowed for the identification and definitive treatment of severe combined immunodeficiency (SCID) in asymptomatic neonates. With the adoption of TREC quantification in Guthrie cards across the USA and abroad, typical, and atypical SCID constitutes only ~ 10% of cases identified with abnormal TRECs associated with T cell lymphopenia. Several other non-SCID-related conditions may be identified by newborn screening in a term infant. Thus, it is important for physicians to recognize that other factors, such as prematurity, are often associated with low TRECs initially, but often improve with age. This paper focuses on a challenge that immunologists face: the diagnostic evaluation and management of cases in which abnormal TRECs are associated with variants of T cell lymphopenia in the absence of a genetically defined form of typical or atypical SCID. Various syndromes associated with T cell impairment, secondary forms of T cell lymphopenia, and idiopathic T cell lymphopenia are identified using this screening approach. Yet there is no consensus or guidelines to assist in the evaluation and management of these newborns, despite representing 90% of the patients identified, resulting in significant work for the clinical teams until a diagnosis is made. Using a case-based approach, we review pearls relevant to the evaluation of these newborns, as well as the management dilemmas for the families and team related to the resolution of genetic ambiguities.
Collapse
Affiliation(s)
- David Buchbinder
- Department of Hematology, Children's Hospital of Orange County, Orange, CA, USA.
- Department of Pediatrics, University of California at Irvine, Orange, CA, USA.
| | - Jolan E Walter
- Division of Pediatric, University of South Florida at Johns Hopkins All Children's Hospital, Allergy/ Immunology, St. Petersburg, FL, USA
- Division of Pediatric Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Wan-Yin Chan
- Department of Allergy & Immunology, Children's Hospital of Orange County, Orange, CA, USA
| | - Maria Chitty Lopez
- Division of Pediatric, University of South Florida at Johns Hopkins All Children's Hospital, Allergy/ Immunology, St. Petersburg, FL, USA
| | - Victoria R Dimitriades
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, Sacramento, CA, USA
| | - Morna J Dorsey
- Department of Allergy & Immunology, University of California, San Francisco, CA, USA
| | - Diane J Nugent
- Department of Hematology, Children's Hospital of Orange County, Orange, CA, USA
- Department of Pediatrics, University of California at Irvine, Orange, CA, USA
| | - Jennifer M Puck
- Department of Allergy & Immunology, University of California, San Francisco, CA, USA
| | - Jasjit Singh
- Department of Infectious Disease, Children's Hospital of Orange County, Orange, CA, USA
| | - Cathleen A Collins
- Department of Pediatrics, Division of Allergy Immunology, University of California at San Diego, La Jolla, CA, USA
- Department of Pediatrics, Division of Allergy Immunology, Rady Children's Hospital, San Diego, CA, USA
| |
Collapse
|
32
|
Nichols-Vinueza DX, Delmonte OM, Bundy V, Bosticardo M, Zimmermann MT, Dsouza NR, Pala F, Dobbs K, Stoddard J, Niemela JE, Kuehn HS, Keller MD, Rueda CM, Abraham RS, Urrutia R, Rosenzweig SD, Notarangelo LD. POLD1 Deficiency Reveals a Role for POLD1 in DNA Repair and T and B Cell Development. J Clin Immunol 2020; 41:270-273. [PMID: 33140240 DOI: 10.1007/s10875-020-00903-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Diana X Nichols-Vinueza
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 5-3950, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 5-3950, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Vanessa Bundy
- Division of Allergy and Immunology, Children's National Hospital, Washington, D.C, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 5-3950, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Michael T Zimmermann
- Genomic Sciences and Precision Medicine Center, Medical College Wisconsin, Milwaukee, WI, USA
| | - Nikita R Dsouza
- Genomic Sciences and Precision Medicine Center, Medical College Wisconsin, Milwaukee, WI, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 5-3950, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 5-3950, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Jennifer Stoddard
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Niemela
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Hye Sun Kuehn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Michael D Keller
- Division of Allergy and Immunology, Children's National Hospital, Washington, D.C, USA
| | - Cesar M Rueda
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Raul Urrutia
- Genomic Sciences and Precision Medicine Center, Medical College Wisconsin, Milwaukee, WI, USA
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 5-3950, 10 Center Dr, Bethesda, MD, 20892, USA.
| |
Collapse
|
33
|
Chitty-Lopez M, Westermann-Clark E, Dawson I, Ujhazi B, Csomos K, Dobbs K, Le K, Yamazaki Y, Sadighi Akha AA, Chellapandian D, Oshrine B, Notarangelo LD, Sunkersett G, Leiding JW, Walter JE. Asymptomatic Infant With Atypical SCID and Novel Hypomorphic RAG Variant Identified by Newborn Screening: A Diagnostic and Treatment Dilemma. Front Immunol 2020; 11:1954. [PMID: 33117328 PMCID: PMC7552884 DOI: 10.3389/fimmu.2020.01954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
The T-cell receptor excision circle (TREC) assay detects T-cell lymphopenia (TCL) in newborns and is especially important to identify severe combined immunodeficiency (SCID). A spectrum of SCID variants and non-SCID conditions that present with TCL are being discovered with increasing frequency by newborn screening (NBS). Recombination-activating gene (RAG) deficiency is one the most common causes of classical and atypical SCID and other conditions with immune dysregulation. We present the case of an asymptomatic male with undetectable TRECs on NBS at 1 week of age. The asymptomatic newborn was found to have severe TCL, but normal B cell quantities and lymphocyte proliferation upon mitogen stimulation. Next generation sequencing revealed compound heterozygous hypomorphic RAG variants, one of which was novel. The moderately decreased recombinase activity of the RAG variants (16 and 40%) resulted in abnormal T and B-cell receptor repertoires, decreased fraction of CD3+ TCRVα7.2+ T cells and an immune phenotype consistent with the RAG hypomorphic variants. The patient underwent successful treatment with hematopoietic stem cell transplantation (HSCT) at 5 months of age. This case illustrates how after identification of a novel RAG variant, in vitro studies are important to confirm the pathogenicity of the variant. This confirmation allows the clinician to expedite definitive treatment with HSCT in an asymptomatic phase, mitigating the risk of serious infectious and non-infectious complications.
Collapse
Affiliation(s)
- Maria Chitty-Lopez
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Emma Westermann-Clark
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Irina Dawson
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Boglarka Ujhazi
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Krisztian Csomos
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Khuong Le
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Deepak Chellapandian
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Ben Oshrine
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Gauri Sunkersett
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Jennifer W Leiding
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States.,Division of Pediatric Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| |
Collapse
|
34
|
Immune dysregulation in patients with RAG deficiency and other forms of combined immune deficiency. Blood 2020; 135:610-619. [PMID: 31942628 DOI: 10.1182/blood.2019000923] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Traditionally, primary immune deficiencies have been defined based on increased susceptibility to recurrent and/or severe infections. However, immune dysregulation, manifesting with autoimmunity or hyperinflammatory disease, has emerged as a common feature. This is especially true in patients affected by combined immune deficiency (CID), a group of disorders caused by genetic defects that impair, but do not completely abolish, T-cell function. Hypomorphic mutations in the recombination activating genes RAG1 and RAG2 represent the prototype of the broad spectrum of clinical and immunological phenotypes associated with CID. The study of patients with RAG deficiency and with other forms of CID has revealed distinct abnormalities in central and peripheral T- and B-cell tolerance as the key mechanisms involved in immune dysregulation. Understanding the pathophysiology of autoimmunity and hyperinflammation in these disorders may also permit more targeted therapeutic interventions.
Collapse
|
35
|
Piatosa B, Wolska-Kuśnierz B, Tkaczyk K, Heropolitanska-Pliszka E, Grycuk U, Wakulinska A, Gregorek H. T Lymphocytes in Patients With Nijmegen Breakage Syndrome Demonstrate Features of Exhaustion and Senescence in Flow Cytometric Evaluation of Maturation Pathway. Front Immunol 2020; 11:1319. [PMID: 32695108 PMCID: PMC7338427 DOI: 10.3389/fimmu.2020.01319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/26/2020] [Indexed: 01/10/2023] Open
Abstract
Patients with Nijmegen Breakage Syndrome (NBS) suffer from recurrent infections due to humoral and cellular immune deficiency. Despite low number of T lymphocytes and their maturation defect, the clinical manifestations of cell-mediated deficiency are not as severe as in case of patients with other types of combined immune deficiencies and similar T cell lymphopenia. In this study, multicolor flow cytometry was used for evaluation of peripheral T lymphocyte maturation according to the currently known differentiation pathway, in 46 patients with genetically confirmed NBS and 46 sex and age-matched controls. Evaluation of differential expression of CD27, CD31, CD45RA, CD95, and CD197 revealed existence of cell subsets so far not described in NBS patients. Although recent thymic emigrants and naïve T lymphocyte cell populations were significantly lower, the generation of antigen-primed T cells was similar or even greater in NBS patients than in healthy controls. Moreover, the senescent and exhausted T cell populations defined by expression of CD57, KLRG1, and PD1 were more numerous than in healthy people. Although this hypothesis needs further investigations, such properties might be related to an increased susceptibility to malignancy and milder clinical course than expected in view of T cell lymphopenia in patients with NBS.
Collapse
Affiliation(s)
- Barbara Piatosa
- Histocompatibility Laboratory, Children's Memorial Health Institute, Warsaw, Poland
| | | | - Katarzyna Tkaczyk
- Histocompatibility Laboratory, Children's Memorial Health Institute, Warsaw, Poland
| | | | - Urszula Grycuk
- Histocompatibility Laboratory, Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Wakulinska
- Department of Oncology, Children's Memorial Health Institute, Warsaw, Poland
| | - Hanna Gregorek
- Department of Microbiology and Clinical Immunology, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The most serious DNA damage, DNA double strand breaks (DNA-dsb), leads to mutagenesis, carcinogenesis or apoptosis if left unrepaired. Non-homologous end joining (NHEJ) is the principle repair pathway employed by mammalian cells to repair DNA-dsb. Several proteins are involved in this pathway, defects in which can lead to human disease. This review updates on the most recent information available for the specific diseases associated with the pathway. RECENT FINDINGS A new member of the NHEJ pathway, PAXX, has been identified, although no human disease has been associated with it. The clinical phenotypes of Artemis, DNA ligase 4, Cernunnos-XLF and DNA-PKcs deficiency have been extended. The role of haematopoietic stem cell transplantation, following reduced intensity conditioning chemotherapy, for many of these diseases is being advanced. In the era of newborn screening, urgent genetic diagnosis is necessary to correctly target appropriate treatment for patients with DNA-dsb repair disorders.
Collapse
Affiliation(s)
- Mary A Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Newcastle upon Tyne, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
37
|
Martin E, Minet N, Boschat AC, Sanquer S, Sobrino S, Lenoir C, de Villartay JP, Leite-de-Moraes M, Picard C, Soudais C, Bourne T, Hambleton S, Hughes SM, Wynn RF, Briggs TA, Patel S, Lawrence MG, Fischer A, Arkwright PD, Latour S. Impaired lymphocyte function and differentiation in CTPS1-deficient patients result from a hypomorphic homozygous mutation. JCI Insight 2020; 5:133880. [PMID: 32161190 PMCID: PMC7141395 DOI: 10.1172/jci.insight.133880] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/29/2020] [Indexed: 01/01/2023] Open
Abstract
Cytidine triphosphate (CTP) synthetase 1 (CTPS1) deficiency is caused by a unique homozygous frameshift splice mutation (c.1692-1G>C, p.T566Dfs26X). CTPS1-deficient patients display severe bacterial and viral infections. CTPS1 is responsible for CTP nucleotide de novo production involved in DNA/RNA synthesis. Herein, we characterized in depth lymphocyte defects associated with CTPS1 deficiency. Immune phenotyping performed in 7 patients showed absence or low numbers of mucosal-associated T cells, invariant NKT cells, memory B cells, and NK cells, whereas other subsets were normal. Proliferation and IL-2 secretion by T cells in response to TCR activation were markedly decreased in all patients, while other T cell effector functions were preserved. The CTPS1T566Dfs26X mutant protein was found to be hypomorphic, resulting in 80%-90% reduction of protein expression and CTPS activity in cells of patients. Inactivation of CTPS1 in a T cell leukemia fully abolished cell proliferation. Expression of CTPS1T566Dfs26X failed to restore proliferation of CTPS1-deficient leukemia cells to normal, except when forcing its expression to a level comparable to that of WT CTPS1. This indicates that CTPS1T566Dfs26X retained normal CTPS activity, and thus the loss of function of CTPS1T566Dfs26X is completely attributable to protein instability. This study supports that CTPS1 represents an attractive therapeutic target to selectively inhibit pathological T cell proliferation, including lymphoma.
Collapse
Affiliation(s)
- Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Imagine Institute, Paris, France
| | - Norbert Minet
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Imagine Institute, Paris, France
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Anne-Claire Boschat
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
- Plateforme spectrométrie de masse, Imagine Institute, Paris, France
- Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sylvia Sanquer
- Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Steicy Sobrino
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Imagine Institute, Paris, France
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Imagine Institute, Paris, France
| | - Jean Pierre de Villartay
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
- Laboratory of Genome Dynamics in the Immune System, Inserm UMR 1163, Imagine Institute, Paris, France
| | - Maria Leite-de-Moraes
- Inserm UMR S1151 CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Imagine Institute, Paris, France
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
- Centre d’Etude des Déficits Immunitaires, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Imagine Institute, Paris, France
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | | | - Sophie Hambleton
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | - Tracy A. Briggs
- Division of Evolution and Genomic Sciences, and
- Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, United Kingdom
| | | | - Smita Patel
- John Radcliffe Hospital, Oxford, United Kingdom
| | - Monica G. Lawrence
- Division of Asthma, Allergy & Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- Collège de France, Paris, France
- Inserm UMR 1163, Paris, France
| | | | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Imagine Institute, Paris, France
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| |
Collapse
|
38
|
Bulkhi AA, Dasso JF, Schuetz C, Walter JE. Approaches to patients with variants in RAG genes: from diagnosis to timely treatment. Expert Rev Clin Immunol 2019; 15:1033-1046. [PMID: 31535575 DOI: 10.1080/1744666x.2020.1670060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Patients with primary immunodeficiency secondary to abnormal recombinase activating genes (RAG) can present with broad clinical phenotypes ranging from early severe infections to autoimmune complications and inflammation. Immunological phenotype may also vary from T-B- severe combined immunodeficiency to combined immunodeficiency or antibody deficiencies with near-normal T and B cell counts and even preserved specific antibody response to pathogens. It is not uncommon that RAG variants of uncertain significance are identified by serendipity during a broad genetic screening process and pathogenic RAG variants are increasingly recognized among all age groups, including adults. Establishing the pathogenicity and clinical relevance of novel RAG variants can be challenging since RAG genes are highly polymorphic. This review paper aims to summarize clinical phenotypes of RAG deficiencies and provide practical guidance for confirming the direct link between specific RAG variants and clinical disease. Lastly, we will review the current understanding of treatment option for patients with varying severity of RAG deficiencies. Area covered: This review discusses the different phenotypes and immunological aspects of RAG deficiencies, the diagnosis dilemma facing clinicians, and an overview of current and advancement in treatments. Expert opinion: A careful analysis of immunological and clinical data and their correlation with genetic findings helps to determine the significance of the genetic polymorphism. Advances in functional assays, as well as anti-cytokine antibodies, make it easier to resolve the diagnostic dilemma.
Collapse
Affiliation(s)
- Adeeb A Bulkhi
- Department of Internal Medicine, College of Medicine, Umm Al-Qura University , Makkah , Saudi Arabia.,Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa , FL , USA
| | - Joseph F Dasso
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technical University Dresden , Dresden , Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technical University Dresden , Dresden , Germany
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida , Tampa , FL , USA.,Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital , St. Petersburg , FL , USA.,Division of Allergy and Immunology, Massachusetts General Hospital for Children , Boston , MA , USA
| |
Collapse
|
39
|
Farmer JR, Foldvari Z, Ujhazi B, De Ravin SS, Chen K, Bleesing JJH, Schuetz C, Al-Herz W, Abraham RS, Joshi AY, Costa-Carvalho BT, Buchbinder D, Booth C, Reiff A, Ferguson PJ, Aghamohammadi A, Abolhassani H, Puck JM, Adeli M, Cancrini C, Palma P, Bertaina A, Locatelli F, Di Matteo G, Geha RS, Kanariou MG, Lycopoulou L, Tzanoudaki M, Sleasman JW, Parikh S, Pinero G, Fischer BM, Dbaibo G, Unal E, Patiroglu T, Karakukcu M, Al-Saad KK, Dilley MA, Pai SY, Dutmer CM, Gelfand EW, Geier CB, Eibl MM, Wolf HM, Henderson LA, Hazen MM, Bonfim C, Wolska-Kuśnierz B, Butte MJ, Hernandez JD, Nicholas SK, Stepensky P, Chandrakasan S, Miano M, Westermann-Clark E, Goda V, Kriván G, Holland SM, Fadugba O, Henrickson SE, Ozen A, Karakoc-Aydiner E, Baris S, Kiykim A, Bredius R, Hoeger B, Boztug K, Pashchenko O, Neven B, Moshous D, Villartay JPD, Bousfiha AA, Hill HR, Notarangelo LD, Walter JE. Outcomes and Treatment Strategies for Autoimmunity and Hyperinflammation in Patients with RAG Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2019; 7:1970-1985.e4. [PMID: 30877075 PMCID: PMC6612449 DOI: 10.1016/j.jaip.2019.02.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although autoimmunity and hyperinflammation secondary to recombination activating gene (RAG) deficiency have been associated with delayed diagnosis and even death, our current understanding is limited primarily to small case series. OBJECTIVE Understand the frequency, severity, and treatment responsiveness of autoimmunity and hyperinflammation in RAG deficiency. METHODS In reviewing the literature and our own database, we identified 85 patients with RAG deficiency, reported between 2001 and 2016, and compiled the largest case series to date of 63 patients with prominent autoimmune and/or hyperinflammatory pathology. RESULTS Diagnosis of RAG deficiency was delayed a median of 5 years from the first clinical signs of immune dysregulation. Most patients (55.6%) presented with more than 1 autoimmune or hyperinflammatory complication, with the most common etiologies being cytopenias (84.1%), granulomas (23.8%), and inflammatory skin disorders (19.0%). Infections, including live viral vaccinations, closely preceded the onset of autoimmunity in 28.6% of cases. Autoimmune cytopenias had early onset (median, 1.9, 2.1, and 2.6 years for autoimmune hemolytic anemia, immune thrombocytopenia, and autoimmune neutropenia, respectively) and were refractory to intravenous immunoglobulin, steroids, and rituximab in most cases (64.7%, 73.7%, and 71.4% for autoimmune hemolytic anemia, immune thrombocytopenia, and autoimmune neutropenia, respectively). Evans syndrome specifically was associated with lack of response to first-line therapy. Treatment-refractory autoimmunity/hyperinflammation prompted hematopoietic stem cell transplantation in 20 patients. CONCLUSIONS Autoimmunity/hyperinflammation can be a presenting sign of RAG deficiency and should prompt further evaluation. Multilineage cytopenias are often refractory to immunosuppressive treatment and may require hematopoietic cell transplantation for definitive management.
Collapse
Affiliation(s)
- Jocelyn R Farmer
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Zsofia Foldvari
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Boglarka Ujhazi
- University of South Florida and Johns Hopkins All Children's Hospital, Saint Petersburg, Fla
| | - Suk See De Ravin
- Laboratory of Host Defenses, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, Md
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jack J H Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Waleed Al-Herz
- Faculty of Medicine, Pediatrics Department, Kuwait University, Kuwait City, Kuwait; Allergy and Clinical Immunology Unit, Pediatrics Department, Alsabah Hospital, Kuwait City, Kuwait
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Avni Y Joshi
- Division of Pediatric Allergy/Immunology, Mayo Clinic Children's Center Rochester, Rochester, Minn
| | | | - David Buchbinder
- Pediatrics/Hematology, CHOC Children's Hospital - UC Irvine, Irvine, Calif
| | - Claire Booth
- Department of Paediatric Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Andreas Reiff
- Division of Rheumatology, Children's Hospital Los Angeles, Keck School of Medicine, USC, Los Angeles, Calif
| | - Polly J Ferguson
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jennifer M Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Mehdi Adeli
- Sidra Medicine, Weill Cornell Medicine, and Hamad Medical Corporation, Doha, Qatar
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Academic Department of Pediatrics (DPUO), Research Unit in Congenital and Perinatal Infection, Children's Hospital Bambino Gesù, Rome, Italy
| | - Alice Bertaina
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Bambino Gesù, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Bambino Gesù, Rome, Italy; Department of Pediatrics, Sapienza, University of Rome, Rome, Italy
| | - Gigliola Di Matteo
- Academic Department of Pediatrics (DPUO), Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Raif S Geha
- Immunology Division, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Maria G Kanariou
- Department of Immunology - Histocompatibility, Specialized Center & Referral Center for Primary Immunodeficiencies - Paediatric Immunology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Lilia Lycopoulou
- 1st Department of Pediatrics, University of Athens, Aghia Sofia Children's Hospital, Athens, Greece
| | - Marianna Tzanoudaki
- Department of Immunology - Histocompatibility, Specialized Center & Referral Center for Primary Immunodeficiencies - Paediatric Immunology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - John W Sleasman
- Division of Allergy, Immunology and Pulmonary Medicine, Duke University School of Medicine, Durham, NC
| | - Suhag Parikh
- Division of Pediatric Blood and Marrow Transplantation, Duke University School of Medicine, Durham, NC
| | - Gloria Pinero
- Division of Allergy, Immunology and Pulmonary Medicine, Duke University School of Medicine, Durham, NC
| | - Bernard M Fischer
- Division of Allergy, Immunology and Pulmonary Medicine, Duke University School of Medicine, Durham, NC
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Ekrem Unal
- Division of Pediatric Hematology and Oncology & HCST Unit, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Turkan Patiroglu
- Division of Pediatric Hematology and Oncology & HCST Unit, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey; Division of Pediatric Immunology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Musa Karakukcu
- Division of Pediatric Hematology and Oncology & HCST Unit, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Khulood Khalifa Al-Saad
- Salmanyia Medical Complex, Department of Pediatrics, Division of Pediatric Hematology and Oncology, Manama, Bahrain
| | - Meredith A Dilley
- Department of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Boston Children's Hospital, Boston, Mass; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Cullen M Dutmer
- Division of Allergy & Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colo
| | - Erwin W Gelfand
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Martha M Eibl
- Immunology Outpatient Clinic, Vienna, Austria; Biomedizinische Forschungs GmbH, Vienna, Austria
| | - Hermann M Wolf
- Immunology Outpatient Clinic, Vienna, Austria; Sigmund Freud Private University-Medical School, Vienna, Austria
| | - Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Melissa M Hazen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Carmem Bonfim
- Hospital Infantil Pequeno Principe, Curitiba, Brazil
| | | | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and Jeffrey Modell Diagnostic and Research Center, University of California, Los Angeles, Los Angeles, Calif
| | - Joseph D Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, Calif
| | - Sarah K Nicholas
- Section of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Polina Stepensky
- Department of Bone Marrow Transplantation, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Maurizio Miano
- Haematology Unit, Department of Pediatric Haematology-Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Emma Westermann-Clark
- Department of Internal Medicine, Division of Allergy/Immunology, University of South Florida Morsani College of Medicine, Tampa, Fla
| | - Vera Goda
- Department for Pediatric Hematology and Hemopoietic Stem Cell Transplantation, Central Hospital of Southern Pest- National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gergely Kriván
- Department for Pediatric Hematology and Hemopoietic Stem Cell Transplantation, Central Hospital of Southern Pest- National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Md
| | - Olajumoke Fadugba
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Sarah E Henrickson
- Allergy Immunology Division, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology, the University of Pennsylvania, Philadelphia, Pa
| | - Ahmet Ozen
- Marmara University School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Safa Baris
- Marmara University School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ayca Kiykim
- Ministry of Health, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Robbert Bredius
- Department of Pediatrics, Section Pediatric Immunology, Infections and Stem Cell Transplantation, Leiden University Medical Center, Leiden, the Netherlands
| | - Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; St Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Olga Pashchenko
- Department of Immunology, Pirogov Russian National Research Medical University, Russian Clinical Children's Hospital, Moscow, Russia
| | - Benedicte Neven
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Laboratory "Immunogenetics of Pediatric Autoimmune Diseases", INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Despina Moshous
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Laboratory "Genome Dynamics in The Immune System", INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Jean-Pierre de Villartay
- Laboratory "Genome Dynamics in The Immune System", INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Ahmed Aziz Bousfiha
- Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergie LICIA, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco; Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, Hassan II University, Casablanca, Morocco
| | - Harry R Hill
- Division of Clinical Immunology, Departments of Pathology, Pediatrics and Medicine, University of Utah, Salt Lake City, Utah
| | - Luigi D Notarangelo
- Haematology Unit, Department of Pediatric Haematology-Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Jolan E Walter
- University of South Florida and Johns Hopkins All Children's Hospital, Saint Petersburg, Fla; Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, Mass.
| |
Collapse
|
40
|
Roch B, Abramowski V, Chaumeil J, de Villartay JP. Cernunnos/Xlf Deficiency Results in Suboptimal V(D)J Recombination and Impaired Lymphoid Development in Mice. Front Immunol 2019; 10:443. [PMID: 30923523 PMCID: PMC6426757 DOI: 10.3389/fimmu.2019.00443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022] Open
Abstract
Xlf/Cernunnos is unique among the core factors of the non-homologous end joining (NHEJ) DNA double strand breaks (DSBs) repair pathway, in the sense that it is not essential for V(D)J recombination in vivo and in vitro. Unlike other NHEJ deficient mice showing a SCID phenotype, Xlf−/− mice present a unique immune phenotype with a moderate B- and T-cell lymphopenia, a decreased cellularity in the thymus, and a characteristic TCRα repertoire bias associated with the P53-dependent apoptosis of CD4+CD8+ DP thymocytes. Here, we thoroughly analyzed Xlf−/− mice immune phenotype and showed that it is specifically related to the DP stage but independent of the MHC-driven antigen presentation and T-cell activation during positive selection. Instead, we show that V(D)J recombination is subefficient in Xlf−/− mice in vivo, exemplified by the presence of unrepaired DSBs in the thymus. This results in a moderate developmental delay of both B- and T-lymphocytes at key V(D)J recombination dependent stages. Furthermore, subefficient V(D)J recombination waves are accumulating during TCRα rearrangement, causing the typical TCRα repertoire bias with loss of distal Vα and Jα rearrangements.
Collapse
Affiliation(s)
- Benoit Roch
- Laboratory "Genome Dynamics in the Immune System", INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Vincent Abramowski
- Laboratory "Genome Dynamics in the Immune System", INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Julie Chaumeil
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris-Descartes, Paris, France
| | - Jean-Pierre de Villartay
- Laboratory "Genome Dynamics in the Immune System", INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| |
Collapse
|
41
|
Abstract
Recombination-activating genes (
RAG)
1 and
RAG2 initiate the molecular processes that lead to lymphocyte receptor formation through VDJ recombination. Nonsense mutations in
RAG1/
RAG2 cause the most profound immunodeficiency syndrome, severe combined immunodeficiency (SCID). Other severe and less-severe clinical phenotypes due to mutations in
RAG genes are now recognized. The degree of residual protein function may permit some lymphocyte receptor formation, which confers a less-severe clinical phenotype. Many of the non-SCID phenotypes are associated with autoimmunity. New findings into the effect of mutations in
RAG1/2 on the developing T- and B-lymphocyte receptor give insight into the development of autoimmunity. This article summarizes recent findings and places the genetic and molecular findings in a clinical context.
Collapse
Affiliation(s)
- Andrew Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Childrens' Hospital, Newcastle upon Tyne, UK.,Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
42
|
Villa A, Notarangelo LD. RAG gene defects at the verge of immunodeficiency and immune dysregulation. Immunol Rev 2019; 287:73-90. [PMID: 30565244 PMCID: PMC6309314 DOI: 10.1111/imr.12713] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
Mutations of the recombinase activating genes (RAG) in humans underlie a broad spectrum of clinical and immunological phenotypes that reflect different degrees of impairment of T- and B-cell development and alterations of mechanisms of central and peripheral tolerance. Recent studies have shown that this phenotypic heterogeneity correlates, albeit imperfectly, with different levels of recombination activity of the mutant RAG proteins. Furthermore, studies in patients and in newly developed animal models carrying hypomorphic RAG mutations have disclosed various mechanisms underlying immune dysregulation in this condition. Careful annotation of clinical outcome and immune reconstitution in RAG-deficient patients who have received hematopoietic stem cell transplantation has shown that progress has been made in the treatment of this disease, but new approaches remain to be tested to improve stem cell engraftment and durable immune reconstitution. Finally, initial attempts have been made to treat RAG deficiency with gene therapy.
Collapse
Affiliation(s)
- Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
43
|
Delmonte OM, Schuetz C, Notarangelo LD. RAG Deficiency: Two Genes, Many Diseases. J Clin Immunol 2018; 38:646-655. [PMID: 30046960 PMCID: PMC6643099 DOI: 10.1007/s10875-018-0537-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To review the clinical and laboratory spectrum of RAG gene defects in humans, and discuss the mechanisms underlying phenotypic heterogeneity, the basis of immune dysregulation, and the current and perspective treatment modalities. METHODS Literature review and analysis of medical records RESULTS: RAG gene defects in humans are associated with a surprisingly broad spectrum of clinical and immunological phenotypes. Correlation between in vitro recombination activity of the mutant RAG proteins and the clinical phenotype has been observed. Altered T and B cell development in this disease is associated with defects of immune tolerance. Hematopoietic cell transplantation is the treatment of choice for the most severe forms of the disease, but a high rate of graft failure has been observed. CONCLUSIONS Phenotypic heterogeneity of RAG gene defects in humans may represent a diagnostic challenge. There is a need to improve treatment for severe, early-onset forms of the disease. Optimal treatment modalities for patients with delayed-onset disease presenting with autoimmunity and/or inflammation remain to be defined.
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catharina Schuetz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|