1
|
Wisgrill L, Martens A, Kasbauer R, Eigenschink M, Pummer L, Redlberger-Fritz M, Végvári Á, Warth B, Berger A, Fyhrquist N, Alenius H. Network analysis reveals age- and virus-specific circuits in nasal epithelial cells of extremely premature infants. Allergy 2024. [PMID: 38898695 DOI: 10.1111/all.16196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND OBJECTIVES Viral respiratory infections significantly affect young children, particularly extremely premature infants, resulting in high hospitalization rates and increased health-care burdens. Nasal epithelial cells, the primary defense against respiratory infections, are vital for understanding nasal immune responses and serve as a promising target for uncovering underlying molecular and cellular mechanisms. METHODS Using a trans-well pseudostratified nasal epithelial cell system, we examined age-dependent developmental differences and antiviral responses to influenza A and respiratory syncytial virus through systems biology approaches. RESULTS Our studies revealed differences in innate-receptor repertoires, distinct developmental pathways, and differentially connected antiviral network circuits between neonatal and adult nasal epithelial cells. Consensus network analysis identified unique and shared cellular-viral networks, emphasizing highly relevant virus-specific pathways, independent of viral replication kinetics. CONCLUSION This research highlights the importance of nasal epithelial cells in innate antiviral immune responses and offers crucial insights that allow for a deeper understanding of age-related differences in nasal epithelial cell immunity following respiratory virus infections.
Collapse
Affiliation(s)
- Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| | - Anke Martens
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Rajmund Kasbauer
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Michael Eigenschink
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Linda Pummer
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Ákos Végvári
- Proteomics Biomedicum, Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Benedikt Warth
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria
| | - Angelika Berger
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Fitzpatrick AM, Huang M, Mohammad AF, Stephenson ST, Kamaleswaran R, Grunwell JR. Dysfunctional neutrophil type 1 interferon responses in preschool children with recurrent wheezing and IL-4-mediated aeroallergen sensitization. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100229. [PMID: 38510797 PMCID: PMC10950716 DOI: 10.1016/j.jacig.2024.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/25/2023] [Accepted: 12/24/2023] [Indexed: 03/22/2024]
Abstract
Background The innate mechanisms associated with viral exacerbations in preschool children with recurrent wheezing are not understood. Objective We sought to assess differential gene expression in blood neutrophils from preschool children with recurrent wheezing, stratified by aeroallergen sensitization, at baseline and after exposure to polyinosinic:polycytidylic acid (poly(I:C)) and also to examine whether poly(I:C)-stimulated blood neutrophils influenced airway epithelial gene expression. Methods Blood neutrophils were purified and cultured overnight with poly(I:C) and underwent next-generation sequencing with Reactome pathway analysis. Primary human small airway epithelial cells were treated with poly(I:C)-treated neutrophil culture supernatants and were analyzed for type 1 interferon gene expression with a targeted array. Symptoms and exacerbations were assessed in participants over 12 months. Results A total of 436 genes were differently expressed in neutrophils from children with versus without aeroallergen sensitization at baseline, with significant downregulation of type 1 interferons. These type 1 interferons were significantly upregulated in sensitized children after poly(I:C) stimulation. Confirmatory experiments demonstrated similar upregulation of type 1 interferons in IL-4-treated neutrophils stimulated with poly(I:C). Poly(I:C)-treated neutrophil supernatants from children with aeroallergen sensitization also induced a type 1 interferon response in epithelial cells. Children with aeroallergen sensitization also had higher symptom scores during exacerbations, and these symptom differences persisted for 3 days after prednisolone treatment. Conclusions Type 1 interferon responses are dysregulated in preschool children with aeroallergen sensitization, which is in turn associated with exacerbation severity. Given the importance of type 1 interferon signaling in viral resolution, additional studies of neutrophil type 1 interferon responses are needed in this population.
Collapse
Affiliation(s)
- Anne M. Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Ga
- Division of Pulmonary Medicine, Children’s Healthcare of Atlanta, Atlanta, Ga
| | - Min Huang
- Department of Biomedical Informatics, Emory University, Atlanta, Ga
| | | | | | | | - Jocelyn R. Grunwell
- Department of Pediatrics, Emory University, Atlanta, Ga
- Division of Critical Care Medicine, Children’s Healthcare of Atlanta, Atlanta, Ga
| |
Collapse
|
3
|
VanBuren JM, Hall M, Zuppa AF, Mourani PM, Carcillo J, Dean JM, Watt K, Holubkov R. The Design of Nested Adaptive Clinical Trials of Multiple Organ Dysfunction Syndrome Children in a Single Study. Pediatr Crit Care Med 2023; 24:e635-e646. [PMID: 37498156 PMCID: PMC10817996 DOI: 10.1097/pcc.0000000000003332] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
OBJECTIVES Describe the statistical design of the Personalized Immunomodulation in Sepsis-induced Multiple Organ Dysfunction Syndrome (MODS) (PRECISE) study. DESIGN Children with sepsis-induced MODS undergo real-time immune testing followed by assignment to an immunophenotype-specific study cohort. Interventional cohorts include the granulocyte macrophage-colony stimulating factor (GM-CSF) for the Reversal of Immunoparalysis in Pediatric Sepsis-induced MODS (GRACE)-2 trial, which uses the drug GM-CSF (or placebo) to reverse immunoparalysis; and the Targeted Reversal of Inflammation in Pediatric Sepsis-induced MODS (TRIPS) trial, which uses the drug anakinra (or placebo) to reverse systemic inflammation. Both trials have adaptive components and use a statistical framework in which frequent data monitoring assesses futility and efficacy, allowing potentially earlier stopping than traditional approaches. Prespecified simulation-based stopping boundaries are customized to each trial to preserve an overall one-sided type I error rate. The TRIPS trial also uses response-adaptive randomization, updating randomization allocation proportions to favor active arms that appear more efficacious based on accumulating data. SETTING Twenty-four U.S. academic PICUs. PATIENTS Septic children with specific immunologic derangements during ongoing dysfunction of at least two organs. INTERVENTIONS The GRACE-2 trial compares GM-CSF and placebo in children with immunoparalysis. The TRIPS trial compares four different doses of anakinra to placebo in children with moderate to severe systemic inflammation. MEASUREMENTS AND MAIN RESULTS Both trials assess primary efficacy using the sum of the daily pediatric logistic organ dysfunction-2 score over 28 days. Ranked summed scores, with mortality assigned the worst possible value, are compared between arms using the Wilcoxon Rank Sum test (GRACE-2) and a dose-response curve (TRIPS). We present simulation-based operating characteristics under several scenarios to demonstrate the behavior of the adaptive design. CONCLUSIONS The adaptive design incorporates innovative statistical features that allow for multiple active arms to be compared with placebo based on a child's personal immunophenotype. The design increases power and provides optimal operating characteristics compared with traditional conservative methods.
Collapse
Affiliation(s)
- John M VanBuren
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Mark Hall
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Athena F Zuppa
- Department of Anesthesia and Critical Care, Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Peter M Mourani
- Department of Pediatrics, Division of Critical Care Medicine, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR
| | - Joseph Carcillo
- Department of Critical Care Medicine and Pediatrics, University of Pittsburgh, Children's Hospital of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - J Michael Dean
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Kevin Watt
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Richard Holubkov
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| |
Collapse
|
4
|
Novak T, Crawford JC, Hahn G, Hall MW, Thair SA, Newhams MM, Chou J, Mourani PM, Tarquinio KM, Markovitz B, Loftis LL, Weiss SL, Higgerson R, Schwarz AJ, Pinto NP, Thomas NJ, Gedeit RG, Sanders RC, Mahapatra S, Coates BM, Cvijanovich NZ, Ackerman KG, Tellez DW, McQuillen P, Kurachek SC, Shein SL, Lange C, Thomas PG, Randolph AG. Transcriptomic profiles of multiple organ dysfunction syndrome phenotypes in pediatric critical influenza. Front Immunol 2023; 14:1220028. [PMID: 37533854 PMCID: PMC10390830 DOI: 10.3389/fimmu.2023.1220028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
Background Influenza virus is responsible for a large global burden of disease, especially in children. Multiple Organ Dysfunction Syndrome (MODS) is a life-threatening and fatal complication of severe influenza infection. Methods We measured RNA expression of 469 biologically plausible candidate genes in children admitted to North American pediatric intensive care units with severe influenza virus infection with and without MODS. Whole blood samples from 191 influenza-infected children (median age 6.4 years, IQR: 2.2, 11) were collected a median of 27 hours following admission; for 45 children a second blood sample was collected approximately seven days later. Extracted RNA was hybridized to NanoString mRNA probes, counts normalized, and analyzed using linear models controlling for age and bacterial co-infections (FDR q<0.05). Results Comparing pediatric samples collected near admission, children with Prolonged MODS for ≥7 days (n=38; 9 deaths) had significant upregulation of nine mRNA transcripts associated with neutrophil degranulation (RETN, TCN1, OLFM4, MMP8, LCN2, BPI, LTF, S100A12, GUSB) compared to those who recovered more rapidly from MODS (n=27). These neutrophil transcripts present in early samples predicted Prolonged MODS or death when compared to patients who recovered, however in paired longitudinal samples, they were not differentially expressed over time. Instead, five genes involved in protein metabolism and/or adaptive immunity signaling pathways (RPL3, MRPL3, HLA-DMB, EEF1G, CD8A) were associated with MODS recovery within a week. Conclusion Thus, early increased expression of neutrophil degranulation genes indicated worse clinical outcomes in children with influenza infection, consistent with reports in adult cohorts with influenza, sepsis, and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Tanya Novak
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
- National Institute of Allergy and Infectious Diseases (NIAID), Centers of Excellence for Influenza Research and Response (CEIRR), Center for Influenza Disease and Emergence Response (CIDER), Athens, GA, United States
| | - Jeremy Chase Crawford
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- National Institute of Allergy and Infectious Diseases (NIAID), Centers of Excellence for Influenza Research and Response (CEIRR), St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN, United States
| | - Georg Hahn
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Mark W. Hall
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Simone A. Thair
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Division of Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Margaret M. Newhams
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- National Institute of Allergy and Infectious Diseases (NIAID), Centers of Excellence for Influenza Research and Response (CEIRR), Center for Influenza Disease and Emergence Response (CIDER), Athens, GA, United States
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Peter M. Mourani
- Department of Pediatrics, Section of Critical Care Medicine, University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Keiko M. Tarquinio
- Division of Critical Care Medicine, Department of Pediatrics, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Barry Markovitz
- Department of Anesthesiology Critical Care Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Laura L. Loftis
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Scott L. Weiss
- Nemours Children’s Hospital Delaware, Critical Care Medicine, Wilmington, DE, United States
| | - Renee Higgerson
- Pediatric Critical Care Medicine, St. David’s Children’s Hospital, Austin, TX, United States
| | - Adam J. Schwarz
- Department of Pediatrics, Children’s Hospital of Orange County, Orange, CA, United States
| | - Neethi P. Pinto
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Neal J. Thomas
- Department of Pediatrics, Penn State Health Children’s Hospital, Penn State University College of Medicine, Hershey, PA, United States
| | - Rainer G. Gedeit
- Pediatric Critical Care, Milwaukee Hospital-Children’s Wisconsin, Milwaukee, WI, United States
| | - Ronald C. Sanders
- Section of Pediatric Critical Care, Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Sidharth Mahapatra
- Pediatric Critical Care Medicine, Children’s Hospital & Medical Center Omaha, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bria M. Coates
- Division of Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Natalie Z. Cvijanovich
- Division of Critical Care Medicine, UCSF Benioff Children’s Hospital, Oakland, CA, United States
| | - Kate G. Ackerman
- Department of Pediatrics, University of Rochester/UR Medicine Golisano Children’s Hospital, Rochester, NY, United States
| | - David W. Tellez
- Pediatric Critical Care Medicine, Phoenix Children’s Hospital, Phoenix, AZ, United States
| | - Patrick McQuillen
- Department of Pediatrics, Benioff Children’s Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Stephen C. Kurachek
- Department of Critical Care, Children’s Specialty Center, Children’s Minnesota, Minneapolis, MN, United States
| | - Steven L. Shein
- Division of Pediatric Critical Care Medicine, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, OH, United States
| | - Christoph Lange
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Paul G. Thomas
- National Institute of Allergy and Infectious Diseases (NIAID), Centers of Excellence for Influenza Research and Response (CEIRR), St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN, United States
| | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
- National Institute of Allergy and Infectious Diseases (NIAID), Centers of Excellence for Influenza Research and Response (CEIRR), Center for Influenza Disease and Emergence Response (CIDER), Athens, GA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Keenum MC, Chatterjee P, Atalis A, Pandey B, Jimenez A, Roy K. Single-cell epitope-transcriptomics reveal lung stromal and immune cell response kinetics to nanoparticle-delivered RIG-I and TLR4 agonists. Biomaterials 2023; 297:122097. [PMID: 37001347 PMCID: PMC10192313 DOI: 10.1016/j.biomaterials.2023.122097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Lung-resident and circulatory lymphoid, myeloid, and stromal cells, expressing various pattern recognition receptors (PRRs), detect pathogen- and danger-associated molecular patterns (PAMPs/DAMPs), and defend against respiratory pathogens and injuries. Here, we report the early responses of murine lungs to nanoparticle-delivered PAMPs, specifically the retinoic acid-inducible gene I (RIG-I) agonist poly-U/UC (PUUC), with or without the TLR4 agonist monophosphoryl lipid A (MPLA). Using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), we characterized the responses at 4 and 24 h after intranasal administration. Within 4 h, ribosome-associated transcripts decreased in both stromal and immune cells, followed by widespread interferon-stimulated gene (ISG) expression. Using RNA velocity, we show that lung-neutrophils dynamically regulate the synthesis of cytokines like CXCL-10, IL-1α, and IL-1β. Co-delivery of MPLA and PUUC increased chemokine synthesis and upregulated antimicrobial binding proteins targeting iron, manganese, and zinc in many cell types, including fibroblasts, endothelial cells, and epithelial cells. Overall, our results elucidate the early PAMP-induced cellular responses in the lung and demonstrate that stimulation of the RIG-I pathway, with or without TLR4 agonists, induces a ubiquitous microbial defense state in lung stromal and immune cells. Nanoparticle-delivered combination PAMPs may have applications in intranasal antiviral and antimicrobial therapies and prophylaxis.
Collapse
Affiliation(s)
- M Cole Keenum
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Paramita Chatterjee
- Marcus Center for Therapeutic Cell Characterization and Manufacturing Georgia Institute of Technology, Atlanta, GA, USA
| | - Alexandra Atalis
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Bhawana Pandey
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Angela Jimenez
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA; Marcus Center for Therapeutic Cell Characterization and Manufacturing Georgia Institute of Technology, Atlanta, GA, USA; The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Steuart R, Ale GB, Woolums A, Xia N, Benscoter D, Russell CJ, Shah SS, Thomson J. Respiratory culture organism isolation and test characteristics in children with tracheostomies with and without acute respiratory infection. Pediatr Pulmonol 2023; 58:1481-1491. [PMID: 36751142 DOI: 10.1002/ppul.26349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Among children with tracheostomies, little is known about how respiratory culture results differ between states with and without acute respiratory infections (ARI), or the overall test performance of respiratory cultures. OBJECTIVE To determine the association of respiratory culture organism isolation with diagnosis of ARI in children with tracheostomies, and assess test characteristics of respiratory cultures in the diagnosis of bacterial ARI (bARI). METHODS This single-center, retrospective cohort study included respiratory cultures of children with tracheostomies obtained between 2010 and 2018. The primary predictor was ARI diagnosis code at the time of culture; the primary outcomes were respiratory culture organism isolation and species identified. Generalized estimating equations were used to assess for association between ARI diagnosis and isolation of any organism while controlling for potential confounders and accounting for within-patient clustering. A multinomial logistic regression equation assessed for association with specific species. Test characteristics were calculated using bARI diagnosis as the reference standard. RESULTS Among 3578 respiratory cultures from 533 children (median 4 cultures/child, interquartile range (IQR): 1-9), 25.9% were obtained during ARI and 17.2% had ≥1 organism. Children with ARI diagnosis had higher odds of organism identification (adjusted odds ratio 1.29, 95% confidence interval [CI] 1.16-1.44). When controlling for covariates, ARI was associated with isolation of Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae, and Streptococcus pyogenes. Test characteristics revealed a 24.3% sensitivity, 85.2% specificity, 36.5% positive predictive value, and 76.3% negative predictive value in screening for bARI. CONCLUSION The utility of respiratory culture testing to screen for, diagnose, and direct treatment of ARI in children with tracheostomies is limited.
Collapse
Affiliation(s)
- Rebecca Steuart
- Department of Pediatrics, Section of Special Needs, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Complex Care Program, Children's Wisconsin, Milwaukee, Wisconsin, USA
| | - Guillermo B Ale
- Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Pulmonary and Sleep Medicine, Children's of Alabama, Birmingham, Alabama, USA
| | - Abigail Woolums
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nicole Xia
- Department of Pediatrics, Section of Special Needs, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Dan Benscoter
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christopher J Russell
- Division of Hospital Medicine, Children's Hospital of Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Samir S Shah
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Hospital Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joanna Thomson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- James M Anderson Center for Health Systems Excellence, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Fatal cases after Omicron BA.1 and BA.2 infection: Results of an autopsy study. Int J Infect Dis 2023; 128:51-57. [PMID: 36584746 DOI: 10.1016/j.ijid.2022.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Omicron lineages BA.1/2 are considered to cause mild clinical courses. Nevertheless, fatal cases after those infections are recognized but little is known about risk factors. METHODS A total of 23 full and three partial autopsies in deceased with known Omicron BA.1/2 infections have been consecutively performed. The investigations included histology, blood analyses, and molecular virus detection. RESULTS COVID-19-associated diffuse alveolar damage was found in only eight cases (31%). This rate is significantly lower compared with previous studies, including non-Omicron variants, where rates between 69% and 92% were observed. Neither vaccination nor known risk factors were significantly associated with a direct cause of death by COVID-19. Only those patients who were admitted to the clinic because of COVID-19 but not for other reasons had a significant association with a direct COVID-19 -caused death (P >0.001). CONCLUSION Diffuse alveolar damage still occurred in the Omicron BA.1/BA.2 era but at a considerably lower frequency than seen with previous variants of concern. None of the known risk factors discriminated the cases with COVID-19-caused death from those that died because of a different disease. Therefore, the host's genomics might play a key role in this regard. Further studies should elucidate the existence of such a genomic risk factor.
Collapse
|
8
|
Maddux AB, Grunwell JR, Newhams MM, Chen SR, Olson SM, Halasa NB, Weiss SL, Coates BM, Schuster JE, Hall MW, Nofziger RA, Flori HR, Gertz SJ, Kong M, Sanders RC, Irby K, Hume JR, Cullimore ML, Shein SL, Thomas NJ, Miller K, Patel M, Fitzpatrick AM, Phipatanakul W, Randolph AG. Association of Asthma With Treatments and Outcomes in Children With Critical Influenza. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:836-843.e3. [PMID: 36379408 PMCID: PMC10006305 DOI: 10.1016/j.jaip.2022.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Hospitalization for severe influenza infection in childhood may result in postdischarge sequelae. OBJECTIVE To evaluate inpatient management and postdischarge sequelae in children with critical respiratory illness owing to influenza with or without preexisting asthma. METHODS This was a prospective, observational multicenter study of children (aged 8 months to 17 years) admitted to a pediatric intensive care or high-acuity unit (in November 2019 to April 2020) for influenza. Results were stratified by preexisting asthma. Prehospital status, hospital treatments, and outcomes were collected. Surveys at approximately 90 days after discharge evaluated postdischarge health resource use, functional status, and respiratory symptoms. RESULTS A total of 165 children had influenza: 56 with preexisting asthma (33.9%) and 109 without it (66.1%; 41.1% and 39.4%, respectively, were fully vaccinated against influenza). Fifteen patients with preexisting asthma (26.7%) and 34 without it (31.1%) were intubated. More patients with versus without preexisting asthma received pharmacologic asthma treatments during hospitalization (76.7% vs 28.4%). Of 136 patients with 90-day survey data (82.4%; 46 with preexisting asthma [33.8%] and 90 without it [66.1%]), a similar proportion had an emergency department/urgent care visit (4.3% vs 6.6%) or hospital readmission (8.6% vs 3.3%) for a respiratory condition. Patients with preexisting asthma more frequently experienced asthma symptoms (78.2% vs 3.3%) and had respiratory specialist visits (52% vs 20%) after discharge. Of 109 patients without preexisting asthma, 10 reported receiving a new diagnosis of asthma (11.1%). CONCLUSIONS Respiratory health resource use and symptoms are important postdischarge outcomes after influenza critical illness in children with and without preexisting asthma. Less than half of children were vaccinated for influenza, a tool that could mitigate critical illness and its sequelae.
Collapse
Affiliation(s)
- Aline B Maddux
- Department of Pediatrics, Section of Critical Care Medicine, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colo
| | - Jocelyn R Grunwell
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Ga; Division of Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, Ga
| | - Margaret M Newhams
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, Mass
| | - Sabrina R Chen
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, Mass
| | - Samantha M Olson
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control of Prevention, Atlanta, Ga
| | - Natasha B Halasa
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn
| | - Scott L Weiss
- Division of Critical Care, Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Bria M Coates
- Division of Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Jennifer E Schuster
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Miss
| | - Mark W Hall
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - Ryan A Nofziger
- Division of Critical Care Medicine, Department of Pediatrics, Akron Children's Hospital, Akron, Ohio
| | - Heidi R Flori
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Mott Children's Hospital and University of Michigan, Ann Arbor, Mich
| | - Shira J Gertz
- Division of Pediatric Critical Care, Department of Pediatrics, Cooperman Barnabas Medical Center, Livingston, NJ
| | - Michele Kong
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala
| | - Ronald C Sanders
- Section of Pediatric Critical Care, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, Ark
| | - Katherine Irby
- Section of Pediatric Critical Care, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, Ark
| | - Janet R Hume
- Division of Pediatric Critical Care, University of Minnesota Masonic Children's Hospital, Minneapolis, Minn
| | - Melissa L Cullimore
- Division of Pediatric Critical Care, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Neb
| | - Steven L Shein
- Division of Pediatric Critical Care Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - Neal J Thomas
- Department of Pediatrics, Penn State Hershey Children's Hospital, Penn State University College of Medicine, Hershey, Pa
| | - Kristen Miller
- Department of Pediatrics, Section of Critical Care Medicine, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colo
| | - Manish Patel
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control of Prevention, Atlanta, Ga
| | - Anne M Fitzpatrick
- Children's Healthcare of Atlanta, Division of Pulmonology, Cystic Fibrosis, and Sleep Medicine, Atlanta, Ga
| | - Wanda Phipatanakul
- Department of Pediatrics, Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Adrienne G Randolph
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, Mass; Department of Anaesthesia, Harvard Medical School, Boston, Mass.
| |
Collapse
|
9
|
Pathobiology, Severity, and Risk Stratification of Pediatric Acute Respiratory Distress Syndrome: From the Second Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2023; 24:S12-S27. [PMID: 36661433 DOI: 10.1097/pcc.0000000000003156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To review the literature for studies published in children on the pathobiology, severity, and risk stratification of pediatric acute respiratory distress syndrome (PARDS) with the intent of guiding current medical practice and identifying important areas for future research related to severity and risk stratification. DATA SOURCES Electronic searches of PubMed and Embase were conducted from 2013 to March 2022 by using a combination of medical subject heading terms and text words to capture the pathobiology, severity, and comorbidities of PARDS. STUDY SELECTION We included studies of critically ill patients with PARDS that related to the severity and risk stratification of PARDS using characteristics other than the oxygenation defect. Studies using animal models, adult only, and studies with 10 or fewer children were excluded from our review. DATA EXTRACTION Title/abstract review, full-text review, and data extraction using a standardized data collection form. DATA SYNTHESIS The Grading of Recommendations Assessment, Development, and Evaluation approach was used to identify and summarize relevant evidence and develop recommendations for clinical practice. There were 192 studies identified for full-text extraction to address the relevant Patient/Intervention/Comparator/Outcome questions. One clinical recommendation was generated related to the use of dead space fraction for risk stratification. In addition, six research statements were generated about the impact of age on acute respiratory distress syndrome pathobiology and outcomes, addressing PARDS heterogeneity using biomarkers to identify subphenotypes and endotypes, and use of standardized ventilator, physiologic, and nonpulmonary organ failure measurements for future research. CONCLUSIONS Based on an extensive literature review, we propose clinical management and research recommendations related to characterization and risk stratification of PARDS severity.
Collapse
|
10
|
Zhang L, Ye X, Liu Y, Zhang Z, Xia X, Dong S. Research progress on the effect of traditional Chinese medicine on the activation of PRRs-mediated NF-κB signaling pathway to inhibit influenza pneumonia. Front Pharmacol 2023; 14:1132388. [PMID: 37089926 PMCID: PMC10119400 DOI: 10.3389/fphar.2023.1132388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Influenza pneumonia has challenged public health and social development. One of the hallmarks of severe influenza pneumonia is overproduction of pro-inflammatory cytokines and chemokines, which result from the continuous activation of intracellular signaling pathways, such as the NF-κB pathway, mediated by the interplay between viruses and host pattern recognition receptors (PRRs). It has been reported that traditional Chinese medicines (TCMs) can not only inhibit viral replication and inflammatory responses but also affect the expression of key components of PRRs and NF-κB signaling pathways. However, whether the antiviral and anti-inflammatory roles of TCM are related with its effects on NF-κB signaling pathway activated by PRRs remains unclear. Here, we reviewed the mechanism of PRRs-mediated activation of NF-κB signaling pathway following influenza virus infection and summarized the influence of anti-influenza TCMs on inflammatory responses and the PRRs/NF-κB signaling pathway, so as to provide better understanding of the mode of action of TCMs in the treatment of influenza pneumonia.
Collapse
Affiliation(s)
- Ling Zhang
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiong Ye
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yuntao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhongde Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| | - Xueshan Xia
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| | - Shuwei Dong
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| |
Collapse
|
11
|
Lee S, Zhang Y, Newhams M, Novak T, Thomas PG, Mourani PM, Hall MW, Loftis LL, Cvijanovich NZ, Tarquinio KM, Schwarz AJ, Weiss SL, Thomas NJ, Markovitz B, Cullimore ML, Sanders RC, Zinter MS, Sullivan JE, Halasa NB, Bembea MM, Giuliano JS, Typpo KV, Nofziger RA, Shein SL, Kong M, Coates BM, Weiss ST, Lange C, Su HC, Randolph AG. DDX58 Is Associated With Susceptibility to Severe Influenza Virus Infection in Children and Adolescents. J Infect Dis 2022; 226:2030-2036. [PMID: 35986912 PMCID: PMC10205622 DOI: 10.1093/infdis/jiac350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/18/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Seasonal influenza virus infection causes a range of disease severity, including lower respiratory tract infection with respiratory failure. We evaluated the association of common variants in interferon (IFN) regulatory genes with susceptibility to critical influenza infection in children. METHODS We performed targeted sequencing of 69 influenza-associated candidate genes in 348 children from 24 US centers admitted to the intensive care unit with influenza infection and lacking risk factors for severe influenza infection (PICFlu cohort, 59.4% male). As controls, whole genome sequencing from 675 children with asthma (CAMP cohort, 62.5% male) was compared. We assessed functional relevance using PICFlu whole blood gene expression levels for the gene and calculated IFN gene signature score. RESULTS Common variants in DDX58, encoding the retinoic acid-inducible gene I (RIG-I) receptor, demonstrated association above or around the Bonferroni-corrected threshold (synonymous variant rs3205166; intronic variant rs4487862). The intronic single-nucleotide polymorphism rs4487862 minor allele was associated with decreased DDX58 expression and IFN signature (P < .05 and P = .0009, respectively) which provided evidence supporting the genetic variants' impact on RIG-I and IFN immunity. CONCLUSIONS We provide evidence associating common gene variants in DDX58 with susceptibility to severe influenza infection in children. RIG-I may be essential for preventing life-threatening influenza-associated disease.
Collapse
Affiliation(s)
- Sanghun Lee
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Medical Consilience, Graduate School, Dankook University, Yongin-si, South Korea
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Margaret Newhams
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Tanya Novak
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul G Thomas
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Peter M Mourani
- Section of Critical Care Medicine, Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Mark W Hall
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Laura L Loftis
- Section of Critical Care Medicine, Department of Pediatrics, Texas Children’s Hospital, Houston, Texas, USA
| | - Natalie Z Cvijanovich
- Division of Critical Care Medicine, UCSF Benioff Children’s Hospital Oakland, Oakland, California, USA
| | - Keiko M Tarquinio
- Division of Critical Care Medicine, Department of Pediatrics, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Adam J Schwarz
- Department of Pediatrics, Children’s Hospital of Orange County, Orange, California, USA
| | - Scott L Weiss
- Division of Critical Care, Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Neal J Thomas
- Department of Pediatrics, Penn State Hershey Children’s Hospital, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Barry Markovitz
- Department of Anesthesiology Critical Care Medicine, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Melissa L Cullimore
- Division of Pediatric Critical Care, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ronald C Sanders
- Section of Pediatric Critical Care, Department of Pediatrics, Arkansas Children’s Hospital, Little Rock, Arkansas, USA
| | - Matt S Zinter
- Divisions of Critical Care Medicine and Allergy, Immunology, and Bone Marrow Transplant, Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Janice E Sullivan
- Division of Pediatric Critical Care, University of Louisville School of Medicine and Norton Children’s Hospital, Louisville, Kentucky, USA
| | - Natasha B Halasa
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Melania M Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John S Giuliano
- Division of Critical Care, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Katri V Typpo
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona, USA
| | - Ryan A Nofziger
- Division of Critical Care Medicine, Department of Pediatrics, Akron Children’s Hospital, Akron, Ohio, USA
| | - Steven L Shein
- Division of Pediatric Critical Care Medicine, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
| | - Michele Kong
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bria M Coates
- Division of Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christoph Lange
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrienne G Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
12
|
Functional immunophenotyping of children with critical status asthmaticus identifies differential gene expression responses in neutrophils exposed to a poly(I:C) stimulus. Sci Rep 2022; 12:19644. [PMID: 36385161 PMCID: PMC9666940 DOI: 10.1038/s41598-022-24261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
The host immune response to a viral immune stimulus has not been examined in children during a life-threatening asthma attack. We determined whether we could identify clusters of children with critical asthma by functional immunophenotyping using an intracellular viral analog stimulus. We performed a single-center, prospective, observational cohort study of 43 children ages 6-17 years admitted to a pediatric intensive care unit for an asthma attack between July 2019 to February 2021. Neutrophils were isolated from children, stimulated overnight with LyoVec poly(I:C), and mRNA was analyzed using a targeted Nanostring immunology array. Network analysis of the differentially expressed transcripts for the paired LyoVec poly(I:C) samples was performed. We identified two clusters by functional immunophenotyping that differed by the Asthma Control Test score. Cluster 1 (n = 23) had a higher proportion of children with uncontrolled asthma in the four weeks prior to PICU admission compared with cluster 2 (n = 20). Pathways up-regulated in cluster 1 versus cluster 2 included chemokine receptor/chemokines, interleukin-10 (IL-10), IL-4, and IL-13 signaling. Larger validation studies and clinical phenotyping of children with critical asthma are needed to determine the predictive utility of these clusters in a larger clinical setting.
Collapse
|
13
|
周 永, 张 静, 巫 波, 李 政, 吴 江, 别 明. [Therapeutic Effect of Artesunate on Influenza A Viral Pneumonia]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:1055-1060. [PMID: 36443052 PMCID: PMC10408982 DOI: 10.12182/20221160205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 06/16/2023]
Abstract
Objective To investigate the therapeutic effect of artesunate (ART) on influenza A viral pneumonia. Methods A total of 36 mice were evenly and randomly assigned to six groups, a normal control group (C group), a solvent control group (M group, 10% DMSO), a positive drug group (P group, oseltamivir, 1.25 mg/kg/day), ART high-dose group (ART-G group, 120 mg/kg/day), ART medium-dose group (ART-Z group, 60 mg/kg/day), and ART low-dose group (ART-D group, 30 mg/kg/day). Except for group C, which did not receive any influenza A virus intervention or intraperitoneal injection, mice in the five other groups were infected with influenza A virus through intranasal drip. Then, after 12 hours, mice in the five other groups received intraperitoneal injection of the assigned drugs and dosage once a day. The signs, body weight, and survival of the mice were observed over the course of treatment. After 7 days of treatment, the lung tissue of the mice was collected and weighed, and the lung index was calculated accordingly. HE staining was performed to observe the pathological changes in the lung tissue. The mRNA and protein expression levels of Toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB [p65]), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and IL-1β were examined with RT-qPCR and Western blot, respectively. Results Compared with those in C group, mice in the M group had worse physical signs and lower body mass and survival, increased lung index, severe pathological changes in lung tissue, and increased levels of TLR4, NF-κB (p65), TNF-α, IL-6 and IL-1β mRNA and protein expression in their lung tissue ( P<0.05). Compared with those in M group, the mice in the ART groups had better physical signs, higher body mass and survival rate, decreased lung index, improvement of pathological changes in the lung tissue, and decreased levels of level of TLR4, NF-κB (p65), TNF-α, IL-6 and IL-1β mRNA and protein expression in the lung tissue ( P<0.05). Furthermore, the most prominent changes in these indexes were observed in the ART-G group. Conclusion ART has therapeutic effects on influenza A viral pneumonia, and the mechanisms are related to the inhibition of TLR4/p65 signaling pathway activation and anti-inflammation.
Collapse
Affiliation(s)
- 永君 周
- 成都乐助生物科技有限公司 (成都 610041)Chengdu Lezhu Biotechnology Co. Ltd, Chengdu 610041, China
| | - 静 张
- 成都乐助生物科技有限公司 (成都 610041)Chengdu Lezhu Biotechnology Co. Ltd, Chengdu 610041, China
| | - 波 巫
- 成都乐助生物科技有限公司 (成都 610041)Chengdu Lezhu Biotechnology Co. Ltd, Chengdu 610041, China
| | - 政 李
- 成都乐助生物科技有限公司 (成都 610041)Chengdu Lezhu Biotechnology Co. Ltd, Chengdu 610041, China
| | - 江 吴
- 成都乐助生物科技有限公司 (成都 610041)Chengdu Lezhu Biotechnology Co. Ltd, Chengdu 610041, China
| | - 明江 别
- 成都乐助生物科技有限公司 (成都 610041)Chengdu Lezhu Biotechnology Co. Ltd, Chengdu 610041, China
- 四川大学华西公共卫生学院(华西第四医院) 检验科 (成都 610041)Department of Laboratory, West China Fourth Hospital and West China School of Public Health, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Wasserman MG, Graham RJ, Mansbach JM. Airway Bacterial Colonization, Biofilms and Blooms, and Acute Respiratory Infection. Pediatr Crit Care Med 2022; 23:e476-e482. [PMID: 35767569 PMCID: PMC9529803 DOI: 10.1097/pcc.0000000000003017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mollie G Wasserman
- Department of General Pediatrics, Boston Children's Hospital, Boston, MA
| | - Robert J Graham
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital, Boston, MA
| | | |
Collapse
|
15
|
Cui XR, Guo YH, Liu QQ. Cangma Huadu granules, a new drug with great potential to treat coronavirus and influenza infections, exert its efficacy through anti-inflammatory and immune regulation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114965. [PMID: 34990767 PMCID: PMC8723765 DOI: 10.1016/j.jep.2021.114965] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coronavirus and influenza virus infection seriously threaten human health. Cangma Huadu Granules (CMHD) is an in-hospital preparation composed of eight traditional Chinese medicines (TCM), which has been clinically used against COVID-19 in China and may be a promising candidate for the treatment of influenza. However, the role of its treatment urgently needs to be studied. AIM OF THE STUDY To evaluate the therapeutic effects of CMHD on pneumonia induced by coronavirus (HCoV-229E) and influenza A virus (H1N1/FM1) in mice and explore its mechanism of anti-infection. MATERIALS AND METHODS Mice were infected with HCoV-229E or H1N1/FM1 virus through the nasal cavity. CMHD (12.1, 6.05 and 3.03 g/kg/d) or the positive control drugs were administered intragastrically. The lung index and histopathological changes were used to evaluate the therapeutic effect of CMHD. The expression of TNF-α, IL-1β, IL-6 and IL-4 in Serum and the proportion of CD4+ and CD8+ T lymphocytes in peripheral blood were detected to evaluate the anti-inflammatory and immune regulation effects of CMHD, respectively. Furthermore, the levels of p-NF-κBp65/ NF-κB p65, which was the key targets of the NF-κB pathway was analyzed. RESULTS In HCoV-229E-induced pneumonia, the lung index was markedly reduced, and lung pathology was improved in mice that treated with CMHD (12.1, 6.05 g/kg/d). Meanwhile, the expression of TNF-α, IL-6 were obviously inhibited, but the expression of IL-4 was significantly increased in CMHD groups. Compared with the model group, CMHD could also markedly upregulate the level of CD4+ and CD8+. Furthermore, CMHD has a markedly effect on inhibit the expression of p-NF-κB p65/NF-κB p65 in the lung. In H1N1-induced pneumonia, the lung index of mice in the CMHD (12.1 g/kg/d) treatment group was lower than that in the model group, and less inflammatory infiltration could be seen in the lung pathological. Moreover, CMHD could also obviously decrease the expression of TNF-α, IL-1β, IL-6, but significantly increase the expression of IL-4. Except for that, CMHD could also markedly downregulate the level of CD4+ and upregulate the level of CD8+ compared with the model group. In addition, CMHD has a markedly effect on inhibit the expression of p-NF-κB p65/NF-κB p65 in the lung. CONCLUSION CMHD can significantly combats viral infections caused by HCoV-229E and H1N1, and the mechanism may be related to its multiple functions of anti-inflammatory, immunity regulating and inhibiting NF-κB signal transduction pathway.
Collapse
Affiliation(s)
- Xu-Ran Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Chinese Medicine, Beijing, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Yu-Hong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Qing-Quan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Chinese Medicine, Beijing, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China.
| |
Collapse
|
16
|
Bline KE, Hall MW. Immune Function in Critically Ill Septic Children. Pathogens 2021; 10:1239. [PMID: 34684188 PMCID: PMC8539782 DOI: 10.3390/pathogens10101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022] Open
Abstract
The inflammatory response in pediatric sepsis is highly dynamic and includes both pro- and anti-inflammatory elements that involve the innate and adaptive immune systems. While the pro-inflammatory response is responsible for the initial clinical signs and symptoms of sepsis, a concurrent compensatory anti-inflammatory response often results in an occult, but highly clinically relevant, form of acquired immunodeficiency. When severe, this is termed "immunoparalysis" and is associated with increased risks for nosocomial infection, prolonged organ dysfunction, and death. This review focuses on the pathophysiology and clinical implications of both over- and under-active immune function in septic children. Host-, disease-, and treatment-specific risk factors for immunoparalysis are reviewed along with immune phenotype-specific approaches for immunomodulation in pediatric sepsis which are currently the subject of clinical trials.
Collapse
Affiliation(s)
- Katherine Elizabeth Bline
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | | |
Collapse
|
17
|
Hall MW, Joshi I, Leal L, Ooi EE. Immune modulation in COVID-19: Strategic considerations for personalized therapeutic intervention. Clin Infect Dis 2020; 74:144-148. [PMID: 32604407 PMCID: PMC7337699 DOI: 10.1093/cid/ciaa904] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Indexed: 12/26/2022] Open
Abstract
We are learning that the host response to severe acute respiratory syndrome coronavirus 2 ( SARS-CoV-2) infection is complex and highly dynamic. Effective initial host defense in the lung is associated with mild symptoms and disease resolution. Viral evasion of the immune response can lead to refractory alveolar damage, ineffective lung repair mechanisms, and systemic inflammation with associated organ dysfunction. The immune response in these patients is highly variable and can include moderate to severe systemic inflammation and/or marked systemic immune suppression. There is unlikely to be a “one size fits all” approach to immunomodulation in patients with coronavirus disease 2019 (COVID-19). We believe that a personalized, immunophenotype-driven approach to immunomodulation that may include anticytokine therapy in carefully selected patients and immunostimulatory therapies in others is the shortest path to success in the study and treatment of patients with critical illness due to COVID-19.
Collapse
Affiliation(s)
- Mark W Hall
- Division of Critical Care, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Eng Eong Ooi
- Duke-National University of Singapore Medical School, Singapore
| |
Collapse
|