1
|
Möbs C, Jung AL. Extracellular vesicles: Messengers of allergic immune responses and novel therapeutic strategy. Eur J Immunol 2024; 54:e2350392. [PMID: 38361213 DOI: 10.1002/eji.202350392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Extracellular vesicles (EVs) are nanosized particles released by nearly every cell type across all kingdoms of life. As a result, EVs are ubiquitously present in various human body fluids. Composed of a lipid bilayer, EVs encapsulate proteins, nucleic acids, and metabolites, thus playing a crucial role in immunity, for example, by enabling intercellular communication. More recently, there has been increasing evidence that EVs can also act as key regulators of allergic immune responses. Their ability to facilitate cell-to-cell contact and to transport a variety of different biomolecules enables active modulation of both innate and adaptive immune processes associated with allergic reactions. A comprehensive understanding of the intricate mechanisms underlying the interactions among allergens, immune cells, and EVs is imperative to develop innovative strategies for controlling allergic responses. This review highlights the recent roles of host cell- and bacteria-derived EVs in allergic diseases, presenting experimental and clinical evidence that underscores their significance. Additionally, the therapeutic potential of EVs in allergy management is outlined, along with the challenges associated with targeted delivery and cargo stability for clinical use. Optimization of EV composition and targeting strategies holds promise for advancing translational applications and establishing EVs as biomarkers or safe therapeutics for assessing allergic reactions. For these reasons, EVs represent a promising avenue for advancing both our understanding and management of allergic immune processes.
Collapse
Affiliation(s)
- Christian Möbs
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-Universität Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
2
|
Nassikas NJ, Luttmann-Gibson H, Rifas-Shiman SL, Oken E, Gold DR, Rice MB. Acute exposure to pollen and airway inflammation in adolescents. Pediatr Pulmonol 2024; 59:1313-1320. [PMID: 38353177 PMCID: PMC11058013 DOI: 10.1002/ppul.26908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Pollen exposure is known to exacerbate allergic asthma and allergic rhinitis symptoms, yet few studies have investigated if exposure to pollen affects lung function or airway inflammation in healthy children. METHODS We evaluated the extent to which higher pollen exposure was associated with differences in airway inflammation and lung function among 490 early adolescent participants (mean age of 12.9 years) in Project Viva, a prebirth cohort based in Massachusetts. We obtained regional daily total pollen counts, including tree, grass, and weed pollen, from a Rotorod pollen counter. We evaluated associations of 3- and 7-day moving averages of pollen with fractional exhaled nitric oxide (FeNO) and lung function using linear regression models and evaluated the linearity of associations with penalized splines. We tested if associations of pollen with FeNO and lung function were modified by current asthma diagnosis, history of allergic rhinitis, aeroallergen sensitivity, temperature, precipitation, and air pollution. RESULTS Three- and 7-day median pollen concentrations were 19.0 grains/m3 (IQR: 73.4) and 20.9 grains/m3 (IQR: 89.7). In main models, higher concentrations of total pollen over the preceding 3 and 7 days were associated with a 4.6% (95% CI: 0.1,9.2) and 7.4% (95% CI: 0.9,14.3) higher FeNO per IQR of pollen, respectively. We did not find associations of pollen with lung function in main models. Asthma, allergic rhinitis, precipitation, and air pollution (nitrogen dioxide and ozone) modified associations of pollen with lung function (Pinteraction < 0.1), while temperature, sex, and aeroallergen sensitization did not. CONCLUSION Short-term exposure to pollen was associated with higher FeNO in early adolescents, even in the absence of allergic sensitization and asthma.
Collapse
Affiliation(s)
- Nicholas J. Nassikas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Heike Luttmann-Gibson
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Mary B. Rice
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
3
|
Martikainen MV, Tossavainen T, Hannukka N, Roponen M. Pollen, respiratory viruses, and climate change: Synergistic effects on human health. ENVIRONMENTAL RESEARCH 2023; 219:115149. [PMID: 36566960 DOI: 10.1016/j.envres.2022.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In recent years, evidence of the synergistic effects of pollen and viruses on respiratory health has begun to accumulate. Pollen exposure is a known risk factor for the incidence and severity of respiratory viral infections. However, recent evidence suggests that pollen exposure may also inhibit or weaken viral infections. A comprehensive summary has not been made and a consensus on the synergistic health effects has not been reached. It is highly possible that climate change will increase the significance of pollen exposure as a cause of respiratory problems and, at the same time, affect the risk of infectious disease outbreaks. It is important to accurately assess how these two factors affect human health separately and concurrently. In this review article, for the first time, the data from previous studies are combined and reviewed and potential research gaps concerning the synergistic effects of pollen and viral exposure are identified.
Collapse
Affiliation(s)
- Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Tarleena Tossavainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Noora Hannukka
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Lara B, Rojo J, Costa AR, Burgos-Montero AM, Antunes CM, Pérez-Badia R. Atmospheric pollen allergen load and environmental patterns in central and southwestern Iberian Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159630. [PMID: 36280057 DOI: 10.1016/j.scitotenv.2022.159630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Over one quarter of the population in industrialised countries suffers from some type of allergy and inhaled aeroallergens from pollen are the primary cause of allergic ailments. The networks for monitoring biological air quality measure the airborne pollen concentrations that characterize periods of exposure to major airborne aeroallergens but there are certain discrepancies in relation to the allergen-pollen dynamic. In this paper we analyse the airborne allergens Ole e 1, Phl p 1, Phl p 5 and Pla a 1, and interpreted the adjustments and mismatches in their concentrations in relation to airborne pollen. The influence of main environmental patterns was considered. The study was conducted in two urban areas of the centre and southwest of the Iberian Peninsula (Toledo in Spain and Évora in Portugal). Monitoring for pollen followed the standard protocol using Hirst volumetric spore traps and allergenic particles were quantified by ELISA assay. The results indicate that the discrepancies in this relationship were affected by the weather conditions up to 6 days prior. Precipitation and humidity above normal values caused a higher concentration of the allergen Pla a 1. This effect occurred in reverse in the case of humidity for the allergens Ole e 1 and Phl p 1. Humidity and precipitation generated the same pattern in the allergen-pollen relationship in both Phl p 1 and Phl p 5. Our findings show consistent results that allow to interpret the rate of discrepancy between allergen and pollen, and it can be used to improve allergy risk prediction models generated from atmospheric pollen.
Collapse
Affiliation(s)
- Beatriz Lara
- Institute of Environmental Science. University of Castilla-La Mancha. 45071, Toledo, Spain; Department of Chemical and Environmental Engineering. Polytechnic University of Cartagena. 30202, Cartagena, Spain
| | - Jesús Rojo
- Department of Pharmacology, Pharmacognosy and Botany. Complutense University. 28040, Madrid, Spain
| | - Ana R Costa
- Department of Chemistry, ICT-Institute of Earth Sciences, School of Sciences and Technology & IIFA. University of Évora. 7000-671, Évora, Portugal
| | - Ana M Burgos-Montero
- Institute of Environmental Science. University of Castilla-La Mancha. 45071, Toledo, Spain; Allergy Department. Hospital General La Mancha Centro. 13600 Alcázar de San Juan, Ciudad Real, Spain
| | - Célia M Antunes
- Department of Chemistry, ICT-Institute of Earth Sciences, School of Sciences and Technology & IIFA. University of Évora. 7000-671, Évora, Portugal
| | - Rosa Pérez-Badia
- Institute of Environmental Science. University of Castilla-La Mancha. 45071, Toledo, Spain.
| |
Collapse
|
5
|
Traidl-Hoffmann C. Pollen on their way astray - First contact via cross-kingdom signaling leading to far-reaching consequences for the atopic march. Allergy 2022; 77:3496-3497. [PMID: 36029177 DOI: 10.1111/all.15496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Institute of Environmental Medicine, Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany.,CK-CARE, Christine Kühne-Center for Allergy Research and Education, Davos Wolfgang, Switzerland
| |
Collapse
|
6
|
Gisler A, Eeftens M, de Hoogh K, Vienneau D, Salem Y, Yammine S, Jakob J, Gorlanova O, Decrue F, Gehrig R, Frey U, Latzin P, Fuchs O, Usemann J, Decrue F, Frey U, Fuchs O, Gisler A, Gorlanova O, Kentgens A, Korten I, Kurz J, Latzin P, Nissen A, Oestreich M, Röösli M, Salem Y, Usemann J, Vienneau D. Pollen exposure is associated with risk of respiratory symptoms during the first year of life. Allergy 2022; 77:3606-3616. [PMID: 35302662 PMCID: PMC10078730 DOI: 10.1111/all.15284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Pollen exposure is associated with respiratory symptoms in children and adults. However, the association of pollen exposure with respiratory symptoms during infancy, a particularly vulnerable period, remains unclear. We examined whether pollen exposure is associated with respiratory symptoms in infants and whether maternal atopy, infant's sex or air pollution modifies this association. METHODS We investigated 14,874 observations from 401 healthy infants of a prospective birth cohort. The association between pollen exposure and respiratory symptoms, assessed in weekly telephone interviews, was evaluated using generalized additive mixed models (GAMMs). Effect modification by maternal atopy, infant's sex, and air pollution (NO2 , PM2.5 ) was assessed with interaction terms. RESULTS Per infant, 37 ± 2 (mean ± SD) respiratory symptom scores were assessed during the analysis period (January through September). Pollen exposure was associated with increased respiratory symptoms during the daytime (RR [95% CI] per 10% pollen/m3 : combined 1.006 [1.002, 1.009]; tree 1.005 [1.002, 1.008]; grass 1.009 [1.000, 1.23]) and nighttime (combined 1.003 [0.999, 1.007]; tree 1.003 [0.999, 1.007]; grass 1.014 [1.004, 1.024]). While there was no effect modification by maternal atopy and infant's sex, a complex crossover interaction between combined pollen and PM2.5 was found (p-value 0.003). CONCLUSION Even as early as during the first year of life, pollen exposure was associated with an increased risk of respiratory symptoms, independent of maternal atopy and infant's sex. Because infancy is a particularly vulnerable period for lung development, the identified adverse effect of pollen exposure may be relevant for the evolvement of chronic childhood asthma.
Collapse
Affiliation(s)
- Amanda Gisler
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marloes Eeftens
- Swiss Tropical and Public Health Institute Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Yasmin Salem
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Julian Jakob
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Primary Health Care (BIHAM), Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Decrue
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Regula Gehrig
- Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland
| | - Urs Frey
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Oliver Fuchs
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jakob Usemann
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Division of Respiratory Medicine, University Children's Hospital of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Straub A, Fricke V, Olschewski P, Seubert S, Beck C, Bayr D, Kolek F, Plaza MP, Leier-Wirtz V, Kaschuba S, Traidl-Hoffmann C, Buermann W, Gerstlauer M, Damialis A, Philipp A. The phenomenon of thunderstorm asthma in Bavaria, Southern Germany: a statistical approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2678-2694. [PMID: 34607495 DOI: 10.1080/09603123.2021.1985971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Higher incidences of asthma during thunderstorms can pose a serious health risk. In this study, we estimate the thunderstorm asthma risk using statistical methods, with special focus on Bavaria, Southern Germany. In this approach, a dataset of asthma-related emergency cases for the study region is combined with meteorological variables and aeroallergen data to identify statistical relationships between the occurrence of asthma (predictand) and different environmental parameters (set of predictors). On the one hand, the results provide evidence for a weak but significant relationship between atmospheric stability indices and asthma emergencies in the region, but also show that currently thunderstorm asthma is not a major concern in Bavaria due to overall low incidences. As thunderstorm asthma can have severe consequences for allergic patients, the presented approach can be important for the development of emergency strategies in regions affected by thunderstorm asthma and under present and future climate change conditions.
Collapse
Affiliation(s)
- Annette Straub
- Institute for Geography, University of Augsburg, Augsburg, Germany
| | - Verena Fricke
- Institute for Geography, University of Augsburg, Augsburg, Germany
| | - Patrick Olschewski
- Professorship for Regional Climate Change and Health, University of Augsburg, Augsburg, Germany
| | - Stefanie Seubert
- Institute for Geography, University of Augsburg, Augsburg, Germany
| | - Christoph Beck
- Institute for Geography, University of Augsburg, Augsburg, Germany
| | - Daniela Bayr
- German Research Centre for Environmental Health, Chair and Institute of Environmental Medicine, Technical University of Munich and Helmholtz Centre Munich, Augsburg, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Franziska Kolek
- German Research Centre for Environmental Health, Chair and Institute of Environmental Medicine, Technical University of Munich and Helmholtz Centre Munich, Augsburg, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Maria P Plaza
- German Research Centre for Environmental Health, Chair and Institute of Environmental Medicine, Technical University of Munich and Helmholtz Centre Munich, Augsburg, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Vivien Leier-Wirtz
- German Research Centre for Environmental Health, Chair and Institute of Environmental Medicine, Technical University of Munich and Helmholtz Centre Munich, Augsburg, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Sigrid Kaschuba
- German Research Centre for Environmental Health, Chair and Institute of Environmental Medicine, Technical University of Munich and Helmholtz Centre Munich, Augsburg, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- German Research Centre for Environmental Health, Chair and Institute of Environmental Medicine, Technical University of Munich and Helmholtz Centre Munich, Augsburg, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | - Michael Gerstlauer
- Department of Pediatric Pneumology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Athanasios Damialis
- German Research Centre for Environmental Health, Chair and Institute of Environmental Medicine, Technical University of Munich and Helmholtz Centre Munich, Augsburg, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Andreas Philipp
- Institute for Geography, University of Augsburg, Augsburg, Germany
| |
Collapse
|
8
|
Albrecht M, Schaub B, Gilles S, Köhl J, Altrichter S, Voehringer D, Spillner E, Ehlers M, Jönsson F, Loser K, Mayer JU, Rösner LM, Möbs C, Heine G, Pfützner W. Current research and unmet needs in allergy and immunology in Germany: report presented by the DGfI and DGAKI task force Allergy & Immunology. Eur J Immunol 2022; 52:851-855. [PMID: 35654759 DOI: 10.1002/eji.202270065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Melanie Albrecht
- Molecular Allergology/Vice president´s research group, Paul-Ehrlich-Institut, Langen, Germany
| | - Bianca Schaub
- University Children's Hospital, Dr. von Haunersches Kinderspital, Department of Allergy/Immunology, Lindwurmstr. 4, Germany, LMU Klinikum, Munich, 80337, Germany
| | - Stefanie Gilles
- Chair of Environmental Medicine, Faculty of Medicine, University of Augsburg, Neusäßer Str. 47, Augsburg, 86156, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23562, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Airway Research Center North, German Center for Lung Research (DZL), University of Lübeck, Lübeck, Germany
| | - Sabine Altrichter
- Immunological Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, 8000, Denmark.,Institute for Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054
| | - Edzard Spillner
- Immunological Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, 8000, Denmark
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North, German Center for Lung Research (DZL), University of Lübeck, Lübeck, Germany
| | - Friederike Jönsson
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015.,CNRS, Paris, F-75016
| | - Karin Loser
- Institute for Immunology, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Johannes U Mayer
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Lennart M Rösner
- Dpt. of Dermatology and Allergy, Div. of Immunodermatology and Allergy Research, Hannover Medical School (MHH), Hannover, Germany
| | - Christian Möbs
- Clinical & Experimental Allergy, Department of Dermatology and Allergology, Allergy Center Hessen, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wolfgang Pfützner
- Clinical & Experimental Allergy, Department of Dermatology and Allergology, Allergy Center Hessen, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
9
|
Data Mining Methods to Detect Airborne Pollen of Spring Flowering Arboreal Taxa. FORESTS 2021. [DOI: 10.3390/f12121801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Variations in the airborne pollen load are among the current and expected impacts on plant pollination driven by climate change. Due to the potential risk for pollen-allergy sufferers, this study aimed to analyze the trends of the three most abundant spring-tree pollen types, Pinus, Platanus and Quercus, and to evaluate the possible influence of meteorological conditions. An aerobiological study was performed during the 1993–2020 period in the Ourense city (NW Spain) by means of a Hirst-type volumetric sampler. Meteorological data were obtained from the ‘Ourense’ meteorological station of METEOGALICIA. We found statistically significant trends for the Total Pollen in all cases. The positive slope values indicated an increase in pollen grains over the pollen season along the studied years, ranging from an increase of 107 to 442 pollen grains. The resulting C5.0 Decision Trees and Rule-Based Models coincided with the Spearman’s correlations since both statistical analyses showed a strong and positive influence of temperature and sunlight on pollen release and dispersal, as well as a negative influence of rainfall due to washout processes. Specifically, we found that slight rainfall and moderate temperatures promote the presence of Pinus pollen in the atmosphere and a marked effect of the daily thermal amplitude on the presence of high Platanus pollen levels. The percentage of successful predictions of the C5.0 models ranged between 62.23–74.28%. The analysis of long-term datasets of pollen and meteorological information provides valuable models that can be used as an indicator of potential allergy risk in the short term by feeding the obtained models with weather prognostics.
Collapse
|
10
|
Effects of a Cloth Panel Containing a Specific Ore Powder on Patients with Chamaecyparis obtusa (Cypress) Pollen Allergy. ScientificWorldJournal 2021; 2021:3924393. [PMID: 34803524 PMCID: PMC8598349 DOI: 10.1155/2021/3924393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/29/2021] [Indexed: 12/03/2022] Open
Abstract
Pollen allergy to Japanese cedar and cypress is a serious illness that impairs daily life and sleep, especially during pollen season. We have reported that placing a cloth panel containing a specific natural ore powder (CCSNOP) in a room may alleviate the symptoms of hay fever and may also benefit the immune system. This ore is from the Aso mountain range, a volcano on Kyushu Island in the southwestern part of Japan. The purpose of this study was to verify the effect of CCSNOP on cypress pollen. Thirty-one double-blind tests, which investigated cedar pollen allergies, were conducted from February to March 2018 and have already been reported. After this, in early April, 10 of these cases were recruited and all had CCSNOP installed in their bedrooms. Before that, various symptoms and changes in medication were recorded in a “Symptom Diary” and included a mood survey by a questionnaire, stress test using saliva amylase, changes in cypress-specific immunoglobulins IgE and IgG4 by blood sampling, and eosinophil changes. In addition, changes in 29 types of cytokines were investigated. Exposure to CCSNOP relieved symptoms and subjects decreased their intake of medication. There was no change in mood or stress, but eosinophil levels tended to decrease. Although there were no statistical changes in cypress-specific IgE or IgG4, an increase in the former and a decrease in the latter were observed in some individuals during the period of pollen dispersal. Furthermore, levels of GM-CSF and IL8 decreased significantly after use of CCSNOP. The CCSNOP was shown to be effective against cypress pollen allergy, and future investigations will be necessary to observe the long-term effects of CCSNOP.
Collapse
|
11
|
Plasma-derived extracellular vesicles discriminate type-1 allergy subjects from non-allergic controls. World Allergy Organ J 2021; 14:100583. [PMID: 34659629 PMCID: PMC8487953 DOI: 10.1016/j.waojou.2021.100583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Background Allergies are on the rise globally, with an enormous impact on affected individuals’ quality of life as well as health care resources. They cause a wide range of symptoms, from slightly inconvenient to potentially fatal immune reactions. While allergies have been described and classified phenomenologically, there is an unmet need for easily accessible biomarkers to stratify the severity of clinical symptoms. Furthermore, biomarkers marking the success of specific immunotherapy are urgently needed. Objectives Plasma extracellular vesicles (pEV) play a role in coordinating the immune response and may be useful future biomarkers. A pilot study on differences in pEV content was carried out between patients with type I allergy, suffering from rhinoconjunctivitis with or without asthma, and voluntary non-allergic donors. Methods We examined pEV from 38 individuals (22 patients with allergies and 16 controls) for 38 chemokines, cytokines, and soluble factors using high-throughput data mining approaches. Results Patients with allergies had a distinct biomarker pattern, with 7 upregulated (TNF-alpha, IL-4, IL-5, IL-6, IL-17F, CCL2, and CCL17) and 3 downregulated immune mediators (IL-11, IL-27, and CCL20) in pEV compared to controls. This reduced set of 10 factors was able to discriminate controls and allergic patients better than the total array. Conclusions The content of pEV showed potential as a target for biomarker research in allergies. Plasma EV, which are readily measurable via blood test, may come to play an important role in allergy diagnosis. In this proof-of-principle study, it could be shown that pEV's discriminate patients with allergies from controls. Further studies investigating whether the content of pEVs may predict the severity of allergic symptoms or even the induction of tolerance to allergens are needed.
Collapse
|
12
|
Kim JS, Han SJ, Park JM, Kim SW, Eun YG, Kwon OE. The Similarity of Biomarkers Level between Direct Nasal Fluid and Nasal Lavage Fluid in Allergic Rhinitis Patients. JOURNAL OF RHINOLOGY 2021. [DOI: 10.18787/jr.2021.00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Background and Objectives: Biomarkers of allergic rhinitis (AR) have been studied; however, little is known regarding their practical application in the diagnosis of AR. Previous studies collected samples using saline lavage, nasal brushing, or nasal biopsy. To utilize nasal fluid as a diagnostic tool, we need to standardize the method of sample collection. Therefore, this study aimed to evaluate the difference in concentration of biomarkers depending on the method of nasal fluid collection.Materials and Method: Forty-five AR patients who had greater than moderate AR symptoms and who had positive results on skin prick test and serum-specific IgE tests were enrolled in this study. Nasal fluid was collected using the direct method or saline lavage method. The concentration of each biomarker was analyzed using enzyme-linked immunosorbent assay and the values compared.Results: Nasal fluid samples were collected directly from 14 patients and were collected via saline lavage in 31 patients. No significant differences were found in the median value of each biomarker between the two methods of nasal sample collection.Conclusion: Nasal fluid collection method does not significantly affect biomarker concentration.
Collapse
|
13
|
Huber S, Lang R, Asam C, Ferreira F, Hawranek T, Gadermaier G. High-affinity Bet v 1-specific secretory IgA antibodies in nasal fluids protect against birch pollen allergy. Allergy 2021; 76:2267-2270. [PMID: 33594667 PMCID: PMC8359210 DOI: 10.1111/all.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Sara Huber
- Department of Biosciences University of Salzburg Salzburg Austria
| | - Roland Lang
- Department of Dermatology and Allergology University Hospital of the Paracelsus Medical University Salzburg Salzburg Austria
| | - Claudia Asam
- Department of Biosciences University of Salzburg Salzburg Austria
| | - Fatima Ferreira
- Department of Biosciences University of Salzburg Salzburg Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology University Hospital of the Paracelsus Medical University Salzburg Salzburg Austria
| | | |
Collapse
|
14
|
de Weger LA, van Hal PTW, Bos B, Molster F, Mostert M, Hiemstra PS. Personalized Pollen Monitoring and Symptom Scores: A Feasibility Study in Grass Pollen Allergic Patients. FRONTIERS IN ALLERGY 2021; 2:628400. [PMID: 35387060 PMCID: PMC8974794 DOI: 10.3389/falgy.2021.628400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/15/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Pollen is a major trigger for allergic symptoms in sensitized individuals. Airborne pollen is usually monitored by Hirst type pollen samplers located at rooftop level, providing a general overview of the pollen distribution in the larger surroundings. In this feasibility study, grass pollen-sensitized subjects monitored the pollen in their direct environment using a portable pollen sampler (Pollensniffer) and scored their symptoms, to study the relation between symptom severity and personal grass pollen exposure. For comparison the symptoms were also correlated with pollen collected by the rooftop sampler. Methods: After recruitment 18 participants were screened for grass pollen specific (GP-sIgE) of which 12 were eligible. Nine participants completed the study (May, 2018). They were asked to monitor personal pollen exposure using a Pollensniffer on their way to school, work or other destination, and to score their symptoms via a mobile app on a scale from 0 to 10. Daily pollen concentrations were collected by a Hirst type sampler at rooftop level. Pollen grains were analyzed using a microscope. Results: Three of the four participants with high GP-sIgE (≥9.6 kU/l) reported high symptom scores (>4) and an analysis showed a significant correlation (CC) between eye, nose, and lung symptoms and the grass pollen counts collected by the Pollensniffer, as well as the daily grass pollen concentrations monitored by the rooftop sampler (CC≥0.54). In contrast, the participants with low GP-sIgE levels (<9.6 kU/l) reported low symptom scores (≤4) and often other sensitizations were present. For these subjects, no significant positive correlations (CC<0.3) of symptoms with either grass pollen collected by the personal or the rooftop sampler were found. Conclusion: The results of this feasibility study suggest that correlations between the severity of clinical symptoms of grass pollen allergic patients, and grass pollen counts as determined by the Pollensniffer or a rooftop sampler, is restricted to patients with high GP-sIgE levels, high symptom scores, and no relevant other sensitizations. Based on the low numbers of subjects with severe symptoms included in this feasibility study, no conclusions can be drawn on the performance of the Pollensniffer in relating symptoms and pollen exposure in comparison with the rooftop sampler. Trial Registration: The study was approved by the Committee Medical Ethics of the LUMC (approval numbers: NL63953.058.17/ P17.304).
Collapse
Affiliation(s)
- Letty A. de Weger
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Letty A. de Weger
| | - Peter Th. W. van Hal
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Bernadette Bos
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Marijke Mostert
- Leiden Centre of Applied Bioscience, University of Applied Sciences, Leiden, Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
15
|
Damialis A, Gilles S, Sofiev M, Sofieva V, Kolek F, Bayr D, Plaza MP, Leier-Wirtz V, Kaschuba S, Ziska LH, Bielory L, Makra L, Del Mar Trigo M, Traidl-Hoffmann C. Higher airborne pollen concentrations correlated with increased SARS-CoV-2 infection rates, as evidenced from 31 countries across the globe. Proc Natl Acad Sci U S A 2021; 118:e2019034118. [PMID: 33798095 PMCID: PMC7999946 DOI: 10.1073/pnas.2019034118] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pollen exposure weakens the immunity against certain seasonal respiratory viruses by diminishing the antiviral interferon response. Here we investigate whether the same applies to the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is sensitive to antiviral interferons, if infection waves coincide with high airborne pollen concentrations. Our original hypothesis was that more airborne pollen would lead to increases in infection rates. To examine this, we performed a cross-sectional and longitudinal data analysis on SARS-CoV-2 infection, airborne pollen, and meteorological factors. Our dataset is the most comprehensive, largest possible worldwide from 130 stations, across 31 countries and five continents. To explicitly investigate the effects of social contact, we additionally considered population density of each study area, as well as lockdown effects, in all possible combinations: without any lockdown, with mixed lockdown-no lockdown regime, and under complete lockdown. We found that airborne pollen, sometimes in synergy with humidity and temperature, explained, on average, 44% of the infection rate variability. Infection rates increased after higher pollen concentrations most frequently during the four previous days. Without lockdown, an increase of pollen abundance by 100 pollen/m3 resulted in a 4% average increase of infection rates. Lockdown halved infection rates under similar pollen concentrations. As there can be no preventive measures against airborne pollen exposure, we suggest wide dissemination of pollen-virus coexposure dire effect information to encourage high-risk individuals to wear particle filter masks during high springtime pollen concentrations.
Collapse
Affiliation(s)
- Athanasios Damialis
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany;
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Stefanie Gilles
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Mikhail Sofiev
- Finnish Meteorological Institute, Helsinki FI-00101, Finland
| | | | - Franziska Kolek
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Daniela Bayr
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Maria P Plaza
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Vivien Leier-Wirtz
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Sigrid Kaschuba
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| | - Lewis H Ziska
- Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Leonard Bielory
- Center for Environmental Prediction, Rutgers University, New Brunswick, NJ 08901
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854
- Medicine, Allergy, Immunology and Ophthalmology Department, Hackensack Meridian School of Medicine, Nutley, NJ 07110
- New Jersey Center of Science, Technology and Mathematics, Kean University, Union, NJ 07083
| | - László Makra
- Institute of Economics and Rural Development, Faculty of Agriculture, University of Szeged, Szeged 6720, Hungary
| | - Maria Del Mar Trigo
- Department of Botany and Plant Physiology, University of Malaga, Malaga 29016, Spain
| | - Claudia Traidl-Hoffmann
- Chair of Environmental Medicine, Technical University of Munich, Augsburg 86156, Germany
- Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg 86156, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
| |
Collapse
|
16
|
Nolte H, Waserman S, Ellis AK, Biedermann T, Würtzen PA. Treatment Effect of the Tree Pollen SLIT-Tablet on Allergic Rhinoconjunctivitis During Oak Pollen Season. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1871-1878. [PMID: 33548518 DOI: 10.1016/j.jaip.2021.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Birch, alder, hazel, and oak are members of the birch homologous group based on cross-reactivity toward the birch pollen allergen Betula verrucosa 1. Theoretically, allergy to these tree pollens may be treated by immunotherapy with one representative allergen extract. OBJECTIVE To evaluate post hoc whether treatment of birch pollen-induced allergic rhinoconjunctivitis with a standardized tree sublingual immunotherapy (SLIT)-tablet containing birch pollen extract reduces symptoms and symptom-relieving medication use during the oak pollen season (OPS). METHODS In a randomized, multinational, double-blind trial (EudraCT-2015-004821-15), 634 participants (ages 12-65 years) received daily tree SLIT-tablet (12 SQ-Bet) or placebo before and during tree pollen season (alder/hazel plus birch pollen season [BPS]). Symptom-relieving medication was allowed. The primary end point was the average total combined score (sum of rhinoconjunctivitis daily symptom score and daily medication score) during BPS. Outcomes during the OPS (excluding overlapping BPS days) were analyzed post hoc. RESULTS Relative improvements in average total combined score, daily symptom score, and daily medication score with the tree SLIT-tablet versus placebo during the OPS were 25%, 22%, and 32%, respectively (all P < .001). Significant correlations were observed between birch and oak serum immunoglobulin E (sIgE) at baseline (r = 0.86) and between birch and oak IgG4 after treatment (r = 0.72). Oak sIgE and IgG4 kinetics in response to tree SLIT-tablet treatment were similar to birch. CONCLUSIONS The tree SLIT-tablet leads to significant improvement of rhinoconjunctivitis outcomes during the OPS, supporting the clinical relevance of immunological cross-reactivity toward birch and oak allergens.
Collapse
Affiliation(s)
| | - Susan Waserman
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Anne K Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Tilo Biedermann
- Department of Dermatology and Allergology, Technical University of Munich, Munich, Germany
| | | |
Collapse
|
17
|
Haccuria A, Van Muylem A, Malinovschi A, Rasschaert J, Virreira M, Bruffaerts N, Hendrickx M, Michils A. Increased expression of IL-33 is found in the lower airways of patients with seasonal allergic rhinitis and is not related to natural allergen exposure. Clin Exp Allergy 2021; 51:845-848. [PMID: 33394501 DOI: 10.1111/cea.13819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/22/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Amaryllis Haccuria
- Chest Department, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Van Muylem
- Chest Department, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Andreï Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Joanne Rasschaert
- Laboratoire de Biochimie Métabolique et Osseuse, Université Libre de Bruxelles, Brussels, Belgium
| | - Myrna Virreira
- Laboratoire de Biochimie Métabolique et Osseuse, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | - Alain Michils
- Chest Department, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
18
|
Breiteneder H, Peng Y, Agache I, Diamant Z, Eiwegger T, Fokkens WJ, Traidl‐Hoffmann C, Nadeau K, O'Hehir RE, O'Mahony L, Pfaar O, Torres MJ, Wang D, Zhang L, Akdis CA. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy 2020; 75:3039-3068. [PMID: 32893900 PMCID: PMC7756301 DOI: 10.1111/all.14582] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Modern health care requires a proactive and individualized response to diseases, combining precision diagnosis and personalized treatment. Accordingly, the approach to patients with allergic diseases encompasses novel developments in the area of personalized medicine, disease phenotyping and endotyping, and the development and application of reliable biomarkers. A detailed clinical history and physical examination followed by the detection of IgE immunoreactivity against specific allergens still represents the state of the art. However, nowadays, further emphasis focuses on the optimization of diagnostic and therapeutic standards and a large number of studies have been investigating the biomarkers of allergic diseases, including asthma, atopic dermatitis, allergic rhinitis, food allergy, urticaria and anaphylaxis. Various biomarkers have been developed by omics technologies, some of which lead to a better classification of distinct phenotypes or endotypes. The introduction of biologicals to clinical practice increases the need for biomarkers for patient selection, prediction of outcomes and monitoring, to allow for an adequate choice of the duration of these costly and long‐lasting therapies. Escalating healthcare costs together with questions about the efficacy of the current management of allergic diseases require further development of a biomarker‐driven approach. Here, we review biomarkers in diagnosis and treatment of asthma, atopic dermatitis, allergic rhinitis, viral infections, chronic rhinosinusitis, food allergy, drug hypersensitivity and allergen immunotherapy with a special emphasis on specific IgE, the microbiome and the epithelial barrier. In addition, EAACI guidelines on biologicals are discussed within the perspective of biomarkers.
Collapse
Affiliation(s)
- Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Ya‐Qi Peng
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Otorhinolaryngology Hospital The First Affiliated Hospital Sun Yat‐Sen University Guangzhou China
| | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University of Brasov Brasov Romania
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Institute for Clinical Science Skane University Hospital Lund University Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
- Department of Clinical Pharmacy & Pharmacology University of GroningenUniversity Medical Center Groningen Groningen Netherlands
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute Hospital for Sick Children Toronto ON Canada
- Department of Immunology University of Toronto Toronto ON Canada
- Division of Immunology and Allergy Food Allergy and Anaphylaxis Program The Hospital for Sick Children Departments of Paediatrics and Immunology University of Toronto Toronto ON Canada
| | - Wytske J. Fokkens
- Department of Otorhinolaryngology Amsterdam University Medical Centres Amsterdam The Netherlands
| | - Claudia Traidl‐Hoffmann
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Chair and Institute of Environmental Medicine UNIKA‐T Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
- ZIEL ‐ Institute for Food & Health Technical University of Munich Freising‐Weihenstephan Germany
| | - Kari Nadeau
- Sean N. Parker Center for Allergy & Asthma Research Stanford University Stanford CA USA
| | - Robyn E. O'Hehir
- Department of Allergy, immunology and Respiratory Medicine Central Clinical School Monash University Melbourne Vic. Australia
- Allergy, Asthma and Clinical Immunology Service Alfred Health Melbourne Vic. Australia
| | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland National University of Ireland Cork Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - Maria J. Torres
- Allergy Unit Regional University Hospital of Malaga‐IBIMA‐UMA‐ARADyAL Malaga Spain
| | - De‐Yun Wang
- Department of Otolaryngology Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery and Department of Allergy Beijing TongRen Hospital Beijing China
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
| |
Collapse
|