1
|
Liu P, Wu X, Lv H, Huang J, Gu T, Liu D, Xu Y. Oridonin alleviates cigarette smoke-induced nasal polyp formation by promoting autophagy. Biomed Pharmacother 2024; 180:117547. [PMID: 39405900 DOI: 10.1016/j.biopha.2024.117547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Previous studies have indicated that oridonin is a promising candidate for therapeutic intervention in a range of inflammatory diseases. The objective of this study was to investigate the protective mechanism of oridonin in chronic rhinosinusitis with nasal polyp (CRSwNP). In nasal polyp (NP) mice model, cigarette smoke (CS) induced polypoid changes compared to previous modeling methods. Compared with CS-treated mice, oridonin reduced polypoid changes, goblet cell count, and promoted the expression of tight junction proteins (ZO-1, occludin, claudin-1) and production of autophagosomes. Following treatment with oridonin, the levels of OVA-specific IgE, IL-6, IFN-γ, IL-5, IL-13 and IL-17A in serum were observed to decrease; the levels of TGF-β1, matrix metalloproteinase 2 (MMP2), MMP7, MMP9 and MMP12 levels in nasal lavage fluid were reduced, while tissue inhibitor of metalloproteinase-1 (TIMP-1) levels were increased. Furthermore, the aforementioned alterations in the mouse model were reversed by 3-methyladenine (3-MA), an autophagy inhibitor. In vitro, cigarette smoke extract (CSE) was observed to decrease the expression of tight junction proteins, the production of autophagosomes, and to reduce the expression of LC3-II and Beclin-1, accompanied by an increase in P62 expression. In addition, oridonin was observed to reverse CSE-induced epithelial barrier damage, and was associated with autophagy and the PI3K/AKT/mTOR pathway. In conclusion, oridonin was demonstrated to improve the damage of the nasal epithelial barrier induced by CS through the promotion of autophagy, which may represent a novel therapeutic option for the treatment of CRSwNP.
Collapse
Affiliation(s)
- Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Wu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingyu Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tian Gu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Duo Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China.
| |
Collapse
|
2
|
Shu L, Zheng B, Liu Y, Wang J, Li C, Xiong P, Gu Y, Shen Y, Yang Y. Piezo1 regulates TGF-β1 induced epithelial-mesenchymal transition in chronic rhinosinusitis with nasal polyps. Mol Immunol 2024; 175:63-73. [PMID: 39305849 DOI: 10.1016/j.molimm.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 11/11/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is involved in local tissue remodeling in chronic rhinosinusitis with nasal polyps (CRSwNP). However, the function of Piezo1 in EMT process remains unclear. This study aimed to characterize potential roles of Piezo1 in EMT process in CRSwNP. METHODS Overall, 22 nasal polyp (NP) tissues from patients with CRSwNP and 20 middle turbinate from healthy individuals were obtained during surgery. The expression of Piezo1, E-cadherin, vimentin, and α-smooth muscle actin (α-SMA) was measured by using western blot (Wb) in NP tissues and primary human nasal epithelial cells (pHNECs) and the location and level were assessed by immunofluorescence staining. BEAS-2B cells were stimulated with transforming growth factor (TGF)-β1 to induce EMT in vitro model and examined using qRT-PCR. BEAS-2B cells were treated with Yoda1 and RuR to calculate protein level by Wb analysis. Yoda1 and RuR treated NP murine model was evaluated by H&E (hematoxylin-eosin) staining and immunohistochemistry. RESULTS Compared with the control group, E-cadherin was decreased while the level of Piezo1, vimentin, and α-SMA was increased in NP group. Piezo1, vimentin, and α-SMA were upregulated in TGF-β1-induced BEAS-2B cells. Yoda1 inhibited E-cadherin expression and promoted Piezo1 and the aforementioned mesenchymal markers, whereas RuR showed contrary results. The results from the murine model treated with Yoda1 and RuR were consistent with those results in the EMT model in vitro. CONCLUSION Piezo1 is linked with EMT process in CRSwNP and the activation of Piezo1 exacerbates EMT process of nasal polyps.
Collapse
Affiliation(s)
- Longlan Shu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Bowen Zheng
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Yijun Liu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Ji Wang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Chenxi Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Panhui Xiong
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Yue Gu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Yang Shen
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Yucheng Yang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
3
|
Zhou Q, Ma J, Biswal S, Rowan NR, London NR, Riley CA, Lee SE, Pinto JM, Ahmed OG, Su M, Liang Z, Du R, Ramanathan M, Zhang Z. Air pollution, genetic factors, and chronic rhinosinusitis: A prospective study in the UK Biobank. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173526. [PMID: 38825199 DOI: 10.1016/j.scitotenv.2024.173526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a prevalent upper respiratory condition that manifests in two primary subtypes: CRS with nasal polyps (CRSwNP) and CRS without nasal polyps (CRSsNP). While previous studies indicate a correlation between air pollution and CRS, the role of genetic predisposition in this relationship remains largely unexplored. We hypothesized that higher air pollution exposure would lead to the development of CRS, and that genetic susceptibility might modify this association. METHODS This cohort study involving 367,298 adult participants from the UK Biobank, followed from March 2006 to October 2021. Air pollution metrics were estimated at residential locations using land-use regression models. Cox proportional hazard models were employed to explore the associations between air pollution exposure and CRS, CRSwNP, and CRSsNP. A polygenic risk score (PRS) was constructed to evaluate the joint effect of air pollution and genetic predisposition on the development of CRS. RESULTS We found that the risk of CRS increased under long-term exposure to PM2.5 [the hazard ratios (HRs) with 95 % CIs: 1.59 (1.26-2.01)], PM10 [1.64 (1.26-2.12)], NO2 [1.11 (1.04-1.17)], and NOx [1.18 (1.12-1.25)], respectively. These effects were more pronounced among participants with CRSwNP, although the differences were not statistically significant. Additionally, we found that the risks for CRS and CRSwNP increased in a graded manner among participants with higher PRS or higher exposure to PM2.5, PM10, or NOx concentrations. However, no multiplicative or additive interactions were observed. CONCLUSIONS Long-term exposure to air pollution increases the risk of CRS, particularly CRSwNP underscoring the need to prioritize clean air initiatives and environmental regulations.
Collapse
Affiliation(s)
- Qinfeng Zhou
- Department of Global Health, The Peking University School of Public Health, Beijing, China
| | - Junxiong Ma
- Department of Global Health, The Peking University School of Public Health, Beijing, China
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nicholas R Rowan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nyall R London
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Charles A Riley
- Department of Otolaryngology-Head and Neck Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Stella E Lee
- Division of Otolaryngology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jayant M Pinto
- Section of Otolaryngology, Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Omar G Ahmed
- Department of Otolaryngology, Houston Methodist Academic Institute, Houston, TX, USA
| | - Mintao Su
- Department of Global Health, The Peking University School of Public Health, Beijing, China
| | - Zhisheng Liang
- Department of Global Health, The Peking University School of Public Health, Beijing, China
| | - Runming Du
- Department of Global Health, The Peking University School of Public Health, Beijing, China
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Zhenyu Zhang
- Department of Global Health, The Peking University School of Public Health, Beijing, China; Institute for Global Health and Development, Peking University, Beijing, China; Institute of Carbon Neutrality, Peking University, Beijing, China.
| |
Collapse
|
4
|
Zhao R, Guo Y, Zhang L, Huang Z, Li X, Lan B, Zhong D, Chen H, Xuan C. CBX4 plays a bidirectional role in transcriptional regulation and lung adenocarcinoma progression. Cell Death Dis 2024; 15:378. [PMID: 38816356 PMCID: PMC11140001 DOI: 10.1038/s41419-024-06745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality worldwide. Understanding the dysregulated epigenetics governing LUAD progression is pivotal for identifying therapeutic targets. CBX4, a chromobox protein, is reported to be upregulated in LUAD. This study highlights the dual impact of CBX4 on LUAD proliferation and metastasis through a series of rigorous in vitro and in vivo experiments. Further investigation into the underlying mechanism through high-throughput ChIP-seq and RNA-seq reveals that CBX4 functions in promoting LUAD proliferation via upregulating PHGDH expression and subsequent serine biosynthesis, while concurrently suppressing LUAD metastasis by inhibiting ZEB2 transcription. CBX4 facilitates PHGDH transcription through the interaction with GCN5, inducing heightened histone acetylation on the PHGDH promoter. Simultaneously, the inhibition of ZEB2 transcription involves CBX4-mediated recruitment of canonical PRC1 (cPRC1), establishing H2K119ub on the ZEB2 promoter. These findings underscore CBX4's pivotal role as a regulator of LUAD progression, emphasizing its diverse transcriptional regulatory functions contingent upon interactions with specific epigenetic partners. Understanding the nuanced interplay between CBX4 and epigenetic factors sheds light on potential therapeutic avenues in LUAD.
Collapse
Affiliation(s)
- Ran Zhao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yanxuan Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Linlin Zhang
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhiyong Huang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xuanyuan Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Bei Lan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Hao Chen
- Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Chenghao Xuan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
5
|
Zhang M, Peng X, Liang X, Wang W, Yang Y, Xu F, Lu X, Geng D, Li M. MicroRNA-145-5p Regulates the Epithelial-Mesenchymal Transition in Nasal Polyps by Targeting Smad3. Clin Exp Otorhinolaryngol 2024; 17:122-136. [PMID: 38360523 DOI: 10.21053/ceo.2023.00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/15/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVES The annual prevalence of chronic rhinosinusitis (CRS) is increasing, and the lack of effective treatments imposes a substantial burden on both patients and society. The formation of nasal polyps in patients with CRS is closely related to tissue remodeling, which is largely driven by the epithelial-mesenchymal transition (EMT). MicroRNA (miRNA) plays a pivotal role in the pathogenesis of numerous diseases through the miRNA-mRNA regulatory network; however, the specific mechanism of the miRNAs involved in the formation of nasal polyps remains unclear. METHODS The expression of EMT markers and Smad3 were detected using western blots, quantitative real-time polymerase chain reaction, and immunohistochemical and immunofluorescence staining. Differentially expressed genes in nasal polyps and normal tissues were screened through the Gene Expression Omnibus database. To predict the target genes of miR-145-5p, three different miRNA target prediction databases were used. The migratory ability of cells was evaluated using cell migration assay and wound healing assays. RESULTS miR-145-5p was associated with the EMT process and was significantly downregulated in nasal polyp tissues. In vitro experiments revealed that the downregulation of miR-145-5p promoted EMT. Conversely, increasing miR-145-5p levels reversed the EMT induced by transforming growth factor-β1. Bioinformatics analysis suggested that miR-145-5p targets Smad3. Subsequent experiments confirmed that miR-145-5p inhibits Smad3 expression. CONCLUSION Overall, miR-145-5p is a promising target to inhibit nasal polyp formation, and the findings of this study provide a theoretical basis for nanoparticle-mediated miR-145-5p delivery for the treatment of nasal polyps.
Collapse
Affiliation(s)
- Mengyu Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaolong Liang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wentao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqing Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fan Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaomin Lu
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Manyi Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Lee HJ, Kim DK. Retinoic Acid Treatment Mitigates PM2.5-Induced Type 2 Inflammation: Insights into Modulation of Innate Immune Responses. Int J Mol Sci 2024; 25:3856. [PMID: 38612663 PMCID: PMC11011870 DOI: 10.3390/ijms25073856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Some studies have demonstrated the effects of particulate matter (PM) on chronic rhinosinusitis with nasal polyps (CRSwNP) development, as well as the therapeutic role of retinoic acid (RA) in nasal polypogenesis. However, the immunologic effect of PM in innate lymphoid cells (ILCs) and the exact mechanism of the therapeutic effect of RA remain unclear. Therefore, the present study investigated the effects of fine-dust-induced inflammation in CRSwNP and the mechanisms of the therapeutic effect of RA. PM2.5 exposure exacerbated pathological damage in the nasal mucosa of mice with nasal polyps (NP) via upregulation of type 2 inflammation. Additionally, PM2.5 exposure increased the expression of type 2 cytokines and epithelial-cell-derived cytokines (IL-33 and IL-25) significantly, as well as the ILC populations in human-NP-derived epithelial cells (HNECs). Moreover, RA supplementation significantly increased the expression of ILCreg in Lin-CD45+CD127+ cells, which in turn increased the levels of the anti-inflammatory cytokine IL-10. The findings suggest that PM2.5 exposures could aggravate the CRSwNP type 2 inflammation, and RA treatment may ameliorate fine-dust-induced inflammation by modulating the innate immune response.
Collapse
Affiliation(s)
- Hyun-Joo Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea;
| | - Dong-Kyu Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea;
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| |
Collapse
|
7
|
Park E, Kim BY, Lee S, Son KH, Bang J, Hong SH, Lee JW, Uhm KO, Kwak HJ, Lim HJ. Diesel exhaust particle exposure exacerbates ciliary and epithelial barrier dysfunction in the multiciliated bronchial epithelium models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116090. [PMID: 38364346 DOI: 10.1016/j.ecoenv.2024.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Airway epithelium, the first defense barrier of the respiratory system, facilitates mucociliary clearance against inflammatory stimuli, such as pathogens and particulates inhaled into the airway and lung. Inhaled particulate matter 2.5 (PM2.5) can penetrate the alveolar region of the lung, and it can develop and exacerbate respiratory diseases. Although the pathophysiological effects of PM2.5 in the respiratory system are well known, its impact on mucociliary clearance of airway epithelium has yet to be clearly defined. In this study, we used two different 3D in vitro airway models, namely the EpiAirway-full-thickness (FT) model and a normal human bronchial epithelial cell (NHBE)-based air-liquid interface (ALI) system, to investigate the effect of diesel exhaust particles (DEPs) belonging to PM2.5 on mucociliary clearance. RNA-sequencing (RNA-Seq) analyses of EpiAirway-FT exposed to DEPs indicated that DEP-induced differentially expressed genes (DEGs) are related to ciliary and microtubule function and inflammatory-related pathways. The exposure to DEPs significantly decreased the number of ciliated cells and shortened ciliary length. It reduced the expression of cilium-related genes such as acetylated α-tubulin, ARL13B, DNAH5, and DNAL1 in the NHBEs cultured in the ALI system. Furthermore, DEPs significantly increased the expression of MUC5AC, whereas they decreased the expression of epithelial junction proteins, namely, ZO1, Occludin, and E-cadherin. Impairment of mucociliary clearance by DEPs significantly improved the release of epithelial-derived inflammatory and fibrotic mediators such as IL-1β, IL-6, IL-8, GM-CSF, MMP-1, VEGF, and S100A9. Taken together, it can be speculated that DEPs can cause ciliary dysfunction, hyperplasia of goblet cells, and the disruption of the epithelial barrier, resulting in the hyperproduction of lung injury mediators. Our data strongly suggest that PM2.5 exposure is directly associated with ciliary and epithelial barrier dysfunction and may exacerbate lung injury.
Collapse
Affiliation(s)
- Eunsook Park
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Bu-Yeo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, South Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 215565, South Korea
| | - Jihye Bang
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Se Hyang Hong
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Joong Won Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Kyung-Ok Uhm
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Hyun-Jeong Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin Univerisity, Seonbuk-Gu, Seoul 02707, South Korea
| | - Hyun Joung Lim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea.
| |
Collapse
|
8
|
Kayalar Ö, Rajabi H, Konyalilar N, Mortazavi D, Aksoy GT, Wang J, Bayram H. Impact of particulate air pollution on airway injury and epithelial plasticity; underlying mechanisms. Front Immunol 2024; 15:1324552. [PMID: 38524119 PMCID: PMC10957538 DOI: 10.3389/fimmu.2024.1324552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
Air pollution plays an important role in the mortality and morbidity of chronic airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Particulate matter (PM) is a significant fraction of air pollutants, and studies have demonstrated that it can cause airway inflammation and injury. The airway epithelium forms the first barrier of defense against inhaled toxicants, such as PM. Airway epithelial cells clear airways from inhaled irritants and orchestrate the inflammatory response of airways to these irritants by secreting various lipid mediators, growth factors, chemokines, and cytokines. Studies suggest that PM plays an important role in the pathogenesis of chronic airway diseases by impairing mucociliary function, deteriorating epithelial barrier integrity, and inducing the production of inflammatory mediators while modulating the proliferation and death of airway epithelial cells. Furthermore, PM can modulate epithelial plasticity and airway remodeling, which play central roles in asthma and COPD. This review focuses on the effects of PM on airway injury and epithelial plasticity, and the underlying mechanisms involving mucociliary activity, epithelial barrier function, airway inflammation, epithelial-mesenchymal transition, mesenchymal-epithelial transition, and airway remodeling.
Collapse
Affiliation(s)
- Özgecan Kayalar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Hadi Rajabi
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Nur Konyalilar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Deniz Mortazavi
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Gizem Tuşe Aksoy
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Jun Wang
- Department of Biomedicine and Biopharmacology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Hasan Bayram
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
- Department of Pulmonary Medicine, School of Medicine, Koç University, Zeytinburnu, Istanbul, Türkiye
| |
Collapse
|
9
|
Lim S, Khalmuratova R, Lee YY, Kim YS, Lee M, Lee NK, Kim SN, Choy YB, Park CG, Kim DW, Shin HW. Neutrophil extracellular traps promote ΔNp63+ basal cell hyperplasia in chronic rhinosinusitis. J Allergy Clin Immunol 2024; 153:705-717.e11. [PMID: 38000697 DOI: 10.1016/j.jaci.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are observed in chronic rhinosinusitis (CRS), although their role remains unclear. OBJECTIVES This study aimed to investigate the influence of NETs on the CRS epithelium. METHODS Forty-five sinonasal biopsy specimens were immunofluorescence-stained to identify NETs and p63+ basal stem cells. Investigators treated human nasal epithelial cells with NETs and studied them with immunofluorescence staining, Western blotting, and quantitative real-time PCR. NET inhibitors were administered to a murine neutrophilic nasal polyp model. RESULTS NETs existed in tissues in patients with CRS with nasal polyps, especially in noneosinophilic nasal polyp tissues. p63+ basal cell expression had a positive correlation with the release of NETs. NETs induced the expansion of Ki-67+p63+ cells. We found that ΔNp63, an isoform of p63, was mainly expressed in the nasal epithelium and controlled by NETs. Treatment with deoxyribonuclease (DNase) I or Sivelestat (NET inhibitors) prevented the overexpression of ΔNp63+ epithelial stem cells and reduced polyp formation. CONCLUSIONS These results reveal that NETs are implicated in CRS pathogenesis via basal cell hyperplasia. This study suggests a novel possibility of treating CRS by targeting NETs.
Collapse
Affiliation(s)
- Suha Lim
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Roza Khalmuratova
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
| | - Yun Young Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Yi Sook Kim
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Mingyu Lee
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Na Kyeong Lee
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Se-Na Kim
- Department of Research and Development Center, MediArk Inc, Cheongju, Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Young Bin Choy
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Dae Woo Kim
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Hyun-Woo Shin
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
10
|
Liu K, Xu Y. Downregulation of TET2 Contributes to Nasal Polypogenesis Through Hypoxia-Inducible Factor 1α-Mediated Epithelial-to-Mesenchymal Transition. Clin Exp Otorhinolaryngol 2024; 17:64-77. [PMID: 38228132 PMCID: PMC10933810 DOI: 10.21053/ceo.2023.01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
OBJECTIVES Hypoxia-inducible factor 1α (HIF1α) and Tet methylcytosine dioxygenase 2 (TET2) have been reported to mediate nasal polypogenesis through the epithelial-to-mesenchymal transition (EMT). Additionally, HIF1α can regulate the expression and function of TET2. However, the precise mechanism of how TET2 regulates the EMT through HIF1α mediation in nasal epithelial cells is still poorly understood. METHODS Nasal tissue samples were collected from patients with chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), CRS without nasal polyps (CRSsNP), and controls. The expression of HIF1α and TET2 was detected using Western blotting and immunohistochemistry. EMT markers (E-cadherin and vimentin) were also evaluated by immunohistochemistry. Primary human nasal epithelial cells (hNECs) were stimulated with CoCl2 to mimic hypoxia. Vitamin C (VC), a TET2 non-specific activator, and small interfering RNA (siRNA) transfection of TET2 were used to further determine the role of TET2 in hypoxia-induced EMT. Finally, reactive oxygen species (ROS) and Nrf2 were measured to explore the downstream consequences of TET2 in hypoxic hNECs. RESULTS TET2 levels were lower in the nasal epithelium of CRSwNP patients and were positively correlated with E-cadherin but negatively correlated with vimentin in CRS. However, HIF1α exhibited the opposite pattern and was negatively correlated with TET2 expression. CoCl2-simulated hypoxia led to EMT and increased HIF1α in hNECs in vitro, with simultaneous downregulation of TET2 expression. Addition of VC activated TET2 expression in hNECs, but inhibited EMT and HIF1α expression. Furthermore, siRNA knockdown of TET2 contributed to the EMT in CoCl2-simulated hNECs despite the addition of VC. Finally, TET2 regulated the EMT in hypoxic hNECs through Nrf2 expression and ROS generation. CONCLUSION TET2 was negatively correlated with HIF1α and EMT in vivo. TET2 was downregulated by HIF1α, resulting in the EMT in CoCl2-hypoxic hNECs via regulation of oxidative stress in vitro. Hence, TET2 might provide a new therapeutic approach for CRSwNP.
Collapse
Affiliation(s)
- Kunyu Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Wu Y, Sun K, Tu Y, Li P, Hao D, Yu P, Chen A, Wan Y, Shi L. miR-200a-3p regulates epithelial-mesenchymal transition and inflammation in chronic rhinosinusitis with nasal polyps by targeting ZEB1 via ERK/p38 pathway. Int Forum Allergy Rhinol 2024; 14:41-56. [PMID: 37318032 DOI: 10.1002/alr.23215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Several biological processes are regulated by miR-200a-3p, including cell proliferation, migration, and epithelial-mesenchymal transition (EMT). In this study we aimed to uncover the diagnostic value and molecular mechanisms of miR-200a-3p in chronic rhinosinusitis with nasal polyps (CRSwNP). METHODS The expressions of miR-200a-3p were detected by quantitative real-time polymerase chain reaction (qRT-PCR), Zinc finger E-box binding homeobox 1 (ZEB1) levels were examined by qRT-PCR and immunofluorescence staining. The interaction between miR-200a-3p and ZEB1 was predicted by TargetScan Human 8.0 and confirmed by dual-luciferase reporter assays. In addition, the effect of miR-200a-3p and ZEB1 on EMT-related makers and inflammation cytokines was assessed by qRT-PCR and Western blotting in human nasal epithelial cells (hNEpCs) and primary human nasal mucosal epithelial cells (hNECs). RESULTS We found that miR-200a-3p was downregulated in non-eosinophilic and eosinophilic CRSwNP patients when compared with controls. The diagnostic value of miR-200a-3p in serum is reflected by the receiver operating characteristic curve and the 22-item Sino-Nasal Outcome Test. Bioinformatic analysis and luciferase reporter assay identified ZEB1 as a target of miR-200a-3p. ZEB1 was more highly expressed in CRSwNP than in controls. Furthermore, miR-200a-3p inhibitor or ZEB1 overexpression significantly suppressed the epithelial marker E-cadherin; promoted the activation of vimentin, α-spinal muscle atrophy, and N-cadherin; and aggravated inflammation in hNEpCs. Knockdown of ZEB1 significantly alleviated the cellular remodeling caused by miR-200a-3p inhibitor via the extracellular signal-regulated kinase (ERK)/p38 pathway in hNECs. CONCLUSIONS miR-200a-3p suppresses EMT and inflammation by regulating the expression of ZEB1 via the ERK/p38 pathway. Our study presents new ideas for protecting nasal epithelial cells from tissue remodeling and finding a possible target for disease.
Collapse
Affiliation(s)
- Yisha Wu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Kaiyue Sun
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanyi Tu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Ping Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Dingqian Hao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Peng Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Aiping Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Yuzhu Wan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
12
|
Leite-Santos F, Tamashiro E, de Andrade Batista Murashima A, Anselmo-Lima WT, Valera FCP. Which are the best murine models to study Eosinophilic Chronic Rhinosinusitis? A contemporary review. Braz J Otorhinolaryngol 2023; 89:101328. [PMID: 37734174 PMCID: PMC10515297 DOI: 10.1016/j.bjorl.2023.101328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/24/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Mechanisms that lead to Eosinophilic Chronic Rhinosinusitis (ECRS) are not fully established in the literature. It is desirable to assess ECRS in a model that embraces most of the related events. This article reviewed the murine models for ECRS and compared them regarding eosinophilic polypoid formation. METHODS The authors reviewed the articles that included the terms "chronic rhinosinusitis" OR "chronic sinusitis" AND "animal model". We analyzed articles in English that evaluated both the number of polyps and the number of eosinophils in the sinus mucosa of mouse models. RESULTS We identified a total of 15 articles describing different models of ECRS that used BALB/c or C57BL/6 mice, and different triggers/stimulants such as Staphylococcus aureus Enterotoxin B (SEB) + Ovalbumin (OVA); House Dust Mite (HDM) ± Ovalbumin (OVA); and Aspergillus oryzae Protease (AP) + Ovalbumin (OVA). OVA associated with SEB was the commonest protocol to induce ECRS in both BALB/c and C57BL/6 mice, and it produced a robust response of eosinophilic nasal polyps in both. AP + OVA protocol also led to a good ECRS response. The other models were not considered adequate to produce eosinophilic polyps in mice. CONCLUSION In conclusion, OVA associated with SEB seems to produce the most robust eosinophilic sinonasal inflammation.
Collapse
Affiliation(s)
- Francisco Leite-Santos
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Divisão de Otorrinolaringologia, Ribeirão Preto, SP, Brazil
| | - Edwin Tamashiro
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Divisão de Otorrinolaringologia, Ribeirão Preto, SP, Brazil
| | - Adriana de Andrade Batista Murashima
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Divisão de Otorrinolaringologia, Ribeirão Preto, SP, Brazil
| | - Wilma T Anselmo-Lima
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Divisão de Otorrinolaringologia, Ribeirão Preto, SP, Brazil
| | - Fabiana C P Valera
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Divisão de Otorrinolaringologia, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
13
|
Cha J, Choi S. Gene-Smoking Interaction Analysis for the Identification of Novel Asthma-Associated Genetic Factors. Int J Mol Sci 2023; 24:12266. [PMID: 37569643 PMCID: PMC10419280 DOI: 10.3390/ijms241512266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Asthma is a complex heterogeneous disease caused by gene-environment interactions. Although numerous genome-wide association studies have been conducted, these interactions have not been systemically investigated. We sought to identify genetic factors associated with the asthma phenotype in 66,857 subjects from the Health Examination Study, Cardiovascular Disease Association Study, and Korea Association Resource Study cohorts. We investigated asthma-associated gene-environment (smoking status) interactions at the level of single nucleotide polymorphisms, genes, and gene sets. We identified two potentially novel (SETDB1 and ZNF8) and five previously reported (DM4C, DOCK8, MMP20, MYL7, and ADCY9) genes associated with increased asthma risk. Numerous gene ontology processes, including regulation of T cell differentiation in the thymus (GO:0033081), were significantly enriched for asthma risk. Functional annotation analysis confirmed the causal relationship between five genes (two potentially novel and three previously reported genes) and asthma through genome-wide functional prediction scores (combined annotation-dependent depletion, deleterious annotation of genetic variants using neural networks, and RegulomeDB). Our findings elucidate the genetic architecture of asthma and improve the understanding of its biological mechanisms. However, further studies are necessary for developing preventive treatments based on environmental factors and understanding the immune system mechanisms that contribute to the etiology of asthma.
Collapse
Affiliation(s)
- Junho Cha
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
| | - Sungkyoung Choi
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
- Department of Mathematical Data Science, College of Science and Convergence Technology, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
14
|
Kim JS, Lee DC. Association Between Particulate Matter Exposure and Chronic Rhinosinusitis. JOURNAL OF RHINOLOGY 2023; 30:57-61. [PMID: 39664877 PMCID: PMC11524351 DOI: 10.18787/jr.2023.00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 12/13/2024] Open
Abstract
Chronic rhinosinusitis (CRS) is a relatively common inflammatory disease of the nasal and paranasal sinus mucosa. Several epidemiological studies have established an association between particulate matter (PM) and CRS. Based on those data, PM has emerged as an important environmental factor in the development of CRS. Recent research has investigated the mechanisms and treatment options for CRS caused by PM through cellular experimentation. Therefore, the authors would like to explain the definition of PM, present research investigating the relationship between PM and CRS, and summarize the involved mechanisms reported to date.
Collapse
Affiliation(s)
- Ji-Sun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Chang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
15
|
Chen J, Chen S, Gong G, Yang F, Chen J, Wang Y. Inhibition of IL-4/STAT6/IRF4 signaling reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps. Int Immunopharmacol 2023; 121:110554. [PMID: 37385124 DOI: 10.1016/j.intimp.2023.110554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Previous studies have shown that epithelial-to-mesenchymal transition (EMT) in nasal epithelial cells is critical for tissue remodeling of chronic rhinosinusitis with nasal polyps (CRSwNP). However, the precise mechanism underlying the EMT remains poorly understood. This study aimed to investigate the role of interleukin-4 (IL-4)/signal transducer and activator of transcription 6 (STAT6)/interferon regulatory factor 4 (IRF4) signaling pathway on EMT in eosinophilic CRSwNP. METHODS We performed quantitative real-time polymerase chain reaction, immunohistochemistry, immunofluorescent staining, and Western blotting to evaluate the expression of STAT6, IRF4, and EMT markers in sinonasal mucosal samples. Effects of IL-4-induced EMT were determined using primary human nasal epithelial cells (hNECs) from patients with eosinophilic CRSwNP. Wound scratch assay, cell morphology, Western blotting, and immunofluorescence cytochemistry were performed to evaluate EMT, and EMT-related markers. Next, human THP-1 monocytic cells were stimulated by phorbolate-12-myristate-13-acetate to differentiate into M0 and were subsequently polarized into M1 with lipopolysaccharide and interferon-γ, M2 with IL-4. The markers of the macrophage phenotype were assessed by Western blotting. The co-culture system was built to explore the interaction between macrophages (THP-1 cells) and hNECs. After co-culture with M2 macrophages, EMT-related markers of primary hNECs were evaluated by immunofluorescence cytochemistry and Western blotting. Enzymelinked immunosorbent assays were used to detect transforming growth factor beta 1 (TGF-β1) in THP-1-derived supernatants. RESULTS STAT6 and IRF4 mRNA and protein expression were significantly upregulated in both eosinophilic and noneosinophilic nasal polyps compared with control tissues. The expression of STAT6 and IRF4 in eosinophilic nasal polyps was higher than those in noneosinophilic nasal polyps. STAT6 and IRF4 were not only expressed in epithelial cells but also in macrophages. The number of STAT6+CD68+ cells and IRF4+CD68+ cells in eosinophilic nasal polyps was higher than those in noneosinophilic nasal polyps and control tissues. EMT was enhanced in eosinophilic CRSwNP compared to the healthy controls and noneosinophilic CRSwNP. IL-4-stimulated human nasal epithelial cells exhibited EMT characteristics. The hNECs co-cultured with M2 macrophages demonstrated high levels of EMT-related markers. The TGF-β1 level was significantly induced by IL-4 and elevated (M2) rather than control macrophages. The inhibition of STAT6 by AS1517499 reduced the expression of IRF4 in epithelial cells and macrophages and counteracted IL-4-induced EMT in epithelial cells. CONCLUSION In eosinophilic nasal polyps, IL-4 induces STAT6 signaling to upregulate IRF4 expression in epithelial cells and macrophages. IL-4 promotes EMT of hNECs through the STAT6/IRF4 signaling pathway. IL-4-induced M2 macrophages enhanced EMT of hNECs. Inhibition of STAT6 can downregulate the expression of IRF4 and suppress the EMT process, thus providing a new strategy for the treatment of nasal polyps.
Collapse
Affiliation(s)
- Jingcai Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Otorhinolaryngology, The First Affiliated Hospital, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoqing Gong
- Department of Otorhinolaryngology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan 430022, China
| | - Fan Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianjun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanjun Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
16
|
Lee M, Kim YS, Lim S, Shin SH, Kim I, Kim J, Choi M, Kim JH, Koh SJ, Park JW, Shin HW. Protein stabilization of ITF2 by NF-κB prevents colitis-associated cancer development. Nat Commun 2023; 14:2363. [PMID: 37185280 PMCID: PMC10130090 DOI: 10.1038/s41467-023-38080-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic colonic inflammation is a feature of cancer and is strongly associated with tumorigenesis, but its underlying molecular mechanisms remain poorly understood. Inflammatory conditions increased ITF2 and p65 expression both ex vivo and in vivo, and ITF2 and p65 showed positive correlations. p65 overexpression stabilized ITF2 protein levels by interfering with the binding of Parkin to ITF2. More specifically, the C-terminus of p65 binds to the N-terminus of ITF2 and inhibits ubiquitination, thereby promoting ITF2 stabilization. Parkin acts as a E3 ubiquitin ligase for ITF2 ubiquitination. Intestinal epithelial-specific deletion of ITF2 facilitated nuclear translocation of p65 and thus increased colitis-associated cancer tumorigenesis, which was mediated by Azoxymethane/Dextran sulfate sodium or dextran sulfate sodium. Upregulated ITF2 expression was lost in carcinoma tissues of colitis-associated cancer patients, whereas p65 expression much more increased in both dysplastic and carcinoma regions. Therefore, these findings indicate a critical role for ITF2 in the repression of colitis-associated cancer progression and ITF2 would be an attractive target against inflammatory diseases including colitis-associated cancer.
Collapse
Affiliation(s)
- Mingyu Lee
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, USA
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yi-Sook Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Suha Lim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung-Hyun Shin
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., 550 Dongtangiheung-ro, Hwaseong-si, 18469, Gyeonggi-do, South Korea
| | - Iljin Kim
- Department of Pharmacology, Inha University College of Medicine, Incheon, South Korea
| | - Jiyoung Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Min Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seong-Joon Koh
- Liver Research Institute and Seoul National University College of Medicine, Seoul, South Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun-Woo Shin
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea.
- Sensory Organ Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
17
|
Zhang M, Xiong Y, Tu J, Tang B, Zhang Z, Yu J, Shen L, Luo Q, Ye J. Hypoxia disrupts the nasal epithelial barrier by inhibiting PTPN2 in chronic rhinosinusitis with nasal polyps. Int Immunopharmacol 2023; 118:110054. [PMID: 36963262 DOI: 10.1016/j.intimp.2023.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Hypoxia is involved in inflammation and immune response; however, its role in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) is not fully understood. We aimed to investigate the mechanisms by which hypoxia disrupts the nasal epithelial barrier in CRSwNP. METHODS The expression of hypoxia-inducible factor-1α (HIF-1α), protein tyrosine phosphatase non-receptor type 2 (PTPN2), and tight junction (TJ) components (claudin-4, occludin, and ZO-1) was detected in nasal polyps using immunohistochemistry, western blotting, and qRT-PCR. Primary human nasal epithelial cells (HNECs), BEAS-2B cells, and an eosinophilic CRSwNP (Eos CRSwNP) mouse model were used to explore the potential mechanisms by which hypoxia disrupts the nasal epithelial barrier. RESULTS HIF-1α expression in the non-Eos and Eos CRSwNP groups was higher than in the control group, and the expression of PTPN2 and TJs in the non-Eos and Eos CRSwNP groups were lower than those in the control group. Hypoxia decreased the expression of PTPN2 and TJs and increased epithelial cell permeability in HNECs, which was blocked by the HIF-1α inhibitor PX-478. PTPN2 overexpression inhibited hypoxia-induced downregulation of TJ expression in BEAS-2B cells, whereas PTPN2-knockdown aggravated the effects of hypoxia. In the Eos CRSwNP mouse model, both PX-478 and PTPN2 overexpression reduced the formation of nasal polypoid lesions, permeability of the nasal epithelium, and restored TJ expression. CONCLUSIONS Our data indicate that hypoxia-induced HIF-1α downregulates TJ expression by inhibiting PTPN2, thereby disrupting the nasal epithelial barrier and promoting CRSwNP development. HIF-1α and PTPN2 may be potential targets for the treatment of CRSwNP.
Collapse
Affiliation(s)
- Meiping Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yishan Xiong
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Junhao Tu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Binxiang Tang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhiqiang Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jieqing Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Institute of Jiangxi Otorhinolaryngology Head & Neck Surgery, Nanchang, Jiangxi Province, China
| | - Li Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jing Ye
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Institute of Jiangxi Otorhinolaryngology Head & Neck Surgery, Nanchang, Jiangxi Province, China.
| |
Collapse
|
18
|
Liu P, Qin D, Deng Z, Tong X, Liu K, Fan W, Huang J, Zhou H, Gong W, Jin J, Lv H, Chen S, Tao Z, Xu Y. TET2 deficiency exacerbates nasal polypogenesis by inducing epithelial-to-mesenchymal transition. Allergy 2022; 77:3452-3455. [PMID: 35844041 DOI: 10.1111/all.15446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhifeng Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoting Tong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kunyu Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjun Fan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingyu Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiqin Zhou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wanyang Gong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Jin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyuan Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Qin D, Liu P, Zhou H, Jin J, Gong W, Liu K, Chen S, Huang J, Fan W, Tao Z, Xu Y. TIM-4 in macrophages contributes to nasal polyp formation through the TGF-β1–mediated epithelial to mesenchymal transition in nasal epithelial cells. Front Immunol 2022; 13:941608. [PMID: 35990621 PMCID: PMC9389014 DOI: 10.3389/fimmu.2022.941608] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is caused by prolonged inflammation of the paranasal sinus mucosa. The epithelial to mesenchymal transition (EMT) is involved in the occurrence and development of CRSwNP. The T-cell immunoglobulin domain and the mucin domain 4 (TIM-4) is closely related to chronic inflammation, but its mechanism in CRSwNP is poorly understood. In our study, we found that TIM-4 was increased in the sinonasal mucosa of CRSwNP patients and, especially, in macrophages. TIM-4 was positively correlated with α-SMA but negatively correlated with E-cadherin in CRS. Moreover, we confirmed that TIM-4 was positively correlated with the clinical parameters of the Lund-Mackay and Lund-Kennedy scores. In the NP mouse model, administration of TIM-4 neutralizing antibody significantly reduced the polypoid lesions and inhibited the EMT process. TIM-4 activation by stimulating with tissue extracts of CRSwNP led to a significant increase of TGF-β1 expression in macrophages in vitro. Furthermore, coculture of macrophages and human nasal epithelial cells (hNECs) results suggested that the overexpression of TIM-4 in macrophages made a contribution to the EMT process in hNECs. Mechanistically, TIM-4 upregulated TGF-β1 expression in macrophages via the ROS/p38 MAPK/Egr-1 pathway. In conclusion, TIM-4 contributes to the EMT process and aggravates the development of CRSwNP by facilitating the production of TGF-β1 in macrophages. Inhibition of TIM-4 expression suppresses nasal polyp formation, which might provide a new therapeutic approach for CRSwNP.
Collapse
Affiliation(s)
- Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiqin Zhou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Jin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wanyang Gong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kunyu Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyuan Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingyu Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjun Fan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yu Xu,
| |
Collapse
|
20
|
Shin SH, Ye MK, Lee DW, Chae MH, Hwang YJ. Korean Red Ginseng and Ginsenoside Rg3 Suppress Asian Sand Dust-Induced Epithelial-Mesenchymal Transition in Nasal Epithelial Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092642. [PMID: 35565992 PMCID: PMC9100086 DOI: 10.3390/molecules27092642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022]
Abstract
Chronic rhinosinusitis (CRS) is characterized by chronic inflammation of the sinonasal mucosa with epithelial dedifferentiation toward the mesenchymal phenotype, known as the epithelial–mesenchymal transition (EMT). Asian sand dust (ASD) can induce nasal mucosal inflammation and cause the development of EMT. Korean red ginseng (KRG) and ginsenoside Rg3 have been used as traditional herbal medicines to treat various diseases. The aim of this study was to investigate their effect on ASD-induced EMT in nasal epithelial cells. Primary nasal epithelial cells were incubated with ASD with or without KRG or Rg3, and the production of transforming growth factor-β1 (TGF-β1) and interleukin (IL)-8 was measured. EMT markers were determined by RT-PCR, Western blot analysis, and confocal microscopy, and transcription factor expression by Western blot analysis. The effect on cell migration was evaluated using the wound scratch assay. Results showed ASD-induced TGF-β1 production, downregulation of E-cadherin, and upregulation of fibronectin in nasal epithelial cells. KRG and Rg3 suppressed TGF-β1 production (31.7% to 43.1%), upregulated the expression of E-cadherin (26.4% to 88.3% in mRNA), and downregulated that of fibronectin (14.2% to 46.2% in mRNA and 52.3% to 70.2% in protein). In addition, they suppressed the ASD-induced phosphorylation of ERK, p38, and mTOR, as well as inhibiting the ASD-induced migration of nasal epithelial cells (25.2% to 41.5%). The results of this study demonstrate that KRG and Rg3 inhibit ASD-induced EMT by suppressing the activation of ERK, p38, and mTOR signaling pathways in nasal epithelial cells.
Collapse
Affiliation(s)
- Seung-Heon Shin
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea; (M.-K.Y.); (D.-W.L.); (M.-H.C.)
- Correspondence: ; Tel.: +82-53-650-4530
| | - Mi-Kyung Ye
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea; (M.-K.Y.); (D.-W.L.); (M.-H.C.)
| | - Dong-Won Lee
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea; (M.-K.Y.); (D.-W.L.); (M.-H.C.)
| | - Mi-Hyun Chae
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea; (M.-K.Y.); (D.-W.L.); (M.-H.C.)
| | - You-Jin Hwang
- Department Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Korea;
| |
Collapse
|
21
|
Effect of Airborne Particulate Matter on the Immunologic Characteristics of Chronic Rhinosinusitis with Nasal Polyps. Int J Mol Sci 2022; 23:ijms23031018. [PMID: 35162939 PMCID: PMC8835188 DOI: 10.3390/ijms23031018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/23/2022] Open
Abstract
The inflammatory mechanisms of environmental pollutants in chronic rhinosinusitis (CRS) have recently been proposed. However, the mechanisms underlying the inflammatory effects of particulate matter (PM) on nasal polyp (NP) tissues remain unknown. Here we investigated the mechanism underlying the inflammatory effects of PM10 on human nasal polyp-derived fibroblasts (NPDFs). We isolated NPDFs from human NP tissues obtained from patients with CRS with NPs (CRSwNP). The NPDFs were exposed to PM10 in vitro. Immunologic characteristics were assessed using real-time polymerase chain reaction, enzyme-linked immunosorbent assay, Western blot, and flow cytometry. Additionally, we investigated the effect of NPDF-conditioned media (CM) on the expression of CD4+ T cell inflammatory mediators. PM10-treated NPDFs significantly upregulated interleukin (IL)-6, IL-4, and IL-33 expression and CXCL1 protein levels than PM10-treated normal tissues. MAP kinase, AP-1, and NF-kB were the primary cell signaling proteins. Immune cells in NPDF-CM had elevated IL-13, IL-17A, and IL-10 expression, but no significant difference in IFN-γ, TNF-α, and IL-4 expression. Moreover, under a Th2 inducing condition, NPDF-CM-treated CD4+ T cells had increased expression of IL-13, IL-10, and IL-17, which was reversed on ST2 inhibitor addition. Our study suggests that PM10 exposure could significantly increase the Th2 inflammatory pathway in NP tissues, specifically the IL-33/ST2 pathway-mediated immune response.
Collapse
|
22
|
Xu Z, Huang Y, Delemarre T, Cavaliere C, Zhang N, Bachert C. Advances in chronic rhinosinusitis in 2020 and 2021. J Allergy Clin Immunol 2021; 149:854-866. [PMID: 34973298 DOI: 10.1016/j.jaci.2021.12.782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023]
Abstract
Major progress has been achieved in the understanding and clinical practice of chronic rhinosinusitis, with or without nasal polyps. These advances resulted in a better understanding of the pathophysiology, the distribution into subgroups, and consequently in a better management perspective using classical approaches and biologics. Pathomechanisms, endotypes and biomarkers, and finally innovative therapeutic approaches are themes especially for the more severe forms of chronic rhinosinusitis, those with uncontrolled severe nasal polyps. Biologicals against key type 2 cytokines are gaining ground in the long-term treatment approaches of often recurrent nasal polyps, and should be integrated in care pathways making use of classical and innovative treatment pathways. These areas of interest show a fast development and will profoundly change our disease management within a decade.
Collapse
Affiliation(s)
- Zhaofeng Xu
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium; Sun Yat-sen Medical University, First Affiliated Hospital, Guangzhou, China
| | - Yanran Huang
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium; Department of ORLHNS, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Tim Delemarre
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Carlo Cavaliere
- Department of Sense Organs, Sapienza University, Rome, Italy
| | - Nan Zhang
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium; Sun Yat-sen Medical University, First Affiliated Hospital, Guangzhou, China; Division of ENT Diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
23
|
Lim S, Shin HW. Does Particulate Matter Really Affect Sinusitis? Clin Exp Otorhinolaryngol 2021; 14:365-366. [PMID: 34788932 PMCID: PMC8606286 DOI: 10.21053/ceo.2021.02054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Suha Lim
- Obstructive Upper airway Research Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Woo Shin
- Obstructive Upper airway Research Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea.,Sensory Organ Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Leland EM, Zhang Z, Kelly KM, Ramanathan M. Role of Environmental Air Pollution in Chronic Rhinosinusitis. Curr Allergy Asthma Rep 2021; 21:42. [PMID: 34499234 DOI: 10.1007/s11882-021-01019-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Chronic rhinosinusitis (CRS) is a highly prevalent disease with large social and financial burdens. The pathophysiology is multifactorial. Environmental pollutants have been suggested to play a role in the inflammatory component of the disease process. RECENT FINDINGS Recent work has focused on exposure to various pollutants, primarily particulate matter (PM). Exposure to environmental pollutants leads to upregulation of inflammatory markers and ciliary dysfunction at the cellular level. Mouse models suggest a role for epithelial barrier dysfunction contributing to inflammatory changes after pollutant exposure. Clinical studies support the role of pollutants contributing to disease severity in certain populations, but the role in CRS incidence or prevalence is less clear. Research is limited by the retrospective nature of most studies. This review focuses on recent advancements in our understanding of the impact of environmental pollutants in CRS, limitations of the available data, and potential opportunities for future studies.
Collapse
Affiliation(s)
- Evelyn M Leland
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, 601 N. Caroline St. JHOC 6263, Baltimore, MD, USA
| | - Zhenyu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, 601 N. Caroline St. JHOC 6263, Baltimore, MD, USA
| | - Kathleen M Kelly
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, 601 N. Caroline St. JHOC 6263, Baltimore, MD, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, 601 N. Caroline St. JHOC 6263, Baltimore, MD, USA.
| |
Collapse
|