1
|
Bottemanne H, Berkovitch L, Gauld C, Balcerac A, Schmidt L, Mouchabac S, Fossati P. Storm on predictive brain: A neurocomputational account of ketamine antidepressant effect. Neurosci Biobehav Rev 2023; 154:105410. [PMID: 37793581 DOI: 10.1016/j.neubiorev.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
For the past decade, ketamine, an N-methyl-D-aspartate receptor (NMDAr) antagonist, has been considered a promising treatment for major depressive disorder (MDD). Unlike the delayed effect of monoaminergic treatment, ketamine may produce fast-acting antidepressant effects hours after a single administration at subanesthetic dose. Along with these antidepressant effects, it may also induce transient dissociative (disturbing of the sense of self and reality) symptoms during acute administration which resolve within hours. To understand ketamine's rapid-acting antidepressant effect, several biological hypotheses have been explored, but despite these promising avenues, there is a lack of model to understand the timeframe of antidepressant and dissociative effects of ketamine. In this article, we propose a neurocomputational account of ketamine's antidepressant and dissociative effects based on the Predictive Processing (PP) theory, a framework for cognitive and sensory processing. PP theory suggests that the brain produces top-down predictions to process incoming sensory signals, and generates bottom-up prediction errors (PEs) which are then used to update predictions. This iterative dynamic neural process would relies on N-methyl-D-aspartate (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic receptors (AMPAr), two major component of the glutamatergic signaling. Furthermore, it has been suggested that MDD is characterized by over-rigid predictions which cannot be updated by the PEs, leading to miscalibration of hierarchical inference and self-reinforcing negative feedback loops. Based on former empirical studies using behavioral paradigms, neurophysiological recordings, and computational modeling, we suggest that ketamine impairs top-down predictions by blocking NMDA receptors, and enhances presynaptic glutamate release and PEs, producing transient dissociative symptoms and fast-acting antidepressant effect in hours following acute administration. Moreover, we present data showing that ketamine may enhance a delayed neural plasticity pathways through AMPAr potentiation, triggering a prolonged antidepressant effect up to seven days for unique administration. Taken together, the two sides of antidepressant effects with distinct timeframe could constitute the keystone of antidepressant properties of ketamine. These PP disturbances may also participate to a ketamine-induced time window of mental flexibility, which can be used to improve the psychotherapeutic process. Finally, these proposals could be used as a theoretical framework for future research into fast-acting antidepressants, and combination with existing antidepressant and psychotherapy.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France; Sorbonne University, Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Lucie Berkovitch
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France; Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
| | - Christophe Gauld
- Department of Child Psychiatry, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Alexander Balcerac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Liane Schmidt
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France
| | - Stephane Mouchabac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Psychiatry, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Fossati
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France
| |
Collapse
|
2
|
Zhang X, Asim M, Fang W, Md Monir H, Wang H, Kim K, Feng H, Wang S, Gao Q, Lai Y, He J. Cholecystokinin B receptor antagonists for the treatment of depression via blocking long-term potentiation in the basolateral amygdala. Mol Psychiatry 2023; 28:3459-3474. [PMID: 37365241 DOI: 10.1038/s41380-023-02127-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Depression is a common and severe mental disorder. Evidence suggested a substantial causal relationship between stressful life events and the onset of episodes of major depression. However, the stress-induced pathogenesis of depression and the related neural circuitry is poorly understood. Here, we investigated how cholecystokinin (CCK) and CCKBR in the basolateral amygdala (BLA) are implicated in stress-mediated depressive-like behavior. The BLA mediates emotional memories, and long-term potentiation (LTP) is widely considered a trace of memory. We identified that the cholecystokinin knockout (CCK-KO) mice impaired LTP in the BLA, while the application of CCK4 induced LTP after low-frequency stimulation (LFS). The entorhinal cortex (EC) CCK neurons project to the BLA and optogenetic activation of EC CCK afferents to BLA-promoted stress susceptibility through the release of CCK. We demonstrated that EC CCK neurons innervate CCKBR cells in the BLA and CCK-B receptor knockout (CCKBR-KO) mice impaired LTP in the BLA. Moreover, the CCKBR antagonists also blocked high-frequency stimulation (HFS) induced LTP formation in the BLA. Notably, CCKBR antagonists infusion into the BLA displayed an antidepressant-like effect in the chronic social defeat stress model. Together, these results indicate that CCKBR could be a potential target to treat depression.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
| | - Muhammad Asim
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
| | - Wei Fang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
| | - Hossain Md Monir
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
| | - Huajie Wang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
| | - Kyuhee Kim
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
| | - Hemin Feng
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shujie Wang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
| | - Qianqian Gao
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
| | - Yuanying Lai
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China.
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, 0000, Hong Kong SAR, PR China.
- City University of Hong Kong Shenzhen research institute, Shenzhen, 518507, PR China.
| |
Collapse
|
3
|
Hu YT, Tan ZL, Hirjak D, Northoff G. Brain-wide changes in excitation-inhibition balance of major depressive disorder: a systematic review of topographic patterns of GABA- and glutamatergic alterations. Mol Psychiatry 2023; 28:3257-3266. [PMID: 37495889 DOI: 10.1038/s41380-023-02193-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
The excitation-inhibition (E/I) imbalance is an important molecular pathological feature of major depressive disorder (MDD) as altered GABA and glutamate levels have been found in multiple brain regions in patients. Healthy subjects show topographic organization of the E/I balance (EIB) across various brain regions. We here raise the question of whether such EIB topography is altered in MDD. Therefore, we systematically review the gene and protein expressions of inhibitory GABAergic and excitatory glutamatergic signaling-related molecules in postmortem MDD brain studies as proxies for EIB topography. Searches were conducted through PubMed and 45 research articles were finally included. We found: i) brain-wide GABA- and glutamatergic alterations; ii) attenuated GABAergic with enhanced glutamatergic signaling in the cortical-subcortical limbic system; iii) that GABAergic signaling is decreased in regions comprising the default mode network (DMN) while it is increased in lateral prefrontal cortex (LPFC). These together demonstrate abnormal GABA- and glutamatergic signaling-based EIB topographies in MDD. This enhances our pathophysiological understanding of MDD and carries important therapeutic implications for stimulation treatment.
Collapse
Affiliation(s)
- Yu-Ting Hu
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.
| | - Zhong-Lin Tan
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dusan Hirjak
- Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Georg Northoff
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
4
|
Gómez de San José N, Goossens J, Al Shweiki MR, Halbgebauer S, Oeckl P, Steinacker P, Danzer KM, Graf H, Schönfeldt-Lecuona C, Belbin O, Lleó A, Vanmechelen E, Otto M. Glutamate receptor 4 as a fluid biomarker for the diagnosis of psychiatric disorders. J Psychiatr Res 2022; 156:390-397. [PMID: 36323141 DOI: 10.1016/j.jpsychires.2022.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Psychiatric disorders are widely underreported diseases, especially in their early stages. So far, there is no fluid biomarker to confirm the diagnosis of these disorders. Proteomics data suggest the synaptic protein glutamate receptor 4 (GluR4), part of the AMPA receptor, as a potential diagnostic biomarker of major depressive disorder (MDD). A novel sandwich ELISA was established and analytically validated to detect GluR4 in cerebrospinal fluid (CSF) samples. A total of 85 subjects diagnosed with MDD (n = 36), bipolar disorder (BD, n = 12), schizophrenia (SCZ, n = 12) and neurological controls (CON, n = 25) were analysed. The data exhibited a significant correlation (r = 0.74; CI:0.62 to 0.82; p < 0.0001) with the antibody-free multiple reaction monitoring (MRM) mass spectrometry (MS) data. CSF GluR4 levels were lower in MDD (p < 0.002) and BD (p = 0.012) than in CON. Moreover, subjects with SCZ described a trend towards lower levels than CON (p = 0.13). The novel GluR4 ELISA may favour the clinical application of this protein as a potential diagnostic biomarker of psychiatric disorders and may facilitate the understanding of the pathophysiological mechanisms behind these disorders.
Collapse
Affiliation(s)
| | | | | | - Steffen Halbgebauer
- Department of Neurology, University of Ulm, 89075, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany.
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, 89075, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany.
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Karin M Danzer
- Department of Neurology, University of Ulm, 89075, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany.
| | - Heiko Graf
- Department of Psychiatry and Psychotherapy III, University of Ulm, 89075, Ulm, Germany.
| | | | - Olivia Belbin
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Sant Antoni Maria Claret, 167, 08025, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Sant Antoni Maria Claret, 167, 08025, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | | | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
5
|
He JG, Zhou HY, Wang F, Chen JG. Dysfunction of Glutamatergic Synaptic Transmission in Depression: Focus on AMPA Receptor Trafficking. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 3:187-196. [PMID: 37124348 PMCID: PMC10140449 DOI: 10.1016/j.bpsgos.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Pharmacological and anatomical evidence suggests that abnormal glutamatergic neurotransmission may be associated with the pathophysiology of depression. Compounds that act as NMDA receptor antagonists may be a potential treatment for depression, notably the rapid-acting agent ketamine. The rapid-acting and sustained antidepressant effects of ketamine rely on the activation of AMPA receptors (AMPARs). As the key elements of fast excitatory neurotransmission in the brain, AMPARs are crucially involved in synaptic plasticity and memory. Recent efforts have been directed toward investigating the bidirectional dysregulation of AMPAR-mediated synaptic transmission in depression. Here, we summarize the published evidence relevant to the dysfunction of AMPAR in stress conditions and review the recent progress toward the understanding of the involvement of AMPAR trafficking in the pathophysiology of depression, focusing on the roles of AMPAR auxiliary subunits, key AMPAR-interacting proteins, and posttranslational regulation of AMPARs. We also discuss new prospects for the development of improved therapeutics for depression.
Collapse
|
6
|
Wang Q, Dwivedi Y. Advances in novel molecular targets for antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110041. [PMID: 32682872 PMCID: PMC7484229 DOI: 10.1016/j.pnpbp.2020.110041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/24/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022]
Abstract
Depression is the most common psychiatric illness affecting numerous people world-wide. The currently available antidepressant treatment presents low response and remission rates. Thus, new effective antidepressants need to be developed or discovered. Aiming to give an overview of novel possible antidepressant drug targets, we summarized the molecular targets of antidepressants and the underlying neurobiology of depression. We have also addressed the multidimensional perspectives on the progress in the psychopharmacological treatment of depression and on the new potential approaches with effective drug discovery.
Collapse
Affiliation(s)
- Qingzhong Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Kim HD, Wei J, Call T, Quintus NT, Summers AJ, Carotenuto S, Johnson R, Ma X, Xu C, Park JG, Qiu S, Ferguson D. Shisa6 mediates cell-type specific regulation of depression in the nucleus accumbens. Mol Psychiatry 2021; 26:7316-7327. [PMID: 34253865 PMCID: PMC8752624 DOI: 10.1038/s41380-021-01217-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Depression is the leading cause of disability and produces enormous health and economic burdens. Current treatment approaches for depression are largely ineffective and leave more than 50% of patients symptomatic, mainly because of non-selective and broad action of antidepressants. Thus, there is an urgent need to design and develop novel therapeutics to treat depression. Given the heterogeneity and complexity of the brain, identification of molecular mechanisms within specific cell-types responsible for producing depression-like behaviors will advance development of therapies. In the reward circuitry, the nucleus accumbens (NAc) is a key brain region of depression pathophysiology, possibly based on differential activity of D1- or D2- medium spiny neurons (MSNs). Here we report a circuit- and cell-type specific molecular target for depression, Shisa6, recently defined as an AMPAR component, which is increased only in D1-MSNs in the NAc of susceptible mice. Using the Ribotag approach, we dissected the transcriptional profile of D1- and D2-MSNs by RNA sequencing following a mouse model of depression, chronic social defeat stress (CSDS). Bioinformatic analyses identified cell-type specific genes that may contribute to the pathogenesis of depression, including Shisa6. We found selective optogenetic activation of the ventral tegmental area (VTA) to NAc circuit increases Shisa6 expression in D1-MSNs. Shisa6 is specifically located in excitatory synapses of D1-MSNs and increases excitability of neurons, which promotes anxiety- and depression-like behaviors in mice. Cell-type and circuit-specific action of Shisa6, which directly modulates excitatory synapses that convey aversive information, identifies the protein as a potential rapid-antidepressant target for aberrant circuit function in depression.
Collapse
Affiliation(s)
- Hee-Dae Kim
- grid.134563.60000 0001 2168 186XDepartment of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA
| | - Jing Wei
- grid.134563.60000 0001 2168 186XDepartment of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA
| | - Tanessa Call
- grid.134563.60000 0001 2168 186XDepartment of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA
| | - Nicole Teru Quintus
- grid.134563.60000 0001 2168 186XDepartment of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA
| | - Alexander J. Summers
- grid.134563.60000 0001 2168 186XDepartment of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA
| | - Samantha Carotenuto
- grid.134563.60000 0001 2168 186XDepartment of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA
| | - Ross Johnson
- grid.134563.60000 0001 2168 186XDepartment of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA
| | - Xiaokuang Ma
- grid.134563.60000 0001 2168 186XDepartment of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA
| | - Chenxi Xu
- grid.215654.10000 0001 2151 2636Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Jin G. Park
- grid.215654.10000 0001 2151 2636Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Shenfeng Qiu
- grid.134563.60000 0001 2168 186XDepartment of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA
| | - Deveroux Ferguson
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
8
|
Gibbons A, Sundram S, Dean B. Changes in Non-Coding RNA in Depression and Bipolar Disorder: Can They Be Used as Diagnostic or Theranostic Biomarkers? Noncoding RNA 2020; 6:E33. [PMID: 32846922 PMCID: PMC7549354 DOI: 10.3390/ncrna6030033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
The similarities between the depressive symptoms of Major Depressive Disorders (MDD) and Bipolar Disorders (BD) suggest these disorders have some commonality in their molecular pathophysiologies, which is not apparent from the risk genes shared between MDD and BD. This is significant, given the growing literature suggesting that changes in non-coding RNA may be important in both MDD and BD, because they are causing dysfunctions in the control of biochemical pathways that are affected in both disorders. Therefore, understanding the changes in non-coding RNA in MDD and BD will lead to a better understanding of how and why these disorders develop. Furthermore, as a significant number of individuals suffering with MDD and BD do not respond to medication, identifying non-coding RNA that are altered by the drugs used to treat these disorders offer the potential to identify biomarkers that could predict medication response. Such biomarkers offer the potential to quickly identify patients who are unlikely to respond to traditional medications so clinicians can refocus treatment strategies to ensure more effective outcomes for the patient. This review will focus on the evidence supporting the involvement of non-coding RNA in MDD and BD and their potential use as biomarkers for treatment response.
Collapse
Affiliation(s)
- Andrew Gibbons
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Department of Psychiatry, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Suresh Sundram
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Department of Psychiatry, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Centre for Mental Health, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
9
|
Aberg KA, Dean B, Shabalin AA, Chan RF, Han LK, Zhao M, van Grootheest G, Xie LY, Milaneschi Y, Clark SL, Turecki G, Penninx BW, van den Oord EJ. Methylome-wide association findings for major depressive disorder overlap in blood and brain and replicate in independent brain samples. Mol Psychiatry 2020; 25:1344-1354. [PMID: 30242228 PMCID: PMC6428621 DOI: 10.1038/s41380-018-0247-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/26/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022]
Abstract
We present the first large-scale methylome-wide association studies (MWAS) for major depressive disorder (MDD) to identify sites of potential importance for MDD etiology. Using a sequencing-based approach that provides near-complete coverage of all 28 million common CpGs in the human genome, we assay methylation in MDD cases and controls from both blood (N = 1132) and postmortem brain tissues (N = 61 samples from Brodmann Area 10, BA10). The MWAS for blood identified several loci with P ranging from 1.91 × 10-8 to 4.39 × 10-8 and a resampling approach showed that the cumulative association was significant (P = 4.03 × 10-10) with the signal coming from the top 25,000 MWAS markers. Furthermore, a permutation-based analysis showed significant overlap (P = 5.4 × 10-3) between the MWAS findings in blood and brain (BA10). This overlap was significantly enriched for a number of features including being in eQTLs in blood and the frontal cortex, CpG islands and shores, and exons. The overlapping sites were also enriched for active chromatin states in brain including genic enhancers and active transcription start sites. Furthermore, three loci located in GABBR2, RUFY3, and in an intergenic region on chromosome 2 replicated with the same direction of effect in the second brain tissue (BA25, N = 60) from the same individuals and in two independent brain collections (BA10, N = 81 and 64). GABBR2 inhibits neuronal activity through G protein-coupled second-messenger systems and RUFY3 is implicated in the establishment of neuronal polarity and axon elongation. In conclusion, we identified and replicated methylated loci associated with MDD that are involved in biological functions of likely importance to MDD etiology.
Collapse
Affiliation(s)
- Karolina A. Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA,Correspondence should be addressed to: Karolina A. Aberg, P.O. Box 980533, Richmond, VA 23298, Phone: (804) 628-3023, Fax: (804) 628-3991,
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia,Centre for Mental Health, Swinburne University, Hawthorn, Victoria, Australia
| | - Andrey A. Shabalin
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Robin F. Chan
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Laura K.M. Han
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam, The Netherlands
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Gerard van Grootheest
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam, The Netherlands
| | - Lin Y. Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam, The Netherlands
| | - Shaunna L. Clark
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Gustavo Turecki
- Douglas Mental Health University Institute and McGill University, Montréal, Québec, Canada
| | - Brenda W.J.H. Penninx
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam, The Netherlands
| | - Edwin J.C.G. van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
Pham TH, Gardier AM. Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol Ther 2019; 199:58-90. [DOI: 10.1016/j.pharmthera.2019.02.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
|
11
|
Ragguett RM, Rong C, Kratiuk K, McIntyre RS. Rapastinel - an investigational NMDA-R modulator for major depressive disorder: evidence to date. Expert Opin Investig Drugs 2018; 28:113-119. [PMID: 30585524 DOI: 10.1080/13543784.2019.1559295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Major depressive disorder (MDD) is a debilitating disorder with increasing prevalence globally. Despite the development of novel treatments for MDD, many patients present with treatment resistant depression (TRD), identified by treatment non-response following one or more adequate trials of an antidepressant. Rapastinel may prove to be a viable treatment for TRD; it has the potential to produce a rapid antidepressant response without serious adverse events and improve functional symptoms. Areas covered: We review the efficacy of rapastinel via completed and on-going clinical trials. The online databases Pubmed, clinicaltrials.gov and clinicaltrialsregister.eu were searched for rapastinel (GLYX-13) treatment in subjects with MDD. Nine clinical trials were identified. Expert opinion: Rapastinel is a novel and potentially transformative treatment for individuals with TRD. There is a limited number of clinical studies so far, but this compound has the potential to provide rapid, reliable and robust antidepressant effects without psychotomimetic and other unwanted side effects. Alternative formulations such as the oral formulation, provide the opportunity for rapastinel to be administered less frequently, i.e. once weekly. Furthermore, the beneficial effects on measures of cognition and suicidality so far, represent a tremendous advantage.
Collapse
Affiliation(s)
- Renee-Marie Ragguett
- a Mood Disorders Psychopharmacology Unit , University Health Network , Toronto , Canada
| | - Carola Rong
- a Mood Disorders Psychopharmacology Unit , University Health Network , Toronto , Canada.,d Department of Pharmacology , University of Toronto , Toronto , Canada
| | - Kevin Kratiuk
- b Medical Faculty , Poznan University of Medical Sciences , Poznan , Poland
| | - Roger S McIntyre
- a Mood Disorders Psychopharmacology Unit , University Health Network , Toronto , Canada.,c Department of Psychiatry , University of Toronto , Toronto , Canada.,d Department of Pharmacology , University of Toronto , Toronto , Canada
| |
Collapse
|
12
|
Caraci F, Calabrese F, Molteni R, Bartova L, Dold M, Leggio GM, Fabbri C, Mendlewicz J, Racagni G, Kasper S, Riva MA, Drago F. International Union of Basic and Clinical Pharmacology CIV: The Neurobiology of Treatment-resistant Depression: From Antidepressant Classifications to Novel Pharmacological Targets. Pharmacol Rev 2018; 70:475-504. [PMID: 29884653 DOI: 10.1124/pr.117.014977] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder is one of the most prevalent and life-threatening forms of mental illnesses and a major cause of morbidity worldwide. Currently available antidepressants are effective for most patients, although around 30% are considered treatment resistant (TRD), a condition that is associated with a significant impairment of cognitive function and poor quality of life. In this respect, the identification of the molecular mechanisms contributing to TRD represents an essential step for the design of novel and more efficacious drugs able to modify the clinical course of this disorder and increase remission rates in clinical practice. New insights into the neurobiology of TRD have shed light on the role of a number of different mechanisms, including the glutamatergic system, immune/inflammatory systems, neurotrophin function, and epigenetics. Advances in drug discovery processes in TRD have also influenced the classification of antidepressant drugs and novel classifications are available, such as the neuroscience-based nomenclature that can incorporate such advances in drug development for TRD. This review aims to provide an up-to-date description of key mechanisms in TRD and describe current therapeutic strategies for TRD before examining novel approaches that may ultimately address important neurobiological mechanisms not targeted by currently available antidepressants. All in all, we suggest that drug targeting different neurobiological systems should be able to restore normal function but must also promote resilience to reduce the long-term vulnerability to recurrent depressive episodes.
Collapse
Affiliation(s)
- F Caraci
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - F Calabrese
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - R Molteni
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - L Bartova
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - M Dold
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - G M Leggio
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - C Fabbri
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - J Mendlewicz
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - G Racagni
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - S Kasper
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - M A Riva
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - F Drago
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| |
Collapse
|
13
|
Rajkumar R, Dawe GS. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression. J Chem Neuroanat 2018; 91:63-100. [DOI: 10.1016/j.jchemneu.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
|
14
|
Faye C, McGowan JC, Denny CA, David DJ. Neurobiological Mechanisms of Stress Resilience and Implications for the Aged Population. Curr Neuropharmacol 2018; 16:234-270. [PMID: 28820053 PMCID: PMC5843978 DOI: 10.2174/1570159x15666170818095105] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/25/2017] [Accepted: 07/27/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Stress is a common reaction to an environmental adversity, but a dysregulation of the stress response can lead to psychiatric illnesses such as major depressive disorder (MDD), post-traumatic stress disorder (PTSD), and anxiety disorders. Yet, not all individuals exposed to stress will develop psychiatric disorders; those with enhanced stress resilience mechanisms have the ability to adapt successfully to stress without developing persistent psychopathology. Notably, the potential to enhance stress resilience in at-risk populations may prevent the onset of stress-induced psychiatric disorders. This novel idea has prompted a number of studies probing the mechanisms of stress resilience and how it can be manipulated. METHODS Here, we review the neurobiological factors underlying stress resilience, with particular focus on the serotoninergic (5-HT), glutamatergic, and γ-Aminobutyric acid (GABA) systems, as well as the hypothalamic-pituitary axis (HPA) in rodents and in humans. Finally, we discuss stress resiliency in the context of aging, as the likelihood of mood disorders increases in older adults. RESULTS Interestingly, increased resiliency has been shown to slow aging and improved overall health and quality of life. Research in the neurobiology of stress resilience, particularly throughout the aging process, is a nascent, yet, burgeoning field. CONCLUSION Overall, we consider the possible methods that may be used to induce resilient phenotypes, prophylactically in at-risk populations, such as in military personnel or in older MDD patients. Research in the mechanisms of stress resilience may not only elucidate novel targets for antidepressant treatments, but also provide novel insight about how to prevent these debilitating disorders from developing.
Collapse
Affiliation(s)
- Charlène Faye
- CESP/UMR-S 1178, Univ. Paris-Sud, Fac Pharmacie, Inserm, Université Paris-Saclay, 92296 Chatenay-Malabry, France
| | - Josephine C. McGowan
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Christine A. Denny
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute/Research Foundation for Mental Hygiene, Inc., New York, NY, USA
| | - Denis J. David
- CESP/UMR-S 1178, Univ. Paris-Sud, Fac Pharmacie, Inserm, Université Paris-Saclay, 92296 Chatenay-Malabry, France
| |
Collapse
|
15
|
Kim HK, Nunes PV, Oliveira KC, Young LT, Lafer B. Neuropathological relationship between major depression and dementia: A hypothetical model and review. Prog Neuropsychopharmacol Biol Psychiatry 2016; 67:51-7. [PMID: 26780170 DOI: 10.1016/j.pnpbp.2016.01.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/10/2016] [Accepted: 01/13/2016] [Indexed: 01/18/2023]
Abstract
Major depression (MDD) is a chronic psychiatric condition in which patients often show increasing cognitive impairment with recurring episodes. Neurodegeneration may play an important component in the pathogenesis of MDD associated with cognitive complaints. In agreement with this, patients with MDD show decreased brain volumes in areas implicated in emotional regulation and cognition, neuronal and glial cell death as well as activation of various pathways that can contribute to cell death. Therefore, the aim of this review is to provide an integrative overview of potential contributing factors to neurodegeneration in MDD. Studies have reported increased neuronal and glial cell death in the frontal cortex, amygdala, and hippocampus of patients with MDD. This may be due to decreased neurogenesis from lower levels of brain-derived neurotrophic factor (BDNF), excitotoxicity from increased glutamate signaling, and lower levels of gamma-aminobutyric acid (GABA) signaling. In addition, mitochondrial dysfunction and oxidative stress are found in similar brain areas where evidence of excitotoxicity has been reported. Also, levels of antioxidant enzymes were reported to be increased in patients with MDD. Inflammation may also be a contributing factor, as levels of inflammatory cytokines were reported to be increased in the prefrontal cortex of patients with MDD. While preliminary, studies have also reported neuropathological alterations in patients with MDD. Together, these studies suggest that lower BDNF levels, mitochondrial dysfunction, oxidative stress, inflammation and excitotoxicity may be contributing to neuronal and glial cell death in MDD, leading to decreased brain volume and cognitive dysfunction with multiple recurrent episodes. This highlights the need to identify specific pathways involved in neurodegeneration in MDD, which may elucidate targets that can be treated to ameliorate the effects of disease progression in this disorder.
Collapse
Affiliation(s)
- Helena Kyunghee Kim
- Departments of Psychiatry and Pharmacology, University of Toronto, RM4204, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Paula Villela Nunes
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, São Paulo, 3671, Brazil.
| | - Katia C Oliveira
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, São Paulo, 3671, Brazil.
| | - L Trevor Young
- Departments of Psychiatry and Pharmacology, University of Toronto, RM4204, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Beny Lafer
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, São Paulo, 3671, Brazil.
| |
Collapse
|
16
|
Pollak TA, Beck K, Irani SR, Howes OD, David AS, McGuire PK. Autoantibodies to central nervous system neuronal surface antigens: psychiatric symptoms and psychopharmacological implications. Psychopharmacology (Berl) 2016; 233:1605-21. [PMID: 26667479 PMCID: PMC4828500 DOI: 10.1007/s00213-015-4156-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/05/2015] [Indexed: 12/30/2022]
Abstract
RATIONALE Autoantibodies to central nervous system (CNS) neuronal surface antigens have been described in association with autoimmune encephalopathies which prominently feature psychiatric symptoms in addition to neurological symptoms. The potential role of these autoantibodies in primary psychiatric diseases such as schizophrenia or bipolar affective disorder is of increasing interest. OBJECTIVES We aimed to review the nature of psychiatric symptoms associated with neuronal surface autoantibodies, in the context of autoimmune encephalopathies as well as primary psychiatric disorders, and to review the mechanisms of action of these autoantibodies from a psychopharmacological perspective. RESULTS The functional effects of the autoantibodies on their target antigens are described; their clinical expression is at least in part mediated by their effects on neuronal receptor function, primarily at the synapse, usually resulting in receptor hypofunction. The psychiatric effects of the antibodies are related to known functions of the receptor target or its complexed proteins, with reference to supportive genetic and pharmacological evidence where relevant. Evidence for a causal role of these autoantibodies in primary psychiatric disease is increasing but remains controversial; relevant methodological controversies are outlined. Non-receptor-based mechanisms of autoantibody action, including neuroinflammatory mechanisms, and therapeutic implications are discussed. CONCLUSIONS An analysis of the autoantibodies from a psychopharmacological perspective, as endogenous, bioactive, highly specific, receptor-targeting molecules, provides a valuable opportunity to understand the neurobiological basis of associated psychiatric symptoms. Potentially, new treatment strategies will emerge from the improving understanding of antibody-antigen interaction within the CNS.
Collapse
Affiliation(s)
- T A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK.
| | - K Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - S R Irani
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - O D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - A S David
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - P K McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| |
Collapse
|
17
|
Sex differences in glutamate receptor gene expression in major depression and suicide. Mol Psychiatry 2015; 20:1057-68. [PMID: 26169973 DOI: 10.1038/mp.2015.91] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
Abstract
Accumulating data indicate that the glutamate system is disrupted in major depressive disorder (MDD), and recent clinical research suggests that ketamine, an antagonist of the N-methyl-d-aspartate (NMDA) glutamate receptor (GluR), has rapid antidepressant efficacy. Here we report findings from gene expression studies of a large cohort of postmortem subjects, including subjects with MDD and controls. Our data reveal higher expression levels of the majority of glutamatergic genes tested in the dorsolateral prefrontal cortex (DLPFC) in MDD (F21,59=2.32, P=0.006). Posthoc data indicate that these gene expression differences occurred mostly in the female subjects. Higher expression levels of GRIN1, GRIN2A-D, GRIA2-4, GRIK1-2, GRM1, GRM4, GRM5 and GRM7 were detected in the female patients with MDD. In contrast, GRM5 expression was lower in male MDD patients relative to male controls. When MDD suicides were compared with MDD non-suicides, GRIN2B, GRIK3 and GRM2 were expressed at higher levels in the suicides. Higher expression levels were detected for several additional genes, but these were not statistically significant after correction for multiple comparisons. In summary, our analyses indicate a generalized disruption of the regulation of the GluRs in the DLPFC of females with MDD, with more specific GluR alterations in the suicides and in the male groups. These data reveal further evidence that, in addition to the NMDA receptor, the AMPA, kainate and the metabotropic GluRs may be targets for the development of rapidly acting antidepressant drugs.
Collapse
|
18
|
Ketamine and suicidal ideation in depression: Jumping the gun? Pharmacol Res 2015; 99:23-35. [DOI: 10.1016/j.phrs.2015.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
|
19
|
SELENBP1 expression in the prefrontal cortex of subjects with schizophrenia. Transl Psychiatry 2015; 5:e615. [PMID: 26241353 PMCID: PMC4564563 DOI: 10.1038/tp.2015.108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 06/10/2015] [Accepted: 06/14/2015] [Indexed: 12/30/2022] Open
Abstract
Selenium binding protein 1 (SELENBP1) messenger RNA (mRNA) has previously been shown to be upregulated in the brain and blood from subjects with schizophrenia. We aimed to validate these findings in a new cohort using real-time PCR in Brodmann's Area (BA) 9, and to determine the disease specificity of increased SELENBP1 expression by measuring SELENBP1 mRNA in subjects with major depressive disorder and bipolar disorder. We then extended the study to include other cortical regions such as BA8 and BA44. SELENBP1 mRNA was higher in BA9 (P = 0.001), BA8 (P = 0.003) and BA44 (P = 0.0007) from subjects with schizophrenia. Conversely, in affective disorders, there was no significant difference in SELENBP1 mRNA in BA9 (P = 0.67), suggesting that the upregulation may be diagnosis specific. Measurement of SELENBP1 protein levels showed that changes in mRNA did not translate to changes in protein. In addition, chronic treatment of rats with antipsychotics did not significantly affect the expression of Selenbp1 in the cortex (P = 0.24). Our data show that elevated SELENBP1 transcript expression is widespread throughout the prefrontal cortex in schizophrenia, and confirm that this change is a consistent feature of schizophrenia and not a simple drug effect.
Collapse
|
20
|
Freudenberg F, Celikel T, Reif A. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in depression: central mediators of pathophysiology and antidepressant activity? Neurosci Biobehav Rev 2015; 52:193-206. [PMID: 25783220 DOI: 10.1016/j.neubiorev.2015.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/23/2015] [Accepted: 03/06/2015] [Indexed: 12/27/2022]
Abstract
Depression is a major psychiatric disorder affecting more than 120 million people worldwide every year. Changes in monoaminergic transmitter release are suggested to take part in the pathophysiology of depression. However, more recent experimental evidence suggests that glutamatergic mechanisms might play a more central role in the development of this disorder. The importance of the glutamatergic system in depression was particularly highlighted by the discovery that N-methyl-D-aspartate (NMDA) receptor antagonists (particularly ketamine) exert relatively long-lasting antidepressant like effects with rapid onset. Importantly, the antidepressant-like effects of NMDA receptor antagonists, but also other antidepressants (both classical and novel), require activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Additionally, expression of AMPA receptors is altered in patients with depression. Moreover, preclinical evidence supports an important involvement of AMPA receptor-dependent signaling and plasticity in the pathophysiology and treatment of depression. Here we summarize work published on the involvement of AMPA receptors in depression and discuss a possible central role for AMPA receptors in the pathophysiology, course and treatment of depression.
Collapse
Affiliation(s)
- Florian Freudenberg
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany.
| | - Tansu Celikel
- Department of Neurophysiology, Donders Center for Neuroscience, Radboud University Nijmegen, 6500 AA Nijmegen, The Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany
| |
Collapse
|
21
|
Kudryashova IV. Neurodegenerative changes in depression: Excitotoxicity or a deficit of trophic factors? NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
AMPA receptors in post-mortem brains of Cloninger type 1 and 2 alcoholics: a whole-hemisphere autoradiography study. Psychiatry Res 2013; 214:429-34. [PMID: 24119876 DOI: 10.1016/j.pscychresns.2013.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 11/23/2022]
Abstract
Dysfunction of the brain glutamate system has been associated with alcoholism. Ionotropic glutamatergic alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) play an important role in both neurotransmission and post-synaptic plasticity. Alterations in AMPAR densities may also play a role in the neurobiological changes associated with alcoholism. In the present study, [(3)H] AMPA binding density was evaluated in the nucleus accumbens (NAc), frontal cortex, anterior cingulate cortex (ACC), dentate gyrus and hippocampus of Cloninger type 1 (n=9) and 2 (n=8) alcoholics, and compared with non-alcoholic control subjects (n=10) by post-mortem whole-hemisphere autoradiography. The [(3)H] AMPA binding density was significantly higher in the ACC of early onset type 2 alcoholics when compared with controls (p=0.011). There was also a significant negative correlation between [(3)H] AMPA binding and previously published results of dopamine transporter (DAT) density in the ACC in these same brain samples (R=-0.95, p=0.001). Although preliminary, and from a relatively small diagnostic group, the present results help to further explain the pathology of alcohol dependence and impulsive behaviour in type 2 alcoholics.
Collapse
|
23
|
Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans. PLoS One 2013; 8:e60312. [PMID: 23573246 PMCID: PMC3616113 DOI: 10.1371/journal.pone.0060312] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/25/2013] [Indexed: 12/13/2022] Open
Abstract
Communication between cortical and subcortical regions is integral to a wide range of psychological processes and has been implicated in a number of psychiatric conditions. Studies in animals have provided insight into the biochemical and connectivity processes underlying such communication. However, to date no experiments that link these factors in humans in vivo have been carried out. To investigate the role of glutamate in individual differences in communication between the cortex--specifically the medial prefrontal cortex (mPFC)--and subcortical regions in humans, a combination of resting-state fMRI, DTI and MRS was performed. The subcortical target regions were the nucleus accumbens (NAc), dorsomedial thalamus (DMT), and periaqueductal grey (PAG). It was found that functional connectivity between the mPFC and each of the NAc and DMT was positively correlated with mPFC glutamate concentrations, whilst functional connectivity between the mPFC and PAG was negatively correlated with glutamate concentration. The correlations involving mPFC glutamate and FC between the mPFC and each of the DMT and PAG were mirrored by correlations with structural connectivity, providing evidence that the glutamatergic relationship may, in part, be due to direct connectivity. These results are in agreement with existing results from animal studies and may have relevance for MDD and schizophrenia.
Collapse
|
24
|
GluA1 and its PDZ-interaction: a role in experience-dependent behavioral plasticity in the forced swim test. Neurobiol Dis 2012; 52:160-7. [PMID: 23262314 DOI: 10.1016/j.nbd.2012.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 12/05/2012] [Accepted: 12/08/2012] [Indexed: 01/10/2023] Open
Abstract
Glutamate receptor dependent synaptic plasticity plays an important role in the pathophysiology of depression. Hippocampal samples from clinically depressed patients display reduced mRNA levels for GluA1, a major subunit of AMPA receptors. Moreover, activation and synaptic incorporation of GluA1-containing AMPA receptors are required for the antidepressant-like effects of NMDA receptor antagonists. These findings argue that GluA1-dependent synaptic plasticity might be critically involved in the expression of depression. Using an animal model of depression, we demonstrate that global or hippocampus-selective deletion of GluA1 impairs expression of experience-dependent behavioral despair. This impairment is mediated by the interaction of GluA1 with PDZ-binding domain proteins, as deletion of the C-terminal leucine alone is sufficient to replicate the behavioral phenotype. Our results provide evidence for a significant role of hippocampal GluA1-containing AMPA receptors and their PDZ-interaction in experience-dependent expression of behavioral despair and link mechanisms of hippocampal synaptic plasticity with behavioral expression of depression.
Collapse
|
25
|
Mathews DC, Henter ID, Zarate CA. Targeting the glutamatergic system to treat major depressive disorder: rationale and progress to date. Drugs 2012; 72:1313-33. [PMID: 22731961 DOI: 10.2165/11633130-000000000-00000] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a severe, debilitating medical illness that affects millions of individuals worldwide. The young age of onset and chronicity of the disorder has a significant impact on the long-term disability that affected individuals face. Most existing treatments have focused on the 'monoamine hypothesis' for rational design of compounds. However, patients continue to experience low remission rates, residual subsyndromal symptoms, relapses and overall functional impairment. In this context, growing evidence suggests that the glutamatergic system is uniquely central to the neurobiology and treatment of MDD. Here, we review data supporting the involvement of the glutamatergic system in the pathophysiology of MDD, and discuss the efficacy of glutamatergic agents as novel therapeutics. Preliminary clinical evidence has been promising, particularly with regard to the N-methyl-D-aspartate (NMDA) antagonist ketamine as a 'proof-of-concept' agent. The review also highlights potential molecular and inflammatory mechanisms that may contribute to the rapid antidepressant response seen with ketamine. Because existing pharmacological treatments for MDD are often insufficient for many patients, the next generation of treatments needs to be more effective, rapid acting and better tolerated than currently available medications. There is extant evidence that the glutamatergic system holds considerable promise for developing the next generation of novel and mechanistically distinct agents for the treatment of MDD.
Collapse
Affiliation(s)
- Daniel C Mathews
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
26
|
Licznerski P, Duman RS. Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression. Neuroscience 2012; 251:33-50. [PMID: 23036622 DOI: 10.1016/j.neuroscience.2012.09.057] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 09/10/2012] [Accepted: 09/22/2012] [Indexed: 01/22/2023]
Abstract
Dendritic spines provide a compartment for assembly and functional organization of synaptic machinery that plays a fundamental role in neuronal communication and neuroplasticity. Studies in humans as well as in animal models have demonstrated abnormal spine architecture in several psychiatric disorders, including depression and other stress-related illnesses. The negative impact of stress on the density and organization of spines is thought to contribute to the behavioral deficits caused by stress exposure. Moreover, there is now evidence that medication-induced recovery involves changes in synaptic plasticity and dendrite morphology, including increased expression of pre- and postsynaptic plasticity-related proteins, as well as the density and function of axo-spinous synapses. Here we review the evidence from brain imaging and postmortem studies demonstrating that depression is accompanied by structural and functional alterations of cortical and limbic brain regions, including the prefrontal cortex, hippocampus and amygdala. In addition, we present more direct evidence from basic research studies that exposure to stress alters spine morphology, function and plasticity and that antidepressants, particularly new rapid acting agents, reverse these effects. Elucidation of the signaling pathways and molecular mechanisms that control spine synapse assembly and plasticity will contribute to a better understanding of the pathophysiology of depression and development of novel, more effective therapeutic agents.
Collapse
Affiliation(s)
- P Licznerski
- Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT 06508, United States
| | | |
Collapse
|
27
|
Goeldner C, Ballard TM, Knoflach F, Wichmann J, Gatti S, Umbricht D. Cognitive impairment in major depression and the mGlu2 receptor as a therapeutic target. Neuropharmacology 2012; 64:337-46. [PMID: 22992331 DOI: 10.1016/j.neuropharm.2012.08.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/03/2012] [Indexed: 12/14/2022]
Abstract
Cognitive impairment, in particular of attention and memory, is often reported by patients suffering from major depressive disorder (MDD) and deficits in attention are part of the current diagnostic criteria of MDD. Objectively measured cognitive deficits associated with MDD have been described in many studies. They have been conceptualized as an integral facet and epiphenomenon of MDD. However, evidence accumulated in recent years has challenged this notion and demonstrated that in a subset of patients the degree of cognitive deficits cannot be accounted for by the severity of depression. In addition, in some patients cognitive deficits persist despite resolution of depressive symptomatology. It is plausible to assume that cognitive deficits contribute to functional impairment even though supportive data for such a relationship are lacking. However, the exact association between cognitive deficits and major depression and the clinical and neurobiological characteristics of patients with MDD in whom cognitive deficits seem partially or fully independent of the clinical manifestation of depressive symptoms remain poorly understood. This review focuses on objective measures of non-emotional cognitive deficits in MDD and discusses the presence of a subgroup of patients in whom these symptoms can be defined independently and in dissociation from the rest of the depressive symptomatology. The current understanding of brain circuits and molecular events implicated in cognitive impairment in MDD are discussed with an emphasis on the missing elements that could further define the specificity of cognitive impairment in MDD and lead to new therapeutics. Furthermore, this article presents in detail observations made in behavioral studies in rodents with potential novel therapeutic agents, such as negative allosteric modulators at the metabotropic glutamate receptor type 2/3 (mGlu2/3 NAM) which exhibit both cognitive enhancing and antidepressant properties. Such a compound, RO4432717, was tested in tests of short term memory (delayed match to position), cognitive flexibility (Morris water maze, reversal protocol), impulsivity and compulsivity (5-choice serial reaction time) and spontaneous object recognition in rodents, providing first evidence of a profile potentially relevant to address cognitive impairment in MDD. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Celia Goeldner
- Building 74, Room 3W.209 F. Hoffmann-La Roche AG, DTA CNS, Pharma Research & Early Development, Grenzacherstrasse 124, CH4070 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
Mathews DC, Henter ID, Zarate CA. Targeting the glutamatergic system to treat major depressive disorder: rationale and progress to date. Drugs 2012. [PMID: 22731961 DOI: 10.2165/11633130‐000000000‐00000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Major depressive disorder (MDD) is a severe, debilitating medical illness that affects millions of individuals worldwide. The young age of onset and chronicity of the disorder has a significant impact on the long-term disability that affected individuals face. Most existing treatments have focused on the 'monoamine hypothesis' for rational design of compounds. However, patients continue to experience low remission rates, residual subsyndromal symptoms, relapses and overall functional impairment. In this context, growing evidence suggests that the glutamatergic system is uniquely central to the neurobiology and treatment of MDD. Here, we review data supporting the involvement of the glutamatergic system in the pathophysiology of MDD, and discuss the efficacy of glutamatergic agents as novel therapeutics. Preliminary clinical evidence has been promising, particularly with regard to the N-methyl-D-aspartate (NMDA) antagonist ketamine as a 'proof-of-concept' agent. The review also highlights potential molecular and inflammatory mechanisms that may contribute to the rapid antidepressant response seen with ketamine. Because existing pharmacological treatments for MDD are often insufficient for many patients, the next generation of treatments needs to be more effective, rapid acting and better tolerated than currently available medications. There is extant evidence that the glutamatergic system holds considerable promise for developing the next generation of novel and mechanistically distinct agents for the treatment of MDD.
Collapse
Affiliation(s)
- Daniel C Mathews
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|