1
|
Long Z, Li J, Marino M. Brain structural changes underlying clinical symptom improvement following fast-acting treatments in treatment resistant depression. J Affect Disord 2024; 369:52-60. [PMID: 39326585 DOI: 10.1016/j.jad.2024.09.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Electroconvulsive therapy (ECT), ketamine infusion (KI), and total sleep deprivation (TSD) are effective and fast in treating patients with treatment-resistant depression (TRD). However, it remains unclear whether the three treatments have the same effect on clinical symptom improvement and have common brain structural mechanisms. METHODS The current study included 127 TRD patients and 37 healthy controls, which were obtained from the Perturbation of the Treatment Resistant Depression Connectome Project. We aimed to investigate the shared and distinct brain structural changes underlying clinical symptom improvement among ECT, KI, and TSD treatments. RESULTS All of the three treatments significantly reduced the depressive symptoms in TRD patients, but they differently affected other clinical measurements. Neuroimaging results also revealed that all of ECT, KI, and TSD treatments significantly increased gray matter volume of left caudate after treatment in TRD patients. However, the gray matter volume of other brain regions including hippocampus, parahippocampus, amygdala, insula, fusiform gyrus, several occipital and temporal areas was increased only after ECT treatment. Still, the baseline or the change of gray matter volume did not correlate with the depressive symptom improvement for all of the three treatments. LIMITATIONS A higher sample size would be required to further validate our findings. CONCLUSIONS The results observed in the current study suggested that the ECT, KI, and TSD treatments differently affected clinical measurements and brain structures in TRD patients, though all of them were effective in depressive symptom improvement, which might facilitate the development of personalized treatment protocol for this disease.
Collapse
Affiliation(s)
- Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China.
| | - Jiao Li
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Marco Marino
- Department of General Psychology, University of Padua, Italy; Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Jaarsveld S, Mulders P, Tendolkar I, van Eijndhoven P. Structural Changes in Depressed Patients Directly After Treatment With Electroconvulsive Therapy and 3 Months Later. J ECT 2024; 40:177-185. [PMID: 38194500 DOI: 10.1097/yct.0000000000000985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
OBJECTIVES It is assumed that neuroplasticity plays a central role in the effect of electroconvulsive therapy (ECT) on patients with major depressive disorder. We carried out an explorative study to map out the extent in which gray matter volume changes could be found directly after ECT treatment and after follow-up. METHODS Initially, 12 patients with treatment-resistant depression were recruited from the Radboud Medical Center. Magnetic resonance imaging scans were conducted at the following 3 time points: before ECT (n = 12), after ECT (n = 10), and at 3-month follow-up (n = 8). Subcortical volume, hippocampal subfield volume, and cortical thickness were analyzed using FreeSurfer. RESULTS The extensive, generalized changes in gray matter volume are largely transient after treatment with ECT, with the noted exceptions being a sustained increase in volume of the right amygdala and a part of the left cornu ammonis. Post hoc testing revealed no significant correlation with clinical response. DISCUSSION Our results suggest that the neuroplastic effects of ECT may not be mediators of clinical response and could be transient epiphenomena.
Collapse
|
3
|
Sun H, Bai T, Zhang X, Fan X, Zhang K, Zhang J, Hu Q, Xu J, Tian Y, Wang K. Molecular mechanisms underlying structural plasticity of electroconvulsive therapy in major depressive disorder. Brain Imaging Behav 2024; 18:930-941. [PMID: 38664360 DOI: 10.1007/s11682-024-00884-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 08/31/2024]
Abstract
Although previous studies reported structural changes associated with electroconvulsive therapy (ECT) in major depressive disorder (MDD), the underlying molecular basis of ECT remains largely unknown. Here, we combined two independent structural MRI datasets of MDD patients receiving ECT and transcriptomic gene expression data from Allen Human Brain Atlas to reveal the molecular basis of ECT for MDD. We performed partial least square regression to explore whether/how gray matter volume (GMV) alterations were associated with gene expression level. Functional enrichment analysis was conducted using Metascape to explore ontological pathways of the associated genes. Finally, these genes were further assigned to seven cell types to determine which cell types contribute most to the structural changes in MDD patients after ECT. We found significantly increased GMV in bilateral hippocampus in MDD patients after ECT. Transcriptome-neuroimaging association analyses showed that expression levels of 726 genes were positively correlated with the increased GMV in MDD after ECT. These genes were mainly involved in synaptic signaling, calcium ion binding and cell-cell signaling, and mostly belonged to excitatory and inhibitory neurons. Moreover, we found that the MDD risk genes of CNR1, HTR1A, MAOA, PDE1A, and SST as well as ECT related genes of BDNF, DRD2, APOE, P2RX7, and TBC1D14 showed significantly positive associations with increased GMV. Overall, our findings provide biological and molecular mechanisms underlying structural plasticity induced by ECT in MDD and the identified genes may facilitate future therapy for MDD.
Collapse
Affiliation(s)
- Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Tongjian Bai
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaodong Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xinxin Fan
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kai Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yanghua Tian
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei, 230022, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230022, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230022, China.
- Department of Neurology, the Second Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Kai Wang
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China
- Anhui Province clinical research center for neurological disease, Hefei, 230022, China
| |
Collapse
|
4
|
Gbyl K, Labanauskas V, Lundsgaard CC, Mathiassen A, Ryszczuk A, Siebner HR, Rostrup E, Madsen K, Videbech P. Electroconvulsive therapy disrupts functional connectivity between hippocampus and posterior default mode network. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110981. [PMID: 38373628 DOI: 10.1016/j.pnpbp.2024.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND The mechanisms underlying memory deficits after electroconvulsive therapy (ECT) remain unclear but altered functional interactions between hippocampus and neocortex may play a role. OBJECTIVES To test whether ECT reduces functional connectivity between hippocampus and posterior regions of the default mode network (DMN) and to examine whether altered hippocampal-neocortical functional connectivity correlates with memory impairment. A secondary aim was to explore if these connectivity changes are present 6 months after ECT. METHODS In-patients with severe depression (n = 35) received bitemporal ECT. Functional connectivity of the hippocampus was probed with resting-state fMRI before the first ECT-session, after the end of ECT, and at a six-month follow-up. Memory was assessed with the Verbal Learning Test - Delayed Recall. Seed-based connectivity analyses established connectivity of four hippocampal seeds, covering the anterior and posterior parts of the right and left hippocampus. RESULTS Compared to baseline, three of four hippocampal seeds became less connected to the core nodes of the posterior DMN in the week after ECT with Cohen's d ranging from -0.9 to -1.1. At the group level, patients showed post-ECT memory impairment, but individual changes in delayed recall were not correlated with the reduction in hippocampus-DMN connectivity. At six-month follow-up, no significant hippocampus-DMN reductions in connectivity were evident relative to pre-ECT, and memory scores had returned to baseline. CONCLUSION ECT leads to a temporary disruption of functional hippocampus-DMN connectivity in patients with severe depression, but the change in connectivity strength is not related to the individual memory impairment.
Collapse
Affiliation(s)
- Krzysztof Gbyl
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Vytautas Labanauskas
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Christoffer Cramer Lundsgaard
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - André Mathiassen
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Adam Ryszczuk
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Hartwig Roman Siebner
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Egill Rostrup
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark
| | - Kristoffer Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Poul Videbech
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Stuiver S, Pottkämper JCM, Verdijk JPAJ, Ten Doesschate F, Aalbregt E, van Putten MJAM, Hofmeijer J, van Waarde JA. Cortical excitation/inhibition ratios in patients with major depression treated with electroconvulsive therapy: an EEG analysis. Eur Arch Psychiatry Clin Neurosci 2024; 274:793-802. [PMID: 37947826 PMCID: PMC11127883 DOI: 10.1007/s00406-023-01708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/15/2023] [Indexed: 11/12/2023]
Abstract
Electroconvulsive therapy (ECT) is an effective treatment for major depression, but its working mechanisms are poorly understood. Modulation of excitation/inhibition (E/I) ratios may be a driving factor. Here, we estimate cortical E/I ratios in depressed patients and study whether these ratios change over the course of ECT in relation to clinical effectiveness. Five-minute resting-state electroencephalography (EEG) recordings of 28 depressed patients were recorded before and after their ECT course. Using a novel method based on critical dynamics, functional E/I (fE/I) ratios in the frequency range of 0.5-30 Hz were estimated in frequency bins of 1 Hz for the whole brain and for pre-defined brain regions. Change in Hamilton Depression Rating Scale (HDRS) score was used to estimate clinical effectiveness. To account for test-retest variability, repeated EEG recordings from an independent sample of 31 healthy controls (HC) were included. At baseline, no differences in whole brain and regional fE/I ratios were found between patients and HC. At group level, whole brain and regional fE/I ratios did not change over the ECT course. However, in responders, frontal fE/I ratios in the frequencies 12-28 Hz increased significantly (pFDR < 0.05 [FDR = false discovery rate]) over the ECT course. In non-responders and HC, no changes occurred over time. In this sample, frontal fE/I ratios increased over the ECT course in relation to treatment response. Modulation of frontal fE/I ratios may be an important mechanism of action of ECT.
Collapse
Affiliation(s)
- Sven Stuiver
- Technical Medical Centre, Faculty of Science and Technology, Clinical Neurophysiology, University of Twente, Hallenweg 15, 7522NB, Enschede, The Netherlands.
- Department of Psychiatry, Rijnstate Hospital, Wagnerlaan 55, P.O. Box 9555, 6815AD, Arnhem, The Netherlands.
| | - Julia C M Pottkämper
- Technical Medical Centre, Faculty of Science and Technology, Clinical Neurophysiology, University of Twente, Hallenweg 15, 7522NB, Enschede, The Netherlands
- Department of Psychiatry, Rijnstate Hospital, Wagnerlaan 55, P.O. Box 9555, 6815AD, Arnhem, The Netherlands
- Department of Neurology, Rijnstate Hospital, Wagnerlaan 55, 6815AD, Arnhem, The Netherlands
| | - Joey P A J Verdijk
- Technical Medical Centre, Faculty of Science and Technology, Clinical Neurophysiology, University of Twente, Hallenweg 15, 7522NB, Enschede, The Netherlands
- Department of Psychiatry, Rijnstate Hospital, Wagnerlaan 55, P.O. Box 9555, 6815AD, Arnhem, The Netherlands
| | - Freek Ten Doesschate
- Department of Psychiatry, Rijnstate Hospital, Wagnerlaan 55, P.O. Box 9555, 6815AD, Arnhem, The Netherlands
| | - Eva Aalbregt
- Department of Surgery, Amsterdam UMC Location Vumc, Boelelaan 1108, 1081HZ, Amsterdam, The Netherlands
| | - Michel J A M van Putten
- Technical Medical Centre, Faculty of Science and Technology, Clinical Neurophysiology, University of Twente, Hallenweg 15, 7522NB, Enschede, The Netherlands
| | - Jeannette Hofmeijer
- Technical Medical Centre, Faculty of Science and Technology, Clinical Neurophysiology, University of Twente, Hallenweg 15, 7522NB, Enschede, The Netherlands
- Department of Neurology, Rijnstate Hospital, Wagnerlaan 55, 6815AD, Arnhem, The Netherlands
| | - Jeroen A van Waarde
- Department of Psychiatry, Rijnstate Hospital, Wagnerlaan 55, P.O. Box 9555, 6815AD, Arnhem, The Netherlands
| |
Collapse
|
6
|
Belge JB, van Eijndhoven P, Mulders PCR. Mechanism of Action of ECT in Depression. Curr Top Behav Neurosci 2024; 66:279-295. [PMID: 37962811 DOI: 10.1007/7854_2023_450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Electroconvulsive therapy (ECT) remains the most potent antidepressant treatment available for patients with major depressive disorder (MDD). ECT is highly effective, achieving a response rate of 70-80% and a remission rate of 50-60% even in treatment-resistant patients. The underlying mechanisms of ECT are not fully understood, although several hypotheses have been proposed, including the monoamine hypothesis, anticonvulsive hypothesis, neuroplastic effects, and immunomodulatory properties. In this paper, we provide an overview of magnetic resonance imaging evidence that addresses the neuroplastic changes that occur after ECT at the human systems level and elaborate further on ECTs potent immunomodulatory properties. Despite a growing body of evidence that suggests ECT may normalize many of the structural and functional changes in the brain associated with severe depression, there is a lack of convergence between neurobiological changes and the robust clinical effects observed in depression. This may be due to sample sizes used in ECT studies being generally small and differences in data processing and analysis pipelines. Collaborations that acquire large datasets, such as the GEMRIC consortium, can help translate ECT's clinical efficacy into a better understanding of its mechanisms of action.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Medical Neuroscience, Nijmegen, The Netherlands
| | - Peter C R Mulders
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Medical Neuroscience, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Belge JB, Mulders P, Van Diermen L, Sienaert P, Sabbe B, Abbott CC, Tendolkar I, Schrijvers D, van Eijndhoven P. Reviewing the neurobiology of electroconvulsive therapy on a micro- meso- and macro-level. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110809. [PMID: 37331685 DOI: 10.1016/j.pnpbp.2023.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) remains the one of the most effective of biological antidepressant interventions. However, the exact neurobiological mechanisms underlying the efficacy of ECT remain unclear. A gap in the literature is the lack of multimodal research that attempts to integrate findings at different biological levels of analysis METHODS: We searched the PubMed database for relevant studies. We review biological studies of ECT in depression on a micro- (molecular), meso- (structural) and macro- (network) level. RESULTS ECT impacts both peripheral and central inflammatory processes, triggers neuroplastic mechanisms and modulates large scale neural network connectivity. CONCLUSIONS Integrating this vast body of existing evidence, we are tempted to speculate that ECT may have neuroplastic effects resulting in the modulation of connectivity between and among specific large-scale networks that are altered in depression. These effects could be mediated by the immunomodulatory properties of the treatment. A better understanding of the complex interactions between the micro-, meso- and macro- level might further specify the mechanisms of action of ECT.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Peter Mulders
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Linda Van Diermen
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Psychiatric Center Bethanië, Andreas Vesaliuslaan 39, Zoersel 2980, Belgium
| | - Pascal Sienaert
- KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation (AcCENT), Leuvensesteenweg 517, Kortenberg 3010, Belgium
| | - Bernard Sabbe
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Didier Schrijvers
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, University Psychiatric Center Duffel, Stationstraat 22, Duffel 2570, Belgium
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
8
|
Takamiya A, Kishimoto T, Mimura M. What Can We Tell About the Effect of Electroconvulsive Therapy on the Human Hippocampus? Clin EEG Neurosci 2023; 54:584-593. [PMID: 34547937 DOI: 10.1177/15500594211044066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electroconvulsive therapy (ECT) is the most effective antidepressant treatment, although its mechanisms of action remain unclear. Since 2010, several structural magnetic resonance imaging studies based on a neuroplastic hypothesis have consistently reported increases in the hippocampal volume following ECT. Moreover, volume increases in the human dentate gyrus, where neurogenesis occurs, have also been reported. These results are in line with the preclinical findings of ECT-induced neuroplastic changes, including neurogenesis, gliogenesis, synaptogenesis, and angiogenesis, in rodents and nonhuman primates. Despite this robust evidence of an effect of ECT on hippocampal plasticity, the clinical relevance of these human hippocampal changes continues to be questioned. This narrative review summarizes recent findings regarding ECT-induced hippocampal volume changes. Furthermore, this review also discusses methodological considerations and future directions in this field.
Collapse
Affiliation(s)
- Akihiro Takamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Taishiro Kishimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Xu J, Li W, Bai T, Li J, Zhang J, Hu Q, Wang J, Tian Y, Wang K. Volume of hippocampus-amygdala transition area predicts outcomes of electroconvulsive therapy in major depressive disorder: high accuracy validated in two independent cohorts. Psychol Med 2023; 53:4464-4473. [PMID: 35604047 DOI: 10.1017/s0033291722001337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although many previous studies reported structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy (ECT) in major depressive disorder (MDD), yet the exact roles of both areas for antidepressant effects are still controversial. METHODS In the current study, segmentation of amygdala and hippocampal sub-regions was used to investigate the longitudinal changes of volume, the relationship between volume and antidepressant effects, and prediction performances for ECT in MDD patients before and after ECT using two independent datasets. RESULTS As a result, MDD patients showed selectively and consistently increased volume in the left lateral nucleus, right accessory basal nucleus, bilateral basal nucleus, bilateral corticoamygdaloid transition (CAT), bilateral paralaminar nucleus of the amygdala, and bilateral hippocampus-amygdala transition area (HATA) after ECT in both datasets, whereas marginally significant increase of volume in bilateral granule cell molecular layer of the head of dentate gyrus, the bilateral head of cornu ammonis (CA) 4, and left head of CA 3. Correlation analyses revealed that increased volume of left HATA was significantly associated with antidepressant effects after ECT. Moreover, volumes of HATA in the MDD patients before ECT could be served as potential biomarkers to predict ECT remission with the highest accuracy of 86.95% and 82.92% in two datasets (The predictive models were trained on Dataset 2 and the sensitivity, specificity and accuracy of Dataset 2 were obtained from leave-one-out-cross-validation. Thus, they were not independent and very likely to be inflated). CONCLUSIONS These results not only suggested that ECT could selectively induce structural plasticity of the amygdala and hippocampal sub-regions associated with antidepressant effects of ECT in MDD patients, but also provided potential biomarkers (especially HATA) for effectively and timely interventions for ECT in clinical applications.
Collapse
Affiliation(s)
- Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenfei Li
- Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022 China
| | - Tongjian Bai
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiaying Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinhuan Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiaojian Wang
- Key Laboratory of Biological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yanghua Tian
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Neurology, the Second Hospital of Anhui Medical University, Hefei 230022, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
- Anhui Medical University, School of Mental Health and Psychological Sciences, Hefei 230022, China
| | - Kai Wang
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
- Anhui Medical University, School of Mental Health and Psychological Sciences, Hefei 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
- Anhui Province clinical research center for neurological disease, Hefei 230022, China
| |
Collapse
|
10
|
Chen X, Yang H, Cui LB, Li X. Neuroimaging study of electroconvulsive therapy for depression. Front Psychiatry 2023; 14:1170625. [PMID: 37363178 PMCID: PMC10289201 DOI: 10.3389/fpsyt.2023.1170625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Electroconvulsive therapy (ECT) is an important treatment for depression. Although it is known as the most effective acute treatment for severe mood disorders, its therapeutic mechanism is still unclear. With the rapid development of neuroimaging technology, various neuroimaging techniques have been available to explore the alterations of the brain by ECT, such as structural magnetic resonance imaging, functional magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography, single photon emission computed tomography, arterial spin labeling, etc. This article reviews studies in neuroimaging on ECT for depression. These findings suggest that the neurobiological mechanism of ECT may regulate the brain functional activity, and neural structural plasticity, as well as balance the brain's neurotransmitters, which finally achieves a therapeutic effect.
Collapse
Affiliation(s)
- Xiaolu Chen
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanjie Yang
- Department of Neurology, The Thirteenth People’s Hospital of Chongqing, Chongqing, China
| | - Long-Biao Cui
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi’an, China
| | - Xiao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Kawashima H, Yamasaki S, Kubota M, Hazama M, Fushimi Y, Miyata J, Murai T, Suwa T. Commonalities and differences in ECT-induced gray matter volume change between depression and schizophrenia. Neuroimage Clin 2023; 38:103429. [PMID: 37150022 PMCID: PMC10193002 DOI: 10.1016/j.nicl.2023.103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is one of the most effective treatments for depression and schizophrenia, particularly in urgent or treatment-resistant cases. After ECT, regional gray matter volume (GMV) increases have been repeatedly reported both in depression and schizophrenia. However, the interpretation of these findings remains entangled because GMV changes do not necessarily correlate with treatment effects and may be influenced by the intervention itself. We hypothesized that the comparison of longitudinal magnetic resonance imaging data between the two diagnostic groups will provide clues to distinguish diagnosis-specific and transdiagnostic changes. METHOD Twenty-nine Japanese participants, including 18 inpatients with major depressive disorder and 11 with schizophrenia, underwent longitudinal voxel-based morphometry before and after ECT. We investigated GMV changes common to both diagnostic groups and those specific to each group. Moreover, we also evaluated potential associations between GMV changes and clinical improvement for each group. RESULTS In both diagnostic groups, GMV increased in widespread areas after ECT, sharing common regions including: anterior temporal cortex; medial frontal and anterior cingulate cortex; insula; and caudate nucleus. In addition, we found a schizophrenia-specific GMV increase in a region including the left pregenual anterior cingulate cortex, with volume increase significantly correlating with clinical improvement. CONCLUSIONS Transdiagnostic volume changes may represent the effects of the intervention itself and pathophysiological changes common to both groups. Conversely, diagnosis-specific volume changes are associated with treatment effects and may represent pathophysiology-specific impacts of ECT.
Collapse
Affiliation(s)
- Hirotsugu Kawashima
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Shimpei Yamasaki
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manabu Kubota
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaaki Hazama
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taro Suwa
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Ahmad Hariza AM, Mohd Yunus MH, Murthy JK, Wahab S. Clinical Improvement in Depression and Cognitive Deficit Following Electroconvulsive Therapy. Diagnostics (Basel) 2023; 13:diagnostics13091585. [PMID: 37174977 PMCID: PMC10178332 DOI: 10.3390/diagnostics13091585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Electroconvulsive therapy (ECT) is a long-standing treatment choice for disorders such as depression when pharmacological treatments have failed. However, a major drawback of ECT is its cognitive side effects. While numerous studies have investigated the therapeutic effects of ECT and its mechanism, much less research has been conducted regarding the mechanism behind the cognitive side effects of ECT. As both clinical remission and cognitive deficits occur after ECT, it is possible that both may share a common mechanism. This review highlights studies related to ECT as well as those investigating the mechanism of its outcomes. The process underlying these effects may lie within BDNF and NMDA signaling. Edema in the astrocytes may also be responsible for the adverse cognitive effects and is mediated by metabotropic glutamate receptor 5 and the protein Homer1a.
Collapse
Affiliation(s)
- Ahmad Mus'ab Ahmad Hariza
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar Murthy
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Suzaily Wahab
- Department of Psychiatry, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
13
|
Synaptic plasticity and mental health: methods, challenges and opportunities. Neuropsychopharmacology 2023; 48:113-120. [PMID: 35810199 PMCID: PMC9700665 DOI: 10.1038/s41386-022-01370-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
Activity-dependent synaptic plasticity is a ubiquitous property of the nervous system that allows neurons to communicate and change their connections as a function of past experiences. Through reweighting of synaptic strengths, the nervous system can remodel itself, giving rise to durable memories that create the biological basis for mental function. In healthy individuals, synaptic plasticity undergoes characteristic developmental and aging trajectories. Dysfunctional plasticity, in turn, underlies a wide spectrum of neuropsychiatric disorders including depression, schizophrenia, addiction, and posttraumatic stress disorder. From a mechanistic standpoint, synaptic plasticity spans the gamut of spatial and temporal scales, from microseconds to the lifespan, from microns to the entire nervous system. With the numbers and strengths of synapses changing on such wide scales, there is an important need to develop measurement techniques with complimentary sensitivities and a growing number of approaches are now being harnessed for this purpose. Through hemodynamic measures, structural and tracer imaging, and noninvasive neuromodulation, it is possible to image structural and functional changes that underlie synaptic plasticity and associated behavioral learning. Here we review the mechanisms of neural plasticity and the historical and future trends in techniques that allow imaging of synaptic changes that accompany psychiatric disorders, highlighting emerging therapeutics and the challenges and opportunities accompanying this burgeoning area of study.
Collapse
|
14
|
Rong B, Gao G, Sun L, Zhou M, Zhao H, Huang J, Wang H, Xiao L, Wang G. Preliminary findings on the effect of childhood trauma on the functional connectivity of the anterior cingulate cortex subregions in major depressive disorder. Front Psychiatry 2023; 14:1159175. [PMID: 37139313 PMCID: PMC10150086 DOI: 10.3389/fpsyt.2023.1159175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Objectives Childhood trauma (CT) is a known risk factor for major depressive disorder (MDD), but the mechanisms linking CT and MDD remain unknown. The purpose of this study was to examine the influence of CT and depression diagnosis on the subregions of the anterior cingulate cortex (ACC) in MDD patients. Methods The functional connectivity (FC) of ACC subregions was evaluated in 60 first-episode, drug-naïve MDD patients (40 with moderate-to-severe and 20 with no or low CT), and 78 healthy controls (HC) (19 with moderate-to-severe and 59 with no or low CT). The correlations between the anomalous FC of ACC subregions and the severity of depressive symptoms and CT were investigated. Results Individuals with moderate-to severe CT exhibited increased FC between the caudal ACC and the middle frontal gyrus (MFG) than individuals with no or low CT, regardless of MDD diagnosis. MDD patients showed lower FC between the dorsal ACC and the superior frontal gyrus (SFG) and MFG. They also showed lower FC between the subgenual/perigenual ACC and the middle temporal gyrus (MTG) and angular gyrus (ANG) than the HCs, regardless of CT severity. The FC between the left caudal ACC and the left MFG mediated the correlation between the Childhood Trauma Questionnaire (CTQ) total score and HAMD-cognitive factor score in MDD patients. Conclusion Functional changes of caudal ACC mediated the correlation between CT and MDD. These findings contribute to our understanding of the neuroimaging mechanisms of CT in MDD.
Collapse
Affiliation(s)
- Bei Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guoqing Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Limin Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingzhe Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haomian Zhao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junhua Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hanling Wang
- Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Ling Xiao,
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
- Gaohua Wang,
| |
Collapse
|
15
|
Cano M, Lee E, Worthley A, Ellard K, Barbour T, Soriano-Mas C, Camprodon JA. Electroconvulsive therapy effects on anhedonia and reward circuitry anatomy: A dimensional structural neuroimaging approach. J Affect Disord 2022; 313:243-250. [PMID: 35764228 DOI: 10.1016/j.jad.2022.06.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Anhedonia is a core symptom of major depressive disorder (MDD) resulting from maladaptive reward processing. Electroconvulsive therapy (ECT) is an effective treatment for patients with MDD. No previous neuroimaging studies have taken a dimensional approach to assess whether ECT-induced volume changes are specifically related to improvements in anhedonia and positive valence emotional constructs. We aimed to assess the relationship between ECT-induced brain volumetric changes and improvement in anhedonia and reward processing in patients with MDD. METHODS We evaluated 15 patients with MDD before and after ECT. We used magnetic resonance imaging, clinical scales (i.e., Quick Inventory of Depressive Symptomatology for syndromal depression severity and Snaith-Hamilton Pleasure Scale for anhedonia) and the Temporal Experience of Pleasure Scale for anticipatory and consummatory experiences of pleasure. We identified 5 regions of interest within the reward circuit and a 6th control region relevant for MDD but not core to the reward system (Brodmann Area 25). RESULTS Anhedonia, anticipatory and consummatory reward processing improved after ECT. Volume increases within the right reward system separated anhedonia responders and non-responders. Improvement in anticipatory (but not consummatory) reward correlated with increases in volume in hippocampus, amygdala, ventral tegmental area and nucleus accumbens. LIMITATIONS We evaluated a modest sample size of patients with concurrent pharmacological treatment using a subjective psychometric assessment. CONCLUSIONS We highlight the importance of a dimensional and circuit-based approach to understanding target engagement and the mechanism of action of ECT, with the goal to define symptom- and circuit-specific response biomarkers for device neuromodulation therapies.
Collapse
Affiliation(s)
- Marta Cano
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Mental Health Department, Unitat de Neurociència Traslacional, Parc Tauli University Hospital, Institut d'Investigació i Innovació Sanitària Parc Tauli (I3PT), Barcelona, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Erik Lee
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexis Worthley
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristen Ellard
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracy Barbour
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carles Soriano-Mas
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona-UB, Barcelona, Spain.
| | - Joan A Camprodon
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Leaver AM, Espinoza R, Wade B, Narr KL. Parsing the Network Mechanisms of Electroconvulsive Therapy. Biol Psychiatry 2022; 92:193-203. [PMID: 35120710 PMCID: PMC9196257 DOI: 10.1016/j.biopsych.2021.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Electroconvulsive therapy (ECT) is one of the oldest and most effective forms of neurostimulation, wherein electrical current is used to elicit brief, generalized seizures under general anesthesia. When electrodes are positioned to target frontotemporal cortex, ECT is arguably the most effective treatment for severe major depression, with response rates and times superior to other available antidepressant therapies. Neuroimaging research has been pivotal in improving the field's mechanistic understanding of ECT, with a growing number of magnetic resonance imaging studies demonstrating hippocampal plasticity after ECT, in line with evidence of upregulated neurotrophic processes in the hippocampus in animal models. However, the precise roles of the hippocampus and other brain regions in antidepressant response to ECT remain unclear. Seizure physiology may also play a role in antidepressant response to ECT, as indicated by early positron emission tomography, single-photon emission computed tomography, and electroencephalography research and corroborated by recent magnetic resonance imaging studies. In this review, we discuss the evidence supporting neuroplasticity in the hippocampus and other brain regions during and after ECT, and their associations with antidepressant response. We also offer a mechanistic, circuit-level model that proposes that core mechanisms of antidepressant response to ECT involve thalamocortical and cerebellar networks that are active during seizure generalization and termination over repeated ECT sessions, and their interactions with corticolimbic circuits that are dysfunctional prior to treatment and targeted with the electrical stimulus.
Collapse
Affiliation(s)
- Amber M Leaver
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois.
| | - Randall Espinoza
- Department of Psychiatry and Behavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Benjamin Wade
- Department of Neurology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Katherine L Narr
- Department of Neurology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; Department of Psychiatry and Behavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
17
|
Multimodal multi-center analysis of electroconvulsive therapy effects in depression: Brainwide gray matter increase without functional changes. Brain Stimul 2022; 15:1065-1072. [DOI: 10.1016/j.brs.2022.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
|
18
|
Kunugi H, Tikhonova M. Recent advances in understanding depressive disorder: Possible relevance to brain stimulation therapies. PROGRESS IN BRAIN RESEARCH 2022; 270:123-147. [PMID: 35396024 DOI: 10.1016/bs.pbr.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent research has provided novel insights into the major depressive disorder (MDD) and identified certain biomarkers of this disease. There are four main mechanisms playing a key role in the related pathophysiology, namely (1) monoamine systems dysfunction, (2) stress response, (3) neuroinflammation, and (4) neurotrophic factors alteration. Robust evidence on the decreased homovanillic acid in the cerebrospinal fluid (CSF) of patients with MDD supports a rationale for therapeutic stimulation of the medial forebrain bundle activating the dopamine reward system. Both activation and suppression of the hypothalamic-pituitary-adrenal (HPA) axis in MDD and related conditions indicate usefulness of its evaluation for the disease subtyping. Elevated proinflammatory cytokines (specifically, interleukin-6) in CSF imply the role of neuroinflammation resulting in activation of the tryptophan-kynurenine pathway. Finally, neuroplasticity and trophic effects of the brain-derived neurotrophic factor (BDNF) may be related to both structural abnormalities of the brain in MDD and the underlying mechanisms of various therapies. In addition, the gut-brain interaction is pivotal, since lack of beneficial microbes confer the risk of MDD through negative effects on the dopamine system, HPA axis, and vagal nerve. All these factors may be highly relevant to treatment of MDD with contemporary brain stimulation therapies.
Collapse
Affiliation(s)
- Hiroshi Kunugi
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Maria Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russian Federation
| |
Collapse
|
19
|
Ousdal OT, Brancati GE, Kessler U, Erchinger V, Dale AM, Abbott C, Oltedal L. The Neurobiological Effects of Electroconvulsive Therapy Studied Through Magnetic Resonance: What Have We Learned, and Where Do We Go? Biol Psychiatry 2022; 91:540-549. [PMID: 34274106 PMCID: PMC8630079 DOI: 10.1016/j.biopsych.2021.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022]
Abstract
Electroconvulsive therapy (ECT) is an established treatment choice for severe, treatment-resistant depression, yet its mechanisms of action remain elusive. Magnetic resonance imaging (MRI) of the human brain before and after treatment has been crucial to aid our comprehension of the ECT neurobiological effects. However, to date, a majority of MRI studies have been underpowered and have used heterogeneous patient samples as well as different methodological approaches, altogether causing mixed results and poor clinical translation. Hence, an association between MRI markers and therapeutic response remains to be established. Recently, the availability of large datasets through a global collaboration has provided the statistical power needed to characterize whole-brain structural and functional brain changes after ECT. In addition, MRI technological developments allow new aspects of brain function and structure to be investigated. Finally, more recent studies have also investigated immediate and long-term effects of ECT, which may aid in the separation of the therapeutically relevant effects from epiphenomena. The goal of this review is to outline MRI studies (T1, diffusion-weighted imaging, proton magnetic resonance spectroscopy) of ECT in depression to advance our understanding of the ECT neurobiological effects. Based on the reviewed literature, we suggest a model whereby the neurobiological effects can be understood within a framework of disruption, neuroplasticity, and rewiring of neural circuits. An improved characterization of the neurobiological effects of ECT may increase our understanding of ECT's therapeutic effects, ultimately leading to improved patient care.
Collapse
Affiliation(s)
- Olga Therese Ousdal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Centre for Crisis Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway.
| | - Giulio E Brancati
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ute Kessler
- NORMENT, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Vera Erchinger
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California; Department of Radiology, University of California San Diego, La Jolla, California; Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico, Albuquerque, New Mexico
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
20
|
Deng ZD, Argyelan M, Miller J, Quinn DK, Lloyd M, Jones TR, Upston J, Erhardt E, McClintock SM, Abbott CC. Electroconvulsive therapy, electric field, neuroplasticity, and clinical outcomes. Mol Psychiatry 2022; 27:1676-1682. [PMID: 34853404 PMCID: PMC9095458 DOI: 10.1038/s41380-021-01380-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023]
Abstract
Electroconvulsive therapy (ECT) remains the gold-standard treatment for patients with depressive episodes, but the underlying mechanisms for antidepressant response and procedure-induced cognitive side effects have yet to be elucidated. Such mechanisms may be complex and involve certain ECT parameters and brain regions. Regarding parameters, the electrode placement (right unilateral or bitemporal) determines the geometric shape of the electric field (E-field), and amplitude determines the E-field magnitude in select brain regions (e.g., hippocampus). Here, we aim to determine the relationships between hippocampal E-field strength, hippocampal neuroplasticity, and antidepressant and cognitive outcomes. We used hippocampal E-fields and volumes generated from a randomized clinical trial that compared right unilateral electrode placement with different pulse amplitudes (600, 700, and 800 mA). Hippocampal E-field strength was variable but increased with each amplitude arm. We demonstrated a linear relationship between right hippocampal E-field and right hippocampal neuroplasticity. Right hippocampal neuroplasticity mediated right hippocampal E-field and antidepressant outcomes. In contrast, right hippocampal E-field was directly related to cognitive outcomes as measured by phonemic fluency. We used receiver operating characteristic curves to determine that the maximal right hippocampal E-field associated with cognitive safety was 112.5 V/m. Right hippocampal E-field strength was related to the whole-brain ratio of E-field strength per unit of stimulation current, but this whole-brain ratio was unrelated to antidepressant or cognitive outcomes. We discuss the implications of optimal hippocampal E-field dosing to maximize antidepressant outcomes and cognitive safety with individualized amplitudes.
Collapse
Affiliation(s)
- Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Miklos Argyelan
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Center for Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry, Hempstead, NY, USA
| | - Jeremy Miller
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Davin K Quinn
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Megan Lloyd
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Thomas R Jones
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Joel Upston
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Erik Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA
| | - Shawn M McClintock
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
21
|
Li XK, Qiu HT. Current progress in neuroimaging research for the treatment of major depression with electroconvulsive therapy. World J Psychiatry 2022; 12:128-139. [PMID: 35111584 PMCID: PMC8783162 DOI: 10.5498/wjp.v12.i1.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/20/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Electroconvulsive therapy (ECT) uses a certain amount of electric current to pass through the head of the patient, causing convulsions throughout the body, to relieve the symptoms of the disease and achieve the purpose of treatment. ECT can effectively improve the clinical symptoms of patients with major depression, but its therapeutic mechanism is still unclear. With the rapid development of neuroimaging technology, it is necessary to explore the neurobiological mechanism of major depression from the aspects of brain structure, brain function and brain metabolism, and to find that ECT can improve the brain function, metabolism and even brain structure of patients to a certain extent. Currently, an increasing number of neuroimaging studies adopt various neuroimaging techniques including functional magnetic resonance imaging (MRI), positron emission tomography, magnetic resonance spectroscopy, structural MRI, and diffusion tensor imaging to reveal the neural effects of ECT. This article reviews the recent progress in neuroimaging research on ECT for major depression. The results suggest that the neurobiological mechanism of ECT may be to modulate the functional activity and connectivity or neural structural plasticity in specific brain regions to the normal level, to achieve the therapeutic effect.
Collapse
Affiliation(s)
- Xin-Ke Li
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Hai-Tang Qiu
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
22
|
Guo H, Wang Y, Qiu L, Huang X, He C, Zhang J, Gong Q. Structural and Functional Abnormalities in Knee Osteoarthritis Pain Revealed With Multimodal Magnetic Resonance Imaging. Front Hum Neurosci 2021; 15:783355. [PMID: 34912202 PMCID: PMC8667073 DOI: 10.3389/fnhum.2021.783355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
The knee osteoarthritis (KOA) pain is the most common form of arthritis pain affecting millions of people worldwide. Long-term KOA pain causes motor impairment and affects affective and cognitive functions. However, little is known about the structural and functional abnormalities induced by long-term KOA pain. In this work, high-resolution structural magnetic resonance imaging (sMRI) and resting-state functional MRI (rs-fMRI) data were acquired in patients with KOA and age-, sex-matched healthy controls (HC). Gray matter volume (GMV) and fractional amplitude of low-frequency fluctuation (fALFF) were used to study the structural and functional abnormalities in patients with KOA. Compared with HC, patients with KOA showed reduced GMV in bilateral insula and bilateral hippocampus, and reduced fALFF in left cerebellum, precentral gyrus, and the right superior occipital gyrus. Patients with KOA also showed increased fALFF in left insula and bilateral hippocampus. In addition, the abnormal GMV in left insula and fALFF in left fusiform were closely correlated with the pain severity or disease duration. These results indicated that long KOA pain leads to brain structural and functional impairments in motor, visual, cognitive, and affective functions that related to brain areas. Our findings may facilitate to understand the neural basis of KOA pain and the future therapy to relieve disease symptoms.
Collapse
Affiliation(s)
- Hua Guo
- Department of Rehabilitative Medicine, West China Hospital, Sichuan University, Chengdu, China
| | | | - Lihua Qiu
- Radiology Department, The Second People's Hospital of Yibin, Yibin, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chengqi He
- Department of Rehabilitative Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Junran Zhang
- School of Electrical Engineering, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Stippl A, Kirkgöze FN, Bajbouj M, Grimm S. Differential Effects of Electroconvulsive Therapy in the Treatment of Major Depressive Disorder. Neuropsychobiology 2021; 79:408-416. [PMID: 32344410 DOI: 10.1159/000505553] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS/METHODS Electroconvulsive therapy (ECT) is still one of the most potent treatments in the acute phase of major depressive disorder (MDD) and particularly applied in patients considered treatment resistant. However, despite the frequent and widespread use of ECT for >70 years, the exact neurobiological mechanisms underlying its efficacy remain unclear. The present review aims to describe differential antidepressant and cognitive effects of ECT as well as effects on markers of neural activity and connectivity, neurochemistry, and inflammation that might underlie the treatment response and remission. RESULTS Region- specific changes in brain function and volume along with changes in concentrations of neurotransmitters and neuroinflammatory cytokines might serve as potential biomarkers for ECT outcomes. CONCLUSIONS However, as current data is not consistent, future longitudinal investigations should combine modalities such as MRI, MR spectroscopy, and peripheral physiological measures to gain a deeper insight into interconnected time- and modality-specific changes in response to ECT.
Collapse
Affiliation(s)
- Anna Stippl
- Department of Psychiatry and Psychotherapy, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Fatma Nur Kirkgöze
- Department of Psychiatry and Psychotherapy, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Malek Bajbouj
- Department of Psychiatry and Psychotherapy, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Simone Grimm
- Department of Psychiatry and Psychotherapy, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany, .,MSB Medical School Berlin, Berlin, Germany, .,Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Psychiatric Hospital, Zurich, Switzerland,
| |
Collapse
|
24
|
Takamiya A, Kishimoto T, Hirano J, Kikuchi T, Yamagata B, Mimura M. Association of electroconvulsive therapy-induced structural plasticity with clinical remission. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110286. [PMID: 33621611 DOI: 10.1016/j.pnpbp.2021.110286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is the most effective treatment for severe depression. Recent neuroimaging studies have consistently reported that ECT induces volume increases in widely distributed brain regions. However, it still remains unclear about ECT-induced volume changes associated with clinical improvement. METHODS Longitudinal assessments of structural magnetic resonance imaging were conducted in 48 participants. Twenty-seven elderly melancholic depressed individuals (mean 67.5 ± 8.1 years old; 19 female) were scanned before (TP1) and after (TP2) ECT. Twenty-one healthy controls were also scanned twice. Whole-brain gray matter volume (GMV) was analyzed via group (remitters, nonremitters, and controls) by time (TP1 and TP2) analysis of covariance to identify ECT-related GMV changes and GMV changes specific to remitters. Within-subject and between-subjects correlation analyses were conducted to investigate the associations between clinical improvement and GMV changes. Depressive symptoms were evaluated using the 17-item Hamilton Depression Rating Scale (HAM-D), and remission was defined as HAM-D total score ≤ 7. RESULTS Bilateral ECT increased GMV in multiple brain regions bilaterally regardless of clinical improvement. Remitters showed a larger GMV increase in the right-lateralized frontolimbic brain regions compared to nonremitters and healthy controls. GMV changes in the right hippocampus/amygdala and right middle frontal gyrus showed correlations with clinical improvement in within-/between-subjects correlation analyses. CONCLUSIONS ECT-induced GMV increase in the right frontolimbic regions was associated with clinical remission.
Collapse
Affiliation(s)
- Akihiro Takamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Taishiro Kishimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Jinichi Hirano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Kikuchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Janouschek H, Camilleri JA, Peterson Z, Sharkey RJ, Eickhoff CR, Grözinger M, Eickhoff SB, Nickl-Jockschat T. Meta-analytic Evidence for Volume Increases in the Medial Temporal Lobe After Electroconvulsive Therapy. Biol Psychiatry 2021; 90:e11-e17. [PMID: 34119314 PMCID: PMC8324534 DOI: 10.1016/j.biopsych.2021.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Thomas Nickl-Jockschat
- Department of Psychiatry, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa; Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
26
|
Wade BSC, Hellemann G, Espinoza RT, Woods RP, Joshi SH, Redlich R, Dannlowski U, Jorgensen A, Abbott CC, Oltedal L, Narr KL. Accounting for symptom heterogeneity can improve neuroimaging models of antidepressant response after electroconvulsive therapy. Hum Brain Mapp 2021; 42:5322-5333. [PMID: 34390089 PMCID: PMC8519875 DOI: 10.1002/hbm.25620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/21/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Depression symptom heterogeneity limits the identifiability of treatment‐response biomarkers. Whether improvement along dimensions of depressive symptoms relates to separable neural networks remains poorly understood. We build on work describing three latent symptom dimensions within the 17‐item Hamilton Depression Rating Scale (HDRS) and use data‐driven methods to relate multivariate patterns of patient clinical, demographic, and brain structural changes over electroconvulsive therapy (ECT) to dimensional changes in depressive symptoms. We included 110 ECT patients from Global ECT‐MRI Research Collaboration (GEMRIC) sites who underwent structural MRI and HDRS assessments before and after treatment. Cross validated random forest regression models predicted change along symptom dimensions. HDRS symptoms clustered into dimensions of somatic disturbances (SoD), core mood and anhedonia (CMA), and insomnia. The coefficient of determination between predicted and actual changes were 22%, 39%, and 39% (all p < .01) for SoD, CMA, and insomnia, respectively. CMA and insomnia change were predicted more accurately than HDRS‐6 and HDRS‐17 changes (p < .05). Pretreatment symptoms, body‐mass index, and age were important predictors. Important imaging predictors included the right transverse temporal gyrus and left frontal pole for the SoD dimension; right transverse temporal gyrus and right rostral middle frontal gyrus for the CMA dimension; and right superior parietal lobule and left accumbens for the insomnia dimension. Our findings support that recovery along depressive symptom dimensions is predicted more accurately than HDRS total scores and are related to unique and overlapping patterns of clinical and demographic data and volumetric changes in brain regions related to depression and near ECT electrodes.
Collapse
Affiliation(s)
- Benjamin S C Wade
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, UCLA, Los Angeles, California, USA
| | - Gerhard Hellemann
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Randall T Espinoza
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Roger P Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, UCLA, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Shantanu H Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, UCLA, Los Angeles, California, USA
| | - Ronny Redlich
- Institute of Translational Psychiatry, Department of Mental Health, University of Münster, Münster, Germany.,Department of Clinical Psychology, University of Halle, Halle, Germany
| | - Udo Dannlowski
- Institute of Translational Psychiatry, Department of Mental Health, University of Münster, Münster, Germany
| | | | - Christopher C Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Leif Oltedal
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, UCLA, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
27
|
Belge JB, Mulders PCR, Oort JV, Diermen LV, Poljac E, Sabbe B, de Timary P, Constant E, Sienaert P, Schrijvers D, van Eijndhoven P. Movement, mood and cognition: Preliminary insights into the therapeutic effects of electroconvulsive therapy for depression through a resting-state connectivity analysis. J Affect Disord 2021; 290:117-127. [PMID: 33993078 DOI: 10.1016/j.jad.2021.04.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/10/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is a highly effective treatment for depression but how it achieves its clinical effects remains unclear. METHODS We set out to study the brain's response to ECT from a large-scale brain-network perspective. Using a voxelwise analysis, we looked at resting-state functional connectivity before and after a course of ECT at the whole-brain and the between- and within-network levels in 17 patients with a depressive episode. Using a group-independent component analysis approach, we focused on four networks known to be affected in depression: the salience network (SN), the default mode network (DMN), the cognitive executive network (CEN), and a subcortical network (SCN). Our clinical measures included mood, cognition, and psychomotor symptoms. RESULTS We found ECT to have increased the connectivity of the left CEN with the left angular gyrus and left middle frontal gyrus as well as its within-network connectivity. Both the right CEN and the SCN showed increased connectivity with the precuneus and the anterior DMN with the left amygdala. Finally, improvement of psychomotor retardation was positively correlated with an increase of within-posterior DMN connectivity. LIMITATIONS The limitations of our study include its small sample size and the lack of a control dataset to confirm our findings. CONCLUSION Our voxelwise data demonstrate that ECT induces a significant increase of connectivity across the whole brain and at the within-network level. Furthermore, we provide the first evidence on the association between an increase of within-posterior DMN connectivity and an improvement of psychomotor retardation, a core symptom of depression.
Collapse
Affiliation(s)
- Jan-Baptist Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, University Psychiatric Center Duffel, Stationstraat 22, Duffel 2570, Belgium; Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Adult Psychiatry Department and Institute of Neuroscience, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Woluwe-Saint-Lambert, Belgium.
| | - Peter C R Mulders
- Department of Psychiatry, Radboud University Medical Centre, Huispost 961, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - Jasper Van Oort
- Department of Psychiatry, Radboud University Medical Centre, Huispost 961, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - Linda Van Diermen
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, University Psychiatric Center Duffel, Stationstraat 22, Duffel 2570, Belgium; Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Psychiatric Center Bethanië, Andreas Vesaliuslaan 39, 2980 Zoersel, Belgium
| | - Ervin Poljac
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, University Psychiatric Center Duffel, Stationstraat 22, Duffel 2570, Belgium; Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Bernard Sabbe
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, University Psychiatric Center Duffel, Stationstraat 22, Duffel 2570, Belgium; Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Philippe de Timary
- Adult Psychiatry Department and Institute of Neuroscience, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Woluwe-Saint-Lambert, Belgium
| | - Eric Constant
- Adult Psychiatry Department and Institute of Neuroscience, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Woluwe-Saint-Lambert, Belgium
| | - Pascal Sienaert
- KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation (AcCENT), Kortenberg, Belgium
| | - Didier Schrijvers
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, University Psychiatric Center Duffel, Stationstraat 22, Duffel 2570, Belgium; Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, Huispost 961, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| |
Collapse
|
28
|
Gryglewski G, Lanzenberger R, Silberbauer LR, Pacher D, Kasper S, Rupprecht R, Frey R, Baldinger-Melich P. Meta-analysis of brain structural changes after electroconvulsive therapy in depression. Brain Stimul 2021; 14:927-937. [PMID: 34119669 DOI: 10.1016/j.brs.2021.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Increases in the volume of the amygdala and hippocampus after electroconvulsive therapy (ECT) are among the most robust effects known to the brain-imaging field. Recent advances in the segmentation of substructures of these regions allow for novel insights on the relationship between brain structure and clinical outcomes of ECT. OBJECTIVE We aimed to provide a comprehensive synthesis of evidence available on changes in brain structure after ECT, including recently published data on hippocampal subfields. METHODS A meta-analysis of published studies was carried out using random-effects models of standardized mean change of regional brain volumes measured with longitudinal magnetic resonance imaging of depressive patients before and after a series of ECT. RESULTS Data from 21 studies (543 depressed patients) were analysed, including 6 studies (118 patients) on hippocampal subfields. Meta-analyses could be carried out for seven brain regions for which data from at least three published studies was available. We observed increases in left and right hippocampi, amygdalae, cornua ammonis (CA) 1, CA 2/3, dentate gyri (DG) and subicula with standardized mean change scores ranging between 0.34 and 1.15. The model did not reveal significant volume increases in the caudate. Meta-regression indicated a negative relationship between the reported increases in the DG and relative symptom improvement (-0.27 (SE: 0.09) per 10%). CONCLUSIONS ECT is accompanied by significant volume increases in the bilateral hippocampus and amygdala that are not associated with treatment outcome. Among hippocampal subfields, the most robust volume increases after ECT were measured in the dentate gyrus. The indicated negative correlation of this effect with antidepressant efficacy warrants replication in data of individual patients.
Collapse
Affiliation(s)
- Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Austria
| | - Leo R Silberbauer
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Austria
| | - Daniel Pacher
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Austria
| | - Siegfried Kasper
- Center for Brain Research, Medical University of Vienna, Austria
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Richard Frey
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Austria
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Austria.
| |
Collapse
|
29
|
Moon SY, Kim M, Lho SK, Oh S, Kim SH, Kwon JS. Systematic Review of the Neural Effect of Electroconvulsive Therapy in Patients with Schizophrenia: Hippocampus and Insula as the Key Regions of Modulation. Psychiatry Investig 2021; 18:486-499. [PMID: 34218638 PMCID: PMC8256139 DOI: 10.30773/pi.2020.0438] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) has been the most potent treatment option for treatment-resistant schizophrenia (TRS). However, the underlying neural mechanisms of ECT in schizophrenia remain largely unclear. This paper examines studies that investigated structural and functional changes after ECT in patients with schizophrenia. METHODS We carried out a systematic review with following terms: 'ECT', 'schizophrenia', and the terms of various neuroimaging modalities. RESULTS Among the 325 records available from the initial search in May 2020, 17 studies were included. Cerebral blood flow in the frontal, temporal, and striatal structures was shown to be modulated (n=3), although the results were divergent. Magnetic resonance spectroscopy (MRS) studies suggested that the ratio of N-acetyl-aspartate/creatinine was increased in the left prefrontal cortex (PFC; n=2) and left thalamus (n=1). The hippocampus and insula (n=6, respectively) were the most common regions of structural/functional modulation, which also showed symptom associations. Functional connectivity of the default mode network (DMN; n=5), PFC (n=4), and thalamostriatal system (n=2) were also commonly modulated. CONCLUSION Despite proven effectiveness, there has been a dearth of studies investigating the neurobiological mechanisms underlying ECT. There is preliminary evidence of structural and functional modulation of the hippocampus and insula, functional changes in the DMN, PFC, and thalamostriatal system after ECT in patients with schizophrenia. We discuss the rationale and implications of these findings and the potential mechanism of action of ECT. More studies evaluating the mechanisms of ECT are needed, which could provide a unique window into what leads to treatment response in the otherwise refractory TRS population.
Collapse
Affiliation(s)
- Sun-Young Moon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Silvia Kyungjin Lho
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sanghoon Oh
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Se Hyun Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
30
|
Temporal trajectory of brain tissue property changes induced by electroconvulsive therapy. Neuroimage 2021; 232:117895. [PMID: 33617994 DOI: 10.1016/j.neuroimage.2021.117895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND After more than eight decades of electroconvulsive therapy (ECT) for pharmaco-resistant depression, the mechanisms governing its anti-depressant effects remain poorly understood. Computational anatomy studies using longitudinal T1-weighted magnetic resonance imaging (MRI) data have demonstrated ECT effects on hippocampus volume and cortical thickness, but they lack the interpretational specificity about underlying neurobiological processes. METHODS We sought to fill in the gap of knowledge by acquiring quantitative MRI indicative for brain's myelin, iron and tissue water content at multiple time-points before, during and after ECT treatment. We adapted established tools for longitudinal spatial registration of MRI data to the relaxometry-based multi-parameter maps aiming to preserve the initial total signal amount and introduced a dedicated multivariate analytical framework. RESULTS The whole-brain voxel-based analysis based on a multivariate general linear model showed that there is no brain tissue oedema contributing to the predicted ECT-induced hippocampus volume increase neither in the short, nor in the long-term observations. Improvements in depression symptom severity over time were associated with changes in both volume estimates and brain tissue properties expanding beyond mesial temporal lobe structures to anterior cingulate cortex, precuneus and striatum. CONCLUSION The obtained results stemming from multi-contrast MRI quantitative data provided a fingerprint of ECT-induced brain tissue changes over time that are contrasted against the background of established morphometry findings. The introduced data processing and statistical testing algorithms provided a reliable analytical framework for longitudinal multi-parameter brain maps. The results, particularly the evidence of lack of ECT impact on brain tissue water, should be considered preliminary considering the small sample size of the study.
Collapse
|
31
|
Jehna M, Wurm W, Pinter D, Vogel K, Holl A, Hofmann P, Ebner C, Ropele S, Fuchs G, Kapfhammer HP, Deutschmann H, Enzinger C. Do increases in deep grey matter volumes after electroconvulsive therapy persist in patients with major depression? A longitudinal MRI-study. J Affect Disord 2021; 281:908-917. [PMID: 33279261 DOI: 10.1016/j.jad.2020.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/30/2020] [Accepted: 11/07/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Previous MRI studies reported deep grey matter volume increases after electroconvulsive therapy (ECT) in patients with major depressive disorder (MDD). However, the clinical correlates of these changes are still unclear. It remains debated whether such volume changes are transient, and if they correlate with affective changes over time. We here investigated if ECT induces deep grey matter volume increases in MDD-patients; and, if so, whether volume changes persist over more than 9 months and whether they are related to the clinical outcome. METHODS We examined 16 MDD-patients with 3Tesla MRI before (baseline) and after an ECT-series and followed 12 of them up for 10-36 months. Patients' data were compared to 16 healthy controls. Affective scales were used to investigate the relationship between therapy-outcome and MRI changes. RESULTS At baseline, MDD-patients had lower values in global brain volume, white matter and peripheral grey matter compared to healthy controls, but we observed no significant differences in deep grey matter volumes. After ECT, the differences in peripheral grey matter disappeared, and patients demonstrated significant volume increases in the right hippocampus and both thalami, followed by subsequent decreases after 10-36 months, especially in ECT-responders. Controls did not show significant changes over time. LIMITATIONS Beside the relatively small, yet carefully characterized cohort, we address the variability in time between the third scanning session and the baseline. CONCLUSIONS ECT-induced deep grey matter volume increases are transient. Our results suggest that the thalamus might be a key region for the understanding of the mechanisms of ECT action.
Collapse
Affiliation(s)
- Margit Jehna
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, 8036 Graz, Medical University of Graz, Austria
| | - Walter Wurm
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Daniela Pinter
- Department of Neurology, Division of General Neurology, 8036 Graz, Medical University of Graz, Austria; Research Unit for Neuronal Repair and Plasticity, 8036 Graz, Medical University of Graz, Austria
| | - Katrin Vogel
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Anna Holl
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Peter Hofmann
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Christoph Ebner
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Division of General Neurology, 8036 Graz, Medical University of Graz, Austria
| | - Gottfried Fuchs
- Department of Anesthesiology and Intensive Care Medicine, Division of Special Anesthesiology, Pain and Intensive Care Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Hans-Peter Kapfhammer
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Hannes Deutschmann
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, 8036 Graz, Medical University of Graz, Austria
| | - Christian Enzinger
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, 8036 Graz, Medical University of Graz, Austria; Department of Neurology, Division of General Neurology, 8036 Graz, Medical University of Graz, Austria; Research Unit for Neuronal Repair and Plasticity, 8036 Graz, Medical University of Graz, Austria.
| |
Collapse
|
32
|
Yamasaki S, Aso T, Miyata J, Sugihara G, Hazama M, Nemoto K, Yoshihara Y, Matsumoto Y, Okada T, Togashi K, Murai T, Takahashi H, Suwa T. Early and late effects of electroconvulsive therapy associated with different temporal lobe structures. Transl Psychiatry 2020; 10:344. [PMID: 33051437 PMCID: PMC7553938 DOI: 10.1038/s41398-020-01025-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 08/14/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022] Open
Abstract
Recent studies examining electroconvulsive therapy (ECT) have reported that early sessions can induce rapid antidepressant and antipsychotic effects, and the early termination of ECT was reported to increase the risk of relapse. We hypothesized that different neural mechanisms associated with the therapeutic effects of ECT may be involved in the different responses observed during the early and late periods of ECT treatment. We investigated whether these antidepressant and antipsychotic effects were associated with temporally and spatially different regional gray matter volume (GMV) changes during ECT. Fourteen patients with major depressive disorder, with or without psychotic features, underwent 3-Tesla structural magnetic resonance imaging scans before (time point [Tp] 1), after the fifth or sixth ECT session (Tp2), and after ECT completion (Tp3). We investigated the regions in which GMV changed between Tp1 and Tp2, Tp2 and Tp3, and Tp1 and Tp3 using voxel-based morphometry. In addition, we investigated the association between regional GMV changes and improvement in depressive or psychotic symptoms. GMV increase in the left superior and inferior temporal gyrus during Tp1-Tp2 was associated with improvement in psychotic symptoms (P < 0.025). GMV increase in the left hippocampus was associated with improvement of depressive symptoms in Tp2-Tp3 (P < 0.05). Our findings suggest that different temporal lobe structures are associated with early antipsychotic and late antidepressant effects of ECT.
Collapse
Affiliation(s)
- Shimpei Yamasaki
- grid.258799.80000 0004 0372 2033Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshihiko Aso
- grid.258799.80000 0004 0372 2033Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan ,Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan ,grid.258799.80000 0004 0372 2033Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Genichi Sugihara
- grid.258799.80000 0004 0372 2033Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan ,grid.265073.50000 0001 1014 9130Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaaki Hazama
- grid.258799.80000 0004 0372 2033Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyotaka Nemoto
- grid.20515.330000 0001 2369 4728Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yujiro Yoshihara
- grid.258799.80000 0004 0372 2033Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan ,grid.258799.80000 0004 0372 2033Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukiko Matsumoto
- grid.258799.80000 0004 0372 2033Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohisa Okada
- grid.258799.80000 0004 0372 2033Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaori Togashi
- grid.258799.80000 0004 0372 2033Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- grid.258799.80000 0004 0372 2033Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidehiko Takahashi
- grid.258799.80000 0004 0372 2033Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan ,grid.265073.50000 0001 1014 9130Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taro Suwa
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
33
|
Jolly AJ, Singh SM. Does electroconvulsive therapy cause brain damage: An update. Indian J Psychiatry 2020; 62:339-353. [PMID: 33165343 PMCID: PMC7597699 DOI: 10.4103/psychiatry.indianjpsychiatry_239_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/23/2019] [Accepted: 02/08/2020] [Indexed: 12/31/2022] Open
Abstract
Electroconvulsive therapy (ECT) is an effective modality of treatment for a variety of psychiatric disorders. However, it has always been accused of being a coercive, unethical, and dangerous modality of treatment. The dangerousness of ECT has been mainly attributed to its claimed ability to cause brain damage. This narrative review aims to provide an update of the evidence with regard to whether the practice of ECT is associated with damage to the brain. An accepted definition of brain damage remains elusive. There are also ethical and technical problems in designing studies that look at this question specifically. Thus, even though there are newer technological tools and innovations, any review attempting to answer this question would have to take recourse to indirect methods. These include structural, functional, and metabolic neuroimaging; body fluid biochemical marker studies; and follow-up studies of cognitive impairment and incidence of dementia in people who have received ECT among others. The review of literature and present evidence suggests that ECT has a demonstrable impact on the structure and function of the brain. However, there is a lack of evidence at present to suggest that ECT causes brain damage.
Collapse
Affiliation(s)
- Amal Joseph Jolly
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shubh Mohan Singh
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
34
|
Volume increase in the dentate gyrus after electroconvulsive therapy in depressed patients as measured with 7T. Mol Psychiatry 2020; 25:1559-1568. [PMID: 30867562 DOI: 10.1038/s41380-019-0392-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/03/2023]
Abstract
Electroconvulsive therapy (ECT) is the most effective treatment for depression, yet its working mechanism remains unclear. In the animal analog of ECT, neurogenesis in the dentate gyrus (DG) of the hippocampus is observed. In humans, volume increase of the hippocampus has been reported, but accurately measuring the volume of subfields is limited with common MRI protocols. If the volume increase of the hippocampus in humans is attributable to neurogenesis, it is expected to be exclusively present in the DG, whereas other processes (angiogenesis, synaptogenesis) also affect other subfields. Therefore, we acquired an optimized MRI scan at 7-tesla field strength allowing sensitive investigation of hippocampal subfields. A further increase in sensitivity of the within-subjects measurements is gained by automatic placement of the field of view. Patients receive two MRI scans: at baseline and after ten bilateral ECT sessions (corresponding to a 5-week interval). Matched controls are also scanned twice, with a similar 5-week interval. A total of 31 participants (23 patients, 8 controls) completed the study. A large and significant increase in DG volume was observed after ECT (M = 75.44 mm3, std error = 9.65, p < 0.001), while other hippocampal subfields were unaffected. We note that possible type II errors may be present due to the small sample size. In controls no changes in volume were found. Furthermore, an increase in DG volume was related to a decrease in depression scores, and baseline DG volume predicted clinical response. These findings suggest that the volume change of the DG is related to the antidepressant properties of ECT, and may reflect neurogenesis.
Collapse
|
35
|
Brain functional effects of electroconvulsive therapy during emotional processing in major depressive disorder. Brain Stimul 2020; 13:1051-1058. [PMID: 32388195 DOI: 10.1016/j.brs.2020.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In treatment-resistant major depressive disorder (MDD), electroconvulsive therapy (ECT) is a treatment with high efficacy. While knowledge regarding changes in brain structure following ECT is growing, the effects of ECT on brain function during emotional processing are largely unknown. OBJECTIVE We investigated the effects of ECT on the activity of the anterior cingulate cortex (ACC) and amygdala during negative emotional stimuli processing and its association with clinical response. METHODS In this non-randomized longitudinal study, patients with MDD (n = 37) were assessed before and after treatment with ECT. Healthy controls (n = 37) were matched regarding age and gender. Functional magnetic resonance imaging (fMRI) was obtained twice, at baseline and after six weeks using a supraliminal face-matching paradigm. In order to evaluate effects of clinical response, additional post-hoc analyses were performed comparing responders to non-responders. RESULTS After ECT, patients with MDD showed a statistically significant increase in ACC activity during processing of negative emotional stimuli (pFWE = .039). This effect was driven by responders (pFWE = .023), while non-responders showed no increase. Responders also had lower pre-treatment ACC activity compared to non-responders (pFWE = .025). No significant effects in the amygdala could be observed. CONCLUSIONS ECT leads to brain functional changes in the ACC, a relevant region for emotional regulation during processing of negative stimuli. Furthermore, baseline ACC activity might serve as a biomarker for treatment response. Findings are in accordance with recent studies highlighting properties of pre-treatment ACC to be associated with general antidepressive treatment response.
Collapse
|
36
|
Wang J, Jiang Y, Tang Y, Xia M, Curtin A, Li J, Sheng J, Zhang T, Li C, Hui L, Zhu H, Biswal BB, Jia Q, Luo C, Wang J. Altered functional connectivity of the thalamus induced by modified electroconvulsive therapy for schizophrenia. Schizophr Res 2020; 218:209-218. [PMID: 31956007 DOI: 10.1016/j.schres.2019.12.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) has been shown to be effective in schizophrenia (SZ), particularly in drug-refractory cases or when rapid symptom relief is needed. However, its precise mechanisms of action remain largely unclear. To clarify the mechanisms underlying modified electroconvulsive therapy (mECT) for SZ, we conducted a longitudinal cohort study evaluating functional connectivity of the thalamus before and after mECT treatment using sub-regions of thalamus as regions of interest (ROIs). METHODS Twenty-one SZ individuals taking only antipsychotics (DSZ group) for 4 weeks and 21 SZ patients receiving a regular course of mECT combining with antipsychotics (MSZ group) were observed in parallel. All patients underwent magnetic resonance imaging scans at baseline (t1) and follow-up (t2, ~4 weeks) time points. Data were compared to a matched healthy control group (HC group) consisting of 23 persons who were only scanned at baseline. Group differences in changes of thalamic functional connectivity between two SZ groups over time, as well as in functional connectivity among two SZ groups and HC group were assessed. RESULTS Significant interaction of group by time was found in functional connectivity of the right thalamus to right putamen during the course of about 4-week treatment. Post-hoc analysis showed a significantly enhanced functional connectivity of the right thalamus to right putamen in the MSZ group contrasting to the DSZ group. In addition, a decreased and an increased functional connectivity of the thalamus to sensory cortex were observed within the MSZ and DSZ group after 4-week treatment trial, respectively. CONCLUSION Our findings suggest that changes in functional connectivity of the thalamus may be associated with the brain mechanisms of mECT for schizophrenia.
Collapse
Affiliation(s)
- Junjie Wang
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Yuchao Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China.
| | - Mengqing Xia
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Adrian Curtin
- School of Biomedical Engineering & Health Sciences, Drexel University, Philadelphia, PA 19104, USA; Med-X Institute, Shanghai Jiaotong University, Shanghai 200300, China
| | - Jin Li
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Jianhua Sheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, China; Brain Science and Technology Research Center, Shanghai Jiaotong University, Shanghai 200030, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai 200030, China
| | - Li Hui
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, China
| | - Hongliang Zhu
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, China
| | - Bharat B Biswal
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Qiufang Jia
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, China.
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, China; Brain Science and Technology Research Center, Shanghai Jiaotong University, Shanghai 200030, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai 200030, China
| |
Collapse
|
37
|
Mulders PCR, Llera A, Beckmann CF, Vandenbulcke M, Stek M, Sienaert P, Redlich R, Petrides G, Oudega ML, Oltedal L, Oedegaard KJ, Narr KL, Magnusson PO, Kessler U, Jorgensen A, Espinoza R, Enneking V, Emsell L, Dols A, Dannlowski U, Bolwig TG, Bartsch H, Argyelan M, Anand A, Abbott CC, van Eijndhoven PFP, Tendolkar I. Structural changes induced by electroconvulsive therapy are associated with clinical outcome. Brain Stimul 2020; 13:696-704. [PMID: 32289700 DOI: 10.1016/j.brs.2020.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is the most effective treatment option for major depressive disorder, so understanding whether its clinical effect relates to structural brain changes is vital for current and future antidepressant research. OBJECTIVE To determine whether clinical response to ECT is related to structural volumetric changes in the brain as measured by structural magnetic resonance imaging (MRI) and, if so, which regions are related to this clinical effect. We also determine whether a similar model can be used to identify regions associated with electrode placement (unilateral versus bilateral ECT). METHODS Longitudinal MRI and clinical data (Hamilton Depression Rating Scale) was collected from 10 sites as part of the Global ECT-MRI research collaboration (GEMRIC). From 192 subjects, relative changes in 80 (sub)cortical areas were used as potential features for classifying treatment response. We used recursive feature elimination to extract relevant features, which were subsequently used to train a linear classifier. As a validation, the same was done for electrode placement. We report accuracy as well as the structural coefficients of regions included in the discriminative spatial patterns obtained. RESULTS A pattern of structural changes in cortical midline, striatal and lateral prefrontal areas discriminates responders from non-responders (75% accuracy, p < 0.001) while left-sided mediotemporal changes discriminate unilateral from bilateral electrode placement (81% accuracy, p < 0.001). CONCLUSIONS The identification of a multivariate discriminative pattern shows that structural change is relevant for clinical response to ECT, but this pattern does not include mediotemporal regions that have been the focus of electroconvulsive therapy research so far.
Collapse
Affiliation(s)
- Peter C R Mulders
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands.
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands; Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands; Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford, United Kingdom
| | - Mathieu Vandenbulcke
- Department of Geriatric Psychiatry, University Psychiatric Center (UPC), KU Leuven, Leuven, Belgium
| | - Max Stek
- GGZ InGeest Specialized Mental Health Care, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Pascal Sienaert
- Academic Center for ECT and Neurostimulation (AcCENT), University Psychiatric Center (UPC) - KU Leuven, Kortenberg, Belgium
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Georgios Petrides
- - Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, USA; Center for Neuroscience, Feinstein Institute for Medical Research, Manhasset, USA; Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry, Hempstead, USA
| | - Mardien Leoniek Oudega
- GGZ InGeest Specialized Mental Health Care, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Leif Oltedal
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Ketil J Oedegaard
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Katherine L Narr
- Departments of Neurology Psychiatry, Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Peter O Magnusson
- Lund University, Box 118, SE-221 00, Lund, Sweden; Previous: Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Anders Jorgensen
- Psychiatric Center Copenhagen & University of Copenhagen, Copenhagen, Denmark
| | - Randall Espinoza
- Departments of Neurology Psychiatry, Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Verena Enneking
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Louise Emsell
- Department of Geriatric Psychiatry, University Psychiatric Center (UPC), KU Leuven, Leuven, Belgium
| | - Annemieke Dols
- GGZ InGeest Specialized Mental Health Care, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Tom G Bolwig
- Previous: Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| | - Hauke Bartsch
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Miklos Argyelan
- - Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, USA; Center for Neuroscience, Feinstein Institute for Medical Research, Manhasset, USA; Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry, Hempstead, USA
| | - Amit Anand
- Center of Behavioral Health, Cleveland Clinic, Cleveland, OH, USA
| | | | - Philip F P van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands; Department of Psychiatry and Psychotherapy, University Hospital Essen, Essen, Germany
| |
Collapse
|
38
|
Li M, Yao X, Sun L, Zhao L, Xu W, Zhao H, Zhao F, Zou X, Cheng Z, Li B, Yang W, Cui R. Effects of Electroconvulsive Therapy on Depression and Its Potential Mechanism. Front Psychol 2020; 11:80. [PMID: 32153449 PMCID: PMC7044268 DOI: 10.3389/fpsyg.2020.00080] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Depression is one of the most common disorders causing mortality around the world. Although electroconvulsive therapy (ECT) is, along with antidepressants and psychotherapy, one of the three major treatments of depression, it is still considered as the last resort for depressed patients. This situation is partially due to limited studies and uncertainty regarding its mechanism. However, decades of increased research have focused on the effects of ECT on depression and its potential mechanism. Furthermore, these investigations may suggest that ECT should be a first-line therapy for depression due to its profound effects in relieving desperation in certain situations. Here, we outline recent clinical and preclinical studies and summarize the advantages and disadvantages of ECT. Thus, this review may provide some hints for clinical application.
Collapse
Affiliation(s)
- Ming Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Lihua Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Lihong Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Wenbo Xu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Haisheng Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Enneking V, Leehr EJ, Dannlowski U, Redlich R. Brain structural effects of treatments for depression and biomarkers of response: a systematic review of neuroimaging studies. Psychol Med 2020; 50:187-209. [PMID: 31858931 DOI: 10.1017/s0033291719003660] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antidepressive pharmacotherapy (AD), electroconvulsive therapy (ECT) and cognitive behavioural therapy (CBT) are effective treatments for major depressive disorder. With our review, we aim to provide a systematic overview of neuroimaging studies that investigate the effects of AD, ECT and CBT on brain grey matter volume (GMV) and biomarkers associated with response. After a systematic database research on PubMed, we included 50 studies using magnetic resonance imaging and investigating (1) changes in GMV, (2) pre-treatment GMV biomarkers associated with response, or (3) the accuracy of predictions of response to AD, ECT or CBT based on baseline GMV data. The strongest evidence for brain structural changes was found for ECT, showing volume increases within the temporal lobe and subcortical structures - such as the hippocampus-amygdala complex, anterior cingulate cortex (ACC) and striatum. For AD, the evidence is heterogeneous as only 4 of 11 studies reported significant changes in GMV. The results are not sufficient in order to draw conclusions about the structural brain effects of CBT. The findings show consistently that higher pre-treatment ACC volume is associated with response to AD, ECT and CBT. An association of higher pre-treatment hippocampal volume and response has only been reported for AD. Machine learning approaches based on pre-treatment whole brain patterns reach accuracies of 64-90% for predictions of AD or ECT response on the individual patient level. The findings underline the potential of brain biomarkers for the implementation in clinical practice as an additive feature within the process of treatment selection.
Collapse
Affiliation(s)
- Verena Enneking
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
40
|
Xu H, Zhao T, Luo F, Zheng Y. Dissociative changes in gray matter volume following electroconvulsive therapy in major depressive disorder: a longitudinal structural magnetic resonance imaging study. Neuroradiology 2019; 61:1297-1308. [DOI: 10.1007/s00234-019-02276-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022]
|
41
|
Gryglewski G, Baldinger-Melich P, Seiger R, Godbersen GM, Michenthaler P, Klöbl M, Spurny B, Kautzky A, Vanicek T, Kasper S, Frey R, Lanzenberger R. Structural changes in amygdala nuclei, hippocampal subfields and cortical thickness following electroconvulsive therapy in treatment-resistant depression: longitudinal analysis. Br J Psychiatry 2019; 214:159-167. [PMID: 30442205 PMCID: PMC6383756 DOI: 10.1192/bjp.2018.224] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is the treatment of choice for severe mental illness including treatment-resistant depression (TRD). Increases in volume of the hippocampus and amygdala following ECT have consistently been reported.AimsTo investigate neuroplastic changes after ECT in specific hippocampal subfields and amygdala nuclei using high-resolution structural magnetic resonance imaging (MRI) (trial registration: clinicaltrials.gov - NCT02379767). METHOD MRI scans were carried out in 14 patients (11 women, 46.9 years (s.d. = 8.1)) with unipolar TRD twice before and once after a series of right unilateral ECT in a pre-post study design. Volumes of subcortical structures, including subfields of the hippocampus and amygdala, and cortical thickness were extracted using FreeSurfer. The effect of ECT was tested using repeated-measures ANOVA. Correlations of imaging and clinical parameters were explored. RESULTS Increases in volume of the right hippocampus by 139.4 mm3 (s.d. = 34.9), right amygdala by 82.3 mm3 (s.d. = 43.9) and right putamen by 73.9 mm3 (s.d. = 77.0) were observed. These changes were localised in the basal and lateral nuclei, and the corticoamygdaloid transition area of the amygdala, the hippocampal-amygdaloid transition area and the granule cell and molecular layer of the dentate gyrus. Cortical thickness increased in the temporal, parietal and insular cortices of the right hemisphere. CONCLUSIONS Following ECT structural changes were observed in hippocampal subfields and amygdala nuclei that are specifically implicated in the pathophysiology of depression and stress-related disorders and retain a high potential for neuroplasticity in adulthood.Declaration of interestS.K. has received grants/research support, consulting fees and/or honoraria within the past 3 years from Angelini, AOP Orphan Pharmaceuticals AG, AstraZeneca, Celegne GmbH, Eli Lilly, Janssen-Cilag Pharma GmbH, KRKA-Pharma, Lundbeck A/S, Neuraxpharm, Pfizer, Pierre Fabre, Schwabe and Servier. R.L. received travel grants and/or conference speaker honoraria from Shire, AstraZeneca, Lundbeck A/S, Dr. Willmar Schwabe GmbH, Orphan Pharmaceuticals AG, Janssen-Cilag Pharma GmbH, and Roche Austria GmbH.
Collapse
Affiliation(s)
- Gregor Gryglewski
- Resident, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Pia Baldinger-Melich
- Consultant Psychiatrist, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - René Seiger
- Research Associate, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | | | - Paul Michenthaler
- Resident, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Manfred Klöbl
- Research Assistant, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Benjamin Spurny
- Research Assistant, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Alexander Kautzky
- Resident, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Thomas Vanicek
- Resident, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Siegfried Kasper
- Chair, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Richard Frey
- Vice Chair, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Associate Professor and Head of the Neuroimaging Labs, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria,Correspondence: Professor Rupert Lanzenberger, Neuroimaging labs (NIL) – PET, MRI, EEG, TMS & Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
42
|
Xu J, Wang J, Bai T, Zhang X, Li T, Hu Q, Li H, Zhang L, Wei Q, Tian Y, Wang K. Electroconvulsive Therapy Induces Cortical Morphological Alterations in Major Depressive Disorder Revealed with Surface-Based Morphometry Analysis. Int J Neural Syst 2019; 29:1950005. [PMID: 31387489 DOI: 10.1142/s0129065719500059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although electroconvulsive therapy (ECT) is one of the most effective treatments for major depressive disorder (MDD), the mechanism underlying the therapeutic efficacy and side effects of ECT remains poorly understood. Here, we investigated alterations in the cortical morphological measurements including cortical thickness (CT), surface area (SA), and local gyrification index (LGI) in 23 MDD patients before and after ECT. Furthermore, multivariate pattern analysis using linear support vector machine (SVM) was applied to investigate whether the changed morphological measurements can be effective indicators for therapeutic efficacy of ECT. Surface-based morphometry (SBM) analysis found significantly increased vertex-wise and regional cortical thickness (CT) and surface area (SA) in widespread regions, mainly located in the left insula (INS) and left fusiform gyrus, as well as hypergyrification in the left middle temporal gyrus (MTG) in MDD patients after ECT. Partial correlational analyses identified associations between the morphological properties and depressive symptom scores and impaired memory scores. Moreover, SVM result showed that the changed morphological measurements were effective to classify the MDD patients before and after ECT. Our findings suggested that ECT may enhance cortical neuroplasticity to facilitate neurogenesis to remit depressive symptoms and to impair delayed memory. These findings indicated that the cortical morphometry is a good index for therapeutic efficacy of ECT.
Collapse
Affiliation(s)
- Jinping Xu
- 1Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.,2University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiaojian Wang
- 3The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 625014, P. R. China
| | - Tongjian Bai
- 4Department of Neurology, The First Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Xiaodong Zhang
- 1Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Tian Li
- 1Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Qingmao Hu
- 1Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.,5CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Hongming Li
- 6Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Zhang
- 7Anhui Mental Health Center, Hefei 230022, P. R. China
| | - Qiang Wei
- 4Department of Neurology, The First Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Yanghua Tian
- 4Department of Neurology, The First Hospital of Anhui Medical University, Hefei 230022, P. R. China.,8Department of Neurology, Shannan People's Hospital, Shannan, 856000, P. R. China
| | - Kai Wang
- 4Department of Neurology, The First Hospital of Anhui Medical University, Hefei 230022, P. R. China.,9Department of Medical Psychology, Anhui Medical University, Hefei 230022, P. R. China.,10Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, P. R. China.,11Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei 230022, P. R. China
| |
Collapse
|
43
|
Qiu H, Li X, Luo Q, Li Y, Zhou X, Cao H, Zhong Y, Sun M. Alterations in patients with major depressive disorder before and after electroconvulsive therapy measured by fractional amplitude of low-frequency fluctuations (fALFF). J Affect Disord 2019; 244:92-99. [PMID: 30326347 PMCID: PMC6239214 DOI: 10.1016/j.jad.2018.10.099] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is an important treatment option for patients with major depressive disorder (MDD). However, the mechanisms of ECT in MDD are still unclear. METHODS Twenty-four patients with severe MDD and 14 healthy controls were enrolled in this study. Eight ECT sessions were conducted for MDD patients using brief-pulse square-wave signal at bitemporal locations. To investigate the regional cerebral blood flow in MDD patients before and after ECT treatments by resting-state functional magnetic resonance imaging (rs-fMRI), the patients were scanned twice (before the first ECT and after the eighth ECT) for data acquisition. Afterward, we adopted fractional amplitude of low-frequency fluctuations (fALFF) to assess the alterations of regional brain activity. RESULTS Compared with healthy controls, the fALFF in the cerebellum lobe, parahippocampal gyrus, fusiform gyrus, anterior cingulate gyrus, and thalamus in MDD patients before ECT (pre-ECT) was significantly increased. In another comparison, the fALFF in the cerebellum anterior lobe, fusiform gyrus, insula, parahippocampal gyrus, middle frontal gyrus, and inferior frontal gyrus in pre-ECT patients was significantly greater than the post-ECT fALFF. LIMITATIONS Only two rs-fMRI scans were conducted at predefined times: before the first and after the eighth ECT treatment. More scans during the ECT sessions would yield more information. In addition, the sample size in this study was limited. The number of control subjects was relatively small. A larger number of subjects would produce more robust findings. CONCLUSIONS The fALFF of both healthy controls and post-ECT patients in cerebellum anterior lobe, fusiform gyrus, and parahippocampal gyrus is significantly lower than the fALFF of pre-ECT patients. This finding demonstrates that ECT treatment is effective on these brain areas in MDD patients.
Collapse
Affiliation(s)
- Haitang Qiu
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xinke Li
- College of Communication Engineering, Chongqing University, Chongqing 400044, PR China; Collaborative innovation center for brain science, Chongqing University, Chongqing 400044, PR China; Department of Neurosurgery, University of Pittsburgh, Pittsburgh 15213, PA, USA.
| | - Qinghua Luo
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yongming Li
- College of Communication Engineering, Chongqing University, Chongqing 400044, PR China; Collaborative innovation center for brain science, Chongqing University, Chongqing 400044, PR China
| | - Xichuan Zhou
- College of Communication Engineering, Chongqing University, Chongqing 400044, PR China
| | - Hailin Cao
- College of Communication Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yuanhong Zhong
- College of Communication Engineering, Chongqing University, Chongqing 400044, PR China
| | - Mingui Sun
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh 15213, PA, USA
| |
Collapse
|
44
|
Cano M, Lee E, Cardoner N, Martínez-Zalacaín I, Pujol J, Makris N, Henry M, Via E, Hernández-Ribas R, Contreras-Rodríguez O, Menchón JM, Urretavizcaya M, Soriano-Mas C, Camprodon JA. Brain Volumetric Correlates of Right Unilateral Versus Bitemporal Electroconvulsive Therapy for Treatment-Resistant Depression. J Neuropsychiatry Clin Neurosci 2019; 31:152-158. [PMID: 30458664 PMCID: PMC7857738 DOI: 10.1176/appi.neuropsych.18080177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The selection of a bitemporal (BT) or right unilateral (RUL) electrode placement affects the efficacy and side effects of ECT. Previous studies have not entirely described the neurobiological underpinnings of such differential effects. Recent neuroimaging research on gray matter volumes is contributing to our understanding of the mechanism of action of ECT and could clarify the differential mechanisms of BT and RUL ECT. METHODS To assess the whole-brain gray matter volumetric changes observed after treating patients with treatment-resistant depression with BT or RUL ECT, the authors used MRI to assess 24 study subjects with treatment-resistant depression (bifrontotemporal ECT, N=12; RUL ECT, N=12) at two time points (before the first ECT session and after ECT completion). RESULTS Study subjects receiving BT ECT showed gray matter volume increases in the bilateral limbic system, but subjects treated with RUL ECT showed gray matter volume increases limited to the right hemisphere. The authors observed significant differences between the two groups in midtemporal and subcortical limbic structures in the left hemisphere. CONCLUSIONS These findings highlight that ECT-induced gray matter volume increases may be specifically observed in the stimulated hemispheres. The authors suggest that electrode placement may relevantly contribute to the development of personalized ECT protocols.
Collapse
Affiliation(s)
- Marta Cano
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain,CIBERSAM, Carlos III Health Institute, Madrid, Spain,Department of Psychiatry, Massacuhsetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erik Lee
- Department of Psychiatry, Massacuhsetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Narcís Cardoner
- CIBERSAM, Carlos III Health Institute, Madrid, Spain,Mental Health Department, Parc Taulí Sabadell, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Martínez-Zalacaín
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Jesús Pujol
- CIBERSAM, Carlos III Health Institute, Madrid, Spain,MRI Research Unit, Radiology Department, Hospital del Mar, Barcelona, Spain
| | - Nikos Makris
- Department of Psychiatry, Massacuhsetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Henry
- Department of Psychiatry, Massacuhsetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Esther Via
- CIBERSAM, Carlos III Health Institute, Madrid, Spain,Sant Joan de Déu Barcelona-Children’s Hospital, Barcelona, Spain
| | - Rosa Hernández-Ribas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain,CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - Oren Contreras-Rodríguez
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain,CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - José M. Menchón
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain,CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - Mikel Urretavizcaya
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain,CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain,CIBERSAM, Carlos III Health Institute, Madrid, Spain,Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan A. Camprodon
- Department of Psychiatry, Massacuhsetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Wang J, Tang Y, Curtin A, Xia M, Tang X, Zhao Y, Li Y, Qian Z, Sheng J, Zhang T, Jia Y, Li C, Wang J. ECT-induced brain plasticity correlates with positive symptom improvement in schizophrenia by voxel-based morphometry analysis of grey matter. Brain Stimul 2018; 12:319-328. [PMID: 30473477 DOI: 10.1016/j.brs.2018.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is often considered as an augmentation of antipsychotic treatment for schizophrenia in drug-refractory cases. However, the mechanisms underlying the observed therapeutic effects are still not understood. OBJECTIVE We aimed to investigate changes in whole brain grey matter volume (GMV) before and after modified ECT. GMV was determined using voxel-based morphometry (VBM) whole brain analysis. Correlations of brain structural changes with clinical improvement were also investigated. METHODS Twenty-one schizophrenia patients treated with a full course of ECT combined with antipsychotics (ECT group) and 21 schizophrenia patients treated only with antipsychotics (Drug group) were observed in parallel. Magnetic resonance imaging scans were performed at baseline (T1) and follow-up (T2) for each patient. Data were compared to a healthy control group (HC group) of 23 persons who were only scanned at baseline. Demographic data were matched between the three groups. RESULTS Significant interactions of group by time were found within four brain regions: the left parahippocampal gyrus/hippocampus, right parahippocampal gyrus/hippocampus, right temporal_pole_mid/superior temporal gyrus, and right insula. Post-hoc analysis revealed an increase of GMV across all four regions amongst ECT group, but a decrease of GMV within the Drug group. Furthermore, the ECT group showed a significant positive correlation of GMV change in the right parahippocampal gyrus/hippocampus with a reduction of positive subscore in the positive and negative syndrome scale. Both treatment groups did not differ significantly in terms of GMV from the HC group in these regions either at T1 or at T2. CONCLUSION Our findings indicate that ECT may induce brain plasticity as indexed by grey matter volume change during the treatment of schizophrenia via distinct mechanics from those by antipsychotic medications. ECT may ameliorate the positive psychotic symptoms of patients suffering from schizophrenia by preferentially targeting limbic brain areas such as the parahippocampal gyrus/hippocampus.
Collapse
Affiliation(s)
- Junjie Wang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215137, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.
| | - Adrian Curtin
- School of Biomedical Engineering & Health Sciences, Drexel University, Philadelphia, PA, 19104, USA; Med-X Institute, Shanghai Jiaotong University University, Shanghai, 200300, China
| | - Mengqing Xia
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215137, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Yuanqiao Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Yu Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Jianhua Sheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Yuping Jia
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, China; Brain Science and Technology Research Center, Shanghai Jiaotong University, Shanghai, 200030, China; Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, 200030, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, China; Brain Science and Technology Research Center, Shanghai Jiaotong University, Shanghai, 200030, China; Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, 200030, China.
| |
Collapse
|
46
|
Volume of the Human Hippocampus and Clinical Response Following Electroconvulsive Therapy. Biol Psychiatry 2018; 84:574-581. [PMID: 30006199 PMCID: PMC6697556 DOI: 10.1016/j.biopsych.2018.05.017] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/29/2018] [Accepted: 05/13/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Hippocampal enlargements are commonly reported after electroconvulsive therapy (ECT). To clarify mechanisms, we examined if ECT-induced hippocampal volume change relates to dose (number of ECT sessions and electrode placement) and acts as a biomarker of clinical outcome. METHODS Longitudinal neuroimaging and clinical data from 10 independent sites participating in the Global ECT-Magnetic Resonance Imaging Research Collaboration (GEMRIC) were obtained for mega-analysis. Hippocampal volumes were extracted from structural magnetic resonance images, acquired before and after patients (n = 281) experiencing a major depressive episode completed an ECT treatment series using right unilateral and bilateral stimulation. Untreated nondepressed control subjects (n = 95) were scanned twice. RESULTS The linear component of hippocampal volume change was 0.28% (SE 0.08) per ECT session (p < .001). Volume change varied by electrode placement in the left hippocampus (bilateral, 3.3 ± 2.2%, d = 1.5; right unilateral, 1.6 ± 2.1%, d = 0.8; p < .0001) but not the right hippocampus (bilateral, 3.0 ± 1.7%, d = 1.8; right unilateral, 2.7 ± 2.0%, d = 1.4; p = .36). Volume change for electrode placement per ECT session varied similarly by hemisphere. Individuals with greater treatment-related volume increases had poorer outcomes (Montgomery-Åsberg Depression Rating Scale change -1.0 [SE 0.35], per 1% volume increase, p = .005), although the effects were not significant after controlling for ECT number (slope -0.69 [SE 0.38], p = .069). CONCLUSIONS The number of ECT sessions and electrode placement impacts the extent and laterality of hippocampal enlargement, but volume change is not positively associated with clinical outcome. The results suggest that the high efficacy of ECT is not explained by hippocampal enlargement, which alone might not serve as a viable biomarker for treatment outcome.
Collapse
|
47
|
Gbyl K, Videbech P. Electroconvulsive therapy increases brain volume in major depression: a systematic review and meta-analysis. Acta Psychiatr Scand 2018; 138:180-195. [PMID: 29707778 DOI: 10.1111/acps.12884] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The main purpose of this review was to synthesise evidence on ECT's effects on brain's structure. METHOD A systematic literature review of longitudinal studies of depressed patients treated with ECT using magnetic resonance imaging (MRI) and meta-analysis of ECT's effect on hippocampal volume. RESULTS Thirty-two studies with 467 patients and 285 controls were included. The MRI studies did not find any evidence of ECT-related brain damage. All but one of the newer MRI volumetric studies found ECT-induced volume increases in certain brain areas, most consistently in hippocampus. Meta-analysis of effect of ECT on hippocampal volume yielded pooled effect size: g = 0.39 (95% CI = 0.18-0.61) for the right hippocampus and g = 0.31 (95% CI = 0.09-0.53) for the left. The DTI studies point to an ECT-induced increase in the integrity of white matter pathways in the frontal and temporal lobes. The results of correlations between volume increases and treatment efficacy were inconsistent. CONCLUSION The MRI studies do not support the hypothesis that ECT causes brain damage; on the contrary, the treatment induces volume increases in fronto-limbic areas. Further studies should explore the relationship between these increases and treatment effect and cognitive side effects.
Collapse
Affiliation(s)
- K Gbyl
- Centre for Neuropsychiatric Depression Research, Mental Health Centre Glostrup, Glostrup, Denmark
| | - P Videbech
- Centre for Neuropsychiatric Depression Research, Mental Health Centre Glostrup, Glostrup, Denmark
| |
Collapse
|
48
|
How Does Repetitive Transcranial Magnetic Stimulation Influence the Brain in Depressive Disorders?: A Review of Neuroimaging Magnetic Resonance Imaging Studies. J ECT 2018; 34:79-86. [PMID: 29324522 DOI: 10.1097/yct.0000000000000477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) is a nonpharmacological technique used to stimulate the brain. It is a safe and proven alternative tool to treat resistant major depressive disorders (MDDs). Neuroimaging studies suggest a wide corticolimbic network is involved in MDDs. We researched observable changes in magnetic resonance imaging induced by rTMS to clarify the operational mechanism. METHODS A systematic search of the international literature was performed using PubMed and Embase, using papers published up to January 1, 2017. The following MESH terms were used: (depression or major depressive disorder) and (neuroimaging or MRI) and (rTMS or repetitive transcranial magnetic stimulation). We searched the databases using a previously defined strategy to identify potentially eligible studies. RESULTS Both structural and functional changes were observed on magnetic resonance imagings performed before and after rTMS. Various areas of the brain were impacted when rTMS was used. Although the results were very heterogeneous, a pattern that involved the anterior cingulate cortex and the prefrontal cortex emerged. These are known to be regions of interest in MDDs. However, the various parameters used in rTMS make any generalization difficult. CONCLUSIONS Repetitive transcranial magnetic stimulation helps to treat MDDs with good efficacy. Its effect on the brain, as observed in several neuroimaging studies, seems to impact on the structural and functional features of several networks and structures involved in major depressive disorders.
Collapse
|
49
|
Structural-functional brain changes in depressed patients during and after electroconvulsive therapy. Acta Neuropsychiatr 2018; 30:17-28. [PMID: 27876102 DOI: 10.1017/neu.2016.62] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Electroconvulsive therapy (ECT) is a non-pharmacological treatment that is effective in treating severe and treatment-resistant depression. Although the efficacy of ECT has been demonstrated to treat major depressive disorder (MDD), the brain mechanisms underlying this process remain unclear. Structural-functional changes occur with the use of ECT as a treatment for depression based on magnetic resonance imaging (MRI). For this reason, we have tried to identify the changes that were identified by MRI to try to clarify some operating mechanisms of ECT. We focus to brain changes on MRI [structural MRI (sMRI), functional MRI (fMRI) and diffusion tensor imging (DTI)] after ECT. METHODS A systematic search of the international literature was performed using the bibliographic search engines PubMed and Embase. The research focused on papers published up to 30 September 2015. The following Medical Subject Headings (MESH) terms were used: electroconvulsive therapy AND (MRI OR fMRI OR DTI). Papers published in English were included. Four authors searched the database using a predefined strategy to identify potentially eligible studies. RESULTS There were structural changes according to the sMRI performed before and after ECT treatment. These changes do not seem to be entirely due to oedema. This investigation assessed the functional network connectivity associated with the ECT response in MDD. ECT response reverses the relationship from negative to positive between the two pairs of networks. CONCLUSION We found structural-functional changes in MRI post-ECT. Because of the currently limited MRI data on ECT in the literature, it is necessary to conduct further investigations using other MRI technology.
Collapse
|
50
|
Takamiya A, Chung JK, Liang KC, Graff-Guerrero A, Mimura M, Kishimoto T. Effect of electroconvulsive therapy on hippocampal and amygdala volumes: systematic review and meta-analysis. Br J Psychiatry 2018; 212:19-26. [PMID: 29433612 DOI: 10.1192/bjp.2017.11] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is one of the most effective treatments for depression, although the underlying mechanisms remain unclear. Animal studies have shown that electroconvulsive shock induced neuroplastic changes in the hippocampus. Aims To summarise volumetric magnetic resonance imaging studies investigating the effects of ECT on limbic brain structures. METHOD A systematic review and meta-analysis was conducted to assess volumetric changes of each side of the hippocampus and amygdala before and after ECT. Standardised mean difference (SMD) was calculated. RESULTS A total of 8 studies (n = 193) were selected for our analyses. Both right and left hippocampal and amygdala volumes increased after ECT. Meta-regression analyses revealed that age, percentage of those responding and percentage of those in remission were negatively associated with volume increases in the left hippocampus. CONCLUSIONS ECT increased brain volume in the limbic structures. The clinical relevance of volume increase needs further investigation. Declaration of interest None.
Collapse
Affiliation(s)
- Akihiro Takamiya
- Department of Neuropsychiatry,Keio University School of Medicine and Komagino Hospital,Tokyo,Japan
| | - Jun Ku Chung
- Institute of Medical Science,Faculty of Medicine,University of Toronto, and Multimodal Imaging Group Research Imaging Centre, Centre for Addiction and Mental Health,Toronto,Canada
| | - Kuo-Ching Liang
- Department of Neuropsychiatry,Keio University School of Medicine,Tokyo,Japan
| | - Ariel Graff-Guerrero
- Institute of Medical Science,Faculty of Medicine,University of Toronto, Multimodal Imaging Group Research Imaging Centre, Centre for Addiction and Mental Health,Toronto,Department of Psychiatry,University of Toronto,and Geriatric Mental Health Division,Centre for Addiction and Mental Health,Toronto,Canada
| | - Masaru Mimura
- Department of Neuropsychiatry,Keio University School of Medicine,Tokyo,Japan
| | - Taishiro Kishimoto
- Department of Neuropsychiatry,Keio University School of Medicine,Tokyo, Japan, andHofstra Northwell School of Medicine, Hempstead, New York,USA
| |
Collapse
|