1
|
Sun D, Xi K, Yang R, Chu J, Xu M, Zhang D, Cheng Y. Gray matter volume differences based on sex in first-episode drug-naive patients with major depressive disorder and its molecular analysis. Neuroreport 2024; 35:1117-1122. [PMID: 39423325 DOI: 10.1097/wnr.0000000000002107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
This study analyzed whether gray matter volume (GMV) differences exist between the sexes in patients with major depressive disorder (MDD) and explored the relationships between these differences and neurotransmitter systems. This study enrolled 190 first-episode drug-naive patients with MDD and 293 healthy controls. All participants underwent T1-weighted high-resolution MRI. The interaction between the diagnosis (healthy controls vs. MDD) and sex (male vs. female) regarding GMV alterations was analyzed. The JuSpace toolbox, which covers a wide range of neurotransmitter systems, was used to identify the relationship between MDD-induced and sex-induced GMV alterations and specific receptor/transporter proteins in the brain. Sex-specific GMV differences were observed in the healthy controls but not in MDD patients. Male healthy controls had a larger GMV in the bilateral parahippocampal, lingual, inferior occipital, fusiform, cerebellar subregions, and left inferior temporal than female healthy controls, but several subregions of the thalamus had a larger GMV in female healthy controls than in male healthy controls. Sex-induced GMV alterations were associated with 5-hydroxytryptamine receptor subtype 1a, cannabinoid receptor, and dopamine receptor ( P < 0.01, false discovery rate corrected). GMV differences were not detected in the main effect of diagnosis and the interaction of diagnosis and sex. Sex-specific GMV differences are associated with the spatial distribution of serotonin, dopamine, and cannabinoid neurotransmitter receptor systems. Sex-based physiological differences in the GMV may account for male and female susceptibility to and differences in the clinical symptoms of MDD.
Collapse
Affiliation(s)
- Duo Sun
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan
| | - Kang Xi
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu
| | - Runxu Yang
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan
| | - Jiangmin Chu
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan
| | - Mingjie Xu
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan
| | - Dafu Zhang
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuqi Cheng
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan
| |
Collapse
|
2
|
Querry M, Botzung A, Cretin B, Demuynck C, Muller C, Ravier A, Schorr B, Mondino M, Sanna L, de Sousa PL, Philippi N, Blanc F. Neuroanatomical substrates of depression in dementia with Lewy bodies and Alzheimer's disease. GeroScience 2024; 46:5725-5744. [PMID: 38750385 PMCID: PMC11493943 DOI: 10.1007/s11357-024-01190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/01/2024] [Indexed: 10/23/2024] Open
Abstract
Dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) are often associated with depressive symptoms from the prodromal stage. The aim of the present study was to investigate the neuroanatomical correlates of depression in prodromal to mild DLB patients compared with AD patients. Eighty-three DLB patients, 37 AD patients, and 18 healthy volunteers were enrolled in this study. Depression was evaluated with the Mini International Neuropsychiatric Interview (MINI), French version 5.0.0. T1-weighted three-dimensional anatomical images were acquired for all participants. Regression and comparison analyses were conducted using a whole-brain voxel-based morphometry (VBM) approach on the grey matter volume (GMV). DLB patients presented a significantly higher mean MINI score than AD patients (p = 0.004), 30.1% of DLB patients had clinical depression, and 56.6% had a history of depression, while 0% of AD patients had clinical depression and 29.7% had a history of depression. VBM regression analyses revealed negative correlations between the MINI score and the GMV of right prefrontal regions in DLB patients (p < 0.001, uncorrected). Comparison analyses between DLB patients taking and those not taking an antidepressant mainly highlighted a decreased GMV in the bilateral middle/inferior temporal gyrus (p < 0.001, uncorrected) in treated DLB patients. In line with the literature, our behavioral analyses revealed higher depression scores in DLB patients than in AD patients. We also showed that depressive symptoms in DLB are associated with decreased GMV in right prefrontal regions. Treated DLB patients with long-standing depression would be more likely to experience GMV loss in the bilateral middle/inferior temporal cortex. These findings should be taken into account when managing DLB patients.
Collapse
Affiliation(s)
- Manon Querry
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France.
| | - Anne Botzung
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Benjamin Cretin
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
- CM2R, Neuropsychology Unit, Neurology Department, Head and Neck Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Catherine Demuynck
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Candice Muller
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Alix Ravier
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Benoît Schorr
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Mary Mondino
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
| | - Léa Sanna
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Paulo Loureiro de Sousa
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
| | - Nathalie Philippi
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
- CM2R, Neuropsychology Unit, Neurology Department, Head and Neck Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Frédéric Blanc
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Łapińska L, Szum-Jakubowska A, Krentowska A, Pawlak M, Hładuński M, Waszkiewicz N, Karczewska-Kupczewska M, Kamiński K, Kowalska I. The relationship between brain structure volumes, depressive symptoms and body composition in obese/overweight and normal-/underweight women. Sci Rep 2024; 14:21021. [PMID: 39251805 PMCID: PMC11384777 DOI: 10.1038/s41598-024-71924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Depressive symptoms are highly prevalent and heterogeneous in women. Different brain structures might be associated with depressive symptoms and body composition in women with obesity/overweight and normal-/underweight, although the data is limited. The analysis included 265 women from Bialystok PLUS population study, untreated with antidepressive or antipsychotic medications. The subjects underwent brain magnetic resonance imaging and body composition analysis. Beck Depression Inventory (BDI) score was inversely associated with nucleus accumbens volume (β = -0.217, p = 0.008) in women with BMI ≥ 25 kg/m2, but with insula volume (β = -0.147, p = 0.027) in women with BMI < 25 kg/m2 after adjustment for age and estimated intracranial volume (eTIV). In women with BMI ≥ 25 kg/m2, nucleus accumbens volume was inversely associated with the percentage of visceral fat and BDI score (β = -0.236, p = 0.012, β = -0.192, p = 0.017) after adjustment for age and eTIV. In women with BMI < 25 kg/m2, insula volume was positively associated with total fat-free mass and negatively with the BDI score (β = 0.142, p = 0.030, β = -0.137, p = 0.037) after adjustment for age and eTIV. Depressive symptoms might be associated with nucleus accumbens volume in overweight/obese women, while in normal-/ underweight women-with alterations in insula volume.
Collapse
Affiliation(s)
- Lidia Łapińska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Bialystok, Poland.
| | - Aleksandra Szum-Jakubowska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Anna Krentowska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Mikołaj Pawlak
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcin Hładuński
- Independent Laboratory of Molecular Imaging, Medical University of Bialystok, Bialystok, Poland
| | | | - Monika Karczewska-Kupczewska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Karol Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Bialystok, Poland
| |
Collapse
|
4
|
Mi W, Gao Y, Lin H, Deng S, Mu Y, Zhang H. Morinda officinalis oligosaccharides modulate the default-mode network homogeneity in major depressive disorder at rest. Psychiatry Res Neuroimaging 2024; 343:111847. [PMID: 38968754 DOI: 10.1016/j.pscychresns.2024.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND While prior studies have explored the efficacy of Morinda officinalis oligosaccharides (MOs) as a treatment for patients with major depressive disorder (MDD), the mechanistic basis for the effects of MOs on brain function or the default-mode network (DMN) has yet to be characterized. The objective of this was to examine the effects of MOs treatment on functional connectivity in different regions of the DMN. METHODS In total, 27 MDD patients and 29 healthy control subjects (HCs) underwent resting-state functional magnetic resonance imaging. The patients were then treated with MOs for 8 weeks, and scanning was performed at baseline and the end of the 8-week treatment period. Changes in DMN homogeneity associated with MOs treatment were assessed using network homogeneity (NH) analyses of the imaging data, and pattern classification approaches were employed to determine whether abnormal baseline NH deficits could differentiate between MDD patients and controls. The ability of NH abnormalities to predict patient responses to MOs treatment was also evaluated. RESULTS Relative to HCs, patients exhibited a baseline reduction in NH values in the right precuneus (PCu). At the end of the 8-week treatment period, the MDD patients showed reduced and increased NH values in the right PCu and left superior medial frontal gyrus (SMFG), respectively. Compared to these patients at baseline, the 8-week MOs treatment was associated with reduced NH values in the right angular gyrus and increased NH values in the left middle temporal gyrus and the right PCu. Support vector machine (SVM) analyses revealed that NH abnormalities in the right PCu and left SMFG were the most accurate (87.50%) for differentiating between MDD patients and HCs. CONCLUSION These results indicated that MOs treatment could alter default-mode NH in patients with MDD. The results provide a foundation for elucidation of the effects of MOs on brain function and suggest that the distinctive NH patterns observed in this study may be useful as imaging biomarkers for distinguishing between patients with MDD and healthy subjects.
Collapse
Affiliation(s)
- Weifeng Mi
- Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yujun Gao
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China; Clinical and Translational Sciences Lab, The Douglas Research Centre, McGill University, Montreal, Canada; Yichang Mental Health Center, Hubei, China; Institute of Mental Health, Three Gorges University, Hubei, China; Yichang City Clinical Research Center for Mental Disorders, Hubei, China
| | - Hang Lin
- Yichang Mental Health Center, Hubei, China; Institute of Mental Health, Three Gorges University, Hubei, China; Yichang City Clinical Research Center for Mental Disorders, Hubei, China; Department of Nephrology, Xiaogan Central Hospital, Xiaogan, China
| | - Shuo Deng
- Department of Psychiatry, Bejing Minkang Hospital, Beijing, 102206, China
| | - Yonggang Mu
- Shanghai Changning Mental Health Center, Shanghai, 200335, China
| | - Hongyan Zhang
- Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
5
|
Jiang C, Lin B, Ye X, Yu Y, Xu P, Peng C, Mou T, Yu X, Zhao H, Zhao M, Li Y, Zhang S, Chen X, Pan F, Shang D, Jin K, Lu J, Chen J, Yin J, Huang M. Graph convolutional network with attention mechanism improve major depressive depression diagnosis based on plasma biomarkers and neuroimaging data. J Affect Disord 2024; 360:336-344. [PMID: 38824965 DOI: 10.1016/j.jad.2024.05.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The absence of clinically-validated biomarkers or objective protocols hinders effective major depressive disorder (MDD) diagnosis. Compared to healthy control (HC), MDD exhibits anomalies in plasma protein levels and neuroimaging presentations. Despite extensive machine learning studies in psychiatric diagnosis, a reliable tool integrating multi-modality data is still lacking. METHODS In this study, blood samples from 100 MDD and 100 HC were analyzed, along with MRI images from 46 MDD and 49 HC. Here, we devised a novel algorithm, integrating graph neural networks and attention modules, for MDD diagnosis based on inflammatory cytokines, neurotrophic factors, and Orexin A levels in the blood samples. Model performance was assessed via accuracy and F1 value in 3-fold cross-validation, comparing with 9 traditional algorithms. We then applied our algorithm to a dataset containing both the aforementioned protein quantifications and neuroimages, evaluating if integrating neuroimages into the model improves performance. RESULTS Compared to HC, MDD showed significant alterations in plasma protein levels and gray matter volume revealed by MRI. Our new algorithm exhibited superior performance, achieving an F1 value and accuracy of 0.9436 and 94.08 %, respectively. Integration of neuroimaging data enhanced our novel algorithm's performance, resulting in an improved F1 value and accuracy, reaching 0.9543 and 95.06 %. LIMITATIONS This single-center study with a small sample size requires future evaluations on a larger test set for improved reliability. CONCLUSIONS In comparison to traditional machine learning models, our newly developed MDD diagnostic model exhibited superior performance and showed promising potential for inclusion in routine clinical diagnosis for MDD.
Collapse
Affiliation(s)
- Chaonan Jiang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Bo Lin
- Department of Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China; School of Software Technology, Zhejiang University, Ningbo 315048, China
| | - Xinyi Ye
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Yiran Yu
- Management of Science with Artificial Intelligence, University of Nottingham Ningbo China, 315048, China
| | - Pengfeng Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Chenxu Peng
- Department of Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Tingting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Xinjian Yu
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haoyang Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Miaomiao Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Ying Li
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Shiyi Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Xuanqiang Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Fen Pan
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Desheng Shang
- Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jingkai Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianwei Yin
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310003, China
| | - Manli Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
6
|
Liu W, Heij J, Liu S, Liebrand L, Caan M, van der Zwaag W, Veltman DJ, Lu L, Aghajani M, van Wingen G. Hippocampal, thalamic, and amygdala subfield morphology in major depressive disorder: an ultra-high resolution MRI study at 7-Tesla. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01874-0. [PMID: 39217211 DOI: 10.1007/s00406-024-01874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Morphological changes in the hippocampal, thalamic, and amygdala subfields have been suggested to form part of the pathophysiology of major depressive disorder (MDD). However, the use of conventional MRI scanners and acquisition techniques has prevented in-depth examinations at the subfield level, precluding a fine-grained understanding of these subfields and their involvement in MDD pathophysiology. We uniquely employed ultra-high field MRI at 7.0 Tesla to map hippocampal, thalamic, and amygdala subfields in MDD. Fifty-six MDD patients and 14 healthy controls (HCs) were enrolled in the final analysis. FreeSurfer protocols were used to segment hippocampal, thalamic, and amygdala subfields. Bayesian analysis was then implemented to assess differences between groups and relations with clinical features. While no effect was found for MDD diagnosis (i.e., case-control comparison), clinical characteristics of MDD patients were associated with subfield volumes of the hippocampus, thalamus, and amygdala. Specifically, the severity of depressive symptoms, insomnia, and childhood trauma in MDD patients related to lower thalamic subfield volumes. In addition, MDD patients with typical MDD versus those with atypical MDD showed lower hippocampal, thalamic, and amygdala subfield volumes. MDD patients with recurrent MDD versus those with first-episode MDD also showed lower thalamic subfield volumes. These findings allow uniquely fine-grained insights into hippocampal, thalamic, and amygdala subfield morphology in MDD, linking some of them to the clinical manifestation of MDD.
Collapse
Affiliation(s)
- Weijian Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, HuayuanBei Road 51, Beijing, 100191, China.
- Department of Psychiatry, UMC Location University of Amsterdam, Meibergdreef 5, 1100 DD, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Jurjen Heij
- Spinoza Centre for Neuroimaging, KNAW, Amsterdam, the Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Shu Liu
- Key Laboratory of Genetic Evolution & Animal Models, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Luka Liebrand
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Matthan Caan
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Biomedical Engineering & Physics, UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, KNAW, Amsterdam, the Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, HuayuanBei Road 51, Beijing, 100191, China.
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute of Education and Child Studies, Section Forensic Family and Youth Care, Leiden University, Leiden, the Netherlands
| | - Guido van Wingen
- Department of Psychiatry, UMC Location University of Amsterdam, Meibergdreef 5, 1100 DD, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Yang H, Chen Y, Tao Q, Shi W, Tian Y, Wei Y, Li S, Zhang Y, Han S, Cheng J. Integrative molecular and structural neuroimaging analyses of the interaction between depression and age of onset: A multimodal magnetic resonance imaging study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111052. [PMID: 38871019 DOI: 10.1016/j.pnpbp.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Depression is a neurodevelopmental disorder that exhibits progressive gray matter volume (GMV) atrophy. Research indicates that brain development is influential in depression-induced GMV alterations. However, the interaction between depression and age of onset is not well understood by the underlying molecular and neuropathological mechanisms. Thus, 152 first-episode depression individuals and matched 130 healthy controls (HCs) were recruited to undergo T1-weighted high-resolution magnetic resonance imaging for this study. By two-way ANOVA, age and diagnosis were used as factors when analyzing the interaction of GMV in the participants. Then, spatial correlations between neurotransmitter maps and factor-related volume maps are established. Results illustrate a pronounced antagonistic interaction between depression and age of onset in the right insula, superior temporal gyrus, anterior cingulate gyrus, and orbitofrontal gyrus. Depression-caused reductions in GMV are mainly distributed in thalamic-limbic-cortical regions, regardless of age. For the main effect of age, adults exhibit brain atrophy in frontal, cerebellum, parietal, and temporal lobe structures. Cross-modal correlations showed that GMV changes in the interactive regions were linked with the serotonergic system and dopaminergic systems. Summarily, our results reveal the interaction between depression and age of onset in neurobiological mechanisms, which provide hints for future treatment of different ages of depression.
Collapse
Affiliation(s)
- Huiting Yang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Wenqing Shi
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Ya Tian
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| |
Collapse
|
8
|
Zhu J, Chen X, Lu B, Li XY, Wang ZH, Cao LP, Chen GM, Chen JS, Chen T, Chen TL, Cheng YQ, Chu ZS, Cui SX, Cui XL, Deng ZY, Gong QY, Guo WB, He CC, Hu ZJY, Huang Q, Ji XL, Jia FN, Kuang L, Li BJ, Li F, Li HX, Li T, Lian T, Liao YF, Liu XY, Liu YS, Liu ZN, Long YC, Lu JP, Qiu J, Shan XX, Si TM, Sun PF, Wang CY, Wang HN, Wang X, Wang Y, Wang YW, Wu XP, Wu XR, Wu YK, Xie CM, Xie GR, Xie P, Xu XF, Xue ZP, Yang H, Yu H, Yuan ML, Yuan YG, Zhang AX, Zhao JP, Zhang KR, Zhang W, Zhang ZJ, Yan CG, Yu Y. Transcriptomic decoding of regional cortical vulnerability to major depressive disorder. Commun Biol 2024; 7:960. [PMID: 39117859 PMCID: PMC11310478 DOI: 10.1038/s42003-024-06665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Previous studies in small samples have identified inconsistent cortical abnormalities in major depressive disorder (MDD). Despite genetic influences on MDD and the brain, it is unclear how genetic risk for MDD is translated into spatially patterned cortical vulnerability. Here, we initially examined voxel-wise differences in cortical function and structure using the largest multi-modal MRI data from 1660 MDD patients and 1341 controls. Combined with the Allen Human Brain Atlas, we then adopted transcription-neuroimaging spatial correlation and the newly developed ensemble-based gene category enrichment analysis to identify gene categories with expression related to cortical changes in MDD. Results showed that patients had relatively circumscribed impairments in local functional properties and broadly distributed disruptions in global functional connectivity, consistently characterized by hyper-function in associative areas and hypo-function in primary regions. Moreover, the local functional alterations were correlated with genes enriched for biological functions related to MDD in general (e.g., endoplasmic reticulum stress, mitogen-activated protein kinase, histone acetylation, and DNA methylation); and the global functional connectivity changes were associated with not only MDD-general, but also brain-relevant genes (e.g., neuron, synapse, axon, glial cell, and neurotransmitters). Our findings may provide important insights into the transcriptomic signatures of regional cortical vulnerability to MDD.
Collapse
Affiliation(s)
- Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Ying Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Han Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Ping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Guan-Mao Chen
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 250024, China
| | - Jian-Shan Chen
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Tao Chen
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tao-Lin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, 610052, China
| | - Yu-Qi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhao-Song Chu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Shi-Xian Cui
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xi-Long Cui
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhao-Yu Deng
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Yong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, 610052, China
| | - Wen-Bin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Can-Can He
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zheng-Jia-Yi Hu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qian Huang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Xin-Lei Ji
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feng-Nan Jia
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215003, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Bao-Juan Li
- Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Feng Li
- Beijing Anding Hospital, Capital Medical University, Beijing, 100120, China
| | - Hui-Xian Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310063, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Tao Lian
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi-Fan Liao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Yun Liu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yan-Song Liu
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215003, China
| | - Zhe-Ning Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yi-Cheng Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jian-Ping Lu
- Shenzhen Kangning Hospital Shenzhen, Guangzhou, 518020, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xiao-Xiao Shan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Peng-Feng Sun
- Xi'an Central Hospital, Xi'an, Shaanxi, 710004, China
| | - Chuan-Yue Wang
- Beijing Anding Hospital, Capital Medical University, Beijing, 100120, China
| | - Hua-Ning Wang
- Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiang Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ying Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 250024, China
| | - Yu-Wei Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ping Wu
- Xi'an Central Hospital, Xi'an, Shaanxi, 710004, China
| | - Xin-Ran Wu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Yan-Kun Wu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Chun-Ming Xie
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, 210009, China
| | - Guang-Rong Xie
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peng Xie
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400000, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Xiu-Feng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhen-Peng Xue
- Shenzhen Kangning Hospital Shenzhen, Guangzhou, 518020, China
| | - Hong Yang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310063, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Min-Lan Yuan
- West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Yong-Gui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ai-Xia Zhang
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jing-Ping Zhao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ke-Rang Zhang
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Wei Zhang
- West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Zi-Jing Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| |
Collapse
|
9
|
Cattaneo A, Begni V, Zonca V, Riva MA. Early life adversities, psychopathologies and novel pharmacological strategies. Pharmacol Ther 2024; 260:108686. [PMID: 38969307 DOI: 10.1016/j.pharmthera.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Exposure to adversities during early life stages (early life adversities - ELA), ranging from pregnancy to adolescence, represents a major risk factor for the vulnerability to mental disorders. Hence, it is important to understand the molecular and functional underpinning of such relationship, in order to develop strategies aimed at reducing the psychopathologic burden associated with ELA, which may eventually lead to a significant improvement in clinical practice. In this review, we will initially recapitulate clinical and preclinical evidence supporting the link between ELA and psychopathology and we will primarily discuss the main biological mechanisms that have been described as potential mediators of the effects of ELA on the psychopathologic risk, including the role for genetic factors as well as sex differences. The knowledge emerging from these studies may be instrumental for the development of novel therapeutic strategies aimed not only at correcting the deficits that emerge from ELA exposure, but also in preventing the manifestation of a full-blown psychopathologic condition. With this respect, we will specifically focus on adolescence as a key time frame for disease onset as well as for early therapeutic intervention. We believe that incorporating clinical and preclinical research data in the context of early life adversities can be instrumental to elucidate the mechanisms contributing to the risk for psychopathology or that may promote resilience. This will ultimately allow the identification of 'at risk' individuals who may benefit from specific forms of interventions that, by interfering with disease trajectories, could result in more benign clinical outcomes.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Valentina Zonca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
10
|
Heij J, van der Zwaag W, Knapen T, Caan MWA, Forstman B, Veltman DJ, van Wingen G, Aghajani M. Quantitative MRI at 7-Tesla reveals novel frontocortical myeloarchitecture anomalies in major depressive disorder. Transl Psychiatry 2024; 14:262. [PMID: 38902245 PMCID: PMC11190139 DOI: 10.1038/s41398-024-02976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Whereas meta-analytical data highlight abnormal frontocortical macrostructure (thickness/surface area/volume) in Major Depressive Disorder (MDD), the underlying microstructural processes remain uncharted, due to the use of conventional MRI scanners and acquisition techniques. We uniquely combined Ultra-High Field MRI at 7.0 Tesla with Quantitative Imaging to map intracortical myelin (proxied by longitudinal relaxation time T1) and iron concentration (proxied by transverse relaxation time T2*), microstructural processes deemed particularly germane to cortical macrostructure. Informed by meta-analytical evidence, we focused specifically on orbitofrontal and rostral anterior cingulate cortices among adult MDD patients (N = 48) and matched healthy controls (HC; N = 10). Analyses probed the association of MDD diagnosis and clinical profile (severity, medication use, comorbid anxiety disorders, childhood trauma) with aforementioned microstructural properties. MDD diagnosis (p's < 0.05, Cohen's D = 0.55-0.66) and symptom severity (p's < 0.01, r = 0.271-0.267) both related to decreased intracortical myelination (higher T1 values) within the lateral orbitofrontal cortex, a region tightly coupled to processing negative affect and feelings of sadness in MDD. No relations were found with local iron concentrations. These findings allow uniquely fine-grained insights on frontocortical microstructure in MDD, and cautiously point to intracortical demyelination as a possible driver of macroscale cortical disintegrity in MDD.
Collapse
Affiliation(s)
- Jurjen Heij
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, NIN, Amsterdam, The Netherlands
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, NIN, Amsterdam, The Netherlands
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, NIN, Amsterdam, The Netherlands
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matthan W A Caan
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Birte Forstman
- Department of Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Institute of Education and Child Studies, Section Forensic Family & Youth Care, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
11
|
Saccaro LF, Tassone M, Tozzi F, Rutigliano G. Proton magnetic resonance spectroscopy of N-acetyl aspartate in first depressive episode and chronic major depressive disorder: A systematic review and meta-analysis. J Affect Disord 2024; 355:265-282. [PMID: 38554884 DOI: 10.1016/j.jad.2024.03.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
N-acetyl aspartate (NAA) is a marker of neuronal integrity and metabolism. Deficiency in neuronal plasticity and hypometabolism are implicated in Major Depressive Disorder (MDD) pathophysiology. To test if cerebral NAA concentrations decrease progressively over the MDD course, we conducted a pre-registered meta-analysis of Proton Magnetic Resonance Spectroscopy (1H-MRS) studies comparing NAA concentrations in chronic MDD (n = 1308) and first episode of depression (n = 242) patients to healthy controls (HC, n = 1242). Sixty-two studies were meta-analyzed using a random-effect model for each brain region. NAA concentrations were significantly reduced in chronic MDD compared to HC within the frontal lobe (Hedges' g = -0.330; p = 0.018), the occipital lobe (Hedges' g = -0.677; p = 0.007), thalamus (Hedges' g = -0.673; p = 0.016), and frontal (Hedges' g = -0.471; p = 0.034) and periventricular white matter (Hedges' g = -0.478; p = 0.047). We highlighted a gap of knowledge regarding NAA levels in first episode of depression patients. Sensitivity analyses indicated that antidepressant treatment may reverse NAA alterations in the frontal lobe. We highlighted field strength and correction for voxel grey matter as moderators of NAA levels detection. Future studies should assess NAA alterations in the early stages of the illness and their longitudinal progression.
Collapse
Affiliation(s)
- Luigi F Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Campus Biotech, 9 Chemin des Mines, 1202 Geneva, Switzerland; Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland.
| | - Matteo Tassone
- Department of Pathology, University of Pisa, via Savi 10, 56126 Pisa, Italy
| | - Francesca Tozzi
- Bio@SNS laboratory, Scuola Normale Superiore, 56124 Pisa, Italy
| | - Grazia Rutigliano
- Department of Pathology, University of Pisa, via Savi 10, 56126 Pisa, Italy; Institute of Clinical Sciences, Imperial College London, MRI Steiner Unit, Hammersmith Hospital Campus, Du Cane Road, W12 0NN London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
12
|
Schräder J, Meller T, Evermann U, Pfarr JK, Nenadić I. Multi-modal morphometric association study of subclinical depressive symptoms using voxel-based morphometry, cortical thickness, and diffusion tensor imaging (DTI). J Affect Disord 2024; 351:755-764. [PMID: 38302065 DOI: 10.1016/j.jad.2024.01.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Case-control studies in major depression have established numerous regional grey and white matter effects in fronto-limbic brain regions. Yet, brain structural studies of dimensional depressive psychopathology within the subclinical spectrum are still limited, in particular for multi-modal imaging approaches. METHODS Using voxel-based and surface-based morphometry (cortical thickness) in combination with diffusion tensor imaging (DTI) in a large non-clinical sample (N = 300), we correlated grey and white matter structural variation with subclinical depressive symptoms assessed with Beck's Depression inventory (BDI). RESULTS We found a significant decrease of axial diffusivity associated with higher BDI scores in the left hippocampal part of the cingulum bundle (p < 0.05, threshold free cluster enhanced [TFCE] p-value) and some grey matter trend results e.g., a non-linear negative correlation of cortical thickness with depressive symptom load in the right pre/postcentral cortex (pFWE = 0.054, family wise error [FWE] peak level corrected) and a trend in grey matter volume decrease in women in the inferior frontal gyrus (pFWE = 0.054). LIMITATIONS Since all grey matter effects disappear after FWE correction, we assume more stable effects in a larger, less homogenous sample enriched by help-seeking subjects covering a wider range of subclinical psychopathology. CONCLUSION Our study adds correlations between single depressive symptoms and brain structure to a growing literature. Since subclinical depression is increasingly recognised to be relevant in our understanding of manifest depression, early detection and identification of potential brain correlates of minor depressive symptoms has the potential to expand and reveal possible biomarkers and early psychological treatment.
Collapse
Affiliation(s)
- Julia Schräder
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Tina Meller
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ulrika Evermann
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Julia-Katharina Pfarr
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Igor Nenadić
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany; Marburg University Hospital - UKGM, Marburg, Germany.
| |
Collapse
|
13
|
Liu W, Jiang X, Deng Z, Xie Y, Guo Y, Wu Y, Sun Q, Kong L, Wu F, Tang Y. Functional and structural alterations in different durations of untreated illness in the frontal and parietal lobe in major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2024; 274:629-642. [PMID: 37542558 PMCID: PMC10995069 DOI: 10.1007/s00406-023-01625-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/22/2023] [Indexed: 08/07/2023]
Abstract
Major depressive disorder (MDD) is one of the most disabling illnesses that profoundly restricts psychosocial functions and impairs quality of life. However, the treatment rate of MDD is surprisingly low because the availability and acceptability of appropriate treatments are limited. Therefore, identifying whether and how treatment delay affects the brain and the initial time point of the alterations is imperative, but these changes have not been thoroughly explored. We investigated the functional and structural alterations of MDD for different durations of untreated illness (DUI) using regional homogeneity (ReHo) and voxel-based morphometry (VBM) with a sample of 125 treatment-naïve MDD patients and 100 healthy controls (HCs). The MDD patients were subgrouped based on the DUI, namely, DUI ≤ 1 M, 1 < DUI ≤ 6 M, 6 < DUI ≤ 12 M, and 12 < DUI ≤ 48 M. Subgroup comparison (MDD with different DUIs) was applied to compare ReHo and grey matter volume (GMV) extracted from clusters of regions with significant differences (the pooled MDD patients relative to HCs). Correlations and mediation effects were analysed to estimate the relationships between the functional and structural neuroimaging changes and clinical characteristics. MDD patients exhibited decreased ReHo in the left postcentral gyrus and precentral gyrus and reduced GMV in the left middle frontal gyrus and superior frontal gyrus relative to HCs. The initial functional abnormalities were detected after being untreated for 1 month, whereas this duration was 3 months for GMV reduction. Nevertheless, a transient increase in ReHo was observed after being untreated for 3 months. No significant differences were discovered between HCs and MDD patients with a DUI less than 1 month or among MDD patients with different DUIs in either ReHo or GMV. Longer DUI was related to reduced ReHo with GMV as mediator in MDD patients. We identified disassociated functional and anatomical alterations in treatment-naïve MDD patients at different time points in distinct brain regions at the early stage of the disease. Additionally, we also discovered that GMV mediated the relationship between a longer DUI and diminished ReHo in MDD patients, disclosing the latent deleterious and neuro-progressive implications of DUI on both the structure and function of the brain and indicating the necessity of early treatment of MDD.
Collapse
Affiliation(s)
- Wen Liu
- Brain Function Research Section, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Xiaowei Jiang
- Brain Function Research Section, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Zijing Deng
- Brain Function Research Section, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yu Xie
- Brain Function Research Section, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yingrui Guo
- Brain Function Research Section, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yifan Wu
- Brain Function Research Section, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Qikun Sun
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Lingtao Kong
- Brain Function Research Section, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Feng Wu
- Brain Function Research Section, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.
- Department of Psychiatry and Geriatric Medicine, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, People's Republic of China.
| |
Collapse
|
14
|
Liu H, Hao Z, Qiu S, Wang Q, Zhan L, Huang L, Shao Y, Wang Q, Su C, Cao Y, Sun J, Wang C, Lv Y, Li M, Shen W, Li H, Jia X. Grey matter structural alterations in anxiety disorders: a voxel-based meta-analysis. Brain Imaging Behav 2024; 18:456-474. [PMID: 38150133 DOI: 10.1007/s11682-023-00842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Anxiety disorders (ADs) are a group of prevalent and destructive mental illnesses, but the current understanding of their underlying neuropathology is still unclear. Employing voxel-based morphometry (VBM), previous studies have demonstrated several common brain regions showing grey matter volume (GMV) abnormalities. However, contradictory results have been reported among these studies. Considering that different subtypes of ADs exhibit common core symptoms despite different diagnostic criteria, and previous meta-analyses have found common core GMV-altered brain regions in ADs, the present research aimed to combine the results of individual studies to identify common GMV abnormalities in ADs. Therefore, we first performed a systematic search in PubMed, Embase, and Web of Science on studies investigating GMV differences between patients with ADs and healthy controls (HCs). Then, the anisotropic effect-size signed differential mapping (AES-SDM) was applied in this meta-analysis. A total of 24 studies (including 25 data sets) were included in the current study, and 906 patients with ADs and 1003 HCs were included. Compared with the HCs, the patients with ADs showed increased GMV in the left superior parietal gyrus, right angular gyrus, left precentral gyrus, and right lingual gyrus, and decreased GMV in the bilateral insula, bilateral thalamus, left caudate, and right putamen. In conclusion, the current study has identified some abnormal GMV brain regions that are related to the pathological mechanisms of anxiety disorders. These findings could contribute to a better understanding of the underlying neuropathology of ADs.
Collapse
Affiliation(s)
- Han Liu
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Zeqi Hao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Shasha Qiu
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Qianqian Wang
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Linlin Zhan
- School of Western Languages, Heilongjiang University, Heilongjiang, China
| | - Lina Huang
- Department of Radiology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Youbin Shao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Qing Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Chang Su
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Yikang Cao
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Chunjie Wang
- Institute of Brain Science, Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China
- Center for Cognition and Brain Disorders, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yating Lv
- Center for Cognition and Brain Disorders, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Mengting Li
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Wenbin Shen
- Department of Radiology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Huayun Li
- School of Psychology, Zhejiang Normal University, Jinhua, China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China.
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
15
|
Liu J, Sun SJ, Lu Y, Ping X, Zhang W, Pei L. Taste dysfunction as a predictor of depression in schizophrenia: A systematic review and meta-analysis. PLoS One 2024; 19:e0300935. [PMID: 38517844 PMCID: PMC10959346 DOI: 10.1371/journal.pone.0300935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
OBJECTIVE This study aims to investigate the relationship between taste dysfunction and depression among patients with schizophrenia, to achieve early detection of depression in clinical practice. METHODS Following PRISMA guidance, a comprehensive literature search was conducted globally, covering papers published from 1961 to June 2023. A total of 17 manuscripts were selected through meta-analysis and sensitivity analysis after examining available materials from seven databases to determine the correlation between depression and taste dysfunction. RESULTS The comparison of the 17 selected manuscripts revealed that individuals with gustatory dysfunction may be more likely to experience depressive symptoms (SMD, 0.51, 95% CI, 0.08 to 0.93, p = 0.02). Depression is associated with taste dysfunction in certain aspects, as indicated by the pleasantness ratings of sucrose solutions (SMD, -0.53, 95% confidence interval [CI] -1.11 to 0.05, p = 0.08), gustatory identification ability (SMD, 0.96, 95% CI, 0.03 to 1.89, p = 0.04), and the perception threshold of sweet taste (MD, 0.80, 95% CI, 0.79 to 0.81, p < 0.00001). CONCLUSIONS Due to variations in the methods, designs, and selection criteria employed in the included studies, it is necessary to establish a feasible framework. Future research using detailed and targeted approaches can provide clearer and more unified conclusions on the relationship between taste dysfunction and depression. Moreover, further high-quality research is needed to obtain clearer conclusions and explore the potential of taste dysfunction as an effective tool for early screening of depression. TRIAL REGISTRATION This review has been registered in the PROSPERO on April 2022 with the identifier CRD42023400172.
Collapse
Affiliation(s)
- Jia Liu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Turbidity, Shijiazhuang, Hebei, China
| | - Shu-Jie Sun
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ye Lu
- Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Turbidity, Shijiazhuang, Hebei, China
| | - Xin Ping
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Turbidity, Shijiazhuang, Hebei, China
| | - Wan Zhang
- Renmin University of China, Beijing, China
| | - Lin Pei
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Turbidity, Shijiazhuang, Hebei, China
| |
Collapse
|
16
|
Yoshii T, Oishi N, Sotozono Y, Watanabe A, Sakai Y, Yamada S, Matsuda KI, Kido M, Ikoma K, Tanaka M, Narumoto J. Validation of Wistar-Kyoto rats kept in solitary housing as an animal model for depression using voxel-based morphometry. Sci Rep 2024; 14:3601. [PMID: 38351316 PMCID: PMC10864298 DOI: 10.1038/s41598-024-53103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
Major depressive disorder is a common psychiatric condition often resistant to medication. The Wistar-Kyoto (WKY) rat has been suggested as an animal model of depression; however, it is still challenging to translate results from animal models into humans. Solitary housing is a mild stress paradigm that can simulate the environment of depressive patients with limited social activity due to symptoms. We used voxel-based morphometry to associate the solitary-housed WKY (sWKY) rat model with data from previous human studies and validated our results with behavioural studies. As a result, atrophy in sWKY rats was detected in the ventral hippocampus, caudate putamen, lateral septum, cerebellar vermis, and cerebellar nuclei (p < 0.05, corrected for family-wise error rate). Locomotor behaviour was negatively correlated with habenula volume and positively correlated with atrophy of the cerebellar vermis. In addition, sWKY rats showed depletion of sucrose consumption not after reward habituation but without reward habituation. Although the application of sWKY rats in a study of anhedonia might be limited, we observed some similarities between the regions of brain atrophy in sWKY rats and humans with depression, supporting the translation of sWKY rat studies to humans.
Collapse
Affiliation(s)
- Takanobu Yoshii
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
- Kyoto Prefectural Rehabilitation Hospital for Mentally and Physically Disabled, Naka Ashihara, Johyo, Kyoto, 610-0113, Japan.
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yasutaka Sotozono
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anri Watanabe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuki Sakai
- Department of Neural Computation for Decision-Making, ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Shunji Yamada
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken-Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masamitsu Kido
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuya Ikoma
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
17
|
Wu GR, Baeken C. Normative modeling analysis reveals corpus callosum volume changes in early and mid-to-late first episode major depression. J Affect Disord 2023; 340:10-16. [PMID: 37499915 DOI: 10.1016/j.jad.2023.07.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND It has been widely accepted that major depressive disorder (MDD) impacts brain structures including the Corpus Callosum (CC). However, this assumption is based on scarce literature data involving small sample sizes. Furthermore, it is still unclear whether such CC volume changes may already be present at a first depressive episode. METHODS To further investigate this question, we compared 369 first-episode MDD patients (mean age = 35 years (sd = 12), 249 females; 283 early onset, 86 mid-to-late onset) from the open-source REST meta-MDD database closely matched for age and gender to 490 never-depressed individuals (mean age = 37 years (sd = 14); 309 females) using Z-scores obtained from normative neuroanatomical modeling to assess individual variability in CC (sub)volumes. RESULTS Relative to the norms established by the healthy controls, first-episode MDD patients displayed CC volume (z-score) reductions in the entire CC (including the body), as did mid-to-late-onset first-episode MDD patients (age ≥ 45 y). In early-onset first-episode MDD patients (age ≤ 44 y), depression severity symptoms were related to volume increases in the entire CC, as well as the body and splenium. LIMITATIONS No data on depressive episode duration. Relatively small sample size for mid-to-late first-episode MDD patients. CONCLUSIONS Our data revealed CC (sub)volume differences in early versus mid-to-late onset first episode MDD. Especially at early onset, depression severity may result in neural white matter activity as potential reaction to stress influences. Our results underline the importance of prompt clinical interventions at early onset MDD.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China; Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium.
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium; Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Psychiatry, Laarbeeklaan 101, 1090 Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands
| |
Collapse
|
18
|
Wu B, Chen Y, Long X, Cao Y, Xie H, Wang X, Roberts N, Gong Q, Jia Z. Altered single-subject gray matter structural networks in first-episode drug-naïve adolescent major depressive disorder. Psychiatry Res 2023; 329:115557. [PMID: 37890406 DOI: 10.1016/j.psychres.2023.115557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/11/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Although previous studies have demonstrated regional gray matter (GM) structural abnormalities in adolescents with major depressive disorder (MDD), how the topological organization of GM networks is affected in these patients is still unclear. Structural magnetic resonance imaging data were acquired from 100 first-episode drug-naïve adolescent MDD patients and 80 healthy controls (HCs). Whole-brain GM structural network was constructed for each subject, and a graph theory analysis was used to calculate the topological metrics of GM networks. Adolescent MDD patients showed significantly lower cluster coefficient and local efficiency compared to HCs. Compared to controls, adolescent MDD patients showed higher nodal centralities in the bilateral cuneus, left lingual gyrus, and right middle occipital gyrus and lower nodal centralities in the bilateral dorsolateral superior frontal gyrus, bilateral middle frontal gyrus, right anterior cingulate and paracingulate gyri, bilateral hippocampus, bilateral amygdala, bilateral caudate nucleus, and bilateral thalamus. Nodal centralities of the hippocampus were negatively associated with symptom severity and illness duration. Our findings suggest disrupted topological organization of GM structural networks in adolescent MDD patients. Impaired local segregation and abnormal nodal centralities in the prefrontal-subcortical-limbic areas and visual cortex regions may play important roles in the neurobiology of adolescent-onset MDD.
Collapse
Affiliation(s)
- Baolin Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ying Chen
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xiuli Wang
- Department of Clinical Psychology, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Neil Roberts
- The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Tesic I, Pigoni A, Moltrasio C, Brambilla P, Delvecchio G. How does feeling pain look like in depression: A review of functional neuroimaging studies. J Affect Disord 2023; 339:400-411. [PMID: 37459979 DOI: 10.1016/j.jad.2023.07.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
INTRODUCTION Major Depression Disorder (MDD) and pain appear to be reciprocal risk factors and sharing common neuroanatomical pathways and biological substrates. However, the role of MDD on pain processing remains still unclear. Therefore, this review aims to focus on the effect of depression on pain anticipation, and perception, before and after treatment, through functional magnetic resonance imaging (fMRI). METHODS A bibliographic search was conducted on PubMed, Scopus and Web of Science, looking for fMRI studies exploring pain processing in MDD patients. RESULTS Amongst the 602 studies retrieved, 12 met the inclusion criteria. In terms of pain perception, studies evidenced that MDD patients generally presented increased activation in brain regions within the prefrontal cortex, insula and in the limbic system (such as amygdala, hippocampus) and occipital cortex. The studies investigating the effect of antidepressant treatment evidenced a reduced activation in areas such as insula, anterior cingulate, and prefrontal cortices. In terms of pain anticipation, contrasting results were evidenced in MDD patients, which presented both increased and decreased activity in the prefrontal cortex, the insula and the temporal lobe, alongside with increased activity in the anterior cingulate cortex, the frontal gyrus and occipital lobes. LIMITATIONS The small number of included studies, the heterogeneous approaches of the studies might limit the conclusions of this review. CONCLUSIONS Acute pain processing in MDD patients seems to involve numerous and different brain areas. However, more specific fMRI studies with a more homogeneous population and rigorous approach should be conducted to better highlight the effect of depression on pain processing.
Collapse
Affiliation(s)
- Isidora Tesic
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessandro Pigoni
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Moltrasio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
20
|
Mohammadi S, Seyedmirzaei H, Salehi MA, Jahanshahi A, Zakavi SS, Dehghani Firouzabadi F, Yousem DM. Brain-based Sex Differences in Depression: A Systematic Review of Neuroimaging Studies. Brain Imaging Behav 2023; 17:541-569. [PMID: 37058182 PMCID: PMC10102695 DOI: 10.1007/s11682-023-00772-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Major depressive disorder (MDD) is a common psychiatric illness with a wide range of symptoms such as mood decline, loss of interest, and feelings of guilt and worthlessness. Women develop depression more often than men, and the diagnostic criteria for depression mainly rely on female patients' symptoms. By contrast, male depression usually manifests as anger attacks, aggression, substance use, and risk-taking behaviors. Various studies have focused on the neuroimaging findings in psychiatric disorders for a better understanding of their underlying mechanisms. With this review, we aimed to summarize the existing literature on the neuroimaging findings in depression, separated by male and female subjects. A search was conducted on PubMed and Scopus for magnetic resonance imaging (MRI), functional MRI (fMRI), and diffusion tensor imaging (DTI) studies of depression. After screening the search results, 15 MRI, 12 fMRI, and 4 DTI studies were included. Sex differences were mainly reflected in the following regions: 1) total brain, hippocampus, amygdala, habenula, anterior cingulate cortex, and corpus callosum volumes, 2) frontal and temporal gyri functions, along with functions of the caudate nucleus and prefrontal cortex, and 3) frontal fasciculi and frontal projections of corpus callosum microstructural alterations. Our review faces limitations such as small sample sizes and heterogeneity in populations and modalities. But in conclusion, it reflects the possible roles of sex-based hormonal and social factors in the depression pathophysiology.
Collapse
Affiliation(s)
- Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Jahanshahi
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Sina Zakavi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - David M Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, USA.
| |
Collapse
|
21
|
Zhang E, Hauson AO, Pollard AA, Meis B, Lackey NS, Carson B, Khayat S, Fortea L, Radua J. Lateralized grey matter volume changes in adolescents versus adults with major depression: SDM-PSI meta-analysis. Psychiatry Res Neuroimaging 2023; 335:111691. [PMID: 37837793 DOI: 10.1016/j.pscychresns.2023.111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 10/16/2023]
Abstract
The current study is the first meta-analysis to examine grey matter volume (GMV) changes in adolescents and across the lifespan in major depressive disorder (MDD). Seed-based d mapping-with permutation of subject images (SDM-PSI) has advantages over previous coordinate-based meta-analytical methods (CBMA), such as reducing bias (via the MetaNSUE algorithm) and including non-statistically significant unreported effects. SDM-PSI was used to analyze 105 whole-brain GMV voxel-based morphometry (VBM) studies comparing 6,530 individuals with MDD versus 6,821 age-matched healthy controls (HC). A laterality effect was observed in which adults with MDD showed lower GMV than adult HC in left fronto-temporo-parietal structures (superior temporal gyrus, insula, Rolandic operculum, and inferior frontal gyrus). However, these abnormalities were not statistically significant for adolescent MDD versus adolescent HC. Instead, adolescent MDD showed lower GMV than adult MDD in right temporo-parietal structures (angular gyrus and middle temporal gyrus). These regional differences may be used as potential biomarkers to predict and monitor treatment outcomes as well as to choose the most effective treatments in adolescents versus adults. Finally, due to the paucity of youth, older adult, and longitudinal studies, future studies should attempt to replicate these GMV findings and examine whether they correlate with treatment response and illness severity.
Collapse
Affiliation(s)
- Emily Zhang
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Alexander O Hauson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America; Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America.
| | - Anna A Pollard
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Benjamin Meis
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Nicholas S Lackey
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Bryce Carson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Sarah Khayat
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
22
|
Wang Y, Yan Y, Wei J, Yang X, Wang M, Zhao L, Dou Y, Du Y, Wang Q, Ma X. Down-regulated miR-16-2 in peripheral blood is positively correlated with decreased bilateral insula volume in patients with major depressive disorder. J Affect Disord 2023; 338:137-143. [PMID: 37245547 DOI: 10.1016/j.jad.2023.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The downregulated microRNA-16-2-3p (miR-16-2) had been believed to be associated with major depressive disorder (MDD). This study aimed to investigate the potential of miR-16-2 as a biomarker for MDD by analysing its expression levels, furthermore, to explore the relationship between miR-16-2, clinical symptoms and alterations in grey matter volume (GMV) in MDD patients. METHODS Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression level of miR-16-2 in 48 drug-naïve patients with MDD and 50 healthy controls (HCs). We conducted ROC curve analysis to assess the diagnostic value of miR-16-2 in MDD, and evaluated its ability to predict antidepressant response by reassessing depressive and anxiety symptoms after treatment. Voxel-based morphometry was carried out to explore alterations in regional GMV that may be associated with MDD. Pearson analysis was used to explore the relationship between miR-16-2 expression, clinical symptoms, and altered GMV in the brains of MDD patients. RESULTS We found that MDD patients had significantly downregulated miR-16-2 expression, which was negatively correlated with HAMD-17 and HAMA-14 scores, and had great diagnostic value for MDD (AUC = 0.806, 95 % CI: 0.721-0.891). In addition, MDD patients had significantly lower GMV in the bilateral insula and left superior temporal gyrus (STG_L) than HCs. GMV reduction in the bilateral insula was found to be correlated with miR-16-2 expression. CONCLUSIONS Our findings support the potential value of miRNA-16-2 as a biomarker for MDD. It also suggests that miRNA-16-2 may be associated with abnormal insula and involved in pathophysiological mechanisms of MDD.
Collapse
Affiliation(s)
- Yu Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yushun Yan
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jinxue Wei
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China; National Clinical Research Center on Mental Disorders (Changsha) of China, Changsha, China
| | - Xiao Yang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Min Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China; National Clinical Research Center on Mental Disorders (Changsha) of China, Changsha, China
| | - Yikai Dou
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Du
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China; National Clinical Research Center on Mental Disorders (Changsha) of China, Changsha, China.
| |
Collapse
|
23
|
Wei Q, Chen C, Zhu J, Mei B, Liu X. Influence of low-dose esketamine on postoperative depressive symptoms in patients with breast cancer (EASE): study protocol for a randomised controlled trial. BMJ Open 2023; 13:e075767. [PMID: 37748853 PMCID: PMC10533742 DOI: 10.1136/bmjopen-2023-075767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023] Open
Abstract
INTRODUCTION Depressive symptoms have surfaced as the principal mental health concern among patients with breast cancer, with surgical interventions potentially exacerbating these symptoms and adversely influencing clinical outcomes. This study protocol is designed to investigate the efficacy of low-dose esketamine administered perioperatively on depressive symptoms in patients with breast cancer. It also aims to illuminate the potential neurobiological underpinnings of this effect. METHODS AND ANALYSIS This research represents a single-centre, prospective, randomised, double-blind, placebo-controlled study. The trial anticipates enrolling 108 female patients exhibiting mild-to-severe depressive symptoms who are slated for radical mastectomy. Through stratified randomisation, eligible patients will be systematically assigned to either the esketamine group (0.25 mg/kg) or placebo group (0.9% saline) in a 1:1 ratio. The primary outcome is the response rate at the third postoperative day. Secondary outcomes encompass the remission rate, depression-related scores, depression severity and safety-related endpoints. Tertiary (exploratory) outcomes involve alterations in brain-derived neurotrophic factor and resting-state functional brain connectivity. ETHICS AND DISSEMINATION The Clinical Trial Ethics Committee at The First Affiliated Hospital of Anhui Medical University has conferred ethical approvals for this trial (approval number: PJ2023-05-25). Results from this trial will be disseminated in peer-reviewed journals and presented at professional symposiums. TRIAL REGISTRATION NUMBER Chinese Clinical Trials Registry (ChiCTR2300071062).
Collapse
Affiliation(s)
- Qingfeng Wei
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cen Chen
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bin Mei
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuesheng Liu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Liu P, Hayden EP, Dougherty LR, Leung HC, Goldstein B, Klein DN. The development of depressogenic self-schemas: Associations with children's regional grey matter volume in ventrolateral prefrontal cortex. Dev Psychopathol 2023; 35:1000-1010. [PMID: 34521484 PMCID: PMC8920949 DOI: 10.1017/s0954579421000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cognitive theories of depression contend that biased cognitive information processing plays a causal role in the development of depression. Extensive research shows that deeper processing of negative and/or shallower processing of positive self-descriptors (i.e., negative and positive self-schemas) predicts current and future depression in adults and children. However, the neural correlates of the development of self-referent encoding are poorly understood. We examined children's self-referential processing using the self-referent encoding task (SRET) collected from 74 children at ages 6, 9, and 12; around age 10, these children also contributed structural magnetic resonance imaging data. From age 6 to age 12, both positive and negative self-referential processing showed mean-level growth, with positive self-schemas increasing relatively faster than negative ones. Further, voxel-based morphometry showed that slower growth in positive self-schemas was associated with lower regional gray matter volume (GMV) in ventrolateral prefrontal cortex (vlPFC). Our results suggest that smaller regional GMV within vlPFC, a critical region for regulatory control in affective processing and emotion development, may have implications for the development of depressogenic self-referential processing in mid-to-late childhood.
Collapse
Affiliation(s)
- Pan Liu
- Department of Psychology, Brain and Mind Institute, Western University
| | | | | | | | | | | |
Collapse
|
25
|
Zheng R, Chen Y, Jiang Y, Zhou B, Han S, Wei Y, Wang C, Cheng J. Abnormal voxel-wise whole-brain functional connectivity in first-episode, drug-naïve adolescents with major depression disorder. Eur Child Adolesc Psychiatry 2023; 32:1317-1327. [PMID: 35318540 DOI: 10.1007/s00787-022-01959-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 02/06/2022] [Indexed: 12/24/2022]
Abstract
Major depression disorder (MDD) is one of the most common psychiatric disorders. Previous studies have demonstrated structural and functional abnormalities in adult depression. However, the neurobiology of adolescent depression has not been fully understood. The aim of this study was to investigate the intrinsic dysconnectivity pattern of voxel-level whole-brain functional networks in first-episode, drug-naïve adolescents with MDD. Resting-state functional magnetic resonance imaging data were acquired from 66 depressed adolescents and 47 matched healthy controls. Voxel-wise degree centrality (DC) analysis was performed to identify voxels that showed altered whole-brain functional connectivity (FC) with other voxels. We further conducted seed-based FC analysis to investigate in more detail the connectivity patterns of the identified DC changes. The relationship between altered DC and clinical variables in depressed adolescents was also analyzed. Compared with controls, depressed adolescents showed lower DC in the bilateral hippocampus, left superior temporal gyrus and right insula. Seed-based analysis revealed that depressed adolescents, relative to controls, showed hypoconnectivity between the hippocampus to the medial prefrontal regions and right precuneus. Furthermore, the DC values in the bilateral hippocampus were correlated with the Hamilton Depression Rating Scale score and duration of disease (all P < 0.05, false discovery rate corrected). Our study indicates abnormal intrinsic dysconnectivity patterns of whole-brain functional networks in drug-naïve, first-episode adolescents with MDD, and abnormal DC in the hippocampus may affect the association of prefrontal-hippocampus circuit. These findings may provide new insights into the pathophysiology of adolescent-onset MDD.
Collapse
Affiliation(s)
- Ruiping Zheng
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Yuan Chen
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Yu Jiang
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Bingqian Zhou
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Shaoqiang Han
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Yarui Wei
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Caihong Wang
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Jingliang Cheng
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China.
| |
Collapse
|
26
|
Chen X, Yang H, Cui LB, Li X. Neuroimaging study of electroconvulsive therapy for depression. Front Psychiatry 2023; 14:1170625. [PMID: 37363178 PMCID: PMC10289201 DOI: 10.3389/fpsyt.2023.1170625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Electroconvulsive therapy (ECT) is an important treatment for depression. Although it is known as the most effective acute treatment for severe mood disorders, its therapeutic mechanism is still unclear. With the rapid development of neuroimaging technology, various neuroimaging techniques have been available to explore the alterations of the brain by ECT, such as structural magnetic resonance imaging, functional magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography, single photon emission computed tomography, arterial spin labeling, etc. This article reviews studies in neuroimaging on ECT for depression. These findings suggest that the neurobiological mechanism of ECT may regulate the brain functional activity, and neural structural plasticity, as well as balance the brain's neurotransmitters, which finally achieves a therapeutic effect.
Collapse
Affiliation(s)
- Xiaolu Chen
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanjie Yang
- Department of Neurology, The Thirteenth People’s Hospital of Chongqing, Chongqing, China
| | - Long-Biao Cui
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi’an, China
| | - Xiao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Fan Y, Wang L, Jiang H, Fu Y, Ma Z, Wu X, Wang Y, Song Y, Fan F, Lv Y. Depression circuit adaptation in post-stroke depression. J Affect Disord 2023; 336:52-63. [PMID: 37201899 DOI: 10.1016/j.jad.2023.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Lesion locations of post-stroke depression (PSD) mapped to a depression circuit which centered by the left dorsolateral prefrontal cortex (DLPFC). However, it remains unknown whether the compensatory adaptations that may occur in this depression circuit due to the lesions in PSD. METHODS Rs-fMRI data were collected from 82 non-depressed stroke patients (Stroke), 39 PSD patients and 74 healthy controls (HC). We tested the existence of depression circuit, examined PSD-related alterations of DLPFC-seeded connectivity and their associations with depression severity, and analyzed the connectivity between each repetitive transcranial magnetic stimulation (rTMS) target and DLPFC to find the best treatment target for PSD. RESULTS We found that: 1) the left DLPFC showed significantly stronger connectivity to lesions of PSD than Stroke group; 2) in comparison to both Stroke and HC groups, PSD exhibited increased connectivity with DLPFC in bilateral lingual gyrus, contralesional superior frontal gyrus, precuneus, and middle frontal gyrus (MFG); 3) the connectivity between DLPFC and the contralesional lingual gyrus positively correlated with depression severity; 4) the rTMS target in center of MFG showed largest between-group difference in connectivity with DLPFC, and also reported the highest predicted clinical efficacy. LIMITATIONS Longitudinal studies are required to explore the alterations of depression circuit in PSD as the disease progress. CONCLUSION PSD underwent specific alterations in depression circuit, which may help to establish objective imaging markers for early diagnosis and interventions of the disease.
Collapse
Affiliation(s)
- Yanzi Fan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Luoyu Wang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haibo Jiang
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanhui Fu
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Zhenqiang Ma
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Xiaoyan Wu
- Department of Image, Anshan Changda Hospital, Anshan, Liaoning 114005, China
| | - Yiying Wang
- Department of Ultrasonics, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China.
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China.
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China.
| |
Collapse
|
28
|
Guo ZP, Chen L, Tang LR, Gao Y, Chand T, Sen ZD, Li M, Walter M, Wang L, Liu CH. Association between decreased interhemispheric functional connectivity of the insula and duration of illness in recurrent depression. J Affect Disord 2023; 329:88-95. [PMID: 36841304 DOI: 10.1016/j.jad.2023.02.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
OBJECTIVE To investigate the altered interhemispheric functional connectivity in the resting state in patients with recurrent major depressive disorder (MDD). METHODS Voxel-mirrored homotopic connectivity (VMHC), a measure of the functional connectivity between any pair of symmetrical interhemispheric voxels, and pattern classification were examined in 41 recurrent MDD patients (22 during the depressive state and 19 during the remitted state) and 60 age, sex, and education level-matched healthy controls (HC) using resting-state functional magnetic resonance imaging (fMRI). RESULTS Compared with HC, the recurrent MDD patients exhibited decreased VMHC values in the bilateral fusiform, inferior occipital gyrus, posterior insula, precentral gyrus, precuneus, superior temporal gyrus, and thalamus. A significant negative correlation between the VMHC value of the bilateral posterior insula and illness duration in recurrent MDD was identified. Support vector machine (SVM) analysis showed that VMHC in the fusiform and posterior insula could be used to distinguish recurrent MDD patients from HC with a sensitivity and accuracy >0.6. CONCLUSION Our findings revealed a reduction in the resting-state brain activity across several neural networks in patients with recurrent MDD, including within the posterior insula. Lower VMHC values in the posterior insula were associated with longer illness duration, suggesting that impairment in interhemispheric synchronization within the salience network may be due to the accumulated pathology of depression and may contribute to future depression relapse. VMHC changes in the posterior insula may serve as a potential imaging marker to discriminate recurrent MDD patients from HC.
Collapse
Affiliation(s)
- Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Lei Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Li-Rong Tang
- Beijing Hospital of Anding, Capital Medical University, Beijing 100088, China
| | - Yue Gao
- Beijing Hospital of Anding, Capital Medical University, Beijing 100088, China
| | - Tara Chand
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg 39120, Germany; Department of Clinical Psychology, Friedrich Schiller University, Jena, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg 39120, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg 39120, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Site Halle-Jena-Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen 72074, Germany; Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| |
Collapse
|
29
|
Opposing and emotion-specific associations between frontal activation with depression and anxiety symptoms during facial emotion processing in generalized anxiety and depression. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110716. [PMID: 36623581 DOI: 10.1016/j.pnpbp.2023.110716] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Major depression (MDD) and generalized anxiety disorder (GAD) have become one of the leading global causes of disability and both are characterized by marked interpersonal and social impairments. However, despite high comorbidity and overlapping social-emotional deficits, it remains unclear whether MDD and GAD share a common neural basis during interpersonal processing. In the present study, we combined an emotional face processing paradigm with fMRI and dimensional and categorical analyses in a sample of unmedicated MDD and GAD patients (N = 72) as well as healthy controls (N = 35). No group differences were found in categorical analyses. However, the dimensional analyses revealed that dorsolateral prefrontal cortex (dlPFC) reactivity to sad facial expressions was positively associated with depression symptom load, yet negatively associated with anxiety symptom load in the entire sample. On the network level depression symptom load was positively associated with functional connectivity between the bilateral amygdala and a widespread network including the anterior cingulate and insular cortex. Together, these findings suggest that the dlPFC - engaged in cognitive and emotional processing - exhibits symptom- and emotion-specific alteration during interpersonal processing. Dysregulated communication between the amygdala and core regions of the salience network may represent depression-specific neural dysregulations.
Collapse
|
30
|
Long X, Li L, Wang X, Cao Y, Wu B, Roberts N, Gong Q, Kemp GJ, Jia Z. Gray matter alterations in adolescent major depressive disorder and adolescent bipolar disorder. J Affect Disord 2023; 325:550-563. [PMID: 36669567 DOI: 10.1016/j.jad.2023.01.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Gray matter volume (GMV) alterations in several emotion-related brain areas are implicated in mood disorders, but findings have been inconsistent in adolescents with major depressive disorder (MDD) or bipolar disorder (BD). METHODS We conducted a comprehensive meta-analysis of 35 region-of-interest (ROI) and 18 whole-brain voxel-based morphometry (VBM) MRI studies in adolescent MDD and adolescent BD, and indirectly compared the results in the two groups. The effects of age, sex, and other demographic and clinical scale scores were explored using meta-regression analysis. RESULTS In the ROI meta-analysis, right putamen volume was decreased in adolescents with MDD, while bilateral amygdala volume was decreased in adolescents with BD compared to healthy controls (HC). In the whole-brain VBM meta-analysis, GMV was increased in right middle frontal gyrus and decreased in left caudate in adolescents with MDD compared to HC, while in adolescents with BD, GMV was increased in left superior frontal gyrus and decreased in limbic regions compared with HC. MDD vs BD comparison revealed volume alteration in the prefrontal-limbic system. LIMITATION Different clinical features limit the comparability of the samples, and small sample size and insufficient clinical details precluded subgroup analysis or meta-regression analyses of these variables. CONCLUSIONS Distinct patterns of GMV alterations in adolescent MDD and adolescent BD could help to differentiate these two populations and provide potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Lei Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xiuli Wang
- Department of Clinical Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu 610041, Sichuan, PR China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, Sichuan, PR China
| | - Baolin Wu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Neil Roberts
- The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China; Department of Radiology, West China Xiamen Hospital of Sichuan University, 699Jinyuan Xi Road, Jimei District, 361021 Xiamen, Fujian, PR China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Center (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
31
|
Fang Q, Cai H, Jiang P, Zhao H, Song Y, Zhao W, Yu Y, Zhu J. Transcriptional substrates of brain structural and functional impairments in drug-naive first-episode patients with major depressive disorder. J Affect Disord 2023; 325:522-533. [PMID: 36657492 DOI: 10.1016/j.jad.2023.01.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Despite remarkable success in identifying genetic risk factors for depression, there are still open questions about the exact genetic mechanisms underlying certain disease phenotypes, such as brain structural and functional impairments. METHODS Comprehensive multi-modal neuroimaging meta-analyses were conducted to examine changes in brain structure and function in drug-naive first-episode patients with major depressive disorder (DF-MDD). Combined with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial association analyses were performed to identify genes whose expression related to these brain structural and functional changes, followed by a range of gene functional signature analyses. RESULTS Meta-analyses revealed gray matter atrophy in the insula, temporal pole, cerebellum and postcentral gyrus, and a complex pattern of hyper-function in the temporal pole and hypo-function in the cuneus/precuneus, angular gyrus and lingual gyrus in DF-MDD. Moreover, these brain structural and functional changes were spatially associated with the expression of 1194 and 1733 genes, respectively. Importantly, there were commonalities and differences in the two gene sets and their functional signatures including functional enrichment, specific expression, behavioral relevance, and constructed protein-protein interaction networks. LIMITATIONS The results merit further verification using a large sample of DF-MDD. CONCLUSIONS Our findings not only corroborate the polygenic nature of depression, but also suggest common and distinct genetic modulations of brain structural and functional impairments in this disorder.
Collapse
Affiliation(s)
- Qian Fang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Ping Jiang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yu Song
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
32
|
Associations between the kynurenine pathway and the brain in patients with major depressive disorder-A systematic review of neuroimaging studies. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110675. [PMID: 36372294 DOI: 10.1016/j.pnpbp.2022.110675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Previous studies have indicated that an imbalance in the kynurenine (KYN) pathway is an important pathophysiological mechanism of depression. Several studies have reported that an imbalance in the KYN pathway and its metabolites is associated with abnormalities in cerebral structure and function in depression, but the available evidence has been inconsistent. In this review, we systematically reviewed and integrated the findings concerning the associations between the KYN pathway and the brain in patients with major depressive disorder (MDD). A total of 22 neuroimaging studies were ultimately included in the present study. The neuroimaging modalities used in the studies included structural magnetic resonance imaging (MRI), diffusion tensor imaging, functional MRI, magnetic resonance spectroscopy, arterial spin labelling and positron emission tomography. The results revealed that an imbalance in the KYN pathway was associated with structural and functional abnormalities in several brain regions in patients with MDD. The brain regions most frequently associated with an imbalance in the KYN pathway were cortical regions (i.e., anterior cingulate cortex and orbitofrontal cortex), subcortical regions (i.e., striatum, thalamus and amygdala) and white matter fibres (i.e., inner capsule and left superior longitudinal tract). Our study provides robust evidence that cerebral abnormalities associated with the KYN pathway may be the underlying pathophysiological mechanisms of MDD. Future prospective studies are needed to further elucidate the causal relationships between the imbalanced KYN pathway and cerebral abnormalities in patients with MDD.
Collapse
|
33
|
Yang W, Jiang Y, Ma L, Xiao M, Liu M, Ren Z, Hu L, Zhang Y. Cortical and subcortical morphological alterations in postpartum depression. Behav Brain Res 2023; 447:114414. [PMID: 37001820 DOI: 10.1016/j.bbr.2023.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Postpartum depression (PPD) is the most common postpartum psychiatric disorder, which can negatively affect both mothers and their offspring. Although the functional changes of PPD have been extensively studied, little is known about its structural abnormalities. This study aimed to examine the cortical and subcortical morphological abnormalities in PPD. High resolution T1 structural MRI data of 29 PPD women and 23 matched healthy postpartum women (HPW) were included in this study. Using surface-based morphometry, we examined the differences between the PPD and HPW group in the cortical thickness, local gyrification index and shape changes of deep gray matter nuclei. Compared with the HPW group, women with PPD showed significantly increased cortical thickness in the left superior frontal gyrus, cuneus and right lingual gyrus and fusiform gyrus, which correlated marginally with the EPDS scores of these subjects. In addition, women with PPD showed significant regional inflation in the right pallidum compared with the HPW group. These findings provided further evidence for the structural brain abnormalities in PPD.
Collapse
|
34
|
Lu F, Cui Q, Chen Y, He Z, Sheng W, Tang Q, Yang Y, Luo W, Yu Y, Chen J, Li D, Deng J, Zeng Y, Chen H. Insular-associated causal network of structural covariance evaluating progressive gray matter changes in major depressive disorder. Cereb Cortex 2023; 33:831-843. [PMID: 35357431 DOI: 10.1093/cercor/bhac105] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/17/2022] [Accepted: 02/15/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Morphometric studies demonstrated wide-ranging distribution of brain structural abnormalities in major depressive disorder (MDD). OBJECTIVE This study explored the progressive gray matter volume (GMV) changes pattern of structural network in 108 MDD patients throughout the illness duration by using voxel-based morphometric analysis. METHODS The causal structural covariance network method was applied to map the causal effects of GMV alterations between the original source of structural changes and other brain regions as the illness duration prolonged in MDD. This was carried out by utilizing the Granger causality analysis to T1-weighted data ranked based on the disease progression information. RESULTS With greater illness duration, the GMV reduction was originated from the right insula and progressed to the frontal lobe, and then expanded to the occipital lobe, temporal lobe, dorsal striatum (putamen and caudate) and the cerebellum. Importantly, results revealed that the right insula was the prominent node projecting positive causal influences (i.e., GMV decrease) to frontal lobe, temporal lobe, postcentral gyrus, putamen, and precuneus. While opposite causal effects were detected from the right insula to the angular, parahippocampus, supramarginal gyrus and cerebellum. CONCLUSIONS This work may provide further information and vital evidence showing that MDD is associated with progressive brain structural alterations.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jiajia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Di Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jiaxin Deng
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yuhong Zeng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| |
Collapse
|
35
|
Zhang X, Cao J, Huang Q, Hong S, Dai L, Chen X, Chen J, Ai M, Gan Y, He J, Kuang L. Severity related neuroanatomical and spontaneous functional activity alteration in adolescents with major depressive disorder. Front Psychiatry 2023; 14:1157587. [PMID: 37091700 PMCID: PMC10113492 DOI: 10.3389/fpsyt.2023.1157587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 04/25/2023] Open
Abstract
Background Major depressive disorder (MDD) is a disabling and severe psychiatric disorder with a high rate of prevalence, and adolescence is one of the most probable periods for the first onset. The neurobiological mechanism underlying the adolescent MDD remains unexplored. Methods In this study, we examined the cortical and subcortical alterations of neuroanatomical structures and spontaneous functional activation in 50 unmedicated adolescents with MDD vs. 39 healthy controls through the combined structural and resting-state functional magnetic resonance imaging. Results Significantly altered regional gray matter volume was found at broader frontal-temporal-parietal and subcortical brain areas involved with various forms of information processing in adolescent MDD. Specifically, the increased GM volume at the left paracentral lobule and right supplementary motor cortex was significantly correlated with depression severity in adolescent MDD. Furthermore, lower cortical thickness at brain areas responsible for visual and auditory processing as well as motor movements was found in adolescent MDD. The lower cortical thickness at the superior premotor subdivision was positively correlated with the course of the disease. Moreover, higher spontaneous neuronal activity was found at the anterior cingulum and medial prefrontal cortex, and this hyperactivity was also negatively correlated with the course of the disease. It potentially reflected the rumination, impaired concentration, and physiological arousal in adolescent MDD. Conclusion The abnormal structural and functional findings at cortico-subcortical areas implied the dysfunctional cognitive control and emotional regulations in adolescent depression. The findings might help elaborate the underlying neural mechanisms of MDD in adolescents.
Collapse
Affiliation(s)
- Xiaoliu Zhang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaoliu Zhang ;
| | - Jun Cao
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Huang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Su Hong
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linqi Dai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaorong Chen
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmei Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Ai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Gan
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinglan He
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Chibaatar E, Watanabe K, Okamoto N, Orkhonselenge N, Natsuyama T, Hayakawa G, Ikenouchi A, Kakeda S, Yoshimura R. Volumetric assessment of individual thalamic nuclei in patients with drug-naïve, first-episode major depressive disorder. Front Psychiatry 2023; 14:1151551. [PMID: 37032922 PMCID: PMC10073419 DOI: 10.3389/fpsyt.2023.1151551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Despite the previous inconsistent findings of structural and functional abnormalities of the thalamus in patients with major depressive disorder (MDD), the disruption of the thalamic nuclei in the pathophysiology of this disorder has not yet been adequately studied. Therefore, we investigated the volumetric changes of thalamic subregions and their nuclei in drug-naïve, first-episode MDD patients. We also investigated the association between HAM-D scores, a clinical scale frequently used to evaluate the severity of depression and thalamic nuclei volumes in MDD patients. Methods This study included 76 drug-naïve MDD patients and an equal number of healthy subjects. Magnetic resonance imaging (MRI) data were obtained using a 3T MR system and thalamic nuclei volumes were evaluated using FreeSurfer ver.7.11. The volumetric differences were compared by one-way analysis of covariance (ANCOVA) and to ensure that effects were not accounted for by other factors, age, sex, and ETICV variables were included as covariates. Results We observed significant volume reductions of the left whole thalamus (p < 0.003) and several thalamic nuclei mostly on the left side in the MDD group compared with healthy controls (HCs). Furthermore, we have revealed weak negative correlations between several thalamic nuclei volumes and HAM-D total and subscale scores. Discussion This is the first research study to investigate alterations of the various thalamic nuclei volumes in MDD patients compared with HCs. Moreover, we first analyzed the association between individual thalamic nuclei volumes and HAM-D subscale scores. Though our study may be restricted at certain levels, especially by the demographic difference between the two groups, they possibly contribute at a preliminary level to understanding the thalamic structural changes at its subregions in patients with drug-naïve, first-episode MDD.
Collapse
Affiliation(s)
- Enkhmurun Chibaatar
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Keita Watanabe
- Open Innovation Institute, Kyoto University, Kyoto, Japan
| | - Naomichi Okamoto
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Nasanbadrakh Orkhonselenge
- Department of Second Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tomoya Natsuyama
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Gaku Hayakawa
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Atsuko Ikenouchi
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Kakeda
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
- *Correspondence: Reiji Yoshimura,
| |
Collapse
|
37
|
Zhou Y, Song Y, Chen C, Yan S, Chen M, Liu T. Abnormal amplitude of low-frequency fluctuation values as a neuroimaging biomarker for major depressive disorder with suicidal attempts in adolescents: A resting-state fMRI and support vector machine analysis. Front Psychol 2023; 14:1146944. [PMID: 36910742 PMCID: PMC9998935 DOI: 10.3389/fpsyg.2023.1146944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
Objective Major depressive disorder (MDD) is associated with suicidal attempts (SAs) among adolescents, with suicide being the most common cause of mortality in this age group. This study explored the predictive utility of support vector machine (SVM)-based analyses of amplitude of low-frequency fluctuation (ALFF) results as a neuroimaging biomarker for aiding the diagnosis of MDD with SA in adolescents. Methods Resting-state functional magnetic resonance imaging (rs-fMRI) analyses of 71 first-episode, drug-naive adolescent MDD patients with SA and 54 healthy control individuals were conducted. ALFF and SVM methods were used to analyze the imaging data. Results Relative to healthy control individuals, adolescent MDD patients with a history of SAs showed reduced ALFF values in the bilateral medial superior frontal gyrus (mSFG) and bilateral precuneus. These lower ALFF values were also negatively correlated with child depression inventory (CDI) scores while reduced bilateral precuneus ALFF values were negatively correlated with Suicidal Ideation Questionnaire Junior (SIQ-JR) scores. SVM analyses showed that reduced ALFF values in the bilateral mSFG and bilateral precuneus had diagnostic accuracy levels of 76.8% (96/125) and 82.4% (103/125), respectively. Conclusion Adolescent MDD patients with a history of SA exhibited abnormal ALFF. The identified abnormalities in specific brain regions may be involved in the pathogenesis of this condition and may help identify at-risk adolescents. Specifically, reductions in the ALFF in the bilateral mSFG and bilateral precuneus may be indicative of MDD and SA in adolescent patients.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China.,Department of Psychiatry, Wuhan Hospital for Psychotherapy, Wuhan, Hubei, China
| | - Yu Song
- Psychiatric Rehabilitation Department, Wuhan Mental Health Center, Wuhan, Hubei, China.,Psychiatric Rehabilitation Department, Wuhan Hospital for Psychotherapy, Wuhan, Hubei, China
| | - Cheng Chen
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China.,Department of Psychiatry, Wuhan Hospital for Psychotherapy, Wuhan, Hubei, China
| | - Shu Yan
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China.,Department of Psychiatry, Wuhan Hospital for Psychotherapy, Wuhan, Hubei, China
| | - Mo Chen
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China.,Department of Psychiatry, Wuhan Hospital for Psychotherapy, Wuhan, Hubei, China
| | - Tao Liu
- Department of Psychiatry, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| |
Collapse
|
38
|
Jiang J, Li L, Lin J, Hu X, Zhao Y, Sweeney JA, Gong Q. A voxel-based meta-analysis comparing medication-naive patients of major depression with treated longer-term ill cases. Neurosci Biobehav Rev 2023; 144:104991. [PMID: 36476776 DOI: 10.1016/j.neubiorev.2022.104991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Structural neuroimaging studies have identified brain areas implicated in the pathogenesis of major depressive disorder (MDD). However, findings have been inconsistent, potentially due to variable illness duration and effects of antidepressant treatment. Using a meta-analytic approach, we compared gray matter (GM) volumes in patients grouped by medication status (naïve and treated) and illness duration (early course and long-term ill) to identify potential treatment and illness duration effects on brain structure. A total of 70 studies were included, including 3682 patients and 3469 controls. The pooled analysis found frontal, temporal and limbic regions with decreased GM volume in MDD patients. Additional analyses indicated that larger GM volume in the right striatum and smaller GM volume in the right precuneus are likely to be associated with drug effects, while smaller GM volume in the right temporal gyrus may correlate with longer illness duration. Similar GM decreases in bilateral medial frontal cortex between patient subgroups suggest that this alteration may persist over the course of illness and drug treatment.
Collapse
Affiliation(s)
- Jing Jiang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Lei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinping Lin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian, China.
| |
Collapse
|
39
|
Liu M, Huang Y, Li X, Liu Y, Yu R, Long Y, Lv F, Zhou X. Aberrant frontolimbic circuit in female depressed adolescents with and without suicidal attempts: A resting-state functional magnetic resonance imaging study. Front Psychiatry 2022; 13:1007144. [PMID: 36386991 PMCID: PMC9641155 DOI: 10.3389/fpsyt.2022.1007144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background The neurobiological basis of suicidal behaviors among female adolescents with major depressive disorder (MDD) remains largely unclear. Materials and methods Fifty-eight drug-naïve, first-episode female adolescent MDD [including 31 patients with suicidal attempt (SA group) and 27 patients without SA (non-SA group)], and 36 matched healthy controls (HCs) participated in the present study. Resting-state functional magnetic resonance imaging (MRI) was performed on each subject. The metrics of the amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) were compared among the three groups. Then seed-based functional connectivity (FC) was conducted based on the ALFF/fALFF and ReHo results, which were then correlated to clinical variables. Results Compared with the non-SA group, the SA group exhibited increased fALFF in the bilateral insula and right precentral gyrus, and enhanced ReHo in the left superior temporal gyrus, left middle cingulate cortex, right insula, and right precentral gyrus. Relative to the HCs, the SA group demonstrated additionally reduced fALFF and ReHo in the left middle frontal gyrus. Moreover, the SA group showed increased FC between the right precentral gyrus and the left middle frontal gyrus and left insula, and between the right insula and anterior/middle cingulate cortex compared to the non-SA and HC groups. In addition, the fALFF in the left middle frontal gyrus was positively correlated with the 17-item Hamilton Depression Rating Scale scores, and the values in the fALFF/ReHo in the right insula were positively correlated with the duration of MDD within the patient group. Conclusion These findings highlight the multiple abnormalities of the frontolimbic circuit, which may enhance our understanding of the neurobiological basis underlying female MDD with SA during adolescence.
Collapse
Affiliation(s)
- Mengqi Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Huang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yicheng Long
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, Changsha, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Chang X, Ma M, Chen L, Song Z, Zhao Z, Shen W, Jiang H, Wu Y, Fan M, Wu H. Identification and Characterization of Elevated Expression of Transferrin and Its Receptor TfR1 in Mouse Models of Depression. Brain Sci 2022; 12:1267. [PMID: 36291201 PMCID: PMC9599150 DOI: 10.3390/brainsci12101267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Depression has become one of the severe mental disorders threatening global human health. In this study, we first used the proteomics approach to obtain the differentially expressed proteins in the liver between naive control and chronic social defeat stress (CSDS) induced depressed mice. We have identified the upregulation of iron binding protein transferrin (TF) in the liver, the peripheral blood, and the brain in CSDS-exposed mice. Furthermore, bioinformatics analysis of the Gene Expression Omnibus (GEO) database from various mouse models of depression revealed the significantly upregulated transcripts of TF and its receptor TfR1 in multiple brain regions in depressed mice. We also used the recombinant TF administration via the tail vein to detect its permeability through the blood-brain barrier (BBB). We demonstrated the permeability of peripheral TF into the brain through the BBB. Together, these results identified the elevated expression of TF and its receptor TfR1 in both peripheral liver and the central brain in CSDS-induced depressed mice, and peripheral administration of TF can be transported into the brain through the BBB. Therefore, our data provide a compelling information for understanding the potential role and mechanisms of the cross-talk between the liver and the brain in stress-induced depression.
Collapse
Affiliation(s)
- Xin Chang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Mengxin Ma
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhihong Song
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhe Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Wei Shen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Huihui Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ming Fan
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haitao Wu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| |
Collapse
|
41
|
Lemke H, Klute H, Skupski J, Thiel K, Waltemate L, Winter A, Breuer F, Meinert S, Klug M, Enneking V, Winter NR, Grotegerd D, Leehr EJ, Repple J, Dohm K, Opel N, Stein F, Meller T, Brosch K, Ringwald KG, Pfarr JK, Thomas-Odenthal F, Hahn T, Krug A, Jansen A, Heindel W, Nenadić I, Kircher T, Dannlowski U. Brain structural correlates of recurrence following the first episode in patients with major depressive disorder. Transl Psychiatry 2022; 12:349. [PMID: 36030219 PMCID: PMC9420111 DOI: 10.1038/s41398-022-02113-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022] Open
Abstract
Former prospective studies showed that the occurrence of relapse in Major Depressive Disorder (MDD) is associated with volume loss in the insula, hippocampus and dorsolateral prefrontal cortex (DLPFC). However, these studies were confounded by the patient's lifetime disease history, as the number of previous episodes predict future recurrence. In order to analyze neural correlates of recurrence irrespective of prior disease course, this study prospectively examined changes in brain structure in patients with first-episode depression (FED) over 2 years. N = 63 FED patients and n = 63 healthy controls (HC) underwent structural magnetic resonance imaging at baseline and after 2 years. According to their disease course during the follow-up interval, patients were grouped into n = 21 FED patients with recurrence (FEDrec) during follow-up and n = 42 FED patients with stable remission (FEDrem). Gray matter volume changes were analysed using group by time interaction analyses of covariance for the DLPFC, hippocampus and insula. Significant group by time interactions in the DLPFC and insula emerged. Pairwise comparisons showed that FEDrec had greater volume decline in the DLPFC and insula from baseline to follow-up compared with FEDrem and HC. No group by time interactions in the hippocampus were found. Cross-sectional analyses at baseline and follow-up revealed no differences between groups. This longitudinal study provides evidence for neural alterations in the DLPFC and insula related to a detrimental course in MDD. These effects of recurrence are already detectable at initial stages of MDD and seem to occur without any prior disease history, emphasizing the importance of early interventions preventing depressive recurrence.
Collapse
Affiliation(s)
- Hannah Lemke
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Klute
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jennifer Skupski
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany ,grid.5949.10000 0001 2172 9288Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Melissa Klug
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils R. Winter
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J. Leehr
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Frederike Stein
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tina Meller
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Kai G. Ringwald
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Julia-Katharina Pfarr
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tim Hahn
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Axel Krug
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany ,grid.10388.320000 0001 2240 3300Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Andreas Jansen
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Walter Heindel
- grid.5949.10000 0001 2172 9288University Clinic for Radiology, University of Münster, Münster, Germany
| | - Igor Nenadić
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tilo Kircher
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
42
|
Li LY, Wang YY, Gao JW, Chen J, Kang M, Ying P, Liao X, Wang Y, Zou J, Su T, Wei H, Shao Y. The Predictive Potential of Altered Voxel-Based Morphometry in Severely Obese Patients With Meibomian Gland Dysfunction. Front Neurosci 2022; 16:939268. [PMID: 35873814 PMCID: PMC9302233 DOI: 10.3389/fnins.2022.939268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
Objective To investigate voxel-based morphometry (VBM) by using magnetic resonance imaging (MRI) in meibomian gland dysfunction patients with severe obesity (PATs) and to explore the application of VBM in the early diagnosis, prevention of cognitive impairment and targeted treatment of this disease. Methods Sixteen PATs and 12 healthy controls (HCs) were enrolled and underwent MRI. Whole-head images were analyzed using VBM and data were compared between groups using an independent samples t-test. Receiver operating characteristic (ROC) curves were utilized to assess the diagnostic value of this approach. Mini-mental state examination (MMSE) scores were used to assess cognitive impairment and were analyzed using an independent samples t-test. Results Compared with HCs, the VBM values in PATs were reduced in the left cerebellum and right thalamus but increased in the right brainstem, right precuneus and right paracentral lobule. The results of ROC curve analysis indicated that VBM may be useful in meibomian gland disease diagnosis. Comparison of MMSE scores between groups showed mild cognitive impairment in PATs. Conclusion PATs showed altered VBM values in some brain areas. These findings may provide information about the pathophysiology of meibomian gland dysfunction and may help to explain the underlying mechanisms of clinical manifestations in PATs, such as cognitive impairment. Abnormal VBM values in these brain areas may serve as predictive factors for development of meibomian gland disease in severely obese people and as indicators for individualized treatment.
Collapse
Affiliation(s)
- Le-Yan Li
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, Queen Mary School, Nanchang University, Nanchang, China
| | - Yuan-Yuan Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun-Wei Gao
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Chen
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Kang
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ping Ying
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xulin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yixin Wang
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Jie Zou
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Su
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Hong Wei
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yi Shao,
| |
Collapse
|
43
|
Luo L, Wen H, Gao L, Li R, Wang S, Wang Z, Li D. Morphological brain changes between active and inactive phases of thyroid associated ophthalmopathy: a voxel-based morphometry study. Brain Res 2022; 1790:147989. [PMID: 35738426 DOI: 10.1016/j.brainres.2022.147989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
Abstract
AIM To explore the morphological brain changes among active thyroid-associated ophthalmopathy (TAO) patients, inactive TAO patients and healthy controls and to investigate the neuropathological relationship of TAO using magnetic resonance imaging (MRI) data. METHODS In this observational case-control study, we included 35 inactive TAO patients, 37 active TAO patients and 23 healthy controls. Voxel-based morphometry (VBM) analysis was conducted to evaluate the gray matter volume (GMV) changes among groups, and the correlations between GMV alterations and clinical parameters in active and inactive TAO groups were investigated. RESULTS Active TAO patients showed significantly increased GMV in the right inferior frontal gyrus, left superior frontal gyrus (SFG), orbital superior frontal gyrus, orbital middle frontal gyrus, precuneus and postcentral gyrus compared with controls and significantly increased GMV in the right middle temporal gyrus, left SFG and precuneus compared with the inactive TAO group. No significant differences were observed between the inactive TAO group and healthy controls. Notably, the receiver operating characteristic (ROC) curve analysis demonstrated altered GMV among groups and significantly (p<0.001) differentiated active TAO from inactive TAO and healthy controls. In addition, the mean GMV in precuneus and postcentral gyrus were significantly associated with clinical parameters in active TAO. CONCLUSION Our findings suggested the localized GMV alterations among groups were associated with the pathophysiology of TAO and served as a potential discriminative pattern to detect clinical phases of TAO at the individual level. The altered brain morphometry may suggest a corresponding process of self-repair and remodeling of the brain structure as the disease progresses in TAO.
Collapse
Affiliation(s)
- Lihua Luo
- Department of Ophthalmology, Beijing Friendship Hospital,Capital Medical University, Beijing, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing, China
| | - Lixin Gao
- Department of Ophthalmology, Beijing Friendship Hospital,Capital Medical University, Beijing, China
| | - Rui Li
- Department of Radiology,Beijing Friendship Hospital,Capital Medical University, Beijing, China
| | - Shengpei Wang
- Research Center for Brain-inspired Intelligence Institute of Automation, Chinese Academy of Sciences, ZhongGuanCun East Rd. 95#, Beijing, 100190
| | - Zhenchang Wang
- Department of Radiology,Beijing Friendship Hospital,Capital Medical University, Beijing, China.
| | - Donmei Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing 100730, China.
| |
Collapse
|
44
|
Dubol M, Stiernman L, Wikström J, Lanzenberger R, Neill Epperson C, Sundström-Poromaa I, Bixo M, Comasco E. Differential grey matter structure in women with premenstrual dysphoric disorder: evidence from brain morphometry and data-driven classification. Transl Psychiatry 2022; 12:250. [PMID: 35705554 PMCID: PMC9200862 DOI: 10.1038/s41398-022-02017-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Premenstrual dysphoric disorder (PMDD) is a female-specific condition classified in the Diagnostic and Statical Manual-5th edition under depressive disorders. Alterations in grey matter volume, cortical thickness and folding metrics have been associated with a number of mood disorders, though little is known regarding brain morphological alterations in PMDD. Here, women with PMDD and healthy controls underwent magnetic resonance imaging (MRI) during the luteal phase of the menstrual cycle. Differences in grey matter structure between the groups were investigated by use of voxel- and surface-based morphometry. Machine learning and multivariate pattern analysis were performed to test whether MRI data could distinguish women with PMDD from healthy controls. Compared to controls, women with PMDD had smaller grey matter volume in ventral posterior cortices and the cerebellum (Cohen's d = 0.45-0.76). Region-of-interest analyses further indicated smaller volume in the right amygdala and putamen of women with PMDD (Cohen's d = 0.34-0.55). Likewise, thinner cortex was observed in women with PMDD compared to controls, particularly in the left hemisphere (Cohen's d = 0.20-0.74). Classification analyses showed that women with PMDD can be distinguished from controls based on grey matter morphology, with an accuracy up to 74%. In line with the hypothesis of an impaired top-down inhibitory circuit involving limbic structures in PMDD, the present findings point to PMDD-specific grey matter anatomy in regions of corticolimbic networks. Furthermore, the results include widespread cortical and cerebellar regions, suggesting the involvement of distinct networks in PMDD pathophysiology.
Collapse
Affiliation(s)
- Manon Dubol
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, 753 09, Sweden
| | - Louise Stiernman
- Department of Clinical Sciences, Umeå University, Umeå, 901 85, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, 751 85, Sweden
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, 1090, Austria
| | - C Neill Epperson
- Department of Psychiatry, Department of Family Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | - Marie Bixo
- Department of Clinical Sciences, Umeå University, Umeå, 901 85, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, 753 09, Sweden.
| |
Collapse
|
45
|
Altered hippocampus and amygdala subregion connectome hierarchy in major depressive disorder. Transl Psychiatry 2022; 12:209. [PMID: 35589678 PMCID: PMC9120054 DOI: 10.1038/s41398-022-01976-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 01/04/2023] Open
Abstract
The hippocampus and amygdala limbic structures are critical to the etiology of major depressive disorder (MDD). However, there are no high-resolution characterizations of the role of their subregions in the whole brain network (connectome). Connectomic examination of these subregions can uncover disorder-related patterns that are otherwise missed when treated as single structures. 38 MDD patients and 40 healthy controls (HC) underwent anatomical and diffusion imaging using 7-Tesla MRI. Whole-brain segmentation was performed along with hippocampus and amygdala subregion segmentation, each representing a node in the connectome. Graph theory analysis was applied to examine the importance of the limbic subregions within the brain network using centrality features measured by node strength (sum of weights of the node's connections), Betweenness (number of shortest paths that traverse the node), and clustering coefficient (how connected the node's neighbors are to one another and forming a cluster). Compared to HC, MDD patients showed decreased node strength of the right hippocampus cornu ammonis (CA) 3/4, indicating decreased connectivity to the rest of the brain, and decreased clustering coefficient of the right dentate gyrus, implying it is less embedded in a cluster. Additionally, within the MDD group, the greater the embedding of the right amygdala central nucleus (CeA) in a cluster, the greater the severity of depressive symptoms. The altered role of these limbic subregions in the whole-brain connectome is related to diagnosis and depression severity, contributing to our understanding of the limbic system involvement in MDD and may elucidate the underlying mechanisms of depression.
Collapse
|
46
|
The Problem of Malnutrition Associated with Major Depressive Disorder from a Sex-Gender Perspective. Nutrients 2022; 14:nu14051107. [PMID: 35268082 PMCID: PMC8912662 DOI: 10.3390/nu14051107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/03/2023] Open
Abstract
Major depressive disorder (MDD) is an incapacitating condition characterized by loss of interest, anhedonia and low mood, which affects almost 4% of people worldwide. With rising prevalence, it is considered a public health issue that affects economic productivity and heavily increases health costs alone or as a comorbidity for other pandemic non-communicable diseases (such as obesity, cardiovascular disease, diabetes, inflammatory bowel diseases, etc.). What is even more noteworthy is the double number of women suffering from MDD compared to men. In fact, this sex-related ratio has been contemplated since men and women have different sexual hormone oscillations, where women meet significant changes depending on the age range and moment of life (menstruation, premenstruation, pregnancy, postpartum, menopause…), which seem to be associated with susceptibility to depressive symptoms. For instance, a decreased estrogen level promotes decreased activation of serotonin transporters. Nevertheless, sexual hormones are not the only triggers that alter neurotransmission of monoamines and other neuropeptides. Actually, different dietary habits and/or nutritional requirements for specific moments of life severely affect MDD pathophysiology in women. In this context, the present review aims to descriptively collect information regarding the role of malnutrition in MDD onset and course, focusing on female patient and especially macro- and micronutrient deficiencies (amino acids, ω3 polyunsaturated fatty acids (ω3 PUFAs), folate, vitamin B12, vitamin D, minerals…), besides providing evidence for future nutritional intervention programs with a sex-gender perspective that hopefully improves mental health and quality of life in women.
Collapse
|
47
|
Wang X, Cai ZD, Jiang WT, Fang YY, Sun WX, Wang X. Systematic review and meta-analysis of the effects of exercise on depression in adolescents. Child Adolesc Psychiatry Ment Health 2022; 16:16. [PMID: 35227300 PMCID: PMC8886903 DOI: 10.1186/s13034-022-00453-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/18/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Depression is widespread among adolescents and seriously endangers their quality of life and academic performance. Developing strategies for adolescent depression has important public health implications. No systematic review on the effectiveness of physical exercise for adolescents aged 12-18 years with depression or depressive symptoms has previously been conducted. This study aims to systematically evaluate the effect of physical exercise on adolescent depression in the hope of developing optimum physical exercise programs. METHODS Nine major databases at home and abroad were searched to retrieve randomized controlled trials (RCTs) on exercise interventions among adolescents with depression or depressive symptoms. The retrieval period started from the founding date of each database to May 1, 2021. The methodological quality of the included articles was evaluated using the modified PEDro scale. A meta-analysis, subgroup analysis, sensitivity analysis, and publication bias tests were then conducted. RESULTS Fifteen articles, involving 19 comparisons, with a sample size of 1331, were included. Physical exercise significantly reduced adolescent depression (standardized mean difference [SMD] = - 0.64, 95% CI - 0.89, - 0.39, p < 0.01), with a moderate effect size, in both adolescents with depression (SMD = -0.57, 95% CI - 0.90, - 0.23, p < 0.01) and adolescents with depressive symptoms (SMD = - 0.67, 95% CI - 1.00, - 0.33, p < 0.01). In subgroups of different depression categories (depression or depressive symptoms), aerobic exercise was the main form of exercise for the treatment of adolescents with depression. For adolescents with depression, interventions lasting 6 weeks, 30 min/time, and 4 times/week had optimum results. The effects of aerobic exercise and resistance + aerobic exercise in the subgroup of adolescents with depressive symptoms were significant, while the effect of physical and mental exercise (yoga) was not significant. For adolescents with depressive symptoms, aerobic exercise lasting 8 weeks, 75-120 min/time, and 3 times/week had optimum results. Physical exercise with moderate intensity is a better choice for adolescents with depression and depressive symptoms. CONCLUSIONS Physical exercise has a positive effect on the improvement of depression in adolescents. The protocol for this study was registered with INPLASY (202170013). DOI number is 10.37766/inplasy2021.7.0013. Registration Date:2021.7.06.
Collapse
Affiliation(s)
- Xiang Wang
- School of Physical Education and Training, Shanghai University of Sport, 650 Qingyuan Ring Road, Yangpu District, Shanghai, 200438 China
| | - Zhi-dong Cai
- School of Physical Education and Training, Shanghai University of Sport, 650 Qingyuan Ring Road, Yangpu District, Shanghai, 200438 China
| | - Wan-ting Jiang
- School of Physical Education and Training, Shanghai University of Sport, 650 Qingyuan Ring Road, Yangpu District, Shanghai, 200438 China
| | - Yan-yan Fang
- School of Physical Education and Training, Shanghai University of Sport, 650 Qingyuan Ring Road, Yangpu District, Shanghai, 200438 China
| | - Wen-xin Sun
- School of Physical Education and Training, Shanghai University of Sport, 650 Qingyuan Ring Road, Yangpu District, Shanghai, 200438 China
| | - Xing Wang
- School of Physical Education and Training, Shanghai University of Sport, 650 Qingyuan Ring Road, Yangpu District, Shanghai, 200438 China
| |
Collapse
|
48
|
Ma J, Wu JJ, Xing XX, Huo BB, Gao X, Ma ZZ, Li SS, Zheng MX, Hua XY, Xu JG. Cerebral Metabolic Analysis of Patients With Colorectal Cancer and Chronic Enteritis: Inquiry Into Gut-Brain Crosstalk. Front Neurosci 2022; 16:822891. [PMID: 35281497 PMCID: PMC8914460 DOI: 10.3389/fnins.2022.822891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Gut-brain crosstalk has been demonstrated previously. However, brain metabolic patterns of colorectal cancer and chronic enteritis remain unclear. A better understanding of gut-brain crosstalk from a radiological perspective is necessary. We conducted a retrospective study in which we acquired 18F-fluorodeoxyglucose positron emission tomography in 45 colorectal cancer cases, 45 age- and sex-matched chronic enteritis patients, and 45 age- and sex-matched healthy controls. We calculated a scaled sub-profile pattern based on principal component analysis and metabolic connectivity to explore the brain metabolic model and analyzed correlations between various brain regions and cancer to identify potential neuroimaging markers for non-pharmaceutical therapies. We found a characteristic cerebral metabolic pattern in colorectal cancer patients, which mainly involved visceral sensation and both affective and cognitive psychological processes. The metabolic patterns of patients with colorectal cancer and chronic enteritis were similar but not identical. The metabolic connectivity of the postcentral gyrus and paracentral lobule was found to be significantly different between the controls and patients with colorectal cancer (p < 0.05, false discovery rate correction). The maximal standard uptake value of the cancer focus in colorectal cancer patients was negatively correlated with the dorsolateral superior frontal gyrus (p < 0.05). Patients with colorectal cancer may show abnormal glucose cerebral metabolism characterized by “point-line-surface.” This preliminary study revealed the cerebral metabolic characteristics and neurobiological mechanisms of colorectal cancer and chronic enteritis (ChiCTR2000041020; registered December 16, 2020).
Collapse
Affiliation(s)
- Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Gao
- Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Zhen-Zhen Ma
- Department of Rehabilitation Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si-Si Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Mou-Xiong Zheng,
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Xu-Yun Hua,
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- *Correspondence: Jian-Guang Xu,
| |
Collapse
|
49
|
Wen M, Dong Z, Zhang L, Li B, Zhang Y, Li K. Depression and Cognitive Impairment: Current Understanding of Its Neurobiology and Diagnosis. Neuropsychiatr Dis Treat 2022; 18:2783-2794. [PMID: 36471744 PMCID: PMC9719265 DOI: 10.2147/ndt.s383093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Eye movement is critical for obtaining precise visual information and providing sensorimotor processes and advanced cognitive functions to the brain behavioral indicator. METHODS In this article, we present a narrative review of the eye-movement paradigms (such as fixation, smooth pursuit eye movements, and memory-guided saccade tasks) in major depression. RESULTS Characteristics of eye movement are considered to reflect several aspects of cognitive deficits regarded as an aid to diagnosis. Findings regarding depressive disorders showed differences from the healthy population in paradigms, the characteristics of eye movement may reflect cognitive deficits in depression. Neuroimaging studies have demonstrated the effectiveness of different eye movement paradigms for MDD screening. CONCLUSION Depression can be distinguished from other mental illnesses based on eye movements. Eye movement reflects cognitive deficits that can help diagnose depression, and it can make the entire diagnostic process more accurate.
Collapse
Affiliation(s)
- Min Wen
- School of Psychology and Mental Health, North China University of Science and Technology, Tangshan, People's Republic of China.,Hebei Provincial Mental Health Center, Baoding, People's Republic of China.,Hebei Provincial Key Laboratory of Major Mental and Behavioral Disorders, Baoding, People's Republic of China
| | - Zhen Dong
- Hebei Provincial Mental Health Center, Baoding, People's Republic of China
| | - Lili Zhang
- Hebei Provincial Mental Health Center, Baoding, People's Republic of China
| | - Bing Li
- Hebei Provincial Mental Health Center, Baoding, People's Republic of China.,Hebei Provincial Key Laboratory of Major Mental and Behavioral Disorders, Baoding, People's Republic of China
| | - Yunshu Zhang
- Hebei Provincial Mental Health Center, Baoding, People's Republic of China.,Hebei Provincial Key Laboratory of Major Mental and Behavioral Disorders, Baoding, People's Republic of China
| | - Keqing Li
- Hebei Provincial Mental Health Center, Baoding, People's Republic of China.,Hebei Provincial Key Laboratory of Major Mental and Behavioral Disorders, Baoding, People's Republic of China
| |
Collapse
|
50
|
Myoraku A, Lang A, Taylor CT, Scott Mackin R, Meyerhoff DJ, Mueller S, Strigo IA, Tosun D. Age-dependent brain morphometry in Major Depressive disorder. Neuroimage Clin 2021; 33:102924. [PMID: 34959051 PMCID: PMC8718744 DOI: 10.1016/j.nicl.2021.102924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a complex disorder that affects nearly 264 million people worldwide. Structural brain abnormalities in multiple neuroanatomical networks have been implicated in the etiology of MDD, but the degree to which MDD affects brain structure during early to late adulthood is unclear. METHODS We examined morphometry of brain regions commonly implicated in MDD, including the amygdala, hippocampus, anterior cingulate gyrus, lateral orbitofrontal gyrus, subgenual cortex, and insular cortex subregions, from early to late adulthood. Harmonized measures for gray matter (GM) volume and cortical thickness of each region were estimated cross-sectionally for 305 healthy controls (CTLs) and 247 individuals with MDD (MDDs), collated from four research cohorts. We modeled the nonlinear associations of age with GM volume and cortical thickness using generalized additive modeling and tested for age-dependent group differences. RESULTS Overall, all investigated regions exhibited smaller GM volume and thinner cortical measures with increasing age. Compared to age matched CTLs, MDDs had thicker cortices and greater GM volume from early adulthood until early middle age (average 35 years), but thinner cortices and smaller GM volume during and after middle age in the lateral orbital gyrus and all insular subregions. Deviations of the MDD and CTL models for both GM volume and cortical thickness in these regions started as early as age 18. CONCLUSIONS The analyses revealed that brain morphometry differences between MDDs and CTLs are dependent on age and brain region. The significant age-by-group interactions in the lateral orbital frontal gyrus and insular subregions make these regions potential targets for future longitudinal studies of MDD.
Collapse
Affiliation(s)
- Alison Myoraku
- Northern California Institute for Research and Education, San Francisco, CA 94121, United States; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, United States; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, United States.
| | - Adam Lang
- Northern California Institute for Research and Education, San Francisco, CA 94121, United States
| | - Charles T Taylor
- Department of Psychiatry, University of California, San Diego School of Medicine, San Diego, CA 92093, United States
| | - R Scott Mackin
- Northern California Institute for Research and Education, San Francisco, CA 94121, United States; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Dieter J Meyerhoff
- Northern California Institute for Research and Education, San Francisco, CA 94121, United States; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Susanne Mueller
- Northern California Institute for Research and Education, San Francisco, CA 94121, United States; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Irina A Strigo
- Department of Psychiatry, University of California San Francisco, San Francisco, CA 94143, United States; Emotion and Pain Laboratory, San Francisco Veterans Affairs Health Care Center, San Francisco, CA 94121, United States
| | - Duygu Tosun
- Northern California Institute for Research and Education, San Francisco, CA 94121, United States; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, United States
| |
Collapse
|