1
|
Montoya M, Uchino BN. Social support and telomere length: a meta-analysis. J Behav Med 2023; 46:556-565. [PMID: 36617609 PMCID: PMC11424215 DOI: 10.1007/s10865-022-00389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
Previous studies have shown that lower social support is associated with higher all-cause mortality (Holt-Lunstad et al. in PLoS ONE Medicine 7:e1000316, 2010). While social support has been associated with system-specific biological measures (e.g., cardiovascular), there is the need to elucidate more general biological mechanisms linking social support to health risk across a number of diseases. In this meta-analytic review, the link between social support and telomere length (Cawthon et al. in Lancet 361:393-395, 2003) was conducted based on the updated PRISMA guidelines (Page et al., 2021). Across 17 studies, higher social support was not significantly related to longer telomere length (Zr = 0.010, 95% CI [- 0.028, 0.047], p > 0.05). The confidence interval indicated that the bulk of plausible values were small to null associations. Little evidence for bias was found as shown by funnel plots and Kendall's Tau. Moderator analyses focusing on the measure of support, health of sample, age, type of assay specimen, and gender were not significant. In conclusion, this review showed no significant relationship between social support and telomere length and highlights important future directions.
Collapse
Affiliation(s)
- Mariah Montoya
- Department of Psychology, University of Utah, Salt Lake City, USA
| | - Bert N Uchino
- Department of Psychology and Health Psychology Program, University of Utah, Salt Lake City, USA.
| |
Collapse
|
2
|
NR3C1 overexpression regulates the expression and alternative splicing of inflammation-associated genes involved in PTSD. Gene 2023; 859:147199. [PMID: 36657650 DOI: 10.1016/j.gene.2023.147199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
NR3C1-encoding glucocorticoid receptors have dual roles as RNA-binding protein and transcription factor. Recent studies revealed that NR3C1 might play an important role in the pathogenesis of PTSD (Post-traumatic stress disorder). However, its molecular mechanism remained unclear. In the present study, a neuronal cell model was constructed by transfecting a NR3C1-overexpressing plasmid pIRES-hrGFP-1a-NR3C1 or empty vector into HT22 cells. The changes in global transcription levels and alternative splicing events in HT22 cells after NR3C1 overexpression were analyzed by RNA sequencing. Compared with the empty vector control, the expression of inflammatory factors were differentially regulated by NR3C1, including genes involved in chemokine signal pathway, PI3K-Akt signal pathway, cytokine receptor interaction, neural ligand-receptor interaction and so on. In addition, NR3C1 regulated the alternative splicing of many genes involved in immune response, axon formation, stress response and inflammation. This study was the first to perform a transcriptome analysis of differential gene expression and alternative splicing in a NR3C1-overexpressing HT22 cell model. Our results suggested that NR3C1 could manipulate the expression of inflammatory transcription factors and their alternative splicing patterns, subsequently affecting the expression of downstream targets, may be leading to the onset of PTSD. This study will provide new insights in the NR3C1-mediated gene regulation in relation to PTSD.
Collapse
|
3
|
Sumner JA, Cleveland S, Chen T, Gradus JL. Psychological and biological mechanisms linking trauma with cardiovascular disease risk. Transl Psychiatry 2023; 13:25. [PMID: 36707505 PMCID: PMC9883529 DOI: 10.1038/s41398-023-02330-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and experiences of psychological trauma have been associated with subsequent CVD onset. Identifying key pathways connecting trauma with CVD has the potential to inform more targeted screening and intervention efforts to offset elevated cardiovascular risk. In this narrative review, we summarize the evidence for key psychological and biological mechanisms linking experiences of trauma with CVD risk. Additionally, we describe various methodologies for measuring these mechanisms in an effort to inform future research related to potential pathways. With regard to mechanisms involving posttraumatic psychopathology, the vast majority of research on psychological distress after trauma and CVD has focused on posttraumatic stress disorder (PTSD), even though posttraumatic psychopathology can manifest in other ways as well. Substantial evidence suggests that PTSD predicts the onset of a range of cardiovascular outcomes in trauma-exposed men and women, yet more research is needed to better understand posttraumatic psychopathology more comprehensively and how it may relate to CVD. Further, dysregulation of numerous biological systems may occur after trauma and in the presence of posttraumatic psychopathology; these processes of immune system dysregulation and elevated inflammation, oxidative stress, mitochondrial dysfunction, renin-angiotensin system dysregulation, and accelerated biological aging may all contribute to subsequent cardiovascular risk, although more research on these pathways in the context of traumatic stress is needed. Given that many of these mechanisms are closely intertwined, future research using a systems biology approach may prove fruitful for elucidating how processes unfold to contribute to CVD after trauma.
Collapse
Affiliation(s)
- Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Shiloh Cleveland
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tiffany Chen
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jaimie L Gradus
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
4
|
Palmer BW, Hussain MA, Lohr JB. Loneliness in Posttraumatic Stress Disorder: A Neglected Factor in Accelerated Aging? JOURNAL OF AGEING AND LONGEVITY 2022; 2:326-339. [PMID: 36567873 PMCID: PMC9783482 DOI: 10.3390/jal2040027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prior research suggests that people with Posttraumatic Stress Disorder (PTSD) may experience a form of accelerated biological aging. In other populations, loneliness has been shown to elevate risk for many of the same components of accelerated biological aging, and other deleterious outcomes, as seen in people with PTSD. Although standard diagnostic criteria for PTSD include "feelings of detachment or estrangement from others", the relationship of such feelings to the concept of loneliness remains uncertain, in par potentially due to a failure to distinguish between loneliness versus objective social isolation. In order to catalyze wider research attention to loneliness in PTSD, and the potential contribution to accelerated biological aging, the present paper provides three components: (1) a conceptual overview of the relevant constructs and potential interrelationships, (2) a review of the limited extant empirical literature, and (3) suggested directions for future research. The existing empirical literature is too small to support many definitive conclusions, but there is evidence of an association between loneliness and symptoms of PTSD. The nature of this association may be complex, and the causal direction(s) uncertain. Guided by the conceptual overview and review of existing literature, we also highlight key areas for further research. The ultimate goal of this line of work is to elucidate mechanisms underlying any link between loneliness and accelerated aging in PTSD, and to develop, validate, and refine prevention and treatment efforts.
Collapse
Affiliation(s)
- Barton W. Palmer
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037, USA
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Mariam A. Hussain
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037, USA
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - James B. Lohr
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92161, USA
| |
Collapse
|
5
|
Sfera A, Osorio C, Rahman L, Zapata-Martín del Campo CM, Maldonado JC, Jafri N, Cummings MA, Maurer S, Kozlakidis Z. PTSD as an Endothelial Disease: Insights From COVID-19. Front Cell Neurosci 2021; 15:770387. [PMID: 34776871 PMCID: PMC8586713 DOI: 10.3389/fncel.2021.770387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 virus, the etiologic agent of COVID-19, has affected almost every aspect of human life, precipitating stress-related pathology in vulnerable individuals. As the prevalence rate of posttraumatic stress disorder in pandemic survivors exceeds that of the general and special populations, the virus may predispose to this disorder by directly interfering with the stress-processing pathways. The SARS-CoV-2 interactome has identified several antigens that may disrupt the blood-brain-barrier by inducing premature senescence in many cell types, including the cerebral endothelial cells. This enables the stress molecules, including angiotensin II, endothelin-1 and plasminogen activator inhibitor 1, to aberrantly activate the amygdala, hippocampus, and medial prefrontal cortex, increasing the vulnerability to stress related disorders. This is supported by observing the beneficial effects of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in both posttraumatic stress disorder and SARS-CoV-2 critical illness. In this narrative review, we take a closer look at the virus-host dialog and its impact on the renin-angiotensin system, mitochondrial fitness, and brain-derived neurotrophic factor. We discuss the role of furin cleaving site, the fibrinolytic system, and Sigma-1 receptor in the pathogenesis of psychological trauma. In other words, learning from the virus, clarify the molecular underpinnings of stress related disorders, and design better therapies for these conditions. In this context, we emphasize new potential treatments, including furin and bromodomains inhibitors.
Collapse
Affiliation(s)
- Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Patton State Hospital, San Bernardino, CA, United States
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Leah Rahman
- Patton State Hospital, San Bernardino, CA, United States
| | | | - Jose Campo Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Zisis Kozlakidis
- International Agency For Research On Cancer (IARC), Lyon, France
| |
Collapse
|
6
|
Oxidative Dysregulation in Early Life Stress and Posttraumatic Stress Disorder: A Comprehensive Review. Brain Sci 2021; 11:brainsci11060723. [PMID: 34072322 PMCID: PMC8228973 DOI: 10.3390/brainsci11060723] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
Traumatic stress may chronically affect master homeostatic systems at the crossroads of peripheral and central susceptibility pathways and lead to the biological embedment of trauma-related allostatic trajectories through neurobiological alterations even decades later. Lately, there has been an exponential knowledge growth concerning the effect of traumatic stress on oxidative components and redox-state homeostasis. This extensive review encompasses a detailed description of the oxidative cascade components along with their physiological and pathophysiological functions and a systematic presentation of both preclinical and clinical, genetic and epigenetic human findings on trauma-related oxidative stress (OXS), followed by a substantial synthesis of the involved oxidative cascades into specific and functional, trauma-related pathways. The bulk of the evidence suggests an imbalance of pro-/anti-oxidative mechanisms under conditions of traumatic stress, respectively leading to a systemic oxidative dysregulation accompanied by toxic oxidation byproducts. Yet, there is substantial heterogeneity in findings probably relative to confounding, trauma-related parameters, as well as to the equivocal directionality of not only the involved oxidative mechanisms but other homeostatic ones. Accordingly, we also discuss the trauma-related OXS findings within the broader spectrum of systemic interactions with other major influencing systems, such as inflammation, the hypothalamic-pituitary-adrenal axis, and the circadian system. We intend to demonstrate the inherent complexity of all the systems involved, but also put forth associated caveats in the implementation and interpretation of OXS findings in trauma-related research and promote their comprehension within a broader context.
Collapse
|
7
|
Sazonova MA, Sinyov VV, Ryzhkova AI, Sazonova MD, Kirichenko TV, Khotina VA, Khasanova ZB, Doroschuk NA, Karagodin VP, Orekhov AN, Sobenin IA. Some Molecular and Cellular Stress Mechanisms Associated with Neurodegenerative Diseases and Atherosclerosis. Int J Mol Sci 2021; 22:E699. [PMID: 33445687 PMCID: PMC7828120 DOI: 10.3390/ijms22020699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic stress is a combination of nonspecific adaptive reactions of the body to the influence of various adverse stress factors which disrupt its homeostasis, and it is also a corresponding state of the organism's nervous system (or the body in general). We hypothesized that chronic stress may be one of the causes occurence of several molecular and cellular types of stress. We analyzed literary sources and considered most of these types of stress in our review article. We examined genes and mutations of nuclear and mitochondrial genomes and also molecular variants which lead to various types of stress. The end result of chronic stress can be metabolic disturbance in humans and animals, leading to accumulation of reactive oxygen species (ROS), oxidative stress, energy deficiency in cells (due to a decrease in ATP synthesis) and mitochondrial dysfunction. These changes can last for the lifetime and lead to severe pathologies, including neurodegenerative diseases and atherosclerosis. The analysis of literature allowed us to conclude that under the influence of chronic stress, metabolism in the human body can be disrupted, mutations of the mitochondrial and nuclear genome and dysfunction of cells and their compartments can occur. As a result of these processes, oxidative, genotoxic, and cellular stress can occur. Therefore, chronic stress can be one of the causes forthe occurrence and development of neurodegenerative diseases and atherosclerosis. In particular, chronic stress can play a large role in the occurrence and development of oxidative, genotoxic, and cellular types of stress.
Collapse
Affiliation(s)
- Margarita A. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Vasily V. Sinyov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Anastasia I. Ryzhkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
| | - Marina D. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
| | - Tatiana V. Kirichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 117418 Moscow, Russia
| | - Victoria A. Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 117418 Moscow, Russia
| | - Zukhra B. Khasanova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Natalya A. Doroschuk
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Vasily P. Karagodin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Department of Commodity Science and Expertise, Plekhanov Russian University of Economics, 125993 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 117418 Moscow, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative Centre, 143024 Moscow, Russia
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| |
Collapse
|
8
|
Neurobiological Trajectories Involving Social Isolation in PTSD: A Systematic Review. Brain Sci 2020; 10:brainsci10030173. [PMID: 32197333 PMCID: PMC7139956 DOI: 10.3390/brainsci10030173] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Social isolation (SI) stress has been recognized as a major risk factor of morbidity in humans and animals, exerting damaging effects at the physical and mental health levels. Posttraumatic stress disorder (PTSD), on the other hand, occurs as a result of experiencing serious, life-threatening, traumatic events and involves involuntary re-experiencing trauma (intrusion), avoidance symptoms, and distortions of cognition and emotional arousal. The literature shows that PTSD is affected by genetic predisposition and triggers a large neurocircuitry involving the amygdala, insula, hippocampus, anterior cingulate- and prefrontal-cortex, and affects the function of the neuroendocrine and immune systems. Social isolation seems to influence the predisposition, onset and outcome of PTSD in humans, whereas it constitutes a valid model of the disorder in animals. According to the PRISMA (preferred reporting items for systematic reviews and meta-analyses) protocol, we systematically reviewed all original studies involving the neurobiological trajectories between SI and PTSD published till July 2019 (database: PubMed/Medline). Out of 274 studies, 10 met the inclusion criteria. We present the results of the retrieved studies in terms of hypothalamic-pituitary-adrenal (HPA)-axis and endocannabinoid system function, immune reactions, neuroplasticity, novel pharmacological targets, and shortening of telomere length, which confirm a synergistic effect on a neurobiological level between the two entities.
Collapse
|
9
|
The Dietary Inflammatory Index® and Alternative Healthy Eating Index 2010 in relation to leucocyte telomere length in postmenopausal women: a cross-sectional study. J Nutr Sci 2019; 8:e35. [PMID: 31723429 PMCID: PMC6842575 DOI: 10.1017/jns.2019.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Accepted: 09/20/2019] [Indexed: 12/23/2022] Open
Abstract
Telomeres are nucleoprotein complexes that form the ends of eukaryotic chromosomes where they protect DNA from genomic instability, prevent end-to-end fusion and limit cellular replicative capabilities. Increased telomere attrition rates, and relatively shorter telomere length, is associated with genomic instability and has been linked with several chronic diseases, malignancies and reduced longevity. Telomeric DNA is highly susceptible to oxidative damage and dietary habits may make an impact on telomere attrition rates through the mediation of oxidative stress and chronic inflammation. The aim of this study was to examine the association between leucocyte telomere length (LTL) with both the Dietary Inflammatory Index® 2014 (DII®) and the Alternative Healthy Eating Index 2010 (AHEI-2010). This is a cross-sectional analysis using baseline data from 263 postmenopausal women from the Alberta Physical Activity and Breast Cancer Prevention (ALPHA) Trial, in Calgary and Edmonton, Alberta, Canada. No statistically significant association was detected between LTL z-score and the AHEI-2010 (P = 0·20) or DII® (P = 0·91) in multivariable adjusted models. An exploratory analysis of AHEI-2010 and DII® parameters and LTL revealed anthocyanidin intake was associated with LTL (P < 0·01); however, this association was non-significant after a Bonferroni correction was applied (P = 0·27). No effect modification by age, smoking history, or recreational physical activity was detected for either relationship. Increased dietary antioxidant and decreased oxidant intake were not associated with LTL in this analysis.
Collapse
|
10
|
Konečná K, Lyčka M, Nohelová L, Petráková M, Fňašková M, Koriťáková E, Sováková PP, Brabencová S, Preiss M, Rektor I, Fajkus J, Fojtová M. Holocaust history is not reflected in telomere homeostasis in survivors and their offspring. J Psychiatr Res 2019; 117:7-14. [PMID: 31255955 DOI: 10.1016/j.jpsychires.2019.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 01/30/2023]
Abstract
Telomeres, nucleoprotein structures at the ends of eukaryotic chromosomes, are crucial for the maintenance of genome integrity. While the lengths of telomeres at birth are determined genetically, many factors including environmental and living conditions affect the telomere lengths during a lifespan. In this context, extreme and long-term stress has been shown to negatively impact telomeres and their protective function, with even offspring being influenced by the stress experienced by parents. Using quantitative PCR, the relative lengths of telomeres of survivors of the Holocaust during World War II and two generations of their offspring were analyzed. These data were related to those of control groups, persons of comparable age without a strong life stress experience. In contrast to previous studies of other stress-exposed groups, the relative lengths of telomeres were comparable in groups of persons exposed to Holocaust-related stress and their progenies, and in control groups. Interestingly, shorter telomeres of Holocaust survivors of the age under 12 in the year 1945 compared to Holocaust survivors of the age above 12 were detected. Our results are discussed with respect to certain exceptionality of persons having been able to cope with an extreme stress more than 70 years ago and living to a very old age.
Collapse
Affiliation(s)
- Klára Konečná
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Lucie Nohelová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Monika Petráková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Monika Fňašková
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
| | - Eva Koriťáková
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic; Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Pavla Polanská Sováková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Sylva Brabencová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Preiss
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic; National Institute of Mental Health and University of New York in Prague, Czech Republic
| | - Ivan Rektor
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
11
|
Multidimensional informatic deconvolution defines gender-specific roles of hypothalamic GIT2 in aging trajectories. Mech Ageing Dev 2019; 184:111150. [PMID: 31574270 DOI: 10.1016/j.mad.2019.111150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/20/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
In most species, females live longer than males. An understanding of this female longevity advantage will likely uncover novel anti-aging therapeutic targets. Here we investigated the transcriptomic responses in the hypothalamus - a key organ for somatic aging control - to the introduction of a simple aging-related molecular perturbation, i.e. GIT2 heterozygosity. Our previous work has demonstrated that GIT2 acts as a network controller of aging. A similar number of both total (1079-female, 1006-male) and gender-unique (577-female, 527-male) transcripts were significantly altered in response to GIT2 heterozygosity in early life-stage (2 month-old) mice. Despite a similar volume of transcriptomic disruption in females and males, a considerably stronger dataset coherency and functional annotation representation was observed for females. It was also evident that female mice possessed a greater resilience to pro-aging signaling pathways compared to males. Using a highly data-dependent natural language processing informatics pipeline, we identified novel functional data clusters that were connected by a coherent group of multifunctional transcripts. From these it was clear that females prioritized metabolic activity preservation compared to males to mitigate this pro-aging perturbation. These findings were corroborated by somatic metabolism analyses of living animals, demonstrating the efficacy of our new informatics pipeline.
Collapse
|
12
|
Musorina AS, Zenin VV, Turilova VI, Yakovleva TK, Poljanskaya GG. Characterization of a Nonimmortalized Mesenchymal Stem Cell Line Isolated from Human Epicardial Adipose Tissue. ACTA ACUST UNITED AC 2019. [DOI: 10.1134/s1990519x19040060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Mellon SH, Bersani FS, Lindqvist D, Hammamieh R, Donohue D, Dean K, Jett M, Yehuda R, Flory J, Reus VI, Bierer LM, Makotkine I, Abu Amara D, Henn Haase C, Coy M, Doyle FJ, Marmar C, Wolkowitz OM. Metabolomic analysis of male combat veterans with post traumatic stress disorder. PLoS One 2019; 14:e0213839. [PMID: 30883584 PMCID: PMC6422302 DOI: 10.1371/journal.pone.0213839] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/02/2019] [Indexed: 12/26/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is associated with impaired major domains of psychology and behavior. Individuals with PTSD also have increased co-morbidity with several serious medical conditions, including autoimmune diseases, cardiovascular disease, and diabetes, raising the possibility that systemic pathology associated with PTSD might be identified by metabolomic analysis of blood. We sought to identify metabolites that are altered in male combat veterans with PTSD. In this case-control study, we compared metabolomic profiles from age-matched male combat trauma-exposed veterans from the Iraq and Afghanistan conflicts with PTSD (n = 52) and without PTSD (n = 51) (‘Discovery group’). An additional group of 31 PTSD-positive and 31 PTSD-negative male combat-exposed veterans was used for validation of these findings (‘Test group’). Plasma metabolite profiles were measured in all subjects using ultrahigh performance liquid chromatography/tandem mass spectrometry and gas chromatography/mass spectrometry. We identified key differences between PTSD subjects and controls in pathways related to glycolysis and fatty acid uptake and metabolism in the initial ‘Discovery group’, consistent with mitochondrial alterations or dysfunction, which were also confirmed in the ‘Test group’. Other pathways related to urea cycle and amino acid metabolism were different between PTSD subjects and controls in the ‘Discovery’ but not in the smaller ‘Test’ group. These metabolic differences were not explained by comorbid major depression, body mass index, blood glucose, hemoglobin A1c, smoking, or use of analgesics, antidepressants, statins, or anti-inflammatories. These data show replicable, wide-ranging changes in the metabolic profile of combat-exposed males with PTSD, with a suggestion of mitochondrial alterations or dysfunction, that may contribute to the behavioral and somatic phenotypes associated with this disease.
Collapse
Affiliation(s)
- Synthia H. Mellon
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, United States of America
- * E-mail:
| | - F. Saverio Bersani
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, United States of America
| | - Daniel Lindqvist
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, United States of America
| | - Rasha Hammamieh
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, United States of America
| | - Duncan Donohue
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, United States of America
| | - Kelsey Dean
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Marti Jett
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, United States of America
| | - Rachel Yehuda
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Janine Flory
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Victor I. Reus
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, United States of America
| | - Linda M. Bierer
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Iouri Makotkine
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Duna Abu Amara
- Department of Psychiatry, New York University Langone Medical School, New York, NY, United States of America
| | - Clare Henn Haase
- Department of Psychiatry, New York University Langone Medical School, New York, NY, United States of America
| | - Michelle Coy
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, United States of America
| | - Francis J. Doyle
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Charles Marmar
- Department of Psychiatry, New York University Langone Medical School, New York, NY, United States of America
- Stephen and Alexandra Cohen Veteran Center for Posttraumatic Stress and Traumatic Brain Injury, New York, NY, United States of America
| | - Owen M. Wolkowitz
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, United States of America
| |
Collapse
|
14
|
Enhanced Molecular Appreciation of Psychiatric Disorders Through High-Dimensionality Data Acquisition and Analytics. Methods Mol Biol 2019; 2011:671-723. [PMID: 31273728 DOI: 10.1007/978-1-4939-9554-7_39] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The initial diagnosis, molecular investigation, treatment, and posttreatment care of major psychiatric disorders (schizophrenia and bipolar depression) are all still significantly hindered by the current inability to define these disorders in an explicit molecular signaling manner. High-dimensionality data analytics, using large datastreams from transcriptomic, proteomic, or metabolomic investigations, will likely advance both the appreciation of the molecular nature of major psychiatric disorders and simultaneously enhance our ability to more efficiently diagnose and treat these debilitating conditions. High-dimensionality data analysis in psychiatric research has been heterogeneous in aims and methods and limited by insufficient sample sizes, poorly defined case definitions, methodological inhomogeneity, and confounding results. All of these issues combine to constrain the conclusions that can be extracted from them. Here, we discuss possibilities for overcoming methodological challenges through the implementation of transcriptomic, proteomic, or metabolomics signatures in psychiatric diagnosis and offer an outlook for future investigations. To fulfill the promise of intelligent high-dimensionality data-based differential diagnosis in mental disease diagnosis and treatment, future research will need large, well-defined cohorts in combination with state-of-the-art technologies.
Collapse
|
15
|
Gomez D, Power C, Fujiwara E. Neurocognitive Impairment and Associated Genetic Aspects in HIV Infection. Curr Top Behav Neurosci 2018; 50:41-76. [PMID: 30523615 DOI: 10.1007/7854_2018_69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
HIV enters the central nervous system (CNS) early after infection. HIV-associated neurocognitive disorders (HAND) remain a serious complication of HIV infection despite available antiretroviral therapy (ART). Neurocognitive deficits observed in HAND are heterogeneous, suggesting a variability in individuals' susceptibility or resiliency to the detrimental CNS effects of HIV infection. This chapter reviews primary host genomic changes (immune-related genes, genes implicated in cognitive changes in primary neurodegenerative diseases), epigenetic mechanisms, and genetic interactions with ART implicated in HIV progression or HAND/neurocognitive complications of HIV. Limitations of the current findings include diversity of the HAND phenotype and limited replication of findings across cohorts. Strategies to improve the precision of future (epi)genetic studies of neurocognitive consequences of HIV infection are offered.
Collapse
Affiliation(s)
- Daniela Gomez
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Christopher Power
- Departments of Psychiatry and Medicine, University of Alberta, Edmonton, AB, Canada
| | - Esther Fujiwara
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|