1
|
Yang S, Wang F, Sun L, Liu X, Li S, Chen Y, Chen L, Pan Z, Kang Y, Chen YH, Wang W, Chen L, Li X, Tang C, Liu Y. The effects of BDNF rs6265 and FGF21 rs11665896 polymorphisms on alcohol use disorder-related impulsivity in Han Chinese adults. Front Psychiatry 2024; 15:1339558. [PMID: 38721616 PMCID: PMC11078301 DOI: 10.3389/fpsyt.2024.1339558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/26/2024] [Indexed: 01/16/2025] Open
Abstract
INTRODUCTION Patients with alcohol use disorder (AUD) often experience repeated withdrawal. Impulsivity is the most relevant factor influencing successful withdrawal. Brain-derived neurotrophic factor (BNDF) and fibroblast growth factor 21 (FGF21) are associated with impulsivity. Previous studies on the differential effects of BDNF or FGF21 on impulsivity have focused on single-gene effects and have inconsistent results. We aim to investigate the effects of BDNF rs6265 and FGF21 rs11665896, individually and together, on impulsivity during alcohol withdrawal in patients with AUD. METHODS We recruited 482 adult Han Chinese males with AUD and assessed their impulsivity using the Barratt Impulsivity Scale. Genomic DNA was extracted and genotyped from peripheral blood samples. Statistical analysis was conducted on the data. RESULTS The T-test and 2 × 2 analysis of variance were used to investigate the effects of the genes on impulsivity. There was a significant BDNF × FGF21 interaction on no-planning impulsiveness (F = 9.15, p = 0.003, η2p = 0.03). Simple main effects analyses and planned comparisons showed that BDNF rs6265 A allele × FGF21 rs11665896 T allele was associated with higher no-planning impulsiveness. Finally, hierarchical regression analyses revealed that only the interaction of BDNF and FGF21 accounted for a significant portion of the variance in no-planning impulsiveness. CONCLUSION AND SIGNIFICANCE The combination of BDNF rs6265 A allele and FGF21 rs11665896 T allele may increase impulsivity and discourage alcohol withdrawal. Our study provides a possible genetic explanation for the effects of associated impulsivity in patients with AUD from the perspective of gene-gene interactions.
Collapse
Affiliation(s)
- Shizhuo Yang
- Department of Neurosurgery, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| | - Lanrong Sun
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xinqian Liu
- Department of Neurosurgery, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Siyuan Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yingjie Chen
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Lingling Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Zeheng Pan
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yimin Kang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Hohhot, China
| | - Yu-Hsin Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Li Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Chonghui Tang
- Department of Neurosurgery, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Yanlong Liu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, the Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Kharrat M, Issa AB, Tlili A, Jallouli O, Alila-Fersi O, Maalej M, Chouchen J, Ghouylia Y, Kamoun F, Triki C, Fakhfakh F. A Novel Mutation in the MAP7D3 Gene in Two Siblings with Severe Intellectual Disability and Autistic Traits: Concurrent Assessment of BDNF Functional Polymorphism, X-Inactivation and Oxidative Stress to Explain Disease Severity. J Mol Neurosci 2023; 73:853-864. [PMID: 37817054 DOI: 10.1007/s12031-023-02163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
Intellectual disabilities (ID) and autism spectrum disorders (ASD) are characterized by extreme genetic and phenotypic heterogeneity. However, understanding this heterogeneity is difficult due to the intricate interplay among multiple interconnected genes, epigenetic factors, oxidative stress, and environmental factors. Employing next-generation sequencing (NGS), we revealed the genetic cause of ID and autistic traits in two patients from a consanguineous family followed by segregation analysis. Furthermore, in silico prediction methods and 3D modeling were conducted to predict the effect of the variants. To establish genotype-phenotype correlation, X-chromosome inactivation using Methylation-specific PCR and oxidative stress markers were also investigated. By analyzing the NGS data of the two patients, we identified a novel frameshift mutation c.2174_2177del (p.Thr725MetfsTer2) in the MAP7D3 gene inherited from their mother along with the functional BDNF Val66Met polymorphism inherited from their father. The 3D modeling demonstrated that the p.Thr725MetfsTer2 variant led to the loss of the C-terminal tail of the MAP7D3 protein. This change could destabilize its structure and impact kinesin-1's binding to microtubules via an allosteric effect. Moreover, the analysis of oxidative stress biomarkers revealed an elevated oxidative stress in the two patients compared to the controls. To the best of our knowledge, this is the first report describing severe ID and autistic traits in familial cases with novel frameshift mutation c.2174_2177del in the MAP7D3 gene co-occurring with the functional polymorphism Val66M in the BDNF gene. Besides, our study underlines the importance of investigating combined genetic variations, X-chromosome inactivation (XCI) patterns, and oxidative stress markers for a better understanding of ID and autism etiology.
Collapse
Affiliation(s)
- Marwa Kharrat
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia.
| | - Abir Ben Issa
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Olfa Jallouli
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Olfa Alila-Fersi
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia
| | - Marwa Maalej
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia
| | - Jihen Chouchen
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yosra Ghouylia
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Fatma Kamoun
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Chahnez Triki
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia.
| |
Collapse
|
3
|
Rovný R, Marko M, Michalko D, Mitka M, Cimrová B, Vančová Z, Jarčušková D, Dragašek J, Minárik G, Riečanský I. BDNF Val66Met polymorphism is associated with consolidation of episodic memory during sleep. Biol Psychol 2023; 179:108568. [PMID: 37075935 DOI: 10.1016/j.biopsycho.2023.108568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) is an essential regulator of synaptic plasticity, a candidate neurobiological mechanism underlying learning and memory. A functional polymorphism in the BDNF gene, Val66Met (rs6265), has been linked to memory and cognition in healthy individuals and clinical populations. Sleep contributes to memory consolidation, yet information about the possible role of BDNF in this process is scarce. To address this question, we investigated the relationship between the BDNF Val66Met genotype and consolidation of episodic declarative and procedural (motor) non-declarative memories in healthy adults. The carriers of Met66 allele, as compared with Val66 homozygotes, showed stronger forgetting overnight (24hours after encoding), but not over shorter time (immediately or 20minutes after word list presentation). There was no effect of Val66Met genotype on motor learning. These data suggest that BDNF plays a role in neuroplasticity underlying episodic memory consolidation during sleep.
Collapse
Affiliation(s)
- Rastislav Rovný
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Marko
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Drahomír Michalko
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Mitka
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Cimrová
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Vančová
- 1st Department of Psychiatry, Faculty of Medicine, Pavol Jozef Šafárik University and University Hospital, Košice, Slovakia
| | - Dominika Jarčušková
- 1st Department of Psychiatry, Faculty of Medicine, Pavol Jozef Šafárik University and University Hospital, Košice, Slovakia
| | - Jozef Dragašek
- 1st Department of Psychiatry, Faculty of Medicine, Pavol Jozef Šafárik University and University Hospital, Košice, Slovakia
| | | | - Igor Riečanský
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Psychiatry, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| |
Collapse
|
4
|
Johnson DE, McIntyre RS, Mansur RB, Rosenblat JD. An update on potential pharmacotherapies for cognitive impairment in bipolar disorder. Expert Opin Pharmacother 2023; 24:641-654. [PMID: 36946229 DOI: 10.1080/14656566.2023.2194488] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Cognitive impairment is a core feature of bipolar disorder (BD) that impedes recovery by preventing the return to optimal socio-occupational functioning and reducing quality of life. Presently, there are no efficacious treatments for cognitive impairment in BD, but many pharmacological interventions are being considered as they have the potential to target the underlying pathophysiology of the disorder. AREAS COVERED This review summarizes the available evidence for pharmacological interventions for cognitive impairment in bipolar disorder. We searched PubMed, MedLine, and PsycInfo from inception to December 1st, 2022. Traditional treatments, such as lithium, anticonvulsants (lamotrigine), antipsychotics (aripiprazole, asenapine, cariprazine, lurasidone, and olanzapine), antidepressants (vortioxetine, fluoxetine, and tianeptine) and psychostimulants (modafinil), and emerging interventions, such as acetylcholinesterase inhibitors (galantamine and donepezil), dopamine agonists (pramipexole), erythropoietin, glucocorticoid receptor antagonists (mifepristone), immune modulators (infliximab, minocycline and doxycycline), ketamine, metabolic agents (insulin, metformin, and liraglutide), probiotic supplements, and Withania somnifera are discussed. EXPERT OPINION The investigation of interventions for cognitive impairment in BD is a relatively under-researched area. In the past, methodological pitfalls in BD cognition trials have also been a critical limiting factor. Expanding on the existing literature and identifying novel pharmacological and non-pharmacological treatments for cognitive impairment in BD should be a priority.
Collapse
Affiliation(s)
- Danica E Johnson
- Mood Disorders Psychopharmacology Unit (MDPU), Toronto Western Hospital, University Health Network, Canada
- Institute of Medical Science, University of Toronto, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), Toronto Western Hospital, University Health Network, Canada
- Department of Psychiatry and Pharmacology, University of Toronto, Canada
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit (MDPU), Toronto Western Hospital, University Health Network, Canada
- Department of Psychiatry, University of Toronto, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit (MDPU), Toronto Western Hospital, University Health Network, Canada
- Department of Psychiatry, University of Toronto, Canada
| |
Collapse
|
5
|
Fatma R, Chauhan W, Shahi MH, Afzal M. Association of BDNF gene missense polymorphism rs6265 (Val66Met) with three quantitative traits, namely, intelligence quotient, body mass index, and blood pressure: A genetic association analysis from North India. Front Neurol 2023; 13:1035885. [PMID: 36742047 PMCID: PMC9894895 DOI: 10.3389/fneur.2022.1035885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF), a neurotransmitter modulator, plays a significant role in neuronal survival and growth and participates in neuronal plasticity, thus being essential for learning, memory, and the development of cognition. Additionally, it is crucial for appetite, weight, and metabolic control and plays a pivotal role in the cardiovascular system. The Val66Met polymorphism (rs6265) of the BDNF gene causes a decrease in BDNF secretion and plays a role in impairments in cognition, energy homeostasis, and cardiovascular events. The present study aimed to evaluate the association of polymorphism (rs6265) of the BDNF gene with three quantitative traits simultaneously, namely, intelligence quotient (IQ), body mass index (BMI), and blood pressure (BP). Methods Psychometric, morphometric, and physiometric data of the total participants (N = 246) were collected. WASI-IIINDIA was used to measure cognitive ability. Genotyping was carried out using allele-specific PCR for the rs6265 polymorphism (C196T), and genotypes were determined. Statistical analyses were performed at p < 0.05 significance level using MS-Excel and SigmaPlot. The odds ratio models with a 95% confidence interval were used to test the associations. The used models are co-dominant, recessive, dominant, over-dominant, and additive. Results The allelic frequencies of alleles C and T were 72 and 28%, respectively. Under the dominant genetic model, a significant susceptible association of minor allele T was observed with a lower average verbal comprehensive index (OR = 2.216, p = 0.003, CI (95%) =1.33-3.69), a lower average performance reasoning index (OR = 2.634, p < 0.001, CI (95%) = 1.573-4.41), and a lower average full-scale IQ-4 (OR = 3.159, p < 0.001, CI (95%) = 1.873-5.328). Carriers of Met-alleles were found to have an increased body mass index (OR = 2.538, p < 0.001, CI (95%) = 1.507-4.275), decreased systolic blood pressure (OR = 2.051, p = 0.012, CI (95%) = 1.202-3.502), and decreased diastolic blood pressure (OR = 2.162, p = 0.006, CI (95%) = 1.278-3.657). Under the recessive genetic model, several folds decrease in IQ and BP and an increase in BMI with the presence of the T allele was also detected. Conclusion This novel study may improve our understanding of genetic alterations to the traits and hence be helpful for clinicians and researchers to investigate the diagnostic and prognostic value of this neurotrophic factor.
Collapse
Affiliation(s)
- Rafat Fatma
- Human Genetics and Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Waseem Chauhan
- Human Genetics and Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mehdi Hayat Shahi
- Interdisciplinary Brain Research Centre, Aligarh Muslim University, Aligarh, India
| | - Mohammad Afzal
- Human Genetics and Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India,*Correspondence: Mohammad Afzal ✉ ; ✉
| |
Collapse
|
6
|
Scotti-Muzzi E, Chile T, Vallada H, Otaduy MCG, Soeiro-de-Souza MG. BDNF rs6265 differentially influences neurometabolites in the anterior cingulate of healthy and bipolar disorder subjects. Brain Imaging Behav 2023; 17:282-293. [PMID: 36630045 DOI: 10.1007/s11682-023-00757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant brain neurotrophin and plays a critical role in neuronal growth, survival and plasticity, implicated in the pathophysiology of Bipolar Disorders (BD). The single-nucleotide polymorphism in the BDNF gene (BDNF rs6265) has been associated with decreased hippocampal BDNF secretion and volume in met carriers in different populations, although the val allele has been reported to be more frequent in BD patients. The anterior cingulate cortex (ACC) is a key center integrating cognitive and affective neuronal connections, where consistent alterations in brain metabolites such as Glx (Glutamate + Glutamine) and N-acetylaspartate (NAA) have been consistently reported in BD. However, little is known about the influence of BDNF rs6265 on neurochemical profile in the ACC of Healthy Controls (HC) and BD subjects. The aim of this study was to assess the influence of BDNF rs6265 on ACC neurometabolites (Glx, NAA and total creatine- Cr) in 124 euthymic BD type I patients and 76 HC, who were genotyped for BDNF rs6265 and underwent a 3-Tesla proton magnetic resonance imaging and spectroscopy scan (1 H-MRS) using a PRESS ACC single-voxel (8cm3) sequence. BDNF rs6265 polymorphism showed a significant two-way interaction (diagnosis × genotype) in relation to NAA/Cr and total Cr. While met carriers presented increased NAA/Cr in HC, BD-I subjects with the val allele revealed higher total Cr, denoting an enhanced ACC metabolism likely associated with increased glutamatergic metabolites observed in BD-I val carriers. However, these results were replicated only in men. Therefore, our results support evidences that the BDNF rs6265 polymorphism exerts a complex pleiotropic effect on ACC metabolites influenced by the diagnosis and sex.
Collapse
Affiliation(s)
- Estêvão Scotti-Muzzi
- Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), São Paulo, Brazil.
| | - Thais Chile
- Genetics and Pharmacogenetics Unit (PROGENE), Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), São Paulo, Brazil
| | - Homero Vallada
- Genetics and Pharmacogenetics Unit (PROGENE), Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), São Paulo, Brazil
| | - Maria Concepción Garcia Otaduy
- Laboratory of Magnetic Resonance in Neuroradiology LIM44, Department and Institute of Radiology, School of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
| | | |
Collapse
|
7
|
Cheng Y, Wang Y, Zhang W, Yin J, Dong J, Liu J. Relationship between intestinal flora, inflammation, BDNF gene polymorphism and generalized anxiety disorder: A clinical investigation. Medicine (Baltimore) 2022; 101:e28910. [PMID: 35866837 PMCID: PMC9302347 DOI: 10.1097/md.0000000000028910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Understanding factors related to generalized anxiety disorder pathogenesis is critical for elucidating the mechanism and preventing its establishment. Intestinal flora and hereditary factors such as brain-derived neurotrophic factor (BDNF) gene polymorphism may have a role in the development of generalized anxiety disorder. This work explored the relationship between intestinal flora, inflammatory changes and BDNF gene polymorphisms and the occurrence of generalized anxiety disorder. METHODS Forty-eight patients with generalized anxiety disorder and 57 healthy people were included in the study. As the disease group and control group, the polymorphisms of rs10767664 and rs7124442 of the BDNF gene, differences in the distribution of intestinal flora, and changes in inflammatory and immune indicators were analyzed. RESULTS The distribution of BDNF gene alleles, genotypes and haplotypes in the disease group were different from those in the control group. The levels of TNF-α (P = .000), interleukin-4 (P = .000), interleukin-10 (P = .043) and IgG (P = .008) in patients with generalized anxiety disorder in the disease group were different from those in the control group. The distribution of gut microbes in patients with generalized anxiety disorder in the disease group was different from that in the control group. CONCLUSION The onset of generalized anxiety disorder is related to BDNF gene polymorphism, and is accompanied by changes in intestinal flora and inflammatory immune status in the body.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Shandong Mental Health Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Qingdao Mental Health Center, Qingdao University, Qingdao, Shandong, China
| | - Yue Wang
- Hiser Medicine Center of Qingdao, Qingdao, Shandong, China
| | - Wen Zhang
- Binzhou People's Hospital, Binzhou, Shandong, China
| | - Junbo Yin
- Qingdao Mental Health Center, Qingdao University, Qingdao, Shandong, China
| | - Jicheng Dong
- Qingdao Mental Health Center, Qingdao University, Qingdao, Shandong, China
| | - Jintong Liu
- Shandong Mental Health Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Psychiatry and Mental Health, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- *Correspondence: Jintong Liu, Shangdong Mental Health Center, Cheeloo College of Medicine, Shandong University, 49 Wenhua East Road, Jinan, Shandong 250014, China (e-mail: )
| |
Collapse
|
8
|
Yoldi-Negrete M, Palacios-Cruz L, Tirado-Durán E, Jiménez-Rodríguez LI, Jiménez-Pavón J, Hernández S, Aguilar A, Morales-Cedillo IP, Jiménez-Tirado M, Fresán-Orellana A, Juárez García F, Becerra-Palars C, Camarena-Medellin B. Looking for factors affecting functioning in euthymic patients with bipolar I disorder: the importance of cognitive complaints and BDNF's Val66Met polymorphism. J Affect Disord 2022; 302:131-138. [PMID: 34990638 DOI: 10.1016/j.jad.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/14/2021] [Accepted: 01/01/2022] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Functioning in Bipolar Disorder (BD) is affected in a substantial proportion of patients. The impact of demographic, clinical, cognitive, and genetic factors on functioning has been shown individually; however, as a complex phenomenon, a global approach to identify the most relevant as well as possible interactions is needed. METHODS 102 patients with type I BD in euthymia were invited for evaluation of demographic, clinical, and cognitive characteristics as well as genotype for Val66Met polymorphism of BDNF gene to determine those associated with poor functioning according to the FAST scale cut-off score. Clinical evaluation included assessment of residual affective symptoms and anxiety. Cognitive evaluation included the COBRA scale, verbal memory, and executive functions testing. RESULTS Residual depressive symptoms, anxiety, cognitive complaints and being a Met carrier were more frequent in the poor functioning group and were entered in a logistic regression model. Being a Met carrier (OR=4.46, CI=1.19-16.67) and cognitive complaints (OR=1.29, CI= 1.13-1.46) were the most important predictors of poor functioning in type I BD. LIMITATIONS Cross-sectional study, with select population limiting generalizability of findings. CONCLUSIONS A better understanding of underlying factors affecting cognition, including the possible involvement of BDNF Val66Met polymorphism, its systematic evaluation and a continued search for targeted treatment, along with recognition and attention of residual affective and anxious symptoms might improve psychosocial outcomes such as functioning in this population.
Collapse
Affiliation(s)
- María Yoldi-Negrete
- Laboratorio de Epidemiología Clínica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - Lino Palacios-Cruz
- Laboratorio de Epidemiología Clínica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - Elsa Tirado-Durán
- Departamento de Neuropsicología, Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - Laura Ivonne Jiménez-Rodríguez
- Departamento de Neuropsicología, Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - Joanna Jiménez-Pavón
- Clínica de Trastornos Afectivos, Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - Sandra Hernández
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - Alejandro Aguilar
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - Ingrid Pamela Morales-Cedillo
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | | | - Ana Fresán-Orellana
- Laboratorio de Epidemiología Clínica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - Francisco Juárez García
- Dirección de Investigaciones Epidemiológicas y Sociales, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - Claudia Becerra-Palars
- Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - Beatriz Camarena-Medellin
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico.
| |
Collapse
|
9
|
Boscutti A, Pigoni A, Delvecchio G, Lazzaretti M, Mandolini GM, Girardi P, Ferro A, Sala M, Abbiati V, Cappucciati M, Bellani M, Perlini C, Rossetti MG, Balestrieri M, Damante G, Bonivento C, Rossi R, Finos L, Serretti A, Brambilla P. The Influence of 5-HTTLPR, BDNF Rs6265 and COMT Rs4680 Polymorphisms on Impulsivity in Bipolar Disorder: The Role of Gender. Genes (Basel) 2022; 13:genes13030482. [PMID: 35328036 PMCID: PMC8954186 DOI: 10.3390/genes13030482] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Impulsivity has been proposed as an endophenotype for bipolar disorder (BD); moreover, impulsivity levels have been shown to carry prognostic significance and to be quality-of-life predictors. To date, reports about the genetic determinants of impulsivity in mood disorders are limited, with no studies on BD individuals. Individuals with BD and healthy controls (HC) were recruited in the context of an observational, multisite study (GECOBIP). Subjects were genotyped for three candidate single-nucleotide polymorphisms (SNPs) (5-HTTLPR, COMT rs4680, BDNF rs6265); impulsivity was measured through the Italian version of the Barratt Impulsiveness Scale (BIS-11). A mixed-effects regression model was built, with BIS scores as dependent variables, genotypes of the three polymorphisms as fixed effects, and centers of enrollment as random effect. Compared to HC, scores for all BIS factors were higher among subjects with euthymic BD (adjusted β for Total BIS score: 5.35, p < 0.001). No significant interaction effect was evident between disease status (HC vs. BD) and SNP status for any polymorphism. Considering the whole sample, BDNF Met/Met homozygosis was associated with lower BIS scores across all three factors (adjusted β for Total BIS score: −10.2, p < 0.001). A significant 5-HTTLPR x gender interaction was found for the SS genotype, associated with higher BIS scores in females only (adjusted β for Total BIS score: 12.0, p = 0.001). Finally, COMT polymorphism status was not significantly associated with BIS scores. In conclusion, BD diagnosis did not influence the effect on impulsivity scores for any of the three SNPs considered. Only one SNP—the BDNF rs6265 Met/Met homozygosis—was independently associated with lower impulsivity scores. The 5-HTTLPR SS genotype was associated with higher impulsivity scores in females only. Further studies adopting genome-wide screening in larger samples are needed to define the genetic basis of impulsivity in BD.
Collapse
Affiliation(s)
- Andrea Boscutti
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Alessandro Pigoni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.P.); (G.D.); (M.L.); (G.M.M.); (A.F.); (M.G.R.)
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.P.); (G.D.); (M.L.); (G.M.M.); (A.F.); (M.G.R.)
| | - Matteo Lazzaretti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.P.); (G.D.); (M.L.); (G.M.M.); (A.F.); (M.G.R.)
| | - Gian Mario Mandolini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.P.); (G.D.); (M.L.); (G.M.M.); (A.F.); (M.G.R.)
| | - Paolo Girardi
- Department of Developmental Psychology and Socialization, University of Padua, 35131 Padua, Italy; (P.G.); (L.F.)
| | - Adele Ferro
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.P.); (G.D.); (M.L.); (G.M.M.); (A.F.); (M.G.R.)
| | - Michela Sala
- Mental Health Department, Azienda Sanitaria Locale Alessandria, 15121 Alessandria, Italy;
| | - Vera Abbiati
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Marco Cappucciati
- Department of Mental Health and Substance Abuse, Azienda Sanitaria Locale Piacenza, 29121 Piacenza, Italy;
| | - Marcella Bellani
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
| | - Cinzia Perlini
- Section of Clinical Psychology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
| | - Maria Gloria Rossetti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.P.); (G.D.); (M.L.); (G.M.M.); (A.F.); (M.G.R.)
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
| | - Matteo Balestrieri
- Psychiatry Unit, Department of Medicine, University of Udine, 33100 Udine, Italy;
| | - Giuseppe Damante
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
| | - Carolina Bonivento
- IRCCS “E. Medea”, Polo Friuli-Venezia Giulia, San Vito al Tagliamento, 33078 Pordenone, Italy;
| | - Roberta Rossi
- Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio FBF, 25125 Brescia, Italy;
| | - Livio Finos
- Department of Developmental Psychology and Socialization, University of Padua, 35131 Padua, Italy; (P.G.); (L.F.)
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40123 Bologna, Italy;
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.P.); (G.D.); (M.L.); (G.M.M.); (A.F.); (M.G.R.)
- Correspondence:
| | | |
Collapse
|
10
|
Kennedy KG, Shahatit Z, Dimick MK, Fiksenbaum L, Freeman N, Zai CC, Kennedy JL, MacIntosh BJ, Goldstein BI. Neurostructural correlates of BDNF rs6265 genotype in youth bipolar disorder. Bipolar Disord 2022; 24:185-194. [PMID: 34263997 DOI: 10.1111/bdi.13116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/20/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) rs6265 single-nucleotide polymorphism has been associated with bipolar disorder (BD), and with brain structure among adults with BD. We set out to investigate the association of the BDNF rs6265 Met allele with neurostructural phenotypes in youth BD. METHODS Caucasian youth (N = 99; 13-20 years; n = 56 BD, n = 43 age and sex-matched healthy controls) underwent 3-Tesla Magnetic Resonance Imaging and genotyping for BDNF rs6265. Region of interest (ROI) analyses of the ventromedial prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), and hippocampus were complemented by vertex-wise analyses examining cortical thickness, surface area (SA) and volume. Multivariable models included the main effects of diagnosis and gene, and a diagnosis-by-genotype interaction term, controlling for age, sex, and intracranial volume. RESULTS There were no significant gene main effects or diagnosis-by-gene interaction effects in ROI analyses. The vertex-wise analysis yielded a significant gene main effect whereby Met allele carriers had greater middle temporal gyrus SA (p = 0.001) and supramarginal gyrus volume (p = 0.03) than Val/Val individuals. Significant interaction effects were found on lateral occipital lobe SA (p = 0.03), whereby the Met allele was associated with increased SA in BD only. Interaction effects were also found on postcentral gyrus SA (p = 0.049) and supramarginal gyrus SA (p = 0.04), with smaller SA in BD Met carriers versus healthy control Met carriers. CONCLUSION These findings suggest that BDNF rs6265 is differentially associated with regional SA in youth BD. Further investigation is warranted to evaluate whether BDNF protein levels mediate the observed effects, and to evaluate rs6265-related developmental changes.
Collapse
Affiliation(s)
- Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Zaid Shahatit
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Lisa Fiksenbaum
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Natalie Freeman
- Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Clement C Zai
- Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - James L Kennedy
- Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
HINT1 deficiency in aged mice reduces anxiety-like and depression-like behaviours and enhances cognitive performances. Exp Gerontol 2022; 159:111683. [PMID: 34995725 DOI: 10.1016/j.exger.2021.111683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/27/2022]
Abstract
Histidine triad nucleotide-binding protein 1 (HINT1) is regarded as a haplo-insufficient tumour suppressor and is closely associated with many neuropsychiatric disorders, including major depressive disorders. In addition, HINT1 knockout (KO) mice exhibit anxiolytic-like behaviour, antidepression-like behaviour, and enhanced cognitive performance in several studies. However, it is still unclear whether aging contributes to these changes in the emotion and cognition of HINT1 KO mice. This study examined the role of aging in anxiety-like and depression-like behaviours and cognition behaviours in aged HINT1 KO mice compared with young HINT1 KO mice and their wild-type littermates, along with a number of molecular biological methods. In a battery of behavioural tests, aged wild-type mice showed increased anxiety-like and depression-like behaviours and decreased cognitive performance, along with lower expression levels of glutathione peroxidase, enhanced amount of malondialdehyde, and decreased expression levels of brain-derived neurotrophic factor and tyrosine kinase B in the hippocampus and PFC compared to young wild-type mice. HINT1 KO mice showed reduced anxiety-like and depression-like behaviours and enhanced cognitive performance compared to age-matched wild-type mice. In addition, HINT1 KO mice also showed increased GSH-Px and superoxide dismutase, and decreased malondialdehyde, together with enhanced BDNF and Trk-B expression in the hippocampus and PFC. However, when compared with young HINT1 KO mice, aged HINT1 KO mice did not show increased anxiety-like and depression-like behaviours. And there are no differences in the expression level of superoxide dismutase, malondialdehyde, BDNF, and Trk-B between aged and young HINT1 KO mice. In summary, HINT1 deficiency can counteract age-related emotion and cognition dysfunction.
Collapse
|
12
|
Paul P, Nadella RK, Sen S, Ithal D, Mahadevan J, Reddy Y C J, Jain S, Purushottam M, Viswanath B. Association study of BDNF Val66Met gene polymorphism with bipolar disorder and lithium treatment response in Indian population. J Psychopharmacol 2021; 35:1510-1516. [PMID: 34311608 DOI: 10.1177/02698811211032609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The association of the Val66Met (rs6265) polymorphism in the brain-derived neurotrophic factor (BDNF) gene with bipolar disorder (BD) and response to lithium treatment has been suggested, though inconsistently. The considerable diversity of allele frequency across different populations contributes to this. There is no data from South Asia till date. Hence, we examined the association of this polymorphism in BD cases from India, and its association with lithium treatment response. METHODS BD patients (N = 301) were recruited from the clinical services of National Institute of Mental Health and Neurosciences (NIMHANS), India. Lithium treatment response for 190 BD subjects was assessed using Alda scale by NIMH life charts. Patients with total score ⩾7 were defined as lithium responders (N = 115) and patients with score <7 were defined as lithium non-responders (N = 75). Healthy controls (N = 484) with no lifetime history of neuropsychiatric illness or a family history of mental illness were recruited as control set. Genotyping was performed by TaqMan genotyping assay. RESULTS Genotype and allele frequency of BDNF Val66Met SNP was significantly different (χ2 = 7.78, p = 0.02) in cases compared to controls, and the Val(G) allele was more frequent (χ2 = 7.08, p = 0.008) in BD patients. However, no significant difference is noted in genotype or allele frequencies of this polymorphism between the lithium responders and non-responders. CONCLUSIONS The Val(G) allele of BDNF Val66Met polymorphism is associated with risk of BD in this sample, but it is not related to response to lithium.
Collapse
Affiliation(s)
- Pradip Paul
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ravi Kumar Nadella
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Somdatta Sen
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Dhruva Ithal
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Jayant Mahadevan
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Janardhan Reddy Y C
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Sanjeev Jain
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Meera Purushottam
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Biju Viswanath
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
13
|
BDNF Genetic Variant and Its Genotypic Fluctuation in Major Depressive Disorder. Behav Neurol 2021; 2021:7117613. [PMID: 34760029 PMCID: PMC8575598 DOI: 10.1155/2021/7117613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/28/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Major depressive disorder (MDD) still has an unknown etiology and mechanisms. Many studies have been conducted seeking to associate and understand the connection of different genetic variants to this disease. Researchers have extensively studied the brain-derived neurotrophic factor (BDNF) Val66Met genetic variant in MDD; yet, their findings remain inconsistent. This systematic review sought to verify the GG (Val/Val) genotype frequency fluctuation in different populations with MDD. For this, we searched in different databases and, after applying the eligibility criteria, selected 17 articles. Most studies demonstrate the higher frequency of the ancestral (wild) GG (Val/Val) genotype, although associations of the polymorphic A (Met) allele, changes in BDNF protein serum levels, or both were also found in MDD, whether related to the disease's development or other factors. Nevertheless, despite these findings, disagreements between several studies are seen. For this reason, further BDNF Val66Met genetic variant studies should not only bridge the gap in the knowledge of this polymorphism's role in MDD's different facets but also analyze the genotypic and phenotypic heterogeneity in different populations to help provide a better quality of life for patients.
Collapse
|
14
|
Fisch GS. Associating complex traits with genetic variants: polygenic risk scores, pleiotropy and endophenotypes. Genetica 2021; 150:183-197. [PMID: 34677750 DOI: 10.1007/s10709-021-00138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022]
Abstract
Genotype-phenotype causal modeling has evolved significantly since Johannsen's and Wright's original designs were published. The development of genomewide assays to interrogate and detect possible causal variants associated with complex traits has expanded the scope of genotype-phenotype research considerably. Clusters of causal variants discovered by genomewide assays and associated with complex traits have been used to develop polygenic risk scores to predict clinical diagnoses of multidimensional human disorders. However, genomewide investigations have met with many challenges to their research designs and statistical complexities which have hindered the reliability and validity of their predictions. Findings linked to differences in heritability estimates between causal clusters and complex traits among unrelated individuals remain a research area of some controversy. Causal models developed from case-control studies as opposed to experiments, as well as other issues concerning the genotype-phenotype causal model and the extent to which various forms of pleiotropy and the concept of the endophenotype add to its complexity, will be reviewed.
Collapse
Affiliation(s)
- Gene S Fisch
- Paul H. Chook Dept. of CIS & Statistics, CUNY/Baruch College, New York, NY, USA.
| |
Collapse
|
15
|
Szekely E, Jolicoeur-Martineau A, Atkinson L, Levitan RD, Steiner M, Lydon JE, Fleming AS, Kennedy JL, Wazana A. The Interplay Between Prenatal Adversity, Offspring Dopaminergic Genes, and Early Parenting on Toddler Attentional Function. Front Behav Neurosci 2021; 15:701971. [PMID: 34413728 PMCID: PMC8370126 DOI: 10.3389/fnbeh.2021.701971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Few studies have explored the complex gene-by-prenatal environment-by-early postnatal environment interactions that underlie the development of attentional competence. Here, we examined if variation in dopamine-related genes interacts with prenatal adversity to influence toddler attentional competence and whether this influence is buffered by early positive maternal behavior. Methods: From the Maternal Adversity, Vulnerability and Neurodevelopment cohort, 134 participants (197 when imputing missing data) had information on prenatal adversity (prenatal stressful life events, prenatal maternal depressive symptoms, and birth weight), five dopamine-related genes (DAT1, DRD4, DRD2, COMT, BDNF), observed maternal parenting behavior at 6 months and parent-rated toddler attentional competence at 18 and 24 months. The Latent Environmental and Genetic Interaction (LEGIT) approach was used to examine genes-by-prenatal environment-by-postnatal environment interactions while controlling for sociodemographic factors and postnatal depression. Results: Our hypothesis of a three-way interaction between prenatal adversity, dopamine-related genes, and early maternal parenting behavior was not confirmed. However, consistent two-way interactions emerged between prenatal adversity and dopamine-related genes; prenatal adversity and maternal parenting behavior, and dopamine-related genes and maternal parenting behavior in relation to toddler attentional competence. Significant interaction effects were driven by the DAT1, COMT, and BDNF genotypes; prenatal stressful life events; maternal sensitivity, tactile stimulation, vocalization, and infant-related activities. Conclusions: Multiple dopamine-related genes affected toddler attentional competence and they did so in interaction with prenatal adversity and the early rearing environment, separately. Effects were already visible in young children. Several aspects of early maternal parenting have been identified as potential targets for intervention.
Collapse
Affiliation(s)
- Eszter Szekely
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Alexia Jolicoeur-Martineau
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,MILA-Quebec Artificial Intelligence Institute, Montreal, QC, Canada.,Department of Computer Sciences, Université de Montréal, Montreal, QC, Canada
| | - Leslie Atkinson
- Department of Psychology, Ryerson University, Toronto, ON, Canada
| | - Robert D Levitan
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Meir Steiner
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - John E Lydon
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Alison S Fleming
- Department of Psychology, University of Toronto Mississauga, Toronto, ON, Canada
| | | | - Ashley Wazana
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Centre for Child Development and Mental Health, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
16
|
Doherty C, Kinzy TG, Ferguson L, Altemus J, Hermann BP, Eng C, Najm I, Busch RM. The role of genetic polymorphisms in executive functioning performance in temporal lobe epilepsy. Epilepsy Behav 2021; 121:108088. [PMID: 34102472 PMCID: PMC8238870 DOI: 10.1016/j.yebeh.2021.108088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the role of several genetic polymorphisms (APOE ε4, BDNF Met, and COMT Val) in executive functioning performance in patients with pharmacoresistant temporal lobe epilepsy (TLE). METHODS Ninety-three adults (51 female, mean age = 39 years) with TLE completed executive functioning measures as part of a comprehensive preoperative neuropsychological evaluation, including Trail Making Test (Part B), Wisconsin Card Sorting Test (Conceptual Level Responses and Perseverative Errors), Color Word Interference from the Delis Kaplan Executive Function System, and measures of phonemic and semantic verbal fluency. Genotyping of the APOE, BDNF, and COMT genes was conducted using DNA extracted from peripheral blood or brain tissue (from epilepsy surgery). RESULTS After adjustment for general cognitive ability, COMT Val carriers showed poorer performance on semantic verbal fluency and color word interference than non-carriers, and BDNF Met carriers showed poorer performance on phonemic verbal fluency than those without a Met allele. SIGNIFICANCE Results suggest that COMT and BDNF polymorphisms are associated with performance on several EF measures in patients with TLE, including tasks assessing verbal fluency and response inhibition and account for up to 16% of the variance in test performance. The APOE polymorphism was not significantly associated with any of the executive function measures analyzed.
Collapse
Affiliation(s)
- Christine Doherty
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Tyler G Kinzy
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lisa Ferguson
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA.
| | - Jessica Altemus
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Bruce P Hermann
- Department of Neurology, University of Wisconsin, Madison, WI, USA.
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Imad Najm
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA; Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Robyn M Busch
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA; Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
17
|
Janiri D, Kotzalidis GD, di Luzio M, Giuseppin G, Simonetti A, Janiri L, Sani G. Genetic neuroimaging of bipolar disorder: a systematic 2017-2020 update. Psychiatr Genet 2021; 31:50-64. [PMID: 33492063 DOI: 10.1097/ypg.0000000000000274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is evidence of genetic polymorphism influences on brain structure and function, genetic risk in bipolar disorder (BD), and neuroimaging correlates of BD. How genetic influences related to BD could be reflected on brain changes in BD has been efficiently reviewed in a 2017 systematic review. We aimed to confirm and extend these findings through a Preferred Reporting Items for Systematic reviews and Meta-Analyses-based systematic review. Our study allowed us to conclude that there is no replicated finding in the timeframe considered. We were also unable to further confirm prior results of the BDNF gene polymorphisms to affect brain structure and function in BD. The most consistent finding is an influence of the CACNA1C rs1006737 polymorphism in brain connectivity and grey matter structure and function. There was a tendency of undersized studies to obtain positive results and large, genome-wide polygenic risk studies to find negative results in BD. The neuroimaging genetics in BD field is rapidly expanding.
Collapse
Affiliation(s)
- Delfina Janiri
- Department of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS
- Department of Psychiatry and Neurology, Sapienza University of Rome
| | - Georgios D Kotzalidis
- NESMOS Department, Sant'Andrea University Hospital, School of Medicine and Psychology, Sapienza University
| | - Michelangelo di Luzio
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Giuseppin
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessio Simonetti
- Department of Psychiatry and Neurology, Sapienza University of Rome
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Luigi Janiri
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
18
|
Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci 2020; 21:E7777. [PMID: 33096634 PMCID: PMC7589016 DOI: 10.3390/ijms21207777] [Citation(s) in RCA: 439] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most distributed and extensively studied neurotrophins in the mammalian brain. BDNF signals through the tropomycin receptor kinase B (TrkB) and the low affinity p75 neurotrophin receptor (p75NTR). BDNF plays an important role in proper growth, development, and plasticity of glutamatergic and GABAergic synapses and through modulation of neuronal differentiation, it influences serotonergic and dopaminergic neurotransmission. BDNF acts as paracrine and autocrine factor, on both pre-synaptic and post-synaptic target sites. It is crucial in the transformation of synaptic activity into long-term synaptic memories. BDNF is considered an instructive mediator of functional and structural plasticity in the central nervous system (CNS), influencing dendritic spines and, at least in the hippocampus, the adult neurogenesis. Changes in the rate of adult neurogenesis and in spine density can influence several forms of learning and memory and can contribute to depression-like behaviors. The possible roles of BDNF in neuronal plasticity highlighted in this review focus on the effect of antidepressant therapies on BDNF-mediated plasticity. Moreover, we will review data that illustrate the role of BDNF as a potent protective factor that is able to confer protection against neurodegeneration, in particular in Alzheimer's disease. Finally, we will give evidence of how the involvement of BDNF in the pathogenesis of brain glioblastoma has emerged, thus opening new avenues for the treatment of this deadly cancer.
Collapse
Affiliation(s)
- Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- InterUniversity Center for Research in Neurosciences (CIRN), University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Luisa Speranza
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
19
|
Dias de Castro Bins H, Dotta Panichi RM, Vernet Taborda JG, Arzeno Ferrão Y. Childhood trauma, psychiatric disorders, and criminality in women: Associations with serum levels of brain-derived neurotrophic factor. INTERNATIONAL JOURNAL OF LAW AND PSYCHIATRY 2020; 71:101574. [PMID: 32768114 DOI: 10.1016/j.ijlp.2020.101574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Psychiatric disorders and childhood trauma are highly prevalent in female inmates. Brain-derived neurotrophic factor (BDNF) plays a number of roles in neuronal survival, structure, and function. Data in the literature suggest that it is a neurobiological substrate that moderates the impact of childhood adversities on the late expression of psychiatric disorders. The aim of this study was to determine whether five childhood trauma subtypes-physical abuse, sexual abuse, emotional abuse, physical neglect, and emotional neglect-are associated with adult psychiatric disorders, BDNF levels, and criminality among incarcerated women. This was a cross-sectional study involving a consecutive sample of 110 women, divided into three groups of women (forensic - mentally ill who committed crimes, clinical psychiatric inpatients and healthy controls). The Childhood Trauma Questionnaire and the Mini-International Neuropsychiatric Interview-Plus were applied in the whole sample, and BDNF levels were measured in a sub-sample of 54 women. The rates of mental illness and childhood trauma were high in the forensic group. Emotional abuse was higher in the clinical and forensic groups than in the healthy control group. Lower BDNF levels were associated with emotional abuse in the forensic group as well as with sexual abuse in the healthy control group. After multinomial logistic regression, lower levels of BDNF, higher levels of emotional abuse and the presence of familial offense were considered factors related to clinical psychiatric group. The results of this study underscore the idea that BDNF may be an important factor related to the development of diseases and criminality in women who are victims of childhood trauma, becoming a possible biological marker.
Collapse
Affiliation(s)
- Helena Dias de Castro Bins
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (Federal University of Health Sciences of Porto Alegre), Porto Alegre, Brazil.
| | - Renata Maria Dotta Panichi
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (Federal University of Health Sciences of Porto Alegre), Porto Alegre, Brazil
| | - José Geraldo Vernet Taborda
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (Federal University of Health Sciences of Porto Alegre), Porto Alegre, Brazil
| | - Ygor Arzeno Ferrão
- Department of Clinical Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre (Federal University of Health Sciences of Porto Alegre), Porto Alegre, Brazil
| |
Collapse
|
20
|
Lin CC, Huang TL. Brain-derived neurotrophic factor and mental disorders. Biomed J 2020; 43:134-142. [PMID: 32386841 PMCID: PMC7283564 DOI: 10.1016/j.bj.2020.01.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that modulates neuroplasticity in the brain, and is one of the most widely investigated molecule in psychiatric disorders. The researches of BDNF emcompassed the advance of investigative techniques of past decades. BDNF researches ranged from protein quantilization, to RNA expression measurements, to DNA sequencing, and lately but not lastly, epigenetic studies. In this review, we will briefly address findings on BDNF protein levels, mRNA expression, Val66Met polymorphism, and epigenetic modifications, in schizophrenia, major depressive disorder (MDD), and bipolar disorder.
Collapse
Affiliation(s)
- Chin-Chuen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
21
|
Van Rheenen TE, Lewandowski KE, Bauer IE, Kapczinski F, Miskowiak K, Burdick KE, Balanzá-Martínez V. Current understandings of the trajectory and emerging correlates of cognitive impairment in bipolar disorder: An overview of evidence. Bipolar Disord 2020; 22:13-27. [PMID: 31408230 DOI: 10.1111/bdi.12821] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Cognitive dysfunction affects a significant proportion of people with bipolar disorder (BD), but the cause, trajectory and correlates of such dysfunction remains unclear. Increased understanding of these factors is required to progress treatment development for this symptom dimension. METHODS This paper provides a critical overview of the literature concerning the trajectories and emerging correlates of cognitive functioning in BD. It is a narrative review in which we provide a qualitative synthesis of current evidence concerning clinical, molecular, neural and lifestyle correlates of cognitive impairment in BD across the lifespan (in premorbid, prodromal, early onset, post-onset, elderly cohorts). RESULTS There is emerging evidence of empirical links between cognitive impairment and an increased inflammatory state, brain structural abnormalities and reduced neuroprotection in BD. However, evidence regarding the progressive nature of cognitive impairment is mixed, since consensus between different cross-sectional data is lacking and does not align to the outcomes of the limited longitudinal studies available. Increased recognition of cognitive heterogeneity in BD may help to explain some inconsistencies in the extant literature. CONCLUSIONS Large, longitudinally focussed studies of cognition and its covariation alongside biological and lifestyle factors are required to better define cognitive trajectories in BD, and eventually pave the way for the application of a precision medicine approach for individual patients in clinical practice.
Collapse
Affiliation(s)
- Tamsyn E Van Rheenen
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia.,Faculty of Health, Arts and Design, School of Health Sciences, Centre for Mental Health, Swinburne University, Melbourne, Australia
| | - Kathryn E Lewandowski
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle E Bauer
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Flavio Kapczinski
- Department of Psychiatry and Behavioral Neurosciences, McMaster University Faculty of Health Sciences, Hamilton, ON, Canada.,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Kamilla Miskowiak
- Neurocognition and Emotion in Affective Disorders Group, Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Katherine E Burdick
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Brigham and Women's Hospital, Boston, MA, USA.,James J Peters VA Medical Center, Bronx, NY, USA
| | - Vicent Balanzá-Martínez
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, CIBERSAM, Valencia, Spain
| |
Collapse
|
22
|
Carmassi C, Bertelloni CA, Dell'Oste V, Foghi C, Diadema E, Cordone A, Pedrinelli V, Dell'Osso L. Post-traumatic stress burden in a sample of hospitalized patients with Bipolar Disorder: Which impact on clinical correlates and suicidal risk? J Affect Disord 2020; 262:267-272. [PMID: 31732278 DOI: 10.1016/j.jad.2019.10.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/05/2019] [Accepted: 10/28/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Increasing evidence suggests Bipolar Disorder (BD) to be frequently associated to a history of traumatic experiences and Post-traumatic Stress Disorder (PTSD), with consequent greater symptoms severity, number of hospitalizations and worsening in quality of life. The aim of the present study was to investigate the lifetime exposure to traumatic events and PTSD rates in-patients with BD and to analyze the relationships between PTSD symptoms, clinical characteristics and severity of the mood disorder. METHODS A consecutive sample of 212 in-patients with a DSM-5 diagnosis of BD was enrolled at the psychiatric unit of a major University hospital in Italy and assessed by the SCID-5 and MOOD Spectrum-Self Report lifetime version (MOODS-SR). Socio-demographic characteristics, clinical features, substance or alcohol abuse, history of suicide related behaviors were also collected. RESULTS Lifetime trauma exposure emerged in 72.3% subjects, with a DSM-5 PTSD diagnosis reported by 35.6%. Patients with PTSD showed more frequently a (hypo)manic episode at onset, alcohol or substance abuse, psychotic features, suicide behaviors, higher scores in almost all the MOODS-SR domains, compared to those without PTSD. LIMITATIONS Cross sectional study. Lack of data about the time since trauma exposure or PTSD onset. CONCLUSIONS Our findings show a history of multiple traumatic experiences in hospitalized patients with BD besides high rates of PTSD, with the co-occurrence of these conditions appearing to be related to a more severe BD. Detailed investigation of post-traumatic stress symptoms is recommended for the relevant implications on the choice of a tailored treatment and the prognosis assessment.
Collapse
Affiliation(s)
- Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56100 Pisa, Italy
| | - Carlo Antonio Bertelloni
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56100 Pisa, Italy.
| | - Valerio Dell'Oste
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56100 Pisa, Italy
| | - Claudia Foghi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56100 Pisa, Italy
| | - Elisa Diadema
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56100 Pisa, Italy
| | - Annalisa Cordone
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56100 Pisa, Italy
| | - Virginia Pedrinelli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56100 Pisa, Italy
| | - Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56100 Pisa, Italy
| |
Collapse
|
23
|
Pigoni A, Mandolini GM, Delvecchio G, Bressi C, Soares JC, Brambilla P. A focus on valproate and cognitive deficits in Bipolar Disorders: A mini-review: Special Section on "Translational and Neuroscience Studies in Affective Disorders" Section Editor, Maria Nobile MD, PhD. J Affect Disord 2020; 261:277-281. [PMID: 31421858 DOI: 10.1016/j.jad.2019.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cognitive deficits represent a core feature of Bipolar Disorder (BD), which seem to characterize this disorder regardless of the mood phase. However, the role of pharmacological treatment in determining cognitive alterations is still not clear. Indeed, although drugs improve cognition by targeting mood symptoms, they could also carry their own cognitive side effects. This is true especially for mood stabilizers as they are the most commonly prescribed drugs in patients affected by BD and they are usually administered also during euthymic phases. METHODS In this context, the present review aimed at summarizing the results of the studies evaluating the impact of valproate on cognitive functions in patients suffering from BD, as primary or secondary results. The inclusion criteria were met by ten studies. Specifically, we included one double-blind quasi-randomized study and nine cross-sectional or naturalistic studies, which a) used healthy subjects as control group (N = 1), b) compared valproate treated patients with healthy individuals and other treatments (N = 5), and c) compared valproate treated patients just with other treatments, with a specific focus on lithium (N = 3). RESULTS Overall the results suggested a negative effect of valproate on cognitive functions in chronically-treated patients affected by BD. Notably, it has been found that the working memory was the most affected cognitive domain. LIMITATIONS Few studies directly explored the effect of valproate on cognition in BD. CONCLUSIONS These findings seem to suggest that valproate might have a negative effect on cognitive functions, especially on working memory domain. However, the results should be taken cautiously since the limited number of available studies published so far. In conclusion, these evidences seem to point out that the possible cognitive side effects of pharmacological treatments should be carefully taken into account, especially in chronic patients.
Collapse
Affiliation(s)
- A Pigoni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - G M Mandolini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - G Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - C Bressi
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - J C Soares
- Department of Psychiatry and Behavioural Sciences, UT Houston Medical School, Houston, TX, USA
| | - P Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
24
|
Can Machine Learning help us in dealing with treatment resistant depression? A review. J Affect Disord 2019; 259:21-26. [PMID: 31437696 DOI: 10.1016/j.jad.2019.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND About one third of patients treated with antidepressant do not show sufficient symptoms relief and up to 15% of patients remain symptomatic even after multiple trials are applied, configuring a state called treatment resistant depression (TRD). A clear definition of this state and the understanding of underlying mechanisms contributing to chronic disability caused by major depressive disorder is still unknown. Therefore, Machine Learning (ML) techniques emerged in the last years as interesting approaches to deal with such complex problems. METHODS We performed a bibliographic search on Pubmed, Google Scholar and Medline of clinical, imaging, genetic and EEG ML classification studies on treatment-responding depression and TRD as well as studies trying to predict response to a specific treatment in already established TRD. The inclusion criteria were met by eleven studies. Seven focused on the definition of predictors of TRD onset while four attempted to predict the response to specific treatments in TRD. RESULTS The results showed that it seems possible to classify between responders MDD and TRD with good accuracies based on clinical variables. Moreover, some studies reported the possibility of using EEG measures to predict response to different pharmacological and non-pharmacological treatments in established TRD. LIMITATIONS The definition of TRD, the selection of variables together with ML algorithms and pipelines varies across the studies, ultimately determining the unfeasibility to implement these models in clinical practice. CONCLUSIONS The findings suggest that ML could be a valid approach to increase our understanding of TRD and to better classify and stratify this disorder, which may ultimately help clinicians in the assessment of major depressive disorders.
Collapse
|
25
|
Hørlyck LD, Macoveanu J, Vinberg M, Kessing LV, Siebner HR, Miskowiak KW. The BDNF Val66Met Polymorphism Has No Effect on Encoding-Related Hippocampal Response But Influences Recall in Remitted Patients With Bipolar Disorder. Front Psychiatry 2019; 10:845. [PMID: 31866880 PMCID: PMC6908505 DOI: 10.3389/fpsyt.2019.00845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/24/2019] [Indexed: 01/20/2023] Open
Abstract
Background: Cognitive impairments in bipolar disorder (BD) such as memory deficits are associated with poor functional outcomes and it has been suggested that the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism contributes to individual variability in memory function in BD. The current study investigated the relationship between the BDNF Val66Met polymorphism, neural activity during a picture-encoding task, and subsequent memory recall. Methods: A total of 70 patients with BD grouped according to genotype [ValVal or Met carriers (MetVal/MetMet)] underwent fMRI while performing a picture-encoding task. Memory for the encoded pictures was tested with a subsequent free recall memory task. Results: There was no difference between the ValVal homozygotes and Met carriers in the involvement of hypothesized memory encoding regions i.e. hippocampus and dorsal prefrontal cortex (dPFC). However, an exploratory whole-brain analysis showed greater encoding-related lateral occipital cortex activity in Met carriers. Behaviorally, Met carriers also showed better free recall of the encoded pictures. Conclusions: We found no effect of the BDNF genotype on encoding-related hippocampal and dPFC activity in BD, although Met carriers showed superior memory performance after the scan, which could be related to more efficient perceptual processing during encoding.
Collapse
Affiliation(s)
- Lone Diana Hørlyck
- Neurocognition and Emotion in Affective Disorders (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Julian Macoveanu
- Neurocognition and Emotion in Affective Disorders (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Maj Vinberg
- CADIC, Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars Vedel Kessing
- CADIC, Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Neurocognition and Emotion in Affective Disorders (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Chang YH, Wang TY, Lee SY, Chen SL, Huang CC, Chen PS, Yang YK, Hong JS, Lu RB. Memory Impairment and Plasma BDNF Correlates of the BDNF Val66Met Polymorphism in Patients With Bipolar II Disorder. Front Genet 2018; 9:583. [PMID: 30542371 PMCID: PMC6277750 DOI: 10.3389/fgene.2018.00583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/09/2018] [Indexed: 11/13/2022] Open
Abstract
Studies suggest that a functional polymorphism of brain-derived neurotrophic factor (BDNF), polymorphism BDNF Val66Met affects cognitive functions, however, the effect is unclear in bipolar II (BD-II) disorder. We used the Wechsler Memory Scale-third edition (WMS-III), the presence of the BDNF Val66Met polymorphism, and plasma concentrations of BDNF to investigate the association between memory impairment and BDNF in BD-II disorder. We assessed the memory functions of 228 BD-II patients and 135 healthy controls (HCs). BD-II patients had significantly lower scores on five of the eight WMS-III subscales. In addition to education, the BDNF polymorphism were associated with the following subscales of WMS-III, auditory delayed memory, auditory delayed recognition memory and general memory scores in BD-II patients, but not in HC. Moreover, BD-II patients with the Val-homozygote scored significantly higher on the visual immediate memory subscale than did those with the Met/Met and Val/Met polymorphisms. The significantly positive effect of the Val-homozygote did not have a significantly positive effect on memory in the HC group, however. We found no significant association between BDNF polymorphisms and plasma concentrations of BDNF. The plasma BDNF was more likely to be associated with clinical characteristics than it was with memory indices in the BD-II group. The impaired memory function in BD-II patients might be dependent upon the association between the BDNF Val66Met polymorphism and peripheral BDNF levels.
Collapse
Affiliation(s)
- Yun-Hsuan Chang
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Dou-Liou Branch, Department of Psychiatry, National Cheng Kung University Hospital, Yunlin, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, Kaohsiung Veteran's General Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shiou-Lan Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,M.Sc. Program in Tropical Medicine, College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Chun Huang
- Dou-Liou Branch, Department of Psychiatry, National Cheng Kung University Hospital, Yunlin, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Dou-Liou Branch, Department of Psychiatry, National Cheng Kung University Hospital, Yunlin, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Beijing YiNing Hospital, Beijing, China
| |
Collapse
|